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Abstract—The power-electronic-based grid emulator has 

been widely used for grid-code compliance testing of wind 

turbines (WTs). To accommodate the increasing voltage and 

power levels of WTs, the modular multilevel converter 

(MMC) emerges as a promising approach for the future 

grid emulator. This paper provides an overview of testing 

requirements and control strategies for the MMC-based 

grid emulator. Specifications, challenges and solutions to 

implement expected control functionalities of the MMC-

based grid emulator are discussed according to testing 

requirements of WTs. Emerging testing functionalities and 

future trends of grid emulators conclude this paper. 

Keywords— Grid emulator, grid code requirement, testing, 

modular multilevel converter 

I.  INTRODUCTION 

The power capacity of wind turbines (WTs) has over 
the years been continuously increasing. The medium-
voltage wind turbines with the power capacity of 15 
megawatt (MW) will soon be deployed in offshore wind 
power plants [1]. Consequently, advances in the grid 
emulation technology are demanded to perform grid-code 
compliance testing. 

There have been several megawatt power-electronic-
based grid emulators developed for WTs, notably the 15 
MVA grid emulator in LORC, Denmark [2], yet they 
cannot be used for 15 MW WTs. Recently, a 66 kV/20 
MVA grid emulator with a short-circuit power of 80 
MVA is being developed for high-power medium-voltage 
applications [3]. 

A scalable and versatile grid emulator is demanded to 
accommodate the increasing power and voltage levels of 
WTs. The modular multilevel converter (MMC) emerges 
as a promising approach to meet this demand [4], [5]. 
The replacement of LC filter by L filter in the MMC 
enables to widen the bandwidth of voltage control for 
emulating different grid voltage profiles. In addition to 
converter topologies, the technical specifications of grid 
emulators have also been continuously updated, e.g., the 
injection of 50th harmonic [6] and the overvoltage with 
130% of the nominal value [7]. However, it remains 
unclear whether the technical specifications fulfill the 
evolution of grid code requirements. 

Further, more testing functionalities are furnished with 
grid emulators, e.g., multi-consecutive faults, stiff/weak 

grid quantified by grid impedances, and programmable 
inertial response, etc. Accordingly, the control system of 
grid emulators is getting more sophisticated with multiple 
control functions, e.g., impedance control, virtual inertia, 
fast voltage control, etc. [8]. While these functions can be 
realized, the grid emulator still differs from actual grids, 
since its control system can interact with the controller of 
device under test (DUT), causing unexpected harmonics 
or even oscillations [2], [8]. Besides the outer interactions, 
the internal control of MMC, e.g., the submodule voltage 
balancing, may also interact with external events of grid 
emulator [9], which further complicates system dynamics 
and threatens the stability and reliability of grid-code 
compliance testing. 

This paper reviews firstly testing requirements of WTs 
and identifies technical specifications for next-generation 
grid emulators. To meet the identified specifications, the 
required control functionalities of grid emulators are then 
summarized. The challenges and solutions for realizing 
control functionalities by the MMC-based grid emulator 
are elaborated. Finally, two future testing functionalities, 
i.e., grid-forming capability test and system restoration 
test are discussed. 

II. TESTING REQUIREMENTS AND SPECIFICATIONS OF 

MMC-BASED GRID EMULATORS 

To provide the specifications for the MMC-based grid 
emulator, the testing requirements of WTs from recently 
updated grid codes and existing grid emulators are 
reviewed respect to four aspects, as shown in Fig. 1. 

A. Fault-Ride-Through 

A crucial testing functionality of grid emulators is the 
fault-ride-through (FRT) test, i.e., the low-voltage ride-
through (LVRT) test and the high-voltage ride-through 
(HVRT) test. According to IEC 61400-21 [10], IEEE 
1547.1 [11] and national grid codes [12]-[16], the testing 
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Fig. 1. Testing requirements of WTs. 



TABLE I  TESTING REQUIREMENTS OF ZVRT, LVRT AND HVRT 

Types 
Typical depths of 
voltage sag/swell  

Lasting time of 
voltage sag/swell 

LVRT 
0% <150 ms 

20% <475 ms 

HVRT 
130% <625 ms 

160% <50 ms 

TABLE II  FRT REQUIREMENTS OF MULTI-CONSECUTIVE FAULTS 

Fault number 
Lasting time of 
each fault 

Fault interval 

At least 2 times within 2 min 100 ms 300~500 ms 

At least 6 times within 5 min 100 ms 300~500 ms 

requirements of FRT specify the typical depths and 
lasting time of single voltage sag/swell that WTs must 
withstand, as shown in Table I. Besides, during the fault 
and the fault recovery, the root-mean-square (RMS) 
voltage at the point of common coupling (PCC) needs to 
reach the final value within 20 ms. Moreover, WTs have 
to remain connected after multi-consecutive symmetrical 
and asymmetrical faults, as shown in Table II [17].  

Additionally, grid codes impose that WTs should be 
able to regulate reactive current during voltage sags/swell 
for recovering to the normal operation [17], as shown in 
Fig. 2. According to the depths of voltage sag and swell, 
the per-unit (p.u.) value of required reactive current Iq is 
given by  
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where the negative Iq represents injection of the reactive 
current from WTs and the positive Iq denotes absorbing 
the reactive current from the power grids.  

The above FRT test requirements provide the demands 
for grid emulators in terms of the undervoltage and 
overvoltage capability, as well as the response time of 
emulated fault events. Typically, grid emulators using a 
fast voltage control with 1 kHz~3 kHz bandwidth can 
emulate 0%~130% of nominal voltage within 20 ms [7], 
[8]. However, the 130%~160% overvoltage and the 
multi-consecutive faults are not easy to achieve [7], [18]. 
Further, the impact of reactive current injection by DUT 
on the emulated voltage profile is overlooked in existing 
MMC-based grid emulators [4], [5].  

B. Synthetic Grid Impedance 

The grid impedance has a significant effect on the 
grid-code compliance testing of WTs. It is important for 
grid emulators to have adjustable impedance/admittance 
for synthesizing various grid impedance values. 
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-100%
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Fig. 2.  Requirement of the reactive current output. 
 

The short-circuit ratio (SCR) can be treated as a 
criterion to evaluate the strength of power grids, which is 
inverse to the per-unit value of the emulated impedance. 
An infinite SCR, i.e., ideally stiff grid is realized in a 7 
MVA grid emulator [7]. However, the lower limit of 
emulated SCR remains unclear. The SCR≤1.5 is usually 
seen as ultra-weak grids and the SCR≥10 is regarded as 
strong grids. Besides the stiff grid, the grid emulator 
should synthesize the impedance of actual power grids, 

i.e., SCR=1.5~10. 

C. Harmonics and Power Quality 

The power quality is assessed by the voltage flicker 
test and the measurement of current harmonic emissions 
of WTs.  

The flicker test is used to check voltage fluctuations at 
the WT terminal during the normal, start and stop of WTs 
[10]. The reference of flicker generation by the grid 
emulator is given by 
 ( )o_ref o_ref1u uδ′ = +  (3) 

where uo_ref is the reference of fundamental frequency 
output. δ is the low-frequency time-varying signal. The 
magnitude variation should be within 5% [10]. 

The current harmonic emissions of WTs should meet 
grid-code requirements before connecting to power grids. 
However, the switching operation of converter-based grid 
emulator may result in additional current harmonics. The 
IEC 61400-21 standard provides a testing requirement 
regarding the PCC voltage quality. The total harmonic 
distortion (THD) of PCC voltage (from 2nd to 50th 

harmonic) should be below 5% in the no-load operation 
of grid emulator [10].  

