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ABSTRACT Various incentives are introduced for the expansion of electric vehicle fleets and electricity 

generation from renewable energy resources. Although many researchers studied the effect of these policies 

on the related sector, there is no study investigating the indirect effect of renewable energy incentives on the 

deployment of electric vehicles or the indirect effect of electric vehicle adoption policies on the long-term 

integration of renewable energy resources. The main contribution of this paper is to analyze the impact of the 

specific incentives on both deployment of electric vehicles in the transportation system and investment in 

capacity generation in the electricity market. For this purpose, a  new framework was designed to analyze the 

effect of policies on the electric vehicle deployment and development of DC charging stations based on the 

system dynamics approach. Then, this framework was combined with the existing dynamic models of the 

electricity market to study the interaction and behavior of both coupled systems from the policymakers’ 

perspective. The effect of policies implementation was interpreted in a mathematical framework and the Net 

Present Value method was used for assessing the investment in charging infrastructures. Simulation results 

of a  case study in the United States and sensitivity analysis illustrate that increasing the wind capacity 

incentives accelerated the electrification of the transportation system and increasing the incentives for 

electrification of transportation system influences wind capacity positively. Moreover, the sensitivity of the 

electric vehicle adoption to gas price is more than the sensitivity of the wind capacity penetration to gas price. 

INDEX TERMS DC charging stations, Electricity market, Electric vehicles deployment policies, Plug-in  

electric vehicles, Renewable capacity incentive, System dynamics, Wind capacity investment. 

NOMENCLATURE 

Abbreviations  

ESS Energy storage system 

RES Renewable energy source 

PEV Plug-in electric vehicle 

EVSE Electric vehicle supply equipment  

HC Hard coal units  

CCGT Combined cycle gas turbines 

GT Gas turbines 

NPV Net Present Value  

Variables  

DUCH Number of PEVs that are supplied in DC 

charging station 

d Time step (day) 

TNPEV Total number of plug-in electric vehicles 

DCEVC Daily consumption of electric vehicles 

that use DC charging stations (kWh/day) 

MAGE Average daily driving distance of electric 

vehicles (km/day) 

ACEV Average daily consumption of electric 

vehicles (kWh/km) 

TCEV Total electricity consumption of all PEVs 

each day (kWh/day) 

TCESC Stored energy in ESSs of charging 

stations (kWh/day) 

TCS Total number of DC charging stations 

EE Excess energy sold to the grid by ESSs 

ESG Energy of PEVs that is not supplied from 

ESSs of DC charging stations (kWh/day) 
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WDF Electricity demand in each week (MW) 

ADGR Growth rate of demand in each year 

(%/year) 

ΔT Time step changes equal to one year 

(year) 

WD Weekly demand after price response 

(MW) 

t Time step (week) 

AP Average price in the previous year 

($/MWh) 

RP Average of prices in five recent years 

($/MWh) 

PED Long-term price elasticity of demand 

i Indices of each technology (HC, CCGT, 

GT, and wind) 

h Time step (hour) 

WSH Weekly average wind speed at H (m/s) 

WSB Average weekly wind speed at HB (m/s) 

TCPR Terrain characteristics of the area  

H Height of the turbine’s hub (m) 

HB Height of measurement tools (m) 

ΔPR Hourly electricity price changes 

($/MWh) 

PR Electricity price ($/MWh) 

QNET Electricity net demand (MWh) 

TEGC Total electricity generation of fossil fuel 

units (MWh) 

Δh Time step changes equal to one hour 

(hour) 

TAM Amortization time (year) 

DR Discount rate (%/year) 

TPE Perceived time (year) 

PROFC Total profit of DC charging stations 

($/MW) 

EPROFC Common expected term of operating 

profit for DC charging stations 

($/MWyear) 

OMCC Average operational and maintenance 

costs of DC charging stations 

($/MWyear) 

TCONSC Construction time of DC charging 

stations (year) 

ICC Investment cost of DC charging stations 

($/MW) 

REV Average weekly revenue of DC charging 

stations ($/MWh) 

EXP Average weekly expenditure of DC 

charging stations ($/MWh) 

IRRC Investment rate of return for DC 

charging stations (%/year) 

PITC Profitability index of charging stations 

SSFDC S-shaped function of DC charging 

stations 

ADC Saturation capacity for DC charging 

stations 

BDC and CDC Fixed values of the S-shaped investment 

function for DC charging stations 

IRCS Investment rate of charging stations 

(number/year) 

RRC Retired rate of charging stations 

(number/year) 

NNCS 

 

Needed number of fast DC charging 

stations (number/year) 

TAGEC Lifetime of DC charging stations (year) 

TEV Total number of PEVs 

CST Targeted ratio of plug-in electric vehicles 

to DC charging station 

PROB Probability of purchasing new PEVs 

Z Factors that affect the probability of 

purchasing a new electric vehicle 

COVA Constant value related to the purchasing 

a new electric vehicle 

LCOE Logit coefficient correspond to Z 

CSPC DC charging stations per capita 

(charging stations per 10,000 capita) 

POP Population of the United States 

PROBA Probability of purchasing new PEVs 

after implementing incentives 

ICI Individual credit for purchasing a new 

vehicle ($) 

HOV HOV lane access incentive (vehicles per 

HOV lane per hour) 

EVSES Electric vehicle supply equipment 

(EVSE) Subsidy ($) 

ALDV Added number of light-duty vehicles 

(number/year) 

GRLDV Growth rate of light-duty vehicles 

production (%/year) 

TLDV Total number of light-duty vehicles 

AEV Added number of PEVs 

RREV Depreciating rate of PEVs (number/year) 

TREV Lifetime of PEVs (year) 

TCV Total number of conventional vehicles 

ACV Added number of conventional vehicles 

RRCV Depreciating rate of conventional 

vehicles (number/year) 

TRCV Lifetime of conventional vehicles (year) 

Δt Time step changes equal to one week 

(week) 

SCDR Development rate of DC charging 

stations (number/year) 

UCCS Number of under-construction charging 

stations 

TDEV Time needed for construction of each 

charging station 

I. INTRODUCTION 

Due to the finite fossil fuel supplies, growing energy demand, 

and environmental issues, the utilization of RESs has become 

an attractive alternative for electricity generation [1]. 

Meanwhile, the combination of RESs with PEVs plays an 

important role in emissions reduction [2]. As the replacement 

of electric vehicle batteries has an expensive process and may 

cause environmental problems, there are still challenges 
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regarding the cost of acquisition and maintenance of batteries, 

their recycling [3], performance, life, and required protection 

devices [4]. Nevertheless, due to the benefits of the 

electrification of the transportation system regarding fossil 

fuel consumption and air pollution, the number of electric 

vehicles is expected to rise rapidly in the near future [5]. At 

present, one of the main barriers to the large-scale deployment 

of electric vehicles is the shortage of charging infrastructures 

[6]. Although fast-charging stations reduce the time of 

charging, uncoordinated charging of a high number of PEVs 

in charging stations can cause some problems for the power 

grid operators [7]. It is common that RESs and ESSs to be 

utilized along with charging stations. Therefore, ESSs can 

mitigate the intermittent nature of RESs, provide load-leveling 

functions and reduce the charging time [6]. The ESSs are 

charged when demand is low, supply PEVs, and the remaining 

stored energy is discharged to the grid when demand is high 

[8]. 

As mentioned above, the interaction of fast charging 

stations equipped with ESSs and renewable energy resources 

is inevitable. One of the main concerns of the policymakers 

and regulators is the investigation of the interaction of 

different components of the power systems, such as renewable 

energy resources and fast charging stations. To reach this 

purpose, they can utilize the system dynamics approach as a 

beneficial instrument to study the interaction and behavior of 

these components and orient planning decisions and strategies 

[9].  

There have been various dynamic models studying the 

behavior of energy systems and electricity markets over the 

last few years. For instance, in [10], the dynamics of 

investment in fossil fuel and wind capacity in the electricity 

market were studied considering the stochastic characteristics 

of wind speed. A dynamic model was introduced in [11] to 

investigate the effect of the renewable portfolio standard 

policy on the strategy of stakeholders in the retail electricity 

market in China. In [12], a  system dynamics approach was 

used to investigate the implementation of island operation 

capability in the Colombian electricity market. A new 

dynamic model was proposed in [13] to consider the peak 

shaving and frequency control reserve constraints in addition 

to power generation planning. In [14], the effect of the 

transmission and distribution tariff policy on electricity 

network investment was studied and a novel investment 

optimization decision-making model based on system 

dynamics theory was introduced and applied in the case study 

of a city in China. The integration of renewable energy 

resources has been investigated through the system dynamics 

approach in many countries such as Sweden [15], Iran [16], 

China [17], and Australia  [18]. The authors of [19] introduced 

a system dynamic model to analyze the development of 

electric vehicles under direct and indirect policies in China. A 

system-dynamics model of Iceland's energy and transport 

systems was established in [20] and different strategies for 

hydrogen and electricity transitions toward a greener 

transportation system were compared. To obtain the evolution 

pattern of electric vehicles, a  system dynamics approach was 

represented in [21] to simulate and forecast the scale of the 

PEVs. This forecasting helps accelerate PEVs' deployment. 

As far as we know, many papers study the renewable resources 

investment problems in electricity markets and deployment of 

electric vehicles via the system dynamic approach, separately. 

Nevertheless, there is no comprehensive dynamic model that 

studies the integration of renewable energy resources in power 

systems and electrification of the transportation system 

simultaneously and accounts for their interaction. 

The main purpose of this paper is to study the effect of the 

penetration of renewable energy resources on the development 

of fast-charging stations or deployment of electric vehicle 

fleets and vice versa . In other words, the effect of renewable 

energy incentive policies on electrification of the 

transportation system is analyzed and the effect of policies for 

electrification of the transportation system on the investments 

in the electricity market is studied. 

In this regard, the main contributions of this paper are listed 

below: 

• A dynamic model is designed to model the purchasing 

behavior of PEV drivers as well as the behavior of 

companies in the investment in DC charging 

infrastructures. Then, this model is combined with the 

proposed dynamic model of the electricity market in [22] 

to achieve a comprehensive model to study the behavior 

of the coupled electricity market and electrified 

transportation system. Such models draw a better picture 

of the whole system for policymakers and help them 

provide planning strategies and policies effectively. 

• New stock and flow variables, feedback loop, and causal 

loop diagrams of the transportation system are designed. 

• The implementation of policies for the electrification of 

the transportation system is described in a new 

mathematical framework. 

• The NPV method is used to assess the economic aspects 

of investment in DC charging infrastructures. 

• Different criteria are introduced to evaluate the social 

benefit resulting from the implementation of incentive 

policies. 

It is expected that this model answers the following 

questions. What is the effect of the renewable energy incentive 

policies on the development of fast charging stations and 

consequently on the deployment of electric vehicles? What is 

the effect of PEV deployment policies on the penetration of 

renewable energy resources? Does the rising utilization of fast 

charging stations encourage companies to invest in renewable 

energies? Does the rising penetration of renewable energy 

resources encourage people to purchase electric vehicles? 

How does the utilization of fast charging stations influence the 

investment in fossil fuel generation units in the electricity 

market? 

The rest of this paper is arranged as follows. Section II 

depicts the overall features of the presented model. Section III 
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discusses the details of the proposed dynamic model. 

Section IV illustrates the simulation results. Section V is 

devoted to sensitivity analysis. The validation process is 

clarified in Section VI. The main conclusions are provided in 

Section VII. 

II. GENERAL ASPECTS OF THE MODEL  

System dynamics has a wide range of use in modeling the 

behavior of electricity networks. It is applicable for evaluating 

the regulation policies, generation expansion planning, 

investment in renewable energy resources, demand-side 

management models, etc. [23]. To achieve the dynamic model 

of the coupled electricity market and transportation system, 

the main components of both systems should be simulated by 

the system dynamics approach. The details of the feedback 

loops, stock and flow diagram, auxiliary, inflow, outflow 

variables, connectors, and causal loop diagram as the main 

elements of the system dynamics approach were described in 

[23]. 

The causal loop diagram of the coupled electricity market 

and transportation system is illustrated in Fig. 1. The black 

arrows in this Figure show the relation of variables in the 

transportation system and pink, blue, and green arrows 

represent the relation of variables in the electricity market. Red 

arrows depict the link of the transportation system with the 

electricity market. Positive (nega tive) signs illustrate that as 

the independent variable rises, the dependent variable 

increases (decreases) [10]. In the dynamics of an economical 

system, positive loops reinforce changes in the system, and 

negative ones balance changes [24]. One positive and four 

negative feedback loops are seen in Fig. 1. The details of two 

inner negative loops (loops 1 and 2) in the market can be found 

in [10] and [22]. Loops 1 and 2 show the price elasticity of 

demand and the price elasticity of conventional units’ 

generation, respectively. Green arrows form the third negative 

loop and pink arrows construct the fourth one. The 

investments in new wind farms and fossil fuel power plants 

are balanced through the third and the fourth loops, 

respectively [22]. In order to show the causal loop diagram of 

the transportation system and complete the proposed models 

of [10] and [22], a  positive loop is added. 

 

FIGURE 1.  Causal loop diagram of the coupled electricity market and transportation system.
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The fifth loop in Fig. 1 represents the investment in fast DC 

charging stations. As the number of PEVs increases, the 

number of drivers that refer to the charging station increases 

and this will lead to the rise of the expected profitability of 

charging stations. Accordingly, the investment decisions for 

building new stations will increase and after a time delay, 

more charging stations will be added to the system. The more 

the number of fast DC charging stations increases, the more 

the charging station per capita will rise. By rising the charging 

station per capita, citizens will be encouraged to purchase 

electric vehicles. Consequently, the total number of electric 

vehicles grows. The deployment of PEVs influences the 

electricity market from two aspects. Firstly, as the number of 

PEVs increases, the consumption of electricity rises. 

Secondly, ESSs of charging stations can change the load 

profile since they are used for load leveling purposes. Load 

leveling can prevent low prices and consequently provide 

higher benefits for wind units. On the other hand, the behavior 

of the electricity market affects PEVs adoption. The 

arrangement of generation technologies alters the electricity 

price and any price fluctuation can change the profit of 

charging stations and the investment in this context.  

Indeed, any incentive for accelerating the deployment of 

PEVs influences the electricity market and vice versa, wind 

capacity incentives affect the deployment of PEVs 

indirectly. It seems that by subsidizing wind units and their 

penetration, the electricity price will decrease and this 

encourages the deployment of PEVs, but it should be noted 

that when the electricity price decreases, the electricity  

demand in the transportation system and other sectors 

increases and this increases the electricity price after a short 

time delay. Moreover, decreasing the electricity price 

prevents investment in the electricity market. Therefore, the 

variables and behavior of actors in the system is changing 

constantly. To study the behavior of the components of 

complex systems, the effect of all factors should be 

considered simultaneously and one of the positive features 

of the system dynamics approach is its ability to study the 

effects of all factors simultaneously. 

In this paper, ancillary services markets, distribution costs, 

and the effects of transmission and distribution lines are 

neglected for simplicity.  

III. DETAILED DESCRIPTION OF THE MODEL  

In order to reach the dynamic model of the electricity market, 

fast-charging stations, and electric vehicles deployment, the 

whole system is divided into several subsystems. Each 

subsystem receives the input data and produces output data 

as input data for other subsystems. The policymakers can 

investigate each output data as the outcome of the problem. 

The detailed description of each subsystem is clarified in the 

next sections. 

 

 

 

A. ELECTRICITY CONSUMPTION OF PLUG-IN 
ELECTRIC VEHICLES  

In this paper, it is assumed that PEVs can be charged at home, 

public charging stations, and DC charging stations. DC 

charging stations provide energy for 5% of the electric 

vehicles in the United States [25] and the rest of those are 

supplied by level 1 and 2 chargers. Therefore, the following 

equation calculates the number of PEVs that are supplied at 

DC charging stations. 

DUCH(d) = 0.05 × TNPEV(d) (1) 

Then the energy that the PEVs get from DC charging 

stations and the total consumption of electric vehicles each day 

can be obtained from (2) and (3), respectively, as follows: 

DCEVC(d) = MAGE × ACEV × DUCH(d) (2) 

TCEV(d) = MAGE × ACEV × TNPEV(d) (3) 

All PEVs in this paper are assumed Tesla model 3, as it is 

the most popular electric vehicle in the United States [26]. 

Although in some papers, average daily driving distance is a 

function of driving time and fitted by Normal distribution [27], 

for simplicity, the average daily driving distance was used in 

this paper because the focus of this paper is on the 

performance of incentives. Moreover, it is assumed that the 

efficiency of the old and new PEVs are the same and their 

average daily consumption would not change during the time 

horizon. All charging stations are equipped with ESSs with a 

capacity equal to 500 kWh [5]. The total storage capacity of 

charging stations is calculated from the following equation. 

TCESC(d) = TCS(d) × 500 (4) 

 The charging strategy at the DC charging stations is in a 

way that electricity demand of PEVs is first supplied by the 

ESSs, and when ESSs are exhausted, the grid starts to supply 

their demand [28]. Therefore, it is assumed that ESSs are 

charged completely based on Fig. 2 in each day. Then, they 

supply the needed energy of the vehicles that are charged in 

DC fast charging stations and sell the excess energy to the grid 

in peak hours for peak shaving purposes [8]. The excess 

energy that the ESSs deliver to the grid in peak hours is 

obtained from the following equation.  

EE (d) = TCESC  (d) − DCEVC (d) (5) 

Then, the electric consumption of EVs which are charged 

by level 1 and level 2 chargers can be obtained by (6). 

ESG(d) = TCEV (d) − DCEVC (d) (6) 
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In Fig. 2, the difference of the red and blue areas is equal 

to the daily consumption of electric vehicles that use fast DC 

charging stations.  

 
FIGURE 2. Valley filling and peak load shaving using ESS.  
 

Hourly load profile of electric vehicles that are supplied 

directly from the grid (not from ESSs) can be obtained from 

ESG and the hourly charging coefficients of EVs. The output 

of this block is the hourly load profile of electric vehicles that 

are supplied directly from the grid and the needed energy of 

PEVs that is supplied from ESSs. The needed coefficients can 

be found in the Appendix. 

B. ELECTRICITY DEMAND  

It is assumed that the electricity market is run on an hourly 

basis and total demand and generation are balanced in each 

hour. Therefore, the hourly total electricity demand should be 

calculated. For this purpose, the average weekly load is 

determined from weekly load coefficients and yearly peak 

value. The weekly load coefficients are obtained from the past 

year’s data of the electricity consumption (which is the 

electricity demand of the USA in this case) [29]. The same 

weekly pattern will be used for all years of time horizon but 

the average weekly demand alters in each year proportional to 

the annual demand growth rate. In this paper, it is a  random 

variable so the normal distribution function with the standard 

deviation equal to 0.01 and expected value equal to 0.011 

shows its random behavior [30]. Therefore, the weekly 

demand is determined from (7) [22]. 

WDF(t + ∆T) = WDF(t) + WDF(t) × ADGR(t) (7) 

It is assumed that consumers can modify their demand 

proportional to the long-term price signals that they receive. 

Such assumption can be modeled by (8) [22]. 

WD(t) = WDF(t) × (
AP(t)

RP(t)
)

PED 

(8) 

After calculation of the weekly average load, the hourly 

demand in each day can be calculated. Although the peak 

value of demand on the weekends is lower than those of 

common weekdays [31], for the sake of simplicity, the peak 

value of all days and their hourly load profile are considered 

the same in each week. In this paper, the hourly electricity load 

coefficients in Texas are used. It is assumed that the hourly 

coefficients of all days of each season are the same and their 

peak values change. These coefficients are represented in the 

Appendix.  

The total hourly load profile can be achieved by adding the 

hourly load profile of electric vehicles, which was obtained in 

section A, and the hourly load profile which is obtained in this 

section. 

C. GENERATION OF FOSSIL FUEL UNITS 

The three main energy sources for electricity generation in the 

United States are fossil fuels (coal, natural gas, and 

petroleum), nuclear energy, and RESs [32]. The HCs and 

nuclear power plants are responsible to meet the baseload. 

Although these units have different costs, for simplicity, it is 

assumed that the baseload is supplied just by HCs. Therefore, 

three technologies comprised of HC, CCGT, and GT are 

considered as the conventional technologies to supply base, 

middle, and peak loads, respectively [10]. A centralized 

approach is considered in this paper to investigate the 

interaction of investment decisions in the electricity market 

and the deployment of electric vehicles from the perspective 

of policymakers [22]. In addition, all units with similar 

technology were considered as one company to form a 

competition between various technologies [9]. 

The gas and coal prices and pollution penalty are the main 

elements of the marginal cost of conventional technologies. 

The uncertainty in fuel price is neglected and a fixed value is 

considered for that. As the efficiency and performance of the 

old units are different from middle-aged and new ones, the 

vintage model is utilized to show the different variable costs 

of these fossil fuel units [10]. Since the demand and generation 

are cleared on an hourly basis, the generation of fossil fuel 

units is calculated each hour [10], [22]. In order to obtain the 

generation, the capacity factor of these units is acquired from 

the supply curves (see the Appendix) [33]. Then, the hourly 

generation of each fossil fuel technology is calculated from the 

installed capacity and capacity factor of that technology in that 

specific hour. 

D. GENERATION OF WIND UNITS  

In the United States, about 21% of the total electricity is 

generated from renewable energy resources. In this regard, the 

production of 8.61% of the total power by wind technology 

makes this technology the most popular renewable energy 

resource in this country [30]. Since one of the goals of this 

paper is to study the effect of renewable energy incentive 

policies on the electrification of transportation systems, for the 

sake of simplicity, other types of renewable energies are not 

included in this paper. Therefore, wind technology is 

considered as the representative of renewable energy 

resources and it will supply the baseload once wind power is 

available. The remaining load that is called net demand is 
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supplied by fossil fuel units [10]. The generation of wind units 

highly depends on wind speed and the behavior of wind speed 

depends on the regional, seasonal features, and short-term 

variations [10]. The iteration of wind speed occurrence usually 

matches with Weibull distribution functions [10]. In this 

paper, the hourly wind speed data in each month is obtained 

from the historical data of wind speed in Texas [34] and [35]. 

These data are properly fitted by the Weibull distribution 

function. The different scenarios of hourly wind speed are 

produced from the Weibull distribution functions by using the 

Monte-Carlo technique. By utilizing the wind speed time 

series simulation technique, the chronological characteristics 

of wind speed are considered in created scenarios. Then, the 

average wind speed in each week is calculated from these data 

[10]. The created average weekly wind speed scenarios are 

authentic in the height that measurement tools are installed (10 

m) [35]. Accordingly, the calculated average weekly wind 

speeds scenarios are modified for the height of the turbine’s 

hub, by the following equation [22]. 

WSH(t) = WSB(t) ×
ln

H
TCPR

ln
HB

TCPR

(9) 

It is assumed that the height of the turbines is fixed during 

the time horizon. After obtaining the modified average weekly 

wind speed data  at the height of the turbine hub, hourly wind 

speed is obtained from this modified data and the hourly 

profile of wind speed in each season. For simplicity, it is 

assumed that the hourly wind speed profile on all days of one 

week is the same. Then, the capacity factor of wind turbines in 

each hour can be obtained from the hourly wind speed profile 

and output power curve of wind turbines. Finally, the output 

power of wind turbines is calculated from the capacity factor 

of wind turbines and total installed wind capacity.  

Many factors such as distance from the coast [36], features 

of the regions, and learning effects [37] influence the capital 

costs of farms over time. Therefore, to reach a precise 

estimation of the investment cost of wind units, a  wide range 

of factors should be considered. For simplicity, an average 

investment cost is considered for all of the wind units in this 

paper. 

E. MARKET EQUILIBRIUM AND PRICE 
DETERMINATION  

To investigate the effect of ESSs of DC charging stations on 

the market behavior, it is assumed that generation and net 

demand are cleared on an hourly basis. For this purpose, the 

hourly net demand is leveled based on the capacity of ESSs 

and the utilization of PEVs from DC charging stations. Then 

it is embedded in the following equations to calculate the 

electricity price [10]. 

∆PR(h) = PR(h) ×
QNET(h) − TEGC(h)

QNET(h)
(10) 

PR(h + ∆h) = PR(h) + ∆PR(h) (11) 

 The electricity generation companies use weekly average 

price for investment decision making which can be determined 

from hourly electricity market price.  

F. GENERATION CAPACITY INVESTMENT  

In this paper, investment in all sectors is done on a weekly 

basis. Generation companies should predict the future market 

price precisely to reach a successful investment. For this 

purpose, the trend extrapolation of variables and the 

exponential smoothing forecast methods are used in this paper 

for the price expectation [24]. The NPV method is used for the 

economic evaluation of the capacity investment [10] [22]. 

In the United States, wind capacity investment is supported 

by various policies at the state and national levels. These 

policies consisted of the production tax credit, renewable 

portfolio standards, mandatory green power options, clean 

energy funds, state government green power purchasing, etc. 

[38]. The production tax credit was assumed as the only wind 

capacity supporting policy, which is 20 $/MWh [38]. 

G. INVESTMENT IN DC CHARGING INFRASTRUCTURES  

For the economic evaluation of the investment in DC charging 

stations, the NPV method is utilized similar to section F. The 

gained profit of the DC charging stations is calculated at week 

t by (12). 

PROFC (t) =

∑ (EPROFC (t) − OMCC) × e−DR×(k+TCONSC)

TAM

k=1

− ICC (12)
 

The expected operating profit of charging stations is 

determined from (13). 

EPROFC (t) = ∑ (REV(s) − EXP (s))

t

s=t−TPE

   ∀  REV(t) ≥ EXP(t) (13)

 

The weekly revenue of DC charging stations highly 

depends on the hourly price of energy that is sold to PEVs and 

to the grid during peak demands. Moreover, the average 

weekly expenditure is a function of hourly electricity price 

during low demands when DC charging stations charge their 

ESSs with lower prices. To find the investment rate of return 

for DC charging stations (IRRC), (13) is substituted in (12) 

and the PROFC=0 is solved for DR. Then the profitability 

index of DC charging stations is achieved from the following 

equation. 

PITC(t) =
IRRC(t)

DR
 (14) 
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Then, by substituting the profitability index in (15), the S-

shaped function of DC charging stations and consequently 

their investment rate is obtained. 

SSFDC(t) =
ADC 

1 + e−(BDC×PITC(t)+CDC)
(15) 

IRCS(t) = SSFDC(t) × (RRC(t) +  NNCS(t)) (16) 

To calculate the investment rate of DC charging stations, 

the needed number of DC charging stations and retired rate of 

charging stations are required, which can be obtained through 

the following equations. 

RRC(t) =
TCS(t)

TAGEC
(17) 

NNCS  (t) = max [0,
TEV(t)

CST
− TCS(t)] (18) 

In 2020, the number of connectors in DC charging stations 

of the United States was 13627 [39] and the total number of 

DC charging stations in this country was 5263 [39] [40]. 

Moreover, it is estimated that there will be 15 million active 

light-duty PEVs in this country by 2030 and 27500 DC 

connectors are needed to meet the demand for charging (about 

10621 DC charging stations) [39]. Therefore, it can be stated 

that the fixed value of CST is one station for 1412 light-duty 

PEVs.  

Equation (15) depicts the S-shaped investment function for 

DC charging stations. The features of this function depend on 

saturation level (ADC) and its other fixed parameters (BDC 

and CDC). Parameters ADC, BDC, and CDC should satisfy 

the following condition [10]. 

1 =
ADC  

1 + e−(BDC+CDC)
(19) 

The investment behavior of companies in DC charging 

stations is similar to the investment behavior in wind units to 

a high extend. Due to the small size of DC charging stations 

and their environmental advantages, the permission and 

construction of these stations do not have a long process 

compared to the technologies such as HC units. Since 

companies plan to construct or get permits in a short period, 

other companies do not access information of competitors 

timely. Therefore, some investment over-reaction in charging 

stations is inevitable similar to the wind units. Secondly, in 

addition to well-experienced companies that are constructing 

DC charging stations, there are small and inexperienced 

companies that are active in this field. These small companies 

are influenced by the decisions of well-known companies. In 

this situation, a herding behavior may be seen. Thirdly, the 

short construction times and the incentives for building 

charging infrastructures encourage companies to begin new 

projects or be involved in several projects, simultaneously  

[41]. Based on these facts, the saturation level (ADC) for DC 

charging stations is set approximately high, similar to the wind 

units. Therefore, by choosing the value of 3.3 for ADC, the 

values equal to 1.8 and -2.7 for BDC and CDC, satisfy the 

condition of (19) [22].  

H. EXPANSION OF ELECTRIC VEHICLES FLEET  

Many factors affect the purchasing of electric vehicles. The 

effect of some of these factors on purchasing behavior and 

adoption of electric vehicles in California were studied in [42] 

through the logit regression model. These factors are depicted 

in Table II (see the Appendix), and (20) represents the 

probability of purchasing new electric vehicles by customers 

each week.   

PROB(t) =
1

1 + e−(COVA+∑ LCOEkZk )k
  (20) 

Since our focus is on investigating the effect of DC charging 

stations on the investment decisions in the electricity market, 

the average values that are shown in Table II were used for 

most of the factors (except charging station per capita, gas, and 

electricity price). More details about these average amounts, 

their range, and the associated interpretations are provided in 

[42]. 

The amount of DC charging stations per capita is described 

through (21) [42]. 

CSPC (t) =
10000 × TCS(t)

POP (t)
(21) 

The initial population is 331002651 and its annual growth 

rate is 0.5 %/year [43]. Gas and electricity prices are 

considered as the random variables with the expected values 

equal to 3.832 $/gallon and 14.6 cents/kWh; and standard 

deviations equal to 0.069 and 1.5, respectively [42]. 

There are various incentives to accelerate the deployment 

of electric vehicles in the United States. The effect of three 

types of them comprised of individual credit, high-occupancy 

vehicle (HOV) lane access, and electric vehicle supply 

equipment (EVSE) subsidies are considered in this paper. The 

individual credit policy is a tax credit or rebate that is 

considered for purchasing a new vehicle. It varies at federal 

and state levels [44]. In this paper, the amount of this incentive 

is 7500 $ at the federal level and 2500 $ at the state level 

(totally 10000 $) [45]. By implementation of the HOV lane 

access incentive, electric vehicles receive permission that 

allows them to drive in carpool lanes even if they do not carry 

the required minimum number of passengers. The HOV lane 

access is based on the density of traffic in vehicles per lane per 

hour and it is assumed that the average vehicle density is 983 

vehicles per HOV lane per hour [44]. Another incentive is 

EVSE Subsidies for electric vehicle charging infrastructures 

that are installed in private or public places [44]. A rebate 

equal to 6000 $ and a subsidy up to 60000 $ were considered 

for Level 2 EVSEs and for the investment cost of DC charging 

stations, respectively [46]. As the output power of most of the 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3176012, IEEE Access

 M. Esmaeili et al: On the Role of Renewable Energy Policies and Electric 

Vehicle Deployment Incentives for a Greener Sector Coupling  

VOLUME XX, 2017 9 

installed DC charging stations in the United States is 50 kW 

[39], it is assumed that the output power of all installed DC 

charging stations is 50 kW. Hence, there is a rebate equal to 

1200 $/kW for the investment cost of DC charging stations in 

(12). The results of [44] present that by increasing 1000$ in 

individual credit, the registration of electric vehicles will rise 

2.6% and by increasing 1000 $ in EVSE Subsidies, the 

registration will increase 1.9%. For the rise per unit of HOV, 

the registration will increase by 0.04%. Therefore, the 

probability of purchasing new electric vehicles after 

implementing incentives is obtained from the following 

equation. 

PROBA (t) =

PROB(t) × (1 + 0.0259 ×
ICI

1000
+ 0.000473 ×

HOV + 0.0196 ×
EVSES

1000
) (22)

 

The total number of light-duty vehicles, number of PEVs, 

and fossil fuel electric vehicles (conventional vehicles) are 

considered as the stock variables. The growth rate of light-duty 

vehicles production is obtained from historical data. It can be 

extracted from a normal distribution function. The standard 

deviation and expected value of this function are 10% and 

11%, respectively. The initial number of light-duty vehicles is 

194,348,815 [47] and the initial number of PEVs is 1,700,000 

[48]. The production rate of light-duty vehicles is obtained 

from the following equation. 

ALDV(t) = GRLDV(t) × TLDV(t) (23) 

Then, the total number of PEVs is calculated through the 

following equation. 

TEV(t + Δt) = TEV(t) + AEV(t) − RREV(t) (24) 

AEV(t) = PROBA(t) × ALDV(t) (25) 

RREV(t) =
TEV(t)

TREV
(26) 

Then, the total number of conventional vehicles is 

calculated through the following equations.  

TCV(t + Δt) = TCV(t) + ACV(t) − RRCV(t) (27) 

ACV(t) = (1 − PROBA (t)) × ALDV(t) (28) 

RRCV(t) =
TCV(t)

TRCV
(29) 

Then, the total number of light-duty vehicles is calculated 

through the following equation.  

