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Detection of increased pyruvate 
dehydrogenase flux in the human heart 
during adenosine stress test using 
hyperpolarized [1-13C]pyruvate cardiovascular 
magnetic resonance imaging
Steen Hylgaard Joergensen1,2,3*  , Esben Soevsoe S. Hansen1, Nikolaj Bøgh1, Lotte Bonde Bertelsen1, 
Peter Bisgaard Staehr3, Rolf F. Schulte4, Craig Malloy5, Henrik Wiggers2 and Christoffer Laustsen1 

Abstract 

Background: Hyperpolarized (HP) [1-13C]pyruvate cardiovascular magnetic resonance (CMR) imaging can visualize 
the uptake and intracellular conversion of [1-13C]pyruvate to either [1-13C]lactate or 13C-bicarbonate depending on 
the prevailing metabolic state. The aim of the present study was to combine an adenosine stress test with HP [1-13C]
pyruvate CMR to detect cardiac metabolism in the healthy human heart at rest and during moderate stress.

Methods: A prospective descriptive study was performed between October 2019 and August 2020. Healthy human 
subjects underwent cine CMR and HP [1-13C]pyruvate CMR at rest and during adenosine stress. HP [1-13C]pyruvate 
CMR images were acquired at the mid-left-ventricle (LV) level. Semi-quantitative assessment of first-pass myocardial 
[1-13C]pyruvate perfusion and metabolism were assessed. Paired t-tests were used to compare mean values at rest 
and during stress.

Results: Six healthy subjects (two female), age 29 ± 7 years were studied and no adverse reactions occurred. Myocar-
dial [1-13C]pyruvate perfusion was significantly increased during stress with a reduction in time-to-peak from 6.2 ± 2.8 
to 2.7 ± 1.3 s, p = 0.02. This higher perfusion was accompanied by an overall increased myocardial uptake and 
metabolism. The conversion rate constant (kPL) for lactate increased from 11 ± 9 *10–3 to 20 ± 10 *  10–3  s−1, p = 0.04. 
The pyruvate oxidation rate (kPB) increased from 4 ± 4 *10–3 to 12 ± 7 *10–3  s−1, p = 0.008. This increase in carbohy-
drate metabolism was positively correlated with heart rate  (R2 = 0.44, p = 0.02).

Conclusions: Adenosine stress testing combined with HP [1-13C]pyruvate CMR is feasible and well-tolerated in 
healthy subjects. We observed an increased pyruvate oxidation during cardiac stress. The present study is an impor-
tant step in the translation of HP [1-13C]pyruvate CMR into clinical cardiac imaging.

Trial registration EUDRACT, 2018-003533-15. Registered 4th of December 2018, https:// www. clini caltr ialsr egist er. eu/ ctr- 
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Background
Despite advanced imaging techniques, the selection 
of patients for revascularization remains a highly con-
tested issue in both chronic coronary artery disease 
(CAD) and chronic heart failure (HF) [1–3]. The disso-
lution dynamic nuclear polarization technique (dDNP) 
and hyperpolarized (HP) [1-13C]pyruvate cardiovascu-
lar magnetic resonance (CMR) have emerged as prom-
ising methods for real-time, non-invasive imaging of 
cardiac metabolism [4, 5]. Hyperpolarized (HP) [1-13C]
pyruvate CMR has the potential to monitor focal lac-
tate accumulation in the myocardium and thus directly 
image an important metabolic feature often attributed 
to myocardial ischemia. Viable myocardium is detected 
by monitoring pyruvate dehydrogenase (PDH) flux [6–
8]. Recently, Apps et  al. published an initial report on 
two patients with CAD following myocardial infarction, 
showing a reduced bicarbonate signal in non-viable 
myocardial segments and a preserved signal in viable 
[9]. These encouraging results call for evaluation of HP 
[1-13C]pyruvate CMR in conjunction with conventional 
CMR adenosine stress testing to assess inducible myo-
cardial ischemia. The primary purpose of this study 
was to investigate the feasibility and tolerability of HP 
[1-13C]pyruvate CMR in combination with adenosine 
vasodilator stress. A secondary purpose was to study 
the physiological changes in metabolism and myocar-
dial perfusion in the healthy human heart during an 
adenosine stress.

Methods
Study population
We prospectively included healthy subjects aged over 
18  years with no history of heart disease, no significant 
medical history, normal electrocardiogram (ECG) and 
normal echocardiography with a left ventricular (LV) 
ejection fraction (LVEF) > 50%. The study was conducted 
according to the Helsinki principles and approved by 
the National Committee on Health Research Ethics 
(2018-003533-15) and by the Danish Medicines Agency 
(2,019,123,690). Written informed consent was obtained 
from all participants before enrollment. Participants 
were recruited through local advertisement. The study 
was performed at the Department of Cardiology and at 
the MR-Research Centre, Aarhus University Hospital, 
Aarhus, Denmark between October 2019 and August 
2020.

Design
A resting study and a stress study were performed on 
two separate days (Fig.  1). Participants fasted for 8 
to15 h prior to study. Standard blood counts and meta-
bolic profiles before and 7 days after each study day was 
done. Echocardiography was performed at the first visit 
(VIVID e9, General Electric Healthcare, Chicago, Illinois, 
USA) to assess systolic and diastolic function. ECG was 
recorded to confirm sinus rhythm and exclude abnormal-
ities. Participants ingested 75 g of oral glucose in 200 ml 
water to maximize PDH flux [6]. Cine CMR imaging was 

Keywords: Cardiac metabolism, Stress test, Metabolic imaging, Perfusion

Study Period (October 2019 - August 2020)

Inclusion
Six healthy subjects
Age > 18 years
Normal echocardiography
Normal ECG
Normal blood analyses 
(liver, kidney, haematology)

Rest Study

Fasting 8 to 15 hours
CMR cine imaging
75 g oral glucose (1 hour)
[113C]pyruvate CMR
Blood test of liver, kidney and 
haematology (7 days later) 

Stress Study 

Fasting 8 to 15 hours
CMR CINE imaging
75 g oral glucose (1 hour)
Adenosine stress test (6 min)
HP [113C]pyruvate CMR
Blood test of liver, kidney and 
haematology (7 days later) 

Fig. 1 Outline of study design. The duration of each study visit was < 2 h. CMR cine imaging typically lasted 45 min and metabolic imaging lasted 
5 min at rest and 6 min during adenosine stress test. The mean time interval between rest and stress study was 5 ± 3 months
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performed with the subjects in the supine position. HP 
[1-13C]pyruvate CMR was performed one hour after glu-
cose ingestion. Before adenosine stress, participants were 
instructed to refrain from caffeine for 24  h prior to the 
test. For the stress study, continuous adenosine infusion 
was initiated 1 h after glucose ingestion at a rate of 140 
mcg/kg/min through an 18G venous cannula in the left 
arm using an infusion pump (Alaris™ VP Plus Guard-
rails™ Denmark) [10]. Three minutes later, hyperpolar-
ized [1-13C]pyruvate was injected through an 18G venous 
cannula in the right antecubital vein using a power injec-
tor (Medrad®, Bayer Healthcare, Denmark) and hyper-
polarized CMR was undertaken. A three-slice cine‐LV 
function assessed LV function during the last minute of 
adenosine infusion.

Hyperpolarized CMR imaging
The sterile [1-13C]pyruvate was polarised in a clinical 
SPINlab™ DNP polarizer (General Electric Healthcare) 
and release criteria were as previously described [14]. 
Proton images were acquired using an eight‐channel car-
diac array receiver coil (General Electric Healthcare) or 
the built-in body coil. The same setup was used for each 
individual at both study dates. Balanced steady-state 
free precession (bSSFP) was used for cine LV function 
assessment. The sequence parameters were: TE 2.4  ms, 
TR 5.1  ms, flip angle 55°, acquisition matrix 200 × 160, 
FOV 400 × 400  mm2, in-plane resolution 2 × 2.5  mm2, 
slice thickness 8  mm, recon matrix 512 × 512 and car-
diac phases 30. HP [1‐13C]pyruvate CMR was under-
taken with a transmit/receive Helmholtz loop-pair 13C 
coil (PulseTeq Limited, UK) or a transmit clamshell coil 
with a 16-channel array receive coil (Rapid Biomedical 
GmbH, Rimpar, Germany). The multiple radiofrequency 
(RF) coil data were combined using a singular value 
decomposition (SVD method) [11]. Transmit gain cali-
bration was performed to adjust the RF power levels to 
the desired flip angles for each subject and 13C transmit 
power was calculated with a Bloch-Siegert method on a 
 [13C]-bicarbonate phantom positioned in the coil sensi-
tivity area and close to the imaging plane above the heart 
[12]. Transmit gain was measured to vary ~ 0.2 dB across 
subjects. The imaging frequency for the HP 13C-imag-
ing was calculated from the proton frequency obtained 
in the individual heart [13]. Iterative 1H B0 maps was 
obtained prior to 13C imaging to ensure a local B0 field 
of ± 15 Hz across the heart. The 1H centre frequency in 
the heart was then used to calculate the 13C frequencies 
as the same shim was used. HP imaging was acquired 
in diastole using a cardiac-gated spectral-spatial (SPSP) 
excitation with spiral read-out acquisition: TE = 10  ms, 
FOV = 400 × 400  mm, matrix = 30 × 30, real in-plane 
pixel size = 13.3 × 13.3 mm and one short axis slice with 

30 mm slice thickness [14, 15]. Excitation pulses increase 
the decay of HP signal. We used a spiral acquisition 
scheme with an 8° flip angle for the precursor pyruvate 
to preserve signal and 90° for downstream metabolites 
lactate, bicarbonate and alanine to maximize metabolite 
signal. During each R-R interval, we used an excite-read 
in the diastolic phase for pyruvate and one other metabo-
lite. Time per image was 110 ms and image read-out was 
45 ms. We obtained 240 images. Thus, we obtained 120 
pyruvate images and 40 images of each metabolite with a 
time resolution of three heart beats. (Fig. 2).

Data analysis and statistics
Reconstruction of the 13C data and analysis of the 
DICOM images were done using Segment version 3.1 
R8215 (http:// segme nt. heibe rg. se). ROIs outlining the 
myocardium was firstly drawn on the corresponding 
heart phase on the cine images and thereafter transferred 
to the 13C images. Here the ROIs were reduced to cover 
5% less in endo and epi direction to reduce signal out-
side the myocardium. All images were tracked manually 
through the course of the acquisition to minimize motion 
due to breathing.

The metabolite signal was analysed at the mid-LV level 
as a mean signal from the myocardium. The area under 
the curve (AUC) from the peak pyruvate signal and ten 
time frames forward for [1‐13C]pyruvate and each of the 
metabolites were used to calculate the total myocardial 
signal using MATLAB (The Mathworks, Natick, Massa-
chusetts, USA) [16, 17]. The exchange rate constants for 
the conversion of  [113C]pyruvate to  [13C]lactate (kPL), 
 [13C]bicarbonate (kPB) and  [13C]alanine (kPA) were meas-
ured as previously described [18, 19].

Statistical analyses were made in GraphPad Prism 
Windows, (version 8.0.0, GraphPad Software, San Diego, 
California, USA). Normality was assessed using the Sha-
piro-Wilks test. Results are presented as mean ± standard 
deviation (SD). Paired t-tests were used to compare mean 
values from the two study days. One-tailed p-values were 
used for time to peak and first order moment pyruvate 
perfusion. Otherwise two-tailed p-values were used. A 
p-value < 0.05 was considered statistically significant.

Results
Population characteristics
Six healthy subjects, 29 ± 7 years were studied. Echocar-
diography showed normal diastolic function and CMR 
showed normal systolic function. Mean body mass index 
(BMI), mean glycated haemoglobin (HbA1c), mean fast-
ing glucose were similar and within normal range on both 
study days (Table 1). Time from oral glucose to hyperpo-
larized [1-13C]pyruvate injection was 1 h ± 5 min. During 
the adenosine stress test, the heart rate (HR) increased 

http://segment.heiberg.se
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from 65 ± 13 to 108 ± 11  bpm (p < 0.001) and the rate-
pressure product (mmHg*bpm/103) increased from 
8.2 ± 1.1 to 12.3 ± 1.2 (p = 0.03) (Table 2).