Additionally, considering the impact of background 
harmonics in actual grids on the current harmonics of 
WTs, the grid emulator is usually required to generate 
voltage (2nd~50th) harmonics [6]. However, with the high 
penetration of wide-bandgap power devices, the higher-
order background harmonics beyond 50th appear in power 
grids. Consequently, the higher-order (i.e., 50th~100th) 
voltage harmonics emulation is to be required for next-
generation grid emulators [2], [19]. 

D. Frequency Response 

The purpose of the frequency response test is to check 
the active power dynamics of WTs under grid frequency 
variations [10]. The requirements for operating frequency  



TABLE III  OPERATING FREQUENCY RANGE AND ROCOF 

Fundamental 
frequency 

(Hz) 

Operating frequency range (Hz) 
(existing/future) RoCoF 

(Hz/s) 
min max 

50 [20] 47/45 52/55 ±4 

60 [21] 55.5/55 66/66 ±4 

ranges and the rate of change of frequency (RoCoF) are 
given in Table III. 

According to IEC 61400-21, the grid emulator needs 
to generate the required RoCoF that is independent on the 
active power injection of WTs. However, to emulate the 
actual frequency dynamics, some grid emulators employ 
the power control to emulate the inertia of synchronous 
generators (i.e., inertia constant H=2~6 s) [22], which is 
used to evaluate how the active power of WTs affect the 
frequency response of power grid. 

E. Specifications of Next-Generation Grid Emulators 

Recently, with the increase of total capability of wind 
power, the 66 kV busbar for WTs seems to be a general 
trend in the wind industry [23]. Moreover, the size of 
future wind turbines will be in excess of 15 MW, which 
provides a demand for the next-generation grid emulator 
with a continuous power rating up to 20 MVA [3].  

An oversized design of grid emulators is necessary for 
the FRT test to withstand a certain short-circuit current 
from WTs. Generally, an overcurrent capability of 2 p.u. 
can cover the grid-code compliance test of fully-fed WTs, 
while the doubly-fed WTs can easily produce 5 p.u. 
overcurrent during FRT testing [24]. Further, the range of 
power capability for existing doubly-fed WTs is about 
1MW~7 MW and emerging high-power wind platforms 
are fully-fed WTs. Thus, a 40 MVA short-circuit power 
is recommended for the future grid emulator. 

According to the grid-code requirements and expected 
functions, technical specifications of future grid emulator 
are identified in Table IV.  
TABLE IV  TECHNICAL SPECIFICATIONS OF FUTURE GRID EMULATOR 

Terms Value 

Rated line-to-line voltage 66 kV 

Rated power 20 MVA 

Short-circuit power 40 MVA 

Undervoltage capability 0% 

Overvoltage capability 160% 

Multi-consecutive fault emulation Yes 

Response time of emulated faults <20 ms 

Ideally stiff grid emulation Yes 

Synthetic impedance for actual grids 1.5~10 (SCR) 

Max. magnitude of voltage flicker 5% 

No-load THD of PCC voltage (2nd~50th) <5% 

Harmonic injection 2nd ~100th 

Inter-harmonic injection 0.01 Hz~6 kHz 

Operating frequency range 45 Hz ~66 Hz 

Fast frequency control ±4 Hz/s (RoCof) 

Synthetic inertia instant 0~6 s 

III. CONTROL FUNCTIONALITIES AND STRATEGIES 

To meet the identified specifications, six required 
control functionalities and corresponding external control 
of MMC-based grid emulators are shown in Fig. 3. This 
section presents firstly challenges and solutions of these 
external control strategies. Further, prospects on the 
internal control to decouple the interactions of internal 
and external dynamics are discussed.  

A. Voltage Control 

The dual-loop voltage control [25]-[27] and the single-
loop voltage control [28] are usually adopted with grid 
emulators, which can also be applied to the MMC-based 
grid emulator, as shown in Fig. 4. The voltage controller 
(VC) is employed to realize accurate voltage regulation at 
the point of common coupling (PCC). Generally, the 
current controller (CC) of dual-loop voltage control 
utilizes the proportional-integral (PI) or proportional-
resonant (PR) controller to guarantee fast overcurrent 
limitation. In contrast, the proportional (P) controller 
based active damping (AD) of single-loop voltage control 
can improve the disturbance injection and prevent a 
certain overcurrent. 

