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Abstract—The stochastic rounding (SR) function is proposed 

to evaluate and demonstrate the effects of stochastically rounding 

row and column subscripts in image interpolation and scan 

conversion. The proposed SR function is based on a 

pseudorandom number, enabling the pseudorandom rounding 

up or down any non-integer row and column subscripts. Also, the 

SR function exceptionally enables rounding up any possible cases 

of subscript inputs that are inferior to a pseudorandom number. 

The algorithm of interest is the nearest-neighbor interpolation 

(NNI) which is traditionally based on the deterministic rounding 

(DR) function. Experimental simulation results are provided to 

demonstrate the performance of NNI-SR and NNI-DR 

algorithms before and after applying smoothing and sharpening 

filters of interest. Additional results are also provided to 

demonstrate the performance of NNI-SR and NNI-DR 

interpolated scan conversion algorithms in cardiac ultrasound 

videos. 

Keywords—Cardiac ultrasound; deterministic rounding; image 

quality; interpolation; pseudorandom number; scan conversion; 

stochastic rounding; video quality 

I. INTRODUCTION 

Image interpolation is an important type of estimation that 
pervades many engineering applications, where estimates of 
image pixel values at points other than the input or source grid 
are required and/or affect the desired results and/or the way to 
obtain them [1]. In digital image upscaling, the nearest 
neighbor interpolation (NNI) remains the fastest algorithm. 
NNI is used for estimating image pixel values at points of 
interest, and it is traditionally based on the deterministic 
rounding (DR) function. This type of function deterministically 
rounds off the subscripts of the grid coordinates of the output 
or destination image to enable the mapping of pixels from the 
source image into the destination image. However, in some 
NNI interpolated images cases, the image quality is often bad 
because of the presence of heavy jagged artefacts, especially at 
image objects’ edges. Here, the DR function-based mapping 
remains main the inherent flaws that contribute to the presence 
of such heavy jagged artefacts. In this work, the stochastic 
rounding (SR) function is alternatively proposed to 
demonstrate and evaluate the effects or benefits of 
stochastically rounding row and column subscripts in NNI-
based image interpolation and scan conversion. Note that, the 
scan conversion algorithm is used for translating input data 
(captured in different coordinates) into Cartesian coordinates 
(still more suitable for display) [9]. More information on the 
scan conversion system block diagram and the scan conversion 

using bilinear interpolation examples are provided in [9], [10]. 
It is important to note that, when the fractional part of non-
integer subscripts equals half a unity, this, key challenge in 
rounding functions, still raises the question of how or when to 
reasonably use the gain or loss of half a unity – and the SR 
function is the answer to this question. The rest of the paper is 
organized as follows: Section two introduces the literature 
review of interest. Section three presents the SR function. 
Section four presents numerical examples showing the 
comparison of results based on SR and DR functions. 
Section five presents experimental results. Relevant 
discussions are provided in Section six. The conclusion is 
given in Section seven. 

II. LITERATURE REVIEW 

There exist many image interpolation algorithms, in various 
categories, that were developed focusing on improving the 
accuracy or efficiency of the algorithm, depending on targeted 
applications including but not limited to rescaling, reslicing, 
rendering, zooming, coordinate transformations in two-
dimensional data or scan conversion, tomographic 
reconstruction and image registration [1]. One of the most 
recent applications of interest is artificial intelligence (AI)-
based image super-resolution [2], [3] - whose generalizable 
steps are shown in Fig. 1. Here, the authors’ core idea was to 
enhance the quality of the bilinear interpolation images, by 
applying a set of pre-learned filters on the image patches, 
chosen by an efficient hashing mechanism [2]. In another 
example, presented in [3], the authors used the bicubic image 
interpolation algorithm to upscale the input or source image to 
meet the same size as the reference image before starting to 
recover from it, a resolution enhanced image comparable to the 
ground truth high-resolution image. Both bilinear and bicubic 
interpolation algorithms belong to the extra pixel category [4]. 
This category encompasses all image interpolation algorithms 
that create non-original pixels to achieve interpolation results 
[4]. The NNI algorithm belongs to the non-extra pixel category 
[4]. This category of image interpolation algorithms does not 
create non-original pixels to achieve interpolation results [5]. 
As mentioned earlier, the NNI algorithm remains the fastest 
among image interpolation algorithms [6], [7]. However, the 
NNI algorithm is based on the deterministic rounding for 
source image pixels selection. In [4], the author demonstrated 
that the best deterministic rounding (DR) function for nearest 
neighbor image interpolation purposes was the ceil function. In 
[8], authors proposed the stochastic rounding (SR) idea and, 
according to authors in [8], the SR idea was attracting renewed 
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interest in artificial intelligence/deep learning because it could 
improve the accuracy of the underlying computations. 

Here, for x∈R with x∉F (where F⊆R denotes the floating-

point number system), the authors considered two stochastic 
rounding modes shown in Eq. 1 and Eq. 2. 

Mode-1: 

      {
                        
                        

            (1) 

Mode-2: 

      {
                                         

                         
    (2) 

In the first mode (or Eq. 1) authors round x∈R with x∉F 

up or down with equal probability to the respective nearest 
floating-point number. In the second mode (or Eq. 2), authors 
round with a probability that is 1 minus the relative distance of 

x to each of the nearest floating-point numbers. For x∈R,  x  
= max {y∈F: y≤x},  x  = min {y∈F: y≥x}, so that  x  ≤x

≤ x  with equality throughout if x∈F. For x∉F,  x  and  x  
are adjacent floating-point numbers. More details are provided 
in [8]. 

 

Fig. 1. An Example of Generalizable Steps for AI-based Image Super-

Resolution Application Pervaded by Image Interpolation. 

III. STOCHASTIC ROUNDING FUNCTION 

Here, the stochastic rounding function is developed based 
on the equation that incorporates a rand function found in 
MATLAB. The MATLAB rand function is based on a new 
pseudorandom number generator named Mersenne Twister 
(MT). According to [11], the MT pseudorandom number 
generator seems to be the best among all generators ever 
implemented, with the period        and 623-dimensional 
equidistributional property. Also, the success of this C-Code 
MT19937 has been achieved thanks to two new ideas added to 
the previous version, Generalized Feedback Shift Register 
(GFSR), namely, (1) the incomplete array, and (2) the 
inversive-decimation method [11]. In the experimental 
simulations, presented in this work, the pseudorandom number 
(r) was rounded to one digit. Also, the pseudorandom number 
was tuned to randomly vary between 0 and 0.5. In this way, it 
was possible to automate probabilities of stochastically 
rounding up or down thus achieving non-zero positive integers 
to be used as row and column subscripts of pixel coordinates. 
Note that, due to the intended application - of rounding non-
integer row and column subscripts - Eq.3 incorporates 
conditions that allow it to only output non-zero positive 
integers. 

      {
                               

              
           (3) 

In this way, the first condition ensures that any input index 
or subscript is greater than any pseudorