

Aalborg Universitet

OPEN

Open pervasive environments for migratory interactive services

Nickelsen, Anders; Paterno, Fabio; Grasselli, Agnese; Schmidt, Kay-Uwe; Martin, Miquel;
Schindler, Björn; Mureddu, Francesca
Published in:
Proceedings of the 12th International Conference on Information Integration and Web-based Applications &
Services

DOI (link to publication from Publisher):
10.1145/1967486.1967585

Publication date:
2010

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Nickelsen, A., Paterno, F., Grasselli, A., Schmidt, K-U., Martin, M., Schindler, B., & Mureddu, F. (2010). OPEN:
Open pervasive environments for migratory interactive services. In Proceedings of the 12th International
Conference on Information Integration and Web-based Applications & Services (pp. 637-644). Association for
Computing Machinery. https://doi.org/10.1145/1967486.1967585

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 26, 2024

https://doi.org/10.1145/1967486.1967585
https://vbn.aau.dk/en/publications/cca96618-24a2-45fb-b3c9-bd885e90f3b6
https://doi.org/10.1145/1967486.1967585

OPEN: Open pervasive environments for migratory
interactive services

Anders Nickelsen
Dept. of Electronic Systems
Aalborg University, Denmark

an@es.aau.dk

Fabio Paternó
ISTI-CNR, Pisa, Italy

fabio.paterno@isti.cnr.it

Agnese Grasselli
Vodafone Italy

Milan, Italy
agnese.grasselli@vodafone.com

Kay-Uwe Schmidt
SAP, Darmstadt, Germany
kay-uwe.schmidt@sap.com

Miquel Martin
NEC Europe Ltd., Heidelberg,

Germany
miquel.martin@neclab.eu

Björn Schindler
Technische Universität

Clausthal, Germany
bjoern.schindler@tu-

clausthal.de

Francesca Mureddu
Arcadia Design, Cagliari, Italy
francesca.mureddu@arcadiadesign.it

ABSTRACT
One important aspect of ubiquitous environments is to pro-
vide users with the possibility to freely move about and
continue to interact with the available applications through
a variety of interactive devices such as cell phones, PDAs,
desktop computers, intelligent watches or digital television
sets. Migratory applications are able to follow the user by
sensing changes in the user’s context and adapting to avail-
able devices, ideally without interrupting the user experi-
ence. However, applications themselves must contain func-
tions to monitor context information, coordinate a migra-
tion, handle application adaptation and interact with the
user during the migration process. To make life easier for
developers and users of migratory applications, we propose
an integrated Migration Service Platform (MSP), where all
the common migration functions are centralised. We show
how the platform is realised as middleware that contains a
server for the central functions and lightweight client-side
running on the end-user devices. We show how migratory
applications can interact with the platform and thereby do
not have to contain migration functions themselves. By us-
ing the platform, they can register and be controlled by the
platform to enrich the user experience with the application.
We describe the challenges following the centralisation of a
migration platform that can support different types of appli-
cations, both games and business applications, implemented
with either web-technologies or as component-based appli-
cations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
iiWAS2010, 8-10 November, 2010, Paris, France.
Copyright 2010 ACM 978-1-4503-0421-4/10/11...$10.00.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.12 [Software Engineering]: Interoperability

Keywords
Migration Service Platform; Middleware; State Adaptation;
Service Continuity; Context-Awareness;

1. INTRODUCTION
One important aspect of ubiquitous environments is to

provide users with the possibility to freely move about and
continue to interact with the available applications through
a variety of interactive devices such as cell phones, PDAs,
desktop computers, digital television sets or intelligent watches.
In such environments one potential source of significant frus-
tration is that people have to start their application session
over again from the beginning after changing to a different
interactive device. Migratory applications can overcome this
limitation. Migratory applications, as defined by OPEN [1],
are applications which are able to follow users, sense the
user’s context (where context is any information that can
be used to characterise the situation of an entity [7]), and
adapt to the changing context, e.g., set of available devices,
while also preserving the continuity of application sessions,
thereby ensuring the continuity of the tasks supported by
the application. No proper migration occurs if there is a
contextual change and an adaptation of the application fea-
tures to the new device, but there is no continuity in the
resulting user activity because, for instance, the user has
to restart from the beginning when the new configuration
is activated. Likewise, a situation in which there has been
a context change, and also the state of the application has
been preserved, cannot be properly called migration, if adap-
tation necessary, but not performed.

Therefore, migration encompasses three major aspects:
Context change, which regards discovery, access and selec-
tion of context information; adaptation, which covers the
problems of adapting the application to the characteristic

of the new context based on the available context informa-
tion; and continuity, on how to guarantee continuity in task
performance. As is described in Section 3, there are already
several approaches solving the parts of migration separately
(e.g. for adaptation or continuity) but our approach is in-
novative as it provides a holistic solution for the migration
problem.

The OPEN project provides an integrated solution to the
migration problems able to address all three aspects in a Mi-
gration Service Platform (MSP), a middleware for migratory
applications. This paper describes how the MSP handles the
major challenges of migration by aggregating required func-
tions that are shared between migratory applications into
one middleware layer.

The rest of the paper is organised as follows. In Section
2, we describe the two domains of interest for the project,
namely games and business applications. We exemplify the
domains with relevant scenarios. Then, the requirements to
the integrated platform that can support both domains are
derived. Work related to migration, or parts of a migration
process, that are relevant for OPEN are described in Section
3. In Section 4, we present the architecture of our proposed
migration platform, and finally, Section 5 concludes the pa-
per.

2. SCENARIOS AND REQUIREMENTS
Migratory applications that enable a continuous access

across different devices can improve the overall user expe-
rience and provide new application use-cases. Ideally, the
migration platform should be able to take all existing ap-
plications and make them migratory. In the OPEN project
we have focused on specific classes of applications, in partic-
ular, Web applications and distributed applications in the
game and business domains. Migratory applications existed
in neither of these domains before the OPEN project, and
the span of different application technologies enforces the
platform to be general enough to support many new appli-
cations and technologies. Below, two representative scenario
from the domains are presented and the requirements to the
platform are derived from the scenarios subsequently.

2.1 Migratory games
Thomas is a college student who loves Formula 1 and

spends several hours a day playing video games. He is used
to watch all F1 Grand Prix races on his laptop while playing
video games on his game console connected to the Plasma
TV.
Thomas has left the study room of his college library just a
few minutes before the start of the first Grand Prix of the
season. He starts playing with the mobile phone while wait-
ing for the bus on his way home. Thomas invites his friend
Brad to be ready for the race by sending him a message
through a chat service.
As Thomas gets home, his gaming and chatting sessions are
migrated to his Plasma TV and he can continue playing the
game, controlling it by the phone. The Grand Prix is going
to start, so Thomas opens a HD window on the Plasma TV,
to watch the Grand Prix. Now, he can watch high-definition
F1 Grand Prix on one area of the screen, and at the same
time virtually race his own car against the real pilots, while
still having a look at the chat window. Brad joins the game
and they compete together in the racing game.
Suddenly, Thomas’ grandfather enters the sitting room, ask-

ing him to hold the ladder while he tries to fix a broken ceil-
ing lamp in the kitchen. Since Thomas cannot go on playing
while holding the ladder, he makes a pit stop in the game,
and migrates the IPTV to the kitchen LCD and the game to
the phone screen. The game dashboard is automatically mi-
grated to the phone screen to keep Thomas informed about
his car’s state.
In the meanwhile Brad, who is still playing on his mo-
bile, reaches Thomas’ house and enters in the living room.
Thomas closes his chat session from his mobile phone and
Brad’s game seamlessly switches from his mobile to the STB.
After a few minutes Thomas gets back, just in time to see
Hamilton winning the Grand Prix and Brad coming in sec-
ond.

2.2 Migratory business applications
The business scenario is an emergency scenario where gov-

ernmental agencies, organisations and companies work to-
gether in order to provide public security in emergency sit-
uations (e.g. flooding, large fires, and huge accidents). In
such cases it is vitally important to have all the information
available gathered together, so that adequate response plans
can be made and eventual mistakes due to oversight can be
reduced. Examples of such type of information are simulat-
ing and forecasting of flood consequences, water level, traffic
data, etc.

Different experts, e.g. a flood and a traffic expert, can
simulate in their own applications flood and traffic data on
a map. The migratory emergency applications developed in
OPEN makes it possible to gather and integrate all that in-
formation on one screen and one map. It enables experts to
better analyse and plan response activities in an emergency
situation. It gives them more flexibility for the visual rep-
resentation of their data on a map because it supports the
migration of different application components (as the traffic
and flood simulations) to one target device. By migrating
the necessary components or even whole applications to one
target entity, experts have all the needed information over-
laid on one map at their disposal. They can even synchro-
nise the source and target devices so that virtual discussions
how the emergency situation is eventually going to change
are much easier to follow.

2.3 Migration process overview
The above scenarios describe several migrations. The gen-

eral procedure and necessary steps for performing one mi-
gration from a source device to a target device are described
in Figure 1. Initially, all devices and applications are reg-
istered, including device and network capabilities as well as
application’s requirements to devices and networks. Regis-
tration only occurs once, also for multiple migration. Then,
migration can be triggered, either manually by the user or
automatically by the application or as a reaction to contex-
tual changes. After the trigger, the original application is
paused to enable state extraction. The application state is
adapted to suit the target device or network. Then, an appli-
cation is instantiated on the target device, the adapted state
is injected, and the new application can continue the ses-
sion. Any persistent network connections to remote servers
are redirected to the target device seamlessly.

2.4 Requirements to a common migration plat-
form

User Application Device 1 Device 2
Migration

service platform

start start

 register application

register device

register

migrate to

device 2
trigger migration to device 2

pause application

retrieve application state

send state

initialise application

initialise application (paused)

continue in original statemigration

done

redirect

network traffic

paused

paused

context management

adapt application state (UI/logic)

migration orchestration

state adaptation

trigger management

migration orchestration

migration orchestration

mobility support

migration orchestrationresume application

Figure 1: Migration procedure involving the user, the application, the two devices that the application
migrate between and the underlying migration service platform.

Various important requirements need to be fulfilled by a
platform that provide common functions to facilitate migra-
tion. These requirements are derived from the above migra-
tion scenarios and are presented in the following.

Heterogeneous and pervasive: The platform needs
to support several types of devices - both end user termi-
nals and intermediate networking devices that are actively
involved in the migration process. The platform must be
able to fully utilise the varying capabilities of the involved
devices and adapt application state according to changing
conditions in the surrounding context.

Continuity: The procedures involving the devices must
be seamless, in order to avoid interrupting the application
users and device owners, also such that the user can con-
tinue operation after a migration. Seamless migration re-
quires methods for state preservation on several levels, both
application and system level, including the network. Mi-
gratory applications need to support extraction and injec-
tion of state information. The platform needs to support
that the device and/or application may move between net-
work. To avoid modifications of existing application servers,
the platform must support transparent terminal and session
hand-over between devices during migration.

Application technology support: Contemporary ap-
plications are realised using significantly different technolo-
gies ranging from traditional web pages over general rich
internet applications to specifically targeted embedded or
component-based applications. Such application have differ-
ent requirements to performance as well as reliability, which
must be respected and supported by the migration platform.

Intuitive user interaction: For users to accept the
interaction paradigm of migratory applications, the inter-
action with applications as well as the platform must be
straight-forward, easy and intuitive. The platform must sup-
port automatic migration triggers as well as accept explicit
and direct trigger request from the application user.

Migration dimensions: Application migration can be
defined in several dimensions, which must be supported by
a migration platform. Migration can be full where the en-
tire application is migrated or partial where a subset of ap-
plication elements are migrated. Moreover the purpose of
migration can be distribution, where an application (full or
partially) is cloned and distributed between available de-
vices. Conversely, the purpose can be aggregation, where
application elements are gathered into fewer devices than
originally.

Secure: Migration must be secure since it may deal with
personal and business information. The interaction between
different users and devices owned by different parties present
security challenges for the platform. Transport of informa-
tion and exchange of application state information must be
protected. Also, rights management must be ensured, such
that unauthorised ”stealing” of application sessions by trig-
gering migration is prohibited.

3. STATE OF THE ART
Migration of applications combines aspects of several dif-

ferent research domains. In the following we present re-
lated work in the research areas of migratory user interface,
reconfiguration of application logic and reconfiguration of
networks.

3.1 Migratory User Interfaces
In recent years, a number of approaches have addressed

the problem of interacting with applications in environments
characterised by a wide variety of interactive platforms. SUP-
PLE [12] generates adaptive user interfaces taking functional
specifications of the interfaces, a device model and a user
model as input. Other researchers have investigated the use
of overview techniques for supporting adaptation to mobile
devices. For example, Lam and Baudish [18] proposed sum-
mary thumbnails, which consist in a thumbnail view of the

original Web page, but the texts are summarised enabling a
good legibility. WebSplitter [13] aims at supporting collab-
orative Web browsing by creating personalised partial views
of the same Web page depending on the user and the device.
More generally, all such approaches do not support migra-
tion of a user interface from one device to another, but pro-
vide only solutions for adaptation among different platforms.
The issues related to device adaptation raised interest in
model-based approaches for user interface design and gener-
ation, mainly because they provide logical descriptions that
can be used as a starting point for generating interfaces that
adapt to the various devices at hand. In recent years, such
interest has been accompanied by the use of XML-based
languages in order to represent the aforementioned logical
descriptions. However, most of such approaches focus on
providing device-adaptation support only in the design and
authoring phase, whilst we believe that run-time support
is equally relevant, since in this way it is possible to dy-
namically exploit the characteristics of the various devices,
which is not a negligible aspect especially when mobile de-
vices are considered. Bharat and Cardelli [4] addressed the
migration of entire applications (which is problematic with
limited-resource devices and different CPU architectures or
operating systems) while we focus on the migration of the
user interface. Luyten and Coninx [20] present a system for
supporting distribution of the user interface over a federa-
tion or group of devices. Migratability, in their words, is
an essential property of an interface and marks it as being
continuously redistributable. The authors consider migra-
tion and distribution of only graphical user interfaces for
desktop and mobile systems, while we provide a solution
supporting migration for a broader set of interactive plat-
forms (including vocal devices). In general, we can notice
that there is a lack of general solutions able to make user
interfaces completely or partly able to migrate without re-
quiring any particular tool at development time.

3.2 Application reconfiguration
Dynamic reconfiguration of applications and especially their

behavior deals with the adaptation of application logic dur-
ing run-time based on continuously changing usage environ-
ments [10] [16]. The migration of an application is one use
case for those kinds of systems as the usage environment
usually changes during migration and therefore, the behav-
ior should be seamlessly adapted. One way to realise such
adaptability is to build the application out of interacting
components. Kramer and Magee [17] proposed two main
types of adaptation for those kinds of systems, namely the
structural change in terms of component creation/deletion
and its connection/disconnection. In addition to those struc-
tural changes, geographical changes, interface modification
and implementation modification are further kinds of adap-
tation [2]. The characteristics of certain components are
either known during development time or evaluated during
run-time like in [5] for example. Several approaches have
been developed so far offering solutions for those kinds of
adaptations, many of them applied in the area of context-
aware applications [19]. Among others, Floch et al. [9] pro-
posed to use architecture models to realise run-time adapt-
ability. Those architecture models define architectural prop-
erties like required components, their bindings, and perfor-
mance requirements. A middleware is then responsible to
fulfil these requirements during run-time and to take action

if needed [21]. The integration of such adaptation mech-
anisms into a migration platform is important in order to
provide the most appropriate behavior of an application be-
fore and after migration. How the module which realises
such adaptability can be integrated in such a platform will
be shown in later.

3.3 Mobile code, sessions and terminals
An obvious candidate research area for migratory service

is mobile code, with mobile agents as the most used realisa-
tion of mobile code. Migration means moving (parts of) an
application between computing entities, much similar to the
moving agents of the mobile code paradigm. Code mobility
is a well-studied area of distributed applications research,
and in particular [11] is a renowned reference that defines
code mobility as the capability to reconfigure dynamically,
at run-time, the binding between the software components of
the application and their physical location within a computer
network. The idea behind mobile code is that by bringing
the code close to the resources needed for a certain task it
is possible to perform the task in a more effective way. For
comparison, the goal of migration is to move the code close
to where the users needs it, and adapt to the available re-
sources to give the user a better experience performing the
task. The resulting mechanisms of reaching either goal may
be similar, but migration extends the existing research area
with challenges of user interaction, code state adaptation
and session continuity. Solutions for terminal mobility have
seen a lot of research attention and can be approached on dif-
ferent layers in the network stack. MobileIP [29] [15] which
is working at the network layer is the most transparent so-
lution since any protocol in higher layers can be used with
it. Mobile Stream Control Transmission Protocol (SCTP)
or mSCTP [8] [32] which operates at the transport layer
allows IP addresses to be added/deleted in the SCTP asso-
ciation and changing the primary address the peer will use
when transmitting data to an endpoint. Session Initiation
Protocol (SIP) [30] which operates at the application layer
and can overcome terminal mobility [34] by letting the host
experiencing the mobility sending a SIP INVITE message
with the new IP address. SIP has been used for session mo-
bility in [23] where a HTTP session is moved between Web
browsers on different devices, and in [6] where SIP is used
to split a combined audio and video stream into separate
streams and transfer them between devices. Session mobil-
ity using SIP is also discussed in [34] [31] and while all these
are working solutions they assumes that both end-points of
the communication are SIP enabled, hence it is not suited
for OPEN.

4. PLATFORM ARCHITECTURE
The architecture of the migration platform proposed by

OPEN to address the migration challenges is presented in
Figure 2. The platform is called the OPEN Migration Ser-
vice Platform (MSP).

The MSP is realised as a middleware between the migra-
tory application and the application execution platforms in
terms of devices and networks. The MSP contains function-
ality to enable migratory applications to migrate between
different execution platforms. By realising the functional-
ity as middleware, the migration functionality shared be-
tween multiple migratory applications is aggregated into a
general platform, such that the application developers can

focus on application development and not migration devel-
opment. Applications interaction with the MSP through a
specifically defined interface [22].

The platform employs a client/server infrastructure to
centralise information collection and decision making. The
deployment of the middleware server and client parts is il-
lustrated in Figure 3. Besides the central server, called the
migration server, a network entity called a mobility anchor
point, exists in the infrastructure to make migration of appli-
cations client-parts transparent to application server-parts
that do not necessarily support migration.

In the following, an overview of the migration functions
in the MSP is presented.

OPEN middleware

Migration

orchestration

Trigger

management

Mobility

support

Context

management

User

interface

adaptation

Application

logic

reconfiguration

Migratory applications

Devices Networking

Figure 2: Architecture of the OPEN Migration Ser-
vice Platform (MSP).

Migration server

UI adaptation

Logic reconfiguration

Trigger management

Mobility support

Context management

O
rc
h
e
s
ta
tio
n

UI adaptation

Logic reconfiguration

Mobility support

Context management

Application client

Mobility anchor point

Mobility support

Application server

OPEN traffic

Application traffic

...

...

Application components

OPEN middleware

Migration

Service

Platform

O
rc
h
e
s
ta
tio
n

Internet

Migration clients

User terminals

Figure 3: The MSP middleware deployment; a client
part resides on the user terminal where also the ap-
plication client-part is running and a server-part re-
sides in a centralised server within the migration
domain. Traffic is tunneled through a mobility an-
chor point to make the migration seamless for the
application server.

4.1 Deployment of the MSP middleware
A client-server architecture is employed in the OPEN mid-

dleware, which is illustrated in Figure 3.
The migration server contains the shared functions and is

the point where most decisions are made, since the server
is the central point of information. A server may reside on
any device, so long as it is reachable by the clients. Typical
deployment cases are in the user’s home, in an enterprise’s
or operator’s infrastructure or it may even be accessible via
the Internet.

The migration client is typically the end user terminal
(but may also be a large public display), on which migra-
tory applications and a set of OPEN adaptors are running.
The adaptors implement the part of migration functionality
that is common across applications, and interact with OPEN
server. They are meant to be reused across applications. In
doing so, a migratory application needs only to make use of
the adaptors to become migration capable. There exist an
adaptor for all function that require client-side presence, as
depicted in Figure 3. If an application does not make use
of adaptors, it needs to implement the client-side migration
functions.

4.2 User interface migration
Users can select either full or partial migration. In case

of partial migration they can interactively select the user
interface components to migrate. When the migration is
triggered to an interaction platform other than the desktop,
the migration server transforms its user interface by build-
ing the corresponding logical description through a reverse
engineering process and using it as a starting point for creat-
ing the implementation adapted to the accessing device. In
addition to interface adaptation, the environment supports
task continuity. To this aim, when a request for migration
to another device is triggered, the environment detects the
state of the user interface, which depends on the user input
(elements selected, data entered) and identifies the last ele-
ment accessed in the source device. Then, a logical version of
the interface for the target device is generated, and the state
detected in the source device version is associated with the
target device version so that the user inputs (selections per-
formed, data entered) are not lost. Lastly, the user interface
implementation for the target device is generated and acti-
vated remotely at the point corresponding to the last basic
task performed in the initial device. In the process of creat-
ing an interface version suitable for a platform different from
the desktop, we use a semantic redesign component. This
part of the migration environment automatically transforms
the logical description of the desktop version into the logical
description for the new platform. Therefore, the goal of this
transformation is to provide a description of the user inter-
face suitable for the new platform. The focus of the OPEN
project is to build the logic, semantic description of exist-
ing interactive applications and then dynamically generate
UIs that are adapted to various types of target devices and
implementation languages, including with the state updated
to the point at which it was left off in the previous device
[28] [33].

4.3 Application logic reconfiguration
The Application logic reconfiguration module (ALR) sup-

ports applications at the dynamic adaptation of the appli-
cation logic to their specific needs in constantly changing

situations. At this, an application is divided into two parts,
namely the reconfigurable application logic, and the rest of
the application which could be among others static appli-
cation logic and the User Interface. The ALR module is
responsible for the adaptation of the reconfigurable part of
the application logic. Challenges are the reaction on a situa-
tion change, management of many components as well as the
description of the reconfiguration behavior and performance.
To perform the reconfiguration the ALR module needs a de-
scription of the application and a description of the compo-
nents. Therefore, the application and the components have
to register at the ALR module. In the description of the
application possible wiring rules and component behaviour
are described in form of configurations. A component de-
scription provides information about the required and pro-
vided functionality of the component. In the project, effort
has been dedicated to ensure correct and reliable dependen-
cies through the life-time of applications based on dynamic
component [26]. To react on a change of the situation the
ALR module additionally needs information about the given
context. This can be provided by the context management
framework. At a change of context information the ALR
module has to be informed. In this case the ALR computes
the best configuration to the given context and initiates the
reconfiguration of the application logic.

4.4 Mobility support
In scenarios where devices or applications change network

as a part of the migration process the change must be trans-
parent to the application server (and client) in order for
them not to require a reconfiguration of e.g. IP addresses.
The network may be changed during run-time for several
reasons, including congestion in the current network or plat-
form mobility between networks. A example scenarios is
when the original device uses a wireless network and the
target device of migration uses a fixed network. This can-
not be solved by traditional terminal mobility solutions.

The primary objective of the mobility support function is
to ensure that network changes do not affect the communi-
cation between the client and the application servers, with
the risk breaking task continuity. OPEN solves this prob-
lem by implementing a SOCKS-based proxy server, called
the mobility anchor point (MAP) in Figure 3, between the
application client and server. The behavior of the MAP is
controlled by the migration server and it handles seamless
hand-over of connections during migration, which are trans-
parent to remote application servers [14]. Traditional termi-
nal mobility challenges are addressed by deploying MobileIP
in the infrastructure.

4.5 Migration orchestration
The Migration Orchestration, shortly Orchestration, man-

ages the migration process. It consists of the Orchestra-
tion server and Orchestration clients. In OPEN, commu-
nication between server and clients are performed with the
standard XML-Remote Procedure Call (XML-RPC) speci-
fication over the HTTP protocol. The Orchestration Server
is responsible of:

• The registration/deregistration of the devices connected
to the platform.

• The registration/deregistration of the application com-
ponents.

• The migration process: it receives the migration trig-
ger and directly implements and manages the migra-
tion.

The Orchestration implements the migration thought the
following phases:

• Application stop on the source device.

• Platform modules orchestration: each adaptation mod-
ule can contribute to the overall migration process
(e.g.: for user interface or logic adaptation).

• State maintenance: the Orchestration saves and trans-
fers the state to the target device;

• Adapted application restart on the target device.

The Orchestration client is the distributed part of the OPEN
Migration Service Platform and it provides the required mi-
gration features on the devices. It manages device and appli-
cation components registration on the Orchestration Server.
It also provides the functionality to start/stop the applica-
tion and to save/recover/synchronise the actual state of the
application itself. The interaction between the migratory
application and the local Orchestration client is managed us-
ing a client-server protocol local to the device on which the
application is installed. In addition to the XML-RPC based
communication, a lean orchestration protocol has been de-
veloped for resource-constrained network link, such as for
instance based on Near-Field Communication, where the
time-window for orchestration signalling and state transfer
is short. The main design changes concerned moving mi-
gration decisions to the target device to avoid long network
delays and to reduce the size of the state object [24].

4.6 Trigger management
The purpose of the trigger management (TM) module is

to decide the configuration of the migratory system and its
applications in order to fulfil the requirements of the user
and the applications.

TM decides which configuration to choose based on a set
of configurations made available by Migration Orchestra-
tion. Migration Orchestration collects information from the
registered device about which application components are
registered, and decides which configurations are runnable in
certain context settings. A configuration is a set of appli-
cation components on a set of devices, which is determined
runnable by the UI adaptation and ALR components. De-
ciding which configuration to use is done either manually,
directly by the user, or automatically based on observations
of contextual information from the environment such as de-
vice and network capabilities or application requirements
(e.g. a game switching from single-player to multi-player).
The automatic migration triggers are generated based on a
assessment of the user experience quality that the available
configurations will give. The configuration that maximises
the quality in the current context is chosen. A migration is
triggered if the chosen configuration differs from the current.

Two solutions have been evaluated for optimal automatic
choice of configuration with dynamic and only partially ob-
servable system state. Both methods evaluate based on
configuration utility, which is represented as a function of
system state. One fast but inaccurate method is based on
simple threshold comparisons where the other builds on a

Markov Decision Process (MDP) model of the TM, which
is more complex to calculate but more accurate during run-
time [25].