Currently, WTs usually utilize grid-following inverters 
based on the current control and power control to 
interface with power grids [29]. Regardless of the dual-
loop or single-loop voltage control in the grid emulator, 

Control functionalities

    A. Voltage sag/swell
    B. Harmonic/inter-harmonic
    C. Flicker
    D. Frequency variations

    E. Synthetic grid impedance

    F. Synthetic Inertia

External control strategies
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Virtual impedance/admittance control

Power control
 

Fig. 3.  Control functionalities and external control strategies. 
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Fig. 4.  General diagram for MMC-based grid emulator with DUT. (a) 
Dual-loop voltage control. (b) Single-loop voltage control. 
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Fig. 5.  Single-loop voltage control scheme. 
 

differing from actual grids, the unexpected current 
control interactions between grid emulator and DUT may 
deteriorate system robustness or even introduce harmonic 
instabilities [30]. 

To mitigate the adverse current control interactions 
between grid emulator and DUT, the passivity-based 
design method of voltage control for the grid emulator is 
an essential solution. For example, similar to the voltage 
source inverter (VSI) with LC filter, a wide medium-
frequency non-passivity region appears in the single-loop 
voltage-controlled MMC system [31]. The AD with 
passivity-based design is usually used to mitigate the 
above non-passivity [31], [32], as shown in Fig. 5. When 
the VC adopt the resonant controller, the output 
impedance and the sign of real part of output impedance 
can be expressed as 
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2 2
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o 2 2
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where Leq denotes the equivalent inductance. Kr1 and ω1 

are the resonant gain and fundamental angular frequency. 
Td is time delay and Rcf is the AD.  

To guarantee the passivity of output impedance within 
the critical frequency 1/(4Td), Rcf should satisfy  
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B. Synthesis of Grid Impedance 

The series RL impedance is commonly synthesized by 
grid emulators [33]. The inner and outer virtual 
impedance (VI) control are typical impedance-emulation 
schemes, as shown in Fig. 6, where Zv(s)=Rv+sLv, Rv and 
Lv are virtual resistance and inductance respectively [34]. 

It is essential to first discuss which scheme can 
represent grid strength through accurate grid impedance 
emulation. The output impedance of inner and outer VI 
control is given by 

 
GE_outer op v

d

GE_inner op v

1 ( )
( ) ( ) ( )

1 ( ) 1 ( )
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1 ( ) 1 ( )

T s
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where T(s)=Gv(s)Gd(s) is the open-loop gain. 
The output impedance at fundamental frequency ω1 

represents grid strength. Besides, the magnitude of open-
loop gain T(jω1) is an infinite value to guarantee accuracy 
of output voltage. According to (7), the output impedance 
ZGE_outer at the fundamental frequency is around Zv(jω1), 
while the ZGE_inner is about zero. Therefore, the outer  
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Fig. 6.  Outer and inner virtual impedance control. 
 

virtual impedance control is better for grid strength 
emulation than inner virtual impedance. 

Secondly, the grid emulator should realize the stiff/ 
weak grid emulation with transient control functionalities, 
e.g., voltage sag/swell and flicker, etc. It is crucial to 
emulate an accurate-transient impedance, which is highly 
dependent on the bandwidth of voltage control [35]. 