Safety data regarding hyperpolarized [1‑13C]pyruvate 
injection
Participants received a total of two successful injections 
of [1-13C]pyruvate. The mean level of polarization was 
25 ± 9% and pH was 7.7 ± 0.1. Time from dissolution to 
injection was < 150 s. No adverse events occurred.

Fig. 2 A Hyperpolarized imaging acquisition parameters. B Sequence diagram. Hyperpolarized data was acquired in diastole. Images of pyruvate 
were acquired in every heart beat and images of each of the metabolites were obtained for every third heart beat in the order: lactate, bicarbonate 
and alanine

Table 1 Population characteristics (mean ± SD)

BMI, body mass index; BP, blood pressure; HbA1C, glycated haemoglobin; HR, 
heart rate; E/A, early to late peak diastolic transmitral flow velocity ratio; E/e’, 
early diastolic transmitral flow velocity to early diastolic mitral annular tissue 
velocity ratio; CMR, cardiovascular magnetic resonance; LVEF, left ventricular 
ejection fraction; LVEDV, left ventricular end-diastolic volume; LV mass, left 
ventricular mass

*Significance P < 0.05

Study population (n = 6) Rest study Stress study P value

General

Age, years 29 ± 7

Gender, male/female 4/2

Metabolic parameters

BMI, Kg/m2 23 ± 4 24 ± 5 0.5

HbA1c, mmol/mol 34.0 ± 1.5 32.0 ± 2.2 0.2

Fasting glucose, mmol/L 5.1 ± 0.3 5.2 ± 0.3 0.6

Glucose 1 h post OGTT 6.6 ± 1.2 6.6 ± 1.2 1

Resting systolic BP, mmHg 122 ± 5 124 ± 9 0.6

Resting HR, bpm 68 ± 9 65 ± 13 0.5

Echocardiography

E/A ratio 1.5 ± 0.6

E/e’, mean 6.0 ± 1.1

CMR

LVEF, % (range) 55 ± 4 (51–61) 56 ± 3 (51–60) 0.8

LVEDV index, ml/m2 76 ± 13 72 ± 11 0.2

LVESV index, ml/m2 33 ± 3 29 ± 7 0.4

LV mass index, g/m2 55 ± 2 58 ± 3 0.1

Table 2 Haemodynamic response during adenosine infusion 
(mean ± SD)

HR, heart rate; LVEDV, left ventricular end-diastolic volume; LVESV, left 
ventricular end-systolic volume; SV, stroke volume

Before During P value

HR, bpm 65 ± 13 108 ± 11  < 0.001

Rate-pressure product, 
mmHg*HR/103

8.2 ± 1.1 12.3 ± 1.2 0.03

LVEDV, ml 138 ± 29 121 ± 24 0.04

LVESV, ml 62 ± 15 52 ± 15 0.2

SV, ml 77 ± 15 68 ± 15 0.09
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Hyperpolarized [1‑13C]pyruvate CMR imaging
The obtained data of hyperpolarized [1-13C]pyruvate 
had a signal-to-noise ratio (SNR) of 151 ± 67 at rest 
and 289 ± 189 during stress. The metabolite SNR were 
increased from rest to stress: 7 ± 3 to 19 ± 9 for [1-13C]
lactate, 7 ± 3 to 12 ± 5 for  [13C]bicarbonate and 9 ± 3 
to 17 ± 13 for [1-13C]alanine (Fig.  4). The time-to-peak 
(TTP) for metabolites increased from rest to stress: 
13 ± 4 s to 16 ± 7 s (p = 0.3) for [1-13C]lactate, 13 ± 4 s to 
17 ± 7  s for  [13C] (p = 0.1) and 6 ± 3 to 11 ± 9  s (p = 0.3) 
for [1-13C]alanine. An example of HP [1-13C]pyruvate 
CMR imaging and temporal dynamics are shown in 
Fig. 3.