4.7 Context management
The situation of the user, user’s activity, the network state

or other information that describes the situation of potential
candidate devices for target migration, are good indicators
on when and where to migrate and is the basis for the de-
cisions taken in the Trigger Management and for the adap-
tation of the application state. The Context Management
system in the platform ensures easy access for other modules,
applications and services to distributed, dynamic informa-
tion of various types within the network, and offers search,
discovery, access and distribution functionality of context in-
formation. In OPEN, an existing platform, [3], was extended
to run under OSGi in order to accommodate requirements
on information reconfigurability. The shift to OSGi means
that context measuring and computing sub components (re-
trievers and processing units, [3]) can be plugged in and out
as needed at run time hereby allowing a simple adaptation
to the various target platforms found in the OPEN scenar-
ios. Furthermore, the impact of user mobility on reliability
of access to dynamic location information was studied in
[27] where we show how a Context Management system can
deliver location information, which is a key information el-
ement in the OPEN scenarios. The Context Management
system maintains a certain reliability by adjusting the accu-
racy of location estimates from a positioning system, based
on information about the user’s mobility.

5. CONCLUSION
Migration of applications is a new and challenging area

spanning several, different domains of research such as user
interface migration, reconfiguration of application logic, ses-
sion and network mobility, context information management,
and future network of services as well as a novel applica-
tion paradigm called migratory applications. In this pa-
per we propose a platform to facilitate migratory applica-
tions called the OPEN Migration Service Platform (MSP).
The MSP enables the development and execution of migra-
tory applications, which can have three primary capabilities:
user interface migration, application logic reconfiguration
and network reconfiguration. The platform contains func-
tions to deal with the various requirements that must be
fulfilled to support migratory applications. These functions
are; Application Adaptation (user interface / application
logic), Mobility Support, Context and Trigger Management
and finally Migration Orchestration. The requirements and
the following functions have been derived using two moti-
vating scenarios, namely a migratory game and a migratory
business application for handling collaboration during emer-
gency situations. The functions in the platform are realised
as middleware software in a network infrastructure on the
devices running the applications, a migration server to coor-
dinate and orchestrate the migration process and adapt the
migratory application to suit the device capabilities, and a
mobility anchor point to migrate network connections when
migrating over different networks. The middleware can be
used by migratory applications to carry out everything dur-
ing the migration process, or the applications can implement
subsets of the migration functions themselves (for instance
adaptation functions). To use the middleware functions, mi-

gratory applications use a defined interface to the platform.

6. ACKNOWLEDGMENTS
This work was supported by the EU ICT FP7 project

’Open Pervasive Environments for iNteractive migratory ser-
vices – OPEN’, see www.ict-open.eu.

7. REFERENCES
[1] www.ict-open.eu.

[2] M. Aksit and Z. Choukair. Dynamic, adaptive and
reconfigurable systems overview and prospective
vision. In Distributed Computing Systems Workshops,
2003. Proceedings. 23rd International Conference on,
pages 84–89, 2003.

[3] M. Bauer, R. Olsen, M. Jacobsen, L. Sanchez,
M. Imine, and N. Prasad. Context management
framework for MAGNET Beyond. In Workshop on
Capturing Context and Context Aware Systems and
Platforms, Proceedings of IST Mobile and Wireless
Summit. Citeseer, 2006.

[4] K. Bharat and L. Cardelli. Migratory applications.
Mobile Object Systems Towards the Programmable
Internet, pages 131–148, 1997.

[5] J. Camara, C. Canal, and G. Salaun. Behavioural
self-adaptation of services in ubiquitous computing
environments. In Software Engineering for Adaptive
and Self-Managing Systems, 2009. SEAMS ’09. ICSE
Workshop on, pages 28 –37, 18-19 2009.

[6] M.-X. Chen and F.-J. Wang. Session mobility of sip
over multiple devices. In TridentCom ’08: Proceedings
of the 4th International Conference on Testbeds and
research infrastructures for the development of
networks & communities, pages 1–9. ICST, 2008.

[7] A. Dey. Understanding and using context. Personal
and ubiquitous computing, 5(1):4–7, 2001.

[8] R. S. et al. Stream Control Transmission Protocol
(SCTP) Dynamic Address Reconfiguration. RFC 5061
(Proposed Standard), Sept. 2007.

[9] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen,
K. Lund, E. Gjorven, S. ICT, and N. Trondheim.
Using architecture models for runtime adaptability.
IEEE software, 23(2):62–70, 2006.

[10] S. Friedberg. Transparent reconfiguration requires a
third-party connect. TR220, Computer Science
Department, University of Rochester, New York, 1987.

[11] A. Fuggetta, G. Picco, and G. Vigna. Understanding
code mobility. IEEE Transactions on software
engineering, 24(5):342–361, 1998.