Although Zv(s)=Rv+sLv can represent the steady-state 
and transient grid impedance, it introduces the derivative 
term ‘s’, which will amplify the effect of high-frequency 
measurement noises and even deteriorates system 
stability. Several derivative-less control techniques for 
the outer virtual impedance control have been reported in 
[34]. Among them, the high-pass filter (HPF) and the 
algebraic-type virtual impedance controller by replacing 
the ‘s’ with ‘jω1’ are two effective methods, as shown in 
Fig. 7 (a)-(c). Although the HPF can certainly attenuate 
noises, a high cutoff frequency needs to be used to obtain 
accurate transient virtual impedance, which worsens the 
output voltage distortion [36]. Besides the HPF, the 
algebraic-type controller shows two expressions, i.e., the 
algebraic approximation and the cross-coupling feedback 
of current vector. However, they only take effect at the 
fundamental frequency, which cannot realize accurate 
impedance emulation with some transient scenarios, e.g., 
flicker and frequency variations, etc.  
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Fig. 7.  Feasible controllers for synthesis of grid impedance. (a) HPF. 
(b) Algebraic approximation. (c) Cross-coupling feedback of current 
vector. (d) Virtual admittance control. 
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Fig. 8.  The power control diagram of grid-forming grid emulator. 
 

Compared to the VI control, the virtual admittance 
(VA) control is a first-order inertia link Yv(s)=1/(Rv+sLv), 
which not only avoids the derivation term but also 
realizes a wide-frequency impedance emulation [37], as 
shown in Fig. 7(d). However, the precise current control 
has to be utilized to guarantee the accurate output voltage 
which introduces the serious current control interactions 
between the grid emulator and the grid-following DUT.  

C. Synthesis of Inertia 

To emulate the inertia profile, the grid-forming grid 
emulator needs to enable the power control [8]. A typical 
power control diagram of grid emulator is shown in Fig. 
8. The power loop control (PLC) is designed to emulate 
the characteristics of inertia and damping. The reactive 
power control (RPC) is usually implemented by the PI or 
P controller to provide the voltage magnitude [37]. Four 
controllers can be applied for the PLC, such as the swing 
equation-based controller, droop controller with low-pass 
filer (LPF), PI controller and lead-lag controller [38]. 

The feasibility of the grid-forming strategy applied in 
the MMC grid-connection system has been discussed in 
recent works [39], [40]. However, there are inevitable 
power control interactions between the grid emulator and 
a precise power-controlled grid-following DUT, which 
may affect the accuracy of emulated inertia or even cause 
the low-frequency resonance [41].  

D. Internal Control of MMC 

Decoupling the adverse interactions between internal 
dynamics and external events is crucial for the MMC-
based grid emulator. Numerous works adopt the indirect 
closed-loop modulation method to mitigate the impact of 
submodule (SM) capacitor dynamics on the output 
voltage and current [42], [43]. Compared to the direct 
modulation method, the closed-loop modulation 
reference is the sum of external and internal control 
output command divided by the sum of SM capacitor  
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Fig. 9.  Energy-based internal control scheme. 

voltage instead of the rated DC-link voltage. Therefore, 
the insertion indices of upper and lower arm can be 
expressed as 

 dc in_ref ex_ref dc in_ref ex_ref

cu cl

0.5 0.5
,u l

U u u U u u
n n

u uΣ Σ

− − − +
= = (8) 

where nu and nl are upper and lower insertion indices. Udc 
is DC-link voltage. uex_ref and uin_ref are the external and 
internal control output reference. cuuΣ  and cluΣ  are the sum 

of upper and lower arm capacitor voltage.  
According to Fig. 4, the external characteristic 

equation of MMC-based grid emulator is expressed as 
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where ue is the equivalent output voltage without the 
equivalent AC inductor Leq. 

By substituting (8) into (9) and (10), the characteristic 
equation of AC side is given by 

 o
eq ex_ref o

d

d

i
L u u

t
= −  (11) 

Therefore, the impact of internal SM capacitor 
dynamics on external output can be mitigated. However, 
system is unstable without any regulation of SM 
capacitor voltage [43]. The energy-based arm and phase 
balancing control and the circulating current control 
should be employed, as shown in Fig. 9 [44]. 