TTP perfusion and first order moment (FM) perfusion 
of [1-13C]pyruvate were assessed in the myocardium at 
the mid-LV level. TTP was significantly reduced from 
6.2 ± 2.8 to 2.7 ± 1.3  s, p = 0.02, and FM was reduced 
from 17.8 ± 5.5 to 7.1 ± 2.0 s, p = 0.005. The kPL increased 
from 11 ± 9 *10–3   s−1 to 20 ± 10 *10–3   s−1, p = 0.04. The 
kPB increased from 4 ± 4 *10–3   s−1 to 12 ± 7 *10–3   s−1, 
p = 0.008. Finally, the kPA increased from 5 ± 3 *10–3   s−1 
to 16 ± 9 *10–3  s−1, p = 0.06 (Figs. 4, 5). We found a posi-
tive and significant correlation of HR and increase in kPL 
(p = 0.02), kPB (p = 0.002) and kPA (p = 0.04) (Fig. 6).

Discussion
The present study is the first-in man demonstration of 
the physiological changes in lactate dehydrogenase and 
PDH flux in response to adenosine stress in the healthy 
human heart, using HP [1-13C]pyruvate CMR. We docu-
ment that HP [1-13C]pyruvate CMR in combination with 
a standard adenosine stress protocol was well tolerated in 
healthy human subjects. We demonstrated that increased 
HR was associated with an increased metabolism of 
[1-13C]pyruvate in the normal myocardium. Our findings 
suggest a faster pyruvate oxidation due to PDH activation 
in response to an increased myocardial workload.

Metabolism in the healthy human heart
Participants were fasted for 8 to 15 h and oral glucose 
loading was used to maximize PDH flux and standard-
ize metabolic conditions in both the rest and stress 

study [16, 20, 21]. Adenosine is a validated and widely 
used pharmacological stress test in cardiac imaging [10, 
22, 23]. We found significant increases in HR, rate pres-
sure product and cardiac output during the adenosine 
stress. The HP observations and the haemodynamic 
response must reflect both the systemic and coronary 
effects of adenosine. Adenosine induces coronary and 
systemic vasodilatation and reflex tachycardia [24]. 
Semi-parametric measures of the large blood pool 
component of [1-13C]pyruvate was used to evaluate 
the hemodynamic response to adenosine. We found 
a significant reduction in the TTP and FM for [1-13C]
pyruvate in the mid-LV myocardium (inversely corre-
lated to perfusion [25]) consistent with increased HR 
and thus pyruvate delivery. The increased myocardial 
signal of pyruvate during stress, suggest an enhanced 
myocardial [1-13C]pyruvate uptake likely due to coro-
nary vasodilation, consistent with previous experimen-
tal findings [26]. However, unfortunately we cannot 
distinguish how much of the increased [1-13C]pyruvate 
signal is derived from increased myocardial uptake and 
how much is caused by increased vascular signal due 
to vasodilation. In this regard, it is interesting that we 

Fig. 3 Signal to noise ratio. The blue squares represent 
signal-to-noise ratio (SNR) at rest and the red squares represent SNR 
during stress

Fig. 4 A Example of visualization of [1-13C]pyruvate and its downstream metabolites from arrival of pyruvate in the lumen of the right ventricle 
(RV) and left ventricle (LV) to downstream appearance of [1-13C]lactate,  [13C]bicarbonate and [1-13C]alanine. Metabolite data are shown overlaid 
an anatomical cine image and as raw metabolite images. Region of interest is the myocardium of the LV. The red line delineates the endocardium 
and the green line delineates the epicardium. B An example of temporal dynamics for [1-13C]pyruvate and metabolites is shown. As hyperpolarized 
data were acquired per heart cycle, we have shown the data indexed to heart rate at rest and during stress to depict how heart rate changes the 
temporal dynamics

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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observed a tendency towards increased [1-13C]alanine 
signal which has been suggested as a surrogate meas-
ure for pyruvate uptake [16]. We observed a statistically 
significant increases in PDH flux as well as [1-13C]
pyruvate to [1-13C] lactate exchange during stress. The 
relative increase in [1-13C]lactate signal is explained 
by [1-13C]pyruvate to [1-13C]lactate exchange, which 
depend on the delivery of pyruvate, on the rate of pyru-
vate uptake and subsequently on the concentration of 
LDH and its substrate pool sizes. The relative increase 
in PDH flux was larger, demonstrating that the healthy 
heart can increase oxidative energy production dur-
ing moderate stress. This agrees with previous animal 
studies and invasive human studies, showing activation 
of PDH and increased pyruvate oxidation in response 
cardiac stress [27]. Interestingly, a similar metabolite 
dynamic pattern (TTP) of the individual metabolites 
was observed, which seem to contradict the increased 
metabolic conversion (TTP of the individual metabolite 
dynamic curve is inversely correlated with the apparent 