TLDV(t + Δt) = TCV(t + Δt) + TEV(t + Δt) (30) 

 

I. DEVELOPMENT OF DC CHARGING STATIONS  

In this paper, it is assumed that the number of DC charging 

stations and PEVs varies weekly. To model the development 

of DC charging stations stock and flow structure is used. In the 

system dynamics approach, different time delays can be 

modeled by cumulating the difference between inflow and 

outflow of a process in the related stock variables [10]. The 

time required for the construction of generation units and 

installation of charging stations are the main time delays in this 

paper. the under-construction DC charging stations and the 

number of installed charging stations were considered as the 

stock variables. The relation between the number of under-

construction DC charging stations and its flow variables is 

depicted below.   

SCDR(t) =
UCCS (t)

TDEV
(31) 

UCCS (t + Δt) = UCCS(t) + IRCS (t) − SCDR(t) (32) 

RRC(t) =
TCS(t)

TAGEC
(33) 

TCS(t + Δt) = TCS(t) + SCDR(t) − RRC(t) (34) 

J. DEVELOPMENT OF GENERATION CAPACITY  

The modeling of the development of generation units is similar 

to the development of DC charging stations. The under-

construction and installed generation capacity are considered 

as stock variables in MW. The investment rate that was 

calculated in section F, the construction rate of technology, 

and the retired rate of capacity are flow variables. A detailed 

description of generation capacity development can be found 

in [10]. 

IV. SIMULATION RESULTS 

The data of the United States’ power system and transportation 

system was used as a case study to assess the introduced 

model. In addition, through this model, the effects of 

incentives on the deployment of PEVs and investment 

decisions in the electricity market can be studied from the 

policymaker’s perspective. The features of the electric power 

system are illustrated in Table III and the characteristics of the 

DC charging stations and Tesla model 3 are shown in Table IV 

(see the Appendix). The generation of electricity by 

hydroelectric power plants in the United States is about 7% of 

the total generation. This percentage has a falling trend and 

will reach 5% by 2050 [30]. Since this technology is not the 

dominant renewable technology by 2050 compared to the 

wind and solar technologies, the generation of this type of 

technology was neglected in this paper. Secondly, their 

operation is subjected to different scheduling processes, and 

investment in this technology depends on many sophisticated 

rules. By ignoring this type of technology, the model is 

simplified without the loss of its general features. The time 

horizon is 30 years and begins from 2020. Furthermore, 

MATLAB software was utilized for the simulations. In order 
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to simulate and analyze the behavior of the electricity market 

and PEV adoption under various conditions, three different 

cases are introduced as follows. 

1. Wind capacity incentive and PEVs deployment 

incentives are implemented in the system. 

2. Wind capacity incentive in the first case increases 

but PEV deployment incentives are not changed 

compared to case 1. 

3. Wind capacity incentive in the first case is not 

changed but PEV deployment incentives are 

increased compared to case one. 

A. CASE 1 

In this case study, the production tax credit for wind units is 

20 $/MWh. Due to the planning of the European Union and 

developed countries to reach carbon neutrality by 2050, the 

incentive is just considered for wind units. Because of the 

environmental reasons and zero marginal costs, these units are 

attractive choices for investors and policy-makers. The 

amount of incentive for purchasing a new PEV is 10000 $, the 

HOV lane access is 983 vehicles per HOV lane per hour. The 

rebate for Level 2 charging stations is 6000 $ and a rebate 

equal to 1200 $/kW is considered for the investment cost of 

DC charging stations. 

Fig. 3 (a) shows the average electricity price in each week 

in the first case. Fig. 3 (b) shows the installed conventional 

capacity, reserve margin, and weekly electricity demand. As 

shown in Fig. 3, electricity price increases when reserve 

margin decreases and it declines when reserve margin rises. In 

other words, as the electricity generation exceeds the 

consumption, there will be a falling trend for the price, and the 

rising trend of price is revealed in reverse situations. Fig. 3 (c) 

shows the installed capacity of each technology. Due to the 

lower investment cost of CCGTs compared to HC units and 

their lower emission, companies tend to invest in these units 

more than HCs. Accordingly, in contrast to HCs; the installed 

capacity of CCGTs has a rising trend by 2050. Although the 

investment cost of wind units is comparatively high, they are 

desirable for investors. This is because; these units do not have 

any pollution, their marginal cost is zero and the considered 

incentive guarantees part of their revenue. Since GTs cover 

their costs during the peak load, companies usually invest in 

this technology during scarcity events. Therefore, the 

investment in these units is low. Fig. 3 (d) shows the portion 

of installed capacity of each technology to the total installed 

capacity. Based on this Fig. wind technology will be the most 

popular technology in the United States by 2050. By 

comparing Fig. 3 (a) and 3 (d), as the percentage of installed 

wind capacity increases, due to the stochastic nature of these 

units, the fluctuation of electricity price increases, while due 

to their negligible marginal cost, the weekly average price 

decreases. 

 

FIGURE 3. Behavior of the electricity market in case 1 

Fig. 4 (a) and 4 (b) illustrate the total number of installed 

DC charging stations and the total number of PEVs in the 

United States, respectively in case 1. Fig. 4 (a) and 4 (b) reveal 

the rising trend of PEV and DC charging stations’ growth. Due 

to (16) and (18), the number of PEVs influences the 

investment rate of DC charging stations. Since the number of 

PEVs was low from 2020 to 2024, the investment in DC was 

not considerable. Therefore, the number of DC charging 

stations had a falling trend. As the number of PEVs increased 

after 2024, the investment in the DC charging station 

increased. Moreover, the targeted ratio of plug-in electric 

vehicles to DC charging station is another factor that 

influences the investment in DC charging stations. Fig. 4 (c) 

shows the probability of purchasing new PEVs. As shown in 
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this Fig., the implementation of state and federal incentives for 

the electrification of the transportation system has a 

remarkable effect on purchasing behavior of people. By 

increasing the gas price and DC charging station per capita, 

the willingness to buy PEVs increases. The increase in the 

price of electricity that is sold to drivers by DC charging 

stations has a negative effect on the adoption of PEVs. 

 
FIGURE 4. Electric vehicle adoption in case 1. 

On the other hand, when the price of electricity (Fig. 3 (a)) 

which is sold to DC charging stations by the grid increases, the 

profit of DC charging stations decreases and this will lead to 

lower investment in DC charging infrastructures which in turn 

reduces the DC charging station per capita and reduces the 

willingness of purchasing PEVs. Fig. 4 (d) depicts the weekly 

capacity of ESSs in charging stations and the weekly 

consumption of PEVs that are charged in DC charging 

stations. The first one is a function of the number of DC 

charging stations, and the second one depends on the number 

of PEVs. 

B. CASE 2 

In this case, all incentives of the first case are implemented but 

the wind capacity incentive increase to 30 $/MWh. Fig. 5 (a) 

shows the average electricity price in each week in the second 

case. Fig. 5 (b) shows the installed conventional capacity, 

reserve margin, and weekly electricity demand. Fig. 5 (c) 

illustrates the installed capacity of each technology. Fig. 5 (d) 

shows the share of each type of technology.  

 

FIGURE 5. Behavior of the electricity market in case 2 
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Since the amount of wind incentive increased, companies 

were encouraged to invest in wind capacity more than in case 

1. In 2050, the installed wind capacity in cases 1 and 2 was 

about 560 GW (39.2%) and 662 GW (43.9%), respectively. 

As the installed wind capacity rises, the average price 

decreases, and its fluctuations increase. The average price in 

case 1 was 99.77 $/MWh and it decreased to 99.57 $/MWh in 

case 2. The standard deviation of the price reached from 

2.06 $/MWh in case 1 to 2.34 $/MWh in case 2. 

 
FIGURE 6. Electric vehicle adoption in case 2. 

Fig. 6 (a) and 6 (b) illustrate the total number of installed 

DC charging stations and the total number of PEVs in the 

United States, respectively in case 2. By increasing the amount 

of wind capacity incentive in case 2, the total number of 

installed DC charging stations a nd the total number of PEVs 

at the end of time horizon grew from 38227 and 53.7 million 

in case 1 to 41477 and 57.84 million in case 2. By raising the 

percentage of wind capacity, electricity price declines and this 

will lead to amplifying the gained profit of DC charging 

stations. Therefore, the expansion of this type of station will 

be accelerated, and by increasing the charging station per 

capita, the probability of purchasing PEVs rises. The average 

probability of purchasing PEVs (after the implementation of 

PEV deployment incentives) during 30 years in cases 1 and 2 

was 8.11% and 8.17%, respectively. Fig. 6 (c) shows the 

probability of purchasing new PEVs. Fig. 6 (d) depicts the 

weekly capacity of ESS in charging stations and the weekly 

consumption of PEVs that are charged in DC charging 

stations. The capacity of ESSs influences the load leveling and 

this can mitigate the price fluctuations but since the capacity 

of ESSs, in this case, is not considerable compared to the 

generation of wind units, the effect of load-leveling is not 

tangible compared to case 1. 