The combination of energy-based internal control and 
grid-forming based external control of MMC is discussed 
in [45], [46]. It has been demonstrated that by controlling 
MMC internal energy, the grid-forming based MMC is 
identical to an equivalent 2-level VSI. Moreover, the 
feasibility of energy-based internal control used in the 
MMC-based grid emulator has been validated in [4], [5]. 
It is shown that steady-state and transient functionalities, 
i.e., voltage sag and harmonic generation can be emulated 
by the MMC connected with passive loads.  

Although effective, the control dynamics of DUT are 
neglected. The performance of SM capacitor voltage will 
be affected by the reactive current injection of DUT. 
Further, the voltage sag/swell can amplify fluctuations of 
SM capacitor voltages and circulating current, which may 
deteriorate system stability and reliability [9]. Therefore, 
it is essential to mitigate the adverse impact of external-
transient events on internal dynamics of the MMC-based 
grid emulator. 

IV. FUTURE TESTING FUNCTIONALITIES  

This section evaluates the prospects and challenges of 
the MMC-based grid emulator for two emerging testing 
functionalities, which are the grid-forming capability test 
and the system restoration test. 

A. Grid-Forming Capability of DUT 

With the development of grid-forming inverters 
integrated with renewable energy sources, it is essential 
to test the grid-connection performance of grid-forming 
DUT, which will promote the evolution of grid code and 
the structural upgrade of power grids. Partial testing 



requirements of grid-forming DUT can be found in [47]. 
Differing from the grid-following DUT, the grid-

forming DUT features the power-based synchronization 
by the active power control [48]. Besides the outer power 
control, the inner control of the grid-forming DUT is 
mainly divided into three categories [49]: 1) single-loop 
voltage control, 2) dual-loop voltage control, and 3) 
virtual admittance control with current control, as shown 
in Fig. 10.  

Therefore, the power control interactions between 
DUT and grid emulator are inevitable if the grid emulator 
uses the power control for inertia synthesis. Additionally, 
there have been some voltage control and current control 
interactions. A reasonable configuration of control 
strategies in the MMC-based grid emulator can certainly 
mitigate control interactions between grid emulator and 
grid-forming DUT, as shown in Fig. 10. Moreover, both 
MMC-based grid emulator and grid-forming DUT 
perform as the voltage sources, which presents another 
challenge for the overcurrent limitation, especially for the 
transient operating scenarios. 

B. System Restoration Capability of DUT 

System restoration including black start and re-
synchronization is a crucial grid-reconnection capability 
of DUT after an incidental disconnection caused by the 
transient faults [2]. It is necessary for the MMC-based 
grid emulator to test the performance of DUT during 
system restoration.  

In general, a fast re-synchronization process of DUT is 
often accompanied by a high transient overcurrent [50], 
which tends to amplify the unbalance of SM capacitor 
voltage or even threaten system stability. Consequently, 
more strict requirements are worthy to be provided for 
the MMC-based grid emulator to mitigate the adverse 
impact of external events on internal dynamics. 
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Fig. 10. Configuration of control strategies for the MMC-based grid 
emulator with grid-forming DUT. (a) General diagram. (b) Control 
distribution for mitigating the voltage control interactions. (c) Control 
distribution for mitigating the current control interactions. 

 

V. CONCLUSIONS 

This paper has reviewed the testing requirements and 
control strategies for the MMC-based grid emulator. 
Based on the requirements of grid codes and the 
parameters of typical grid emulators, the technical 
specifications for the next-generation grid emulator are 
identified. Further, required control functionalities and 
corresponding external control strategies, i.e., fast voltage 
control, virtual impedance control and synthetic inertia 
are summarized. The challenges and feasible solutions 
are discussed regarding the outer control interactions 
between grid emulator and DUT, inaccuracy of 
impedance emulation and inner control interactions of 
internal and external dynamics. 

The more testing functionalities are emerging into the 
future grid emulator, e.g., grid-forming capability and 
system restoration capability of DUT. They provide more 
stricter requirements on mitigating the outer control 
interactions, limiting the overcurrent and decoupling the 
interactions between internal control and external 
transient events. 
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