rate constant of the individual metabolites) [28]. It is 
important to note that the temporal dynamics of the 
metabolites are 3 times lower than that of pyruvate and 
thus, could at least partly explain this surprising find-
ing. Also, given the voxel size, partial volume effects 
may influence these results. Finally, due to coronary 
vasodilation, coronary vasculature may be a significant 
part of the pyruvate signal in the myocardium and thus 
may influence TTP. Further studies are needed to solve 
these issues.

Feasibility and tolerability of rest‑stress HP [1‑13C]pyruvate 
CMR imaging
In line with previous studies [10–14], we found that all 
participants tolerated HP [1-13C]pyruvate well and all 
participants returned for the second examination. Fur-
thermore, we found no adverse reactions when HP 
[1-13C]pyruvate infusion was combined with adenosine 
infusion.

Fig. 5 Conversion rate constants. A–C The mean kPL, kPB and kPA at rest and during stress. The mean kPL increased statistically significantly from 
11 ± 9 *10–3  s−1 to 20 ± 10 *10–3  s−1, p = 0.04. The mean kPB increased statistically significantly from 4 ± 4 *10–3  s−1 to 12 ± 7 *10–3  s−1, p = 0.008. The 
kPA increased from 5 ± 3 *10–3  s−1 to 16 ± 9 *10–3  s−1, p = 0.06

Fig. 6 Conversion rate constants correlation with HR. There was a positive and statistically significant correlation of HR and increase in kP for both 
lactate (p = 0.02), bicarbonate (p = 0.002) and alanine (p = 0.04). HR, heart rate
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Limitations
Several limitations should be considered in relation 
to the dDNP method and the present study. First, our 
sample size was small and the method is currently lim-
ited to only 24 centers around the world. The method 
is currently technically demanding and requires dedi-
cated hardware and trained staff to produce HP probes 
and interpret data. However, the development of the 
commercially available, clinical 5  T SPINlab (General 
Electric Healthcare) and automation of several techni-
cal steps have improved the workflow of HP CMR sig-
nificantly, decreasing the barrier for clinical adaptation 
[29, 30]. Second, the rest and stress data were collected 
on separate days. However, resting HR, blood pressure 
and fasting blood glucose were similar on the two study 
days, indicating similar metabolic states. Third, a limi-
tation to the perfusion measurements is that pyruvate 
is metabolised which could bias the peak signal. Future 
studies, using a metabolically inactive probe such as 13C 
urea could be used to address this issue [31]. Forth, the 
high flip angles used to image metabolites increase the 
impact of imperfect slice profiles. However, the kinetic 
model applied in the present study does not require 
perfect saturation, albeit the RF inhomogeneity would 
impact the absolute rate constant estimations. We used 
each subject as its own comparison, and as B1 calibra-
tion was kept constant between the two examinations in 
the same individual, we do not believe that the 90° degree 
pulses extensively affect our conclusions. Finally, we did 
not do a sham adenosine infusion. One could argue that 
the infused volume of adenosine itself, could influence 
cardiac work and metabolism. However, as the infused 
volume was 60–70 mL, we believe this effect to be neg-
ligible. Future studies on patients with CAD and chronic 
HF are needed to evaluate the true clinical implications 
of HP [1-13C]pyruvate CMR in combination with adeno-
sine stress test. In addition, a protocol using the ß-adren-
ergic agent dobutamine [23] would also be an important 
topic for future research.

Conclusions
The present study represents the first-in-human non-
invasive, real-time, in-vivo investigation of adenosine 
stress-induced metabolic changes in the healthy human 
heart using HP [1-13C]pyruvate CMR. The study con-
firms that it is feasible and well tolerated to add an aden-
osine stress test to HP [1-13C]pyruvate CMR. In addition, 
the study demonstrates an increased pyruvate oxidation 
during low to moderate cardiac stress. Finally, this study 
forms the basis for comparisons in studies of cardiac 
diseases.
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