C. CASE 3 

In this case, wind capacity is the same as case 1, but all of the 

incentives for deployment of PEVs increased 10%. Fig. 7 (a) 

and 7 (b) illustrate the total number of installed DC charging 

stations and the total number of PEVs in the United States, 

respectively in case 3. Fig. 7 (c) shows the probability of 

purchasing new PEVs. Fig. 7 (d) depicts the weekly capacity 

of ESS in charging sta tions, and the weekly consumption of 

PEVs that are charged in DC charging stations. By growing 

the incentives, in this case, the average probability of 

purchasing PEVs during 30 years rose to 9.22%. Accordingly, 

the total number of installed DC charging stations and the total 

number of PEVs increased compared to case 1 and reached 

50485 and 70.96 million, respectively by 2050. As a result, the 

capacity of ESSs and the weekly consumption of PEVs at DC 

charging stations increased from 133 and 117 GWh in 2050 in 

case 1 to almost 176 and 154 GWh in case 3, respectively. 

Therefore, as the capacity of ESSs has a considerable effect on 

load leveling, the hourly load profile was leveled in case 3 

more than in case one. In case 3, the standard deviation of the 

hourly load profile before and after load-leveling was 129.3 

and 97.53 GW during the time horizon, while in case 1, it was 

124.31 and 93.95 GW before and after load leveling. 

Fig. 8 (a) shows the average electricity price in each week 

in the third case. Fig. 8 (b) shows the installed conventional 

capacity, reserve margin, and weekly electricity demand. 

Fig. 8 (c) and 8 (d) illustrate the installed capacity and 

percentage of each technology, respectively. The average 

electricity price during the time horizon in cases 1 and 3 was 

99.77 $/MWh and 99.65 $/MWh, respectively. As the 

installed wind capacity in case 3 is more than in case 1, the 

average electricity price, in this case, is lower than in case 1 

too.   
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FIGURE 7. Electric vehicle adoption in case 3. 

The intensity of valley filling in hourly load profile highly 

depends on the capacity of ESSs (the black curve in Fig. 7 (d)) 

and the intensity of peak shaving depends on the remaining 

energy of ESSs that is not consumed (difference of the black 

and green curves in Fig. 7 (d)). The valley filling feature of 

ESSs prevents price fluctuations and decreases the benefit 

fluctuations. Between 2020 to 2040, the standard deviation of 

price is 2.01 in case 3, which is lower than the price standard 

deviation in case 1 in a similar period (2.08). This reduces the 

investment risk of wind units and motivates companies to 

invest in this technology. As a result, in case 3, installed wind 

capacity increases between 2040 to 2050 more tha n in case1. 

This leads to lower prices in case 3 compared to case 1 from 

2040 to 2050 (compare Fig. 3 (a) and Fig. 8 (a)). Although 

reducing the investment risk motivates the investors to invest 

in conventional units too, these technologies cannot compete 

with wind technology. Therefore, the growth rate of wind units 

will be more than that of conventional units. In case 3, the 

installed wind capacity by 2050 was about 576 GW (39.4%), 

while it was 560 GW (39.2%) in case 1. 

 
FIGURE 8. Behavior of the electricity market in case 3. 

The social benefit resulting from the implementation of 

policies was assessed in these three cases. There are different 

criteria for evaluating the social benefit. Some of these criteria 

were used in this paper to measure the social benefits. One of 

these criteria is the difference between the benefit of consumer 

and generation cost or the difference between the benefit of 
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electricity generating companies and electricity market price 

[49]. The second measure is the variable called the expected 

demand not supplied. It happens when the generation capacity 

is lower than electricity demand [50]. Furthermore, the 

environmental benefits were assessed by defining two 

variables. The first one is the ratio of the produced CO2 in the 

electricity market to total electricity generation and the second 

one is the ratio of the produced CO2 in the transportation 

system to the number of total vehicles comprised of electric 

and fuel-based vehicles. It is assumed that the average 

emission of fuel-based vehicles is 130 gr CO2 per kilometer 

[51]. Table I depicts the related data for each case. 
TABLE I 

FACTORS AFFECTING SOCIAL WELFARE IN EACH CASE 

Item Case 1  Case 2 Case 3 

1- Average difference between the 
benefit of electricity generating 

companies and electricity price in each 
week ($/MWh) 

5.1361 7.6370 5.1373 

2- Expected demand not supplied 
(MW) 

0 8955.7 0 

3- Ratio of the produced CO2 in the 
electricity market to total electricity 
generation (Ton/MWh) 

0.4229 0.4077 0.4169 

4- Average ratio of the produced CO2 
in the transportation system in each 
week to the number of total vehicles 
(Ton per vehicle per week) 

0.0328 0.0328 0.0327 

 

The first item is the average difference between the benefit 

of electricity generating companies (wind and conventional 

units) and electricity price each week. The higher value of this 

item shows higher social benefit. More benefits for generation 

companies along with low electricity prices for consumers 

guarantee the benefit of both sides of the market. Since the 

percentage of wind capacity in case 2 is higher, cheaper 

electricity is provided for consumers. By comparing this value 

in case 3 (5.1373) with its value in case 1 (5.1361), it can be 

stated that the policy actions in the transportation system can 

influence the social benefits in the electricity market. 

 The expected demand not supplied in case 2 is higher than 

the two other cases because of the intermittent behavior of 

wind units. Based on the data of the third item, the ratio of CO2 

production to total generated electricity has a reverse relation 

with the penetration of wind units. In addition, the data of  the 

fourth item for case 3 shows that more deployment of EVs in 

the transportation system reduces the emission in this sector. 

The data relating to CO2 emission in Table I shows that any 

incentive policy for wind capacity in the electricity market or 

electrification of the transportation system influences the 

emission in other sectors. 

V. SENSITIVITY ANALYSIS  

To analyze the effect of wind capacity incentive on PEV 

deployment and the effect of incentives related to the 

electrification of the transportation system on decision making 

in the electricity market, the sensitivity analysis was 

conducted. In addition, the effect of gas price as an external 

factor was studied.  

In the first analysis, the development of wind capacity, 

installed DC charging stations, and PEV adoption were 

investigated under three different values of wind capacity 

incentive equal to 0, 20, 30, and 40 $/MWh. Fig. 9 (a), 9 (b), 

9 (c), and 9 (d) illustrate the installed wind capacity, portion of 

wind capacity, total number of active PEVs on roads, and total 

number of active DC charging stations, respectively.  

 
FIGURE 9. Simulation results for different values of wind capacity 

incentive. 

Based on Fig. 9, as the amount of wind capacity incentive 

increased the tendency for investment in this technology 

increased. By rising the share of wind units in the generation, 

the benefits of companies for installation of DC charging 
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stations grew and this led to the rising of the charging stations 

per capita. Consequently, this will encourage people to 

purchase new PEVs. It can be stated that any incentive for 

encouraging the development of wind capacity can accelerate 

the deployment of PEVs indirectly. 

 
FIGURE 10. Simulation results for different values of PEV deployment 

incentive. 

In the second analysis, the development of wind capacity, 

installed DC charging stations, and PEV adoption were 

investigated under different values of PEVs deployment 

incentives. If it is assumed that the total PEVs deployment 

incentive in the first case was equal to X, the effect of 

incentives equal to 1.1×X and 1.2×X were investigated. 

Fig. 10 (a), 10 (b), 10 (c), and 10 (d) illustrate the installed 

wind capacity, portion of wind capacity, total number of active 

PEVs on roads, and total number of active DC charging 

stations, respectively. By rising the number of PEVs and DC 

charging stations, the capacity of ESSs increased. ESSs play 

an important role in valley filling of hourly load profile and 

therefore prevent the reduction of electricity market prices. 

This led to more profits for wind units. Consequently, it can 

be claimed that any incentive for deployment of PEVs or 

expansion of DC charging stations can encourage companies 

to invest in wind capacity, indirectly. 

 
FIGURE 11. Simulation results for different values of gas price. 