[12] K. Gajos, D. Christianson, R. Hoffmann, T. Shaked,
K. Henning, J. Long, and D. Weld. Fast and robust
interface generation for ubiquitous applications.
UbiComp 2005: Ubiquitous Computing, pages 37–55,
2005.

[13] R. Han, V. Perret, and M. Naghshineh. WebSplitter: a
unified XML framework for multi-device collaborative
Web browsing. In Proceedings of the 2000 ACM
conference on Computer supported cooperative work,
page 230. ACM, 2000.

[14] K. Højgaard-Hansen, H. C. Ngyuen, and H.-P.
Schwefel. Session mobility solution for client-based
application migration scenarios. In WONS2010, 2010.

[15] D. Johnson, C. Perkins, and J. Arkko. IP Mobility
Support in IPv6. RFC 3775 (Proposed Standard),
June 2004.

[16] J. Kramer and J. Magee. Dynamic configuration for
distributed systems. IEEE Transactions on Software
Engineering, pages 424–436, 1985.

[17] J. Kramer and J. Magee. The evolving philosophers
problem: Dynamic change management. IEEE
Transactions on software engineering,
16(11):1293–1306, 1990.

[18] H. Lam and P. Baudisch. Summary thumbnails:
readable overviews for small screen web browsers. In
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 681–690. ACM,
2005.

[19] S. Loke. Context-aware pervasive systems:
architectures for a new breed of applications. Auerbach
Pub, 2006.

[20] K. Luyten and K. Coninx. Distributed user interface
elements to support smart interaction spaces. In
Seventh IEEE International Symposium on
Multimedia, page 8, 2005.

[21] M. Maia, L. Rocha, and R. Andrade. Requirements
and challenges for building service-oriented pervasive
middleware. In Proceedings of the 2009 international
conference on Pervasive services, pages 93–102. ACM,
2009.

[22] Martin, M. et al. D4.2: Migration Service Platform
Design. Technical report, ICT-OPEN EU FP7 project,
2009.

[23] W. Munkongpitakkun, S. Kamolphiwong, and
S. Sae-Wong. Enhanced web session mobility based on
sip. In Mobility ’07: Mobile technology, applications,
and systems, Singapore, pages 346–350, 2007.

[24] A. Nickelsen, M. Martin, and H.-P. Schwefel. Service
migration protocol for nfc links. In To appear in
proceedings of EUNICE 2010, 2010.

[25] A. Nickelsen, R. L. Olsen, and H.-P. Schwefel.
Model-based decision framework for autonomous
application migration. In Submitted, 2010.

[26] D. Niebuhr, A. Rausch, C. Klein, J. Reichmann, and
R. Schmid. Achieving Dependable Component
Bindings in Dynamic Adaptive Systems-A Runtime
Testing Approach. In 2009 Third IEEE International
Conference on Self-Adaptive and Self-Organizing
Systems, pages 186–197. IEEE, 2009.

[27] R. L. Olsen, J. Figueiras, J. Rasmussen, and H.-P.
Schwefel. How precise should localization be? - A
quantitative analysis of the impact of delay and
mobility on reliability of location information. In
Submitted, 2010.

[28] F. Paterno, C. Santoro, and A. Scorcia. Ambient
Intelligence for Supporting Task Continuity across
Multiple Devices and Implementation Languages. The
Computer Journal, 2009.

[29] C. Perkins. IP Mobility Support for IPv4. RFC 3344
(Proposed Standard), Aug. 2002.

[30] J. Rosenberg, H. Schulzrinne, G. Camarillo,
A. Johnston, J. Peterson, R. Sparks, M. Handley, and
E. Schooler. SIP: Session Initiation Protocol. RFC
3261 (Proposed Standard), June 2002.

[31] H. Schulzrinne and E. Wedlund. Application-layer
mobility using sip. SIGMOBILE Mob. Comput.
Commun. Rev., 4(3):47–57, 2000.

[32] M. L. Seok Joo Koh, Moon Jeong Chang. msctp for
soft handover in transport layer. IEEE
Communication letters, 8:189 – 191, 2004.

[33] R. St
”uhmer, D. Anicic, S. Sen, J. Ma, K. Schmidt, and
N. Stojanovic. Lifting events in rdf from interactions
with annotated web pages. The Semantic Web-ISWC
2009, pages 893–908.

[34] E. Wedlund and H. Schulzrinne. Mobility support
using sip. In WOWMOM ’99: Proceedings of the 2nd
ACM international workshop on Wireless mobile
multimedia, pages 76–82, New York, NY, USA, 1999.
ACM.