In the third analysis, the effect of gas price was investigated 

on simulation results. Unlike our assumption, gas price varies 

over time and it is not fixed. The gas price not only affects the 

marginal cost of CCGTs and GTs but also influences the 

purchasing behavior of the masses regarding PEVs. In the first 
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case, the gas price of conventional vehicles was different from 

the gas price of generation units. In this section, it is assumed 

that gas prices increase up to 5% and 10% compared to the 

price in the first case. Fig. 11 shows the simulation results for 

this analysis. As shown in this Fig., by rising gas prices, the 

tendency for investment in wind capacity and purchasing 

PEVs increased. The sensitivity of PEVs deployment to gas 

price is much higher than the sensitivity of wind capacity 

investment to gas price. 

VI. VALIDATION  

In this paper, to assess the validity of the presented model, the 

obtained results were compared with the result of other papers 

and authentic existing reports. Fig. 12 shows the capacity 

factor of wind units and their average each week. The first 

week of this Fig. corresponds to the first week of January. The 

historical data related to the capacity factor of the Los Vientos 

wind farm reveals that the capa city factor varied 

approximately between 0.2 and 0.6 [52]. These statistical data 

confirm the findings of this paper. 

 

FIGURE 12. Capacity factor of wind units in case 1. 

In this paper, the existing models of  [10] and [22] were 

extended and completed. The general aspects of the market 

behavior in the mentioned papers are in agreement with the 

market behavior in the proposed model of this paper. For 

example, there is an inverse relationship between electricity 

price and reserve margin. In addition, a few months after each 

price jump, a new boom cycle is seen on the investment wave 

of technologies. Moreover, CCGTs are the dominant 

conventional technology in these papers since they have lower 

costs and higher profitability. To assess the validity of the 

simulation results of this paper, they can be compared with the 

annual energy outlook in 2021 that explores long-term energy 

trends in the United States by 2050 [30]. It is estimated that 

gas-based generation technologies comprised 36% of the total 

generation in the United States by 2050. In this regard, the 

share of renewable energy resources, nuclear power plants, 

and HC units reaches 42%, 11%, and 11%, respectively [30]. 

The findings of this paper (Fig. 3 (d)) show that gas-based 

technologies comprise about 38.7% of the total generation 

capacity by 2050. The share of renewable energies at the end 

of 2050 is approximately 39.2% and the percentage of units 

that supply the baseload (HCs) is almost 22.1%. The 

percentage of wind capacity does not reach the expected 

amount (42%); this is because all federal and state renewable 

incentives were not considered in our model. 

Fig. 13 shows the annual electricity demand growth rate 

during the time horizon. The red curve represents the 

calculated demand growth rate in this model and the blue 

curve shows the forecasted demand growth rate by the annual 

energy outlook report [30]. 

 
FIGURE 13. Annual demand growth rate. 

Moreover, it is forecasted that the total number of PEVs will 

reach 15 million by 2030 [39] and 50 million by 2050 [53]. 

The estimated number of DC connectors to meet the charging 

demand of 15 million PEVs in 2030 is almost 13627 (10621 

DC charging stations) [39]. The simulation results in this 

paper show that the total number of PEVs reached about 14.2 

million by 2030 and 53.7 million by 2050. To meet the 

charging demand 10766 and 38227 DC charging stations were 

installed by 2030 and 2050, respectively. 

VII. CONCLUSION  

The main contribution of this paper was to demonstrate that 

any incentive policy to accelerate the deployment of PEVs or 

expansion of DC charging stations influences the wind 

capacity investment in the electricity market. Furthermore, the 

implementation of incentive policies for the development of 

wind capacity affects the deployment of PEVs. To reach this 

goal, the system dynamic approach was used to model the 

purchasing behavior of EV consumers and the behavior of 

companies in the investment in DC charging stations. Then 

this proposed model was combined with the previous model 

of the electricity market to study the coupled electricity market 

and transportation system. The mathematical formulation of 

various federal and state incentive policies was embedded in 

the proposed model. In addition, the economic evaluation of 

DC charging stations development was conducted by the NPV 

method. A positive feedback loop was added to the former 

dynamic models of the electricity market to show the relation 

of cause and effect variables in the causal loop diagram of 

investment in DC charging stations and purchasing behavior 

of drivers. 

The data of the transportation system and electricity market 

in the United States was used as a case study and three 

scenarios were examined. In order to assess the validation of 
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the model, the simulation results of this paper were compared 

with the information of authentic reports and results of other 

papers. The simulation results revealed that the 

implementation of wind capacity incentive policies 

accelerated the deployment of PEVs and investment in DC 

charging stations. On the other hand, incentives that were 

considered to encourage drivers to purchase PEVs or the 

development of charging infrastructures had a positive effect 

on the development of wind capacity too. The sensitivity 

analysis depicted that by increasing the gas price, companies 

were encouraged to invest in wind capacity. This even 

extremely affected the purchasing behavior of drivers. 

Generally, it can be stated that the EV adoption and 

development of DC charging stations highly depend on some 

parameters and assumptions such as gas price and the targeted 

ratio of PEVs to DC charging station. 

For future works, the effect of development in the 

technology of PEVs, batteries, charging stations, and the 

maturity of their technology on the whole system can be 

investigated. Secondly, the effect of the rising share of RES 

and electric vehicle adoption on the ESS market can be 

studied. Thirdly, some of the generation technologies were 

neglected in the electricity market such as photovoltaic panels, 

nuclear power plants, hydroelectric power plants, and pumped 

storage power plants, which could have a considerable effect 

on price and load profile. Fourthly, different pricing strategies 

and charging strategies in DC charging stations influence 

simulation results, which can be studied in future works. 

Finally, the expansion of transmission lines and distribution 

systems can be included in future works to provide a more 

comprehensive model for policymakers. 

APPENDIX  

The hourly and weekly coefficients, functions, and data sets 

are represented in this section.  

 
FIGURE 14. Hourly PEVs charging coefficients [54].  

 

The first week in Fig. 15 is the first week of January and the 

amount of peak value in the first year is 740 GW [55]. The 

consumption of the transportation system was not considered 

in the first year peak value and load profile of Fig.15. 

 

 
FIGURE 15.  Load coefficients in each week. 

 
FIGURE 16. Average hourly electricity load coefficients for days of each 
season in Texas [31]. 

 
FIGURE 17.  Supply curves of technologies [33]. 

 
FIGURE 18. Hourly coefficients of wind speed for each season [35]. 
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In this paper, the technical data of Siemens turbines (model 

SWT 108 2.3) of Los Vientos Wind Farm in Texas are 

considered [52].  

 

FIGURE 19.  The output power curve of 87 Siemens SWT 108 2.3 

turbines [56]. 

The initial values, coefficients, constant values and data set 

that were used in the paper are provided in the following 

tables.  
TABLE II 

FACTORS AFFECTING THE PURCHASING OF ELECTRIC 

VEHICLES IN CALIFORNIA [42] 

Factor Logit Coefficient 
(LCOE) 

Average 

Age 0.008 52.18 
Gender −0.001 0.559 
Employment status 0.111 0.740 

Multiple jobs −0.018 0.207 
Car sharing 0.922 0.011 
Trip duration 0.001 52.38 
Income 0.443 3.728 

Home ownership 0.176 0.822 
Residence type −0.076 1.347 
Number of vehicles in family −0.055 2.090 
Household size −0.067 2.781 

Maximum education 0.269 4.756 
Manufacturer density −0.006 0.391 
Population density −0.0000 1481.2 
Gas price 2.885 - 

Electricity price for PEVs  −0.070 - 
DC Charging station per capita 0.832 - 
Constant value (COVA) −19.788 - 

TABLE III 

THE ELECTRIC POWER SYSTEM CHARACTERISTICS 

HC CCGT GT Wind Technology 

17 4000 2633 24810 Under construction capacity 
(MW) [30] 

143000 92000 69000 268000 Initial installed capacity (MW) 

(First vintage) [57] [30] 
143000 92000 70000 - Initial installed capacity (MW) 

(Second vintage) [57] [30] 
143000 93000 70000 - Initial installed capacity (MW) 

(Third vintage) [57] [30] 
3 1.5 1 1 Average time needed for 

construction (year) [22] 
40 30 20 20 Lifetime (year) [22] 

1000 600 500 1500 Investment cost ($/kW) [22] 
6.55 8.15 8.15 0 Fuel price  conversion factor 

($/MWh) [58] 
7.6 7.6 7.6 0 Emission penalty ($/Ton of 

CO2) [59] 

16 16 16 12 Maintenance cost ($/kWyear) 
[22] 

0.45 0.60 0.35 - Efficiency (%) (vintage 1) [22] 
0.42 0.57 0.32 - Efficiency (%) (vintage 2) [22] 
0.39 0.54 0.27 - Efficiency (%) (vintage 3) [22] 
0.87 0.33 0.29 - Emission factor (Ton/MWh) 

(First vintage) [22] 
0.90 0.35 0.31 - Emission factor (Ton/MWh) 

(Second vintage) [22] 
0.95 0.40 0.37 - Emission factor (Ton/MWh) 

(Third vintage) [22] 
25 20 15 15 Amortization period (year) [22] 

 
TABLE IV 

THE FAST DC CHARGING STATION AND TESLA MODEL 3 

CHARACTERISTICS 

Item Quantity 

Investment cost of charging station ($/kW) [60] 2110  
Maintenance cost of charging station ($/kWyear) [60] 76 
Lifetime of charging station (years) [60] 15 
Construction time of charging stations (year) [61] 1 

Amortization period of charging station (years) [62] 10 
Average daily consumption of EV (ACEV) (kWh/km) [63] 0.1616 
Passenger volume of EV (ft

3
) [63] 97  

Luggage volume of EV (ft
3
) [63] 15  

Electric motor/battery (AC 3-Phase) (kW) [63] 147 / 211  
Time to charge battery of EV at 240V (hours) [63] 10  
Lifetime of PEVs (year) [64] 15 

TABLE V 

CONSTANT VALUES 

Item Quantity 

MAGE (km) [65] 38.6 
PED (unitless) [22] -0.3 
TCPR (unitless) [52] 0.01 

H (m) [52] 100 
TPE (year) [22] 1 
TRCV (year) [66] 12 

TABLE VI 

HOURLY LOAD DATA SET  

Hours EVs charging 
coefficients 

Hourly electricity load coefficients 

Winter Spring Summer Fall 

1 0.367 0.837 0.756 0.703 0.702 
2 0.235 0.814 0.732 0.672 0.681 
3 0.143 0.791 0.707 0.641 0.660 

4 0.092 0.791 0.683 0.609 0.638 
5 0.061 0.814 0.732 0.617 0.670 
6 0.046 0.837 0.756 0.625 0.702 
7 0.051 0.907 0.805 0.648 0.723 

8 0.092 1.000 0.829 0.675 0.745 
9 0.117 1.000 0.854 0.703 0.777 

10 0.122 0.953 0.878 0.766 0.819 
11 0.163 0.942 0.902 0.828 0.851 

12 0.235 0.930 0.927 0.891 0.894 
13 0.255 0.907 0.939 0.938 0.926 
14 0.306 0.884 0.951 0.953 0.957 

15 0.408 0.860 0.963 0.969 0.974 
16 0.520 0.837 0.976 0.984 0.985 
17 0.714 0.849 1.000 1.000 1.000 
18 0.918 0.860 0.976 0.984 0.979 

19 1.000 0.907 0.951 0.961 0.957 
20 0.980 0.930 0.927 0.938 0.957 
21 0.898 0.930 0.927 0.898 0.904 
22 0.816 0.907 0.878 0.859 0.851 

23 0.612 0.884 0.829 0.820 0.798 
24 0.408 0.860 0.805 0.781 0.745 
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TABLE VII 

HOURLY WIND SPEED DATA SET  

Hours Hourly coefficients of wind speed 

Winter Spring Summer Fall 
1 0.710 0.694 0.621 0.724 

2 0.708 0.675 0.588 0.720 
3 0.704 0.660 0.554 0.711 
4 0.708 0.641 0.527 0.706 

5 0.708 0.631 0.497 0.702 
6 0.708 0.614 0.469 0.694 
7 0.725 0.655 0.489 0.694 
8 0.818 0.763 0.588 0.754 

9 0.936 0.877 0.717 0.881 
10 0.992 0.910 0.766 0.979 
11 1.000 0.907 0.779 1.000 
12 0.982 0.901 0.788 0.991 

13 0.968 0.903 0.818 0.974 
14 0.954 0.919 0.857 0.964 
15 0.943 0.941 0.897 0.966 
16 0.935 0.959 0.938 0.964 

17 0.875 0.987 0.978 0.906 
18 0.806 1.000 1.000 0.857 
19 0.801 0.972 0.953 0.829 

20 0.802 0.905 0.866 0.806 
21 0.787 0.840 0.789 0.793 
22 0.757 0.806 0.743 0.768 
23 0.738 0.762 0.691 0.743 

24 0.721 0.718 0.644 0.728 

TABLE VIII 

WEEKLY LOAD DATA SET  

weeks Weekly 
electricity 

load 
coefficients 

weeks Weekly 
electricity 

load 
coefficients 

weeks Weekly 
electricity 

load 
coefficients 

1 0.878 19 0.813 36 0.911 
2 0.853 20 0.826 37 0.892 
3 0.829 21 0.839 38 0.87 

4 0.804 22 0.852 39 0.848 
5 0.779 23 0.882 40 0.826 
6 0.784 24 0.911 41 0.804 
7 0.789 25 0.941 42 0.794 

8 0.794 26 0.97 43 0.784 
9 0.779 27 1 44 0.774 

10 0.779 28 0.997 45 0.764 
11 0.76 29 0.995 46 0.778 

12 0.741 30 0.992 47 0.793 
13 0.722 31 0.99 48 0.807 
14 0.738 32 0.987 49 0.822 

15 0.755 33 0.968 50 0.836 
16 0.771 34 0.949 51 0.85 
17 0.788 35 0.93 52 0.864 
18 0.8     

TABLE IX 

WIND TURBINE CAPACITY FACTOR DATA SET  

Wind 
speed 

Capacity factor 
of wind turbine 

Wind 
speed 

Capacity factor 
of wind turbine 

1 0 9 0.8465 
1.5 0 9.5 0.9404 

2 0 10 0.9752 
2.5 0 10.5 0.9883 
3 0.0117 11 1 

3.5 0.0252 12 1 

4 0.04 13 1 
4.5 0.0683 14 1 
5 0.0978 15 1 

5.5 0.1626 16 1 

6 0.2278 17 1 
6.5 0.3139 18 1 

7 0.3996 19 1 
7.5 0.5022 20 1 
8 0.6039 20.5 0 

8.5 0.7261 21 0 

TABLE X 

FOSSIL FUEL UNITS CAPACITY FACTOR DATA SET  

PR(h-
Δh)/ 

MC(h) 

HC 
CC
GT GT 

PR(h-
Δh)/ 

MC(h) 
HC 

CC
GT GT 

0.8 0 0 0 1.06 0.88 0.79 0.58 
0.81 0.01 0 0 1.07 0.91 0.81 0.61 

0.82 0.03 0 0 1.08 0.94 0.83 0.64 
0.83 0.04 0 0 1.09 0.97 0.86 0.67 
0.84 0.06 0 0 1.1 1 0.88 0.7 

0.85 0.07 0 0 1.11 1 0.90 0.72 
0.86 0.09 0.03 0 1.12 1 0.93 0.74 
0.87 0.10 0.06 0 1.13 1 0.95 0.76 
0.88 0.12 0.09 0 1.14 1 0.97 0.78 

0.89 0.13 0.12 0 1.15 1 1 0.8 
0.9 0.15 0.15 0 1.16 1 1 0.82 

0.91 0.20 0.18 0.04 1.17 1 1 0.84 
0.92 0.26 0.21 0.08 1.18 1 1 0.86 

0.93 0.31 0.24 0.12 1.19 1 1 0.88 
0.94 0.37 0.27 0.16 1.2 1 1 0.9 
0.95 0.42 0.3 0.2 1.21 1 1 0.91 
0.96 0.48 0.37 0.24 1.22 1 1 0.92 

0.97 0.53 0.44 0.28 1.23 1 1 0.93 
0.98 0.59 0.51 0.32 1.24 1 1 0.94 
0.99 0.64 0.58 0.36 1.25 1 1 0.95 

1 0.7 0.65 0.4 1.26 1 1 0.96 
1.01 0.73 0.67 0.43 1.27 1 1 0.97 
1.02 0.76 0.69 0.46 1.28 1 1 0.98 
1.03 0.79 0.72 0.49 1.29 1 1 0.99 

1.04 0.82 0.74 0.52 1.3 1 1 1 
1.05 0.85 0.76 0.55     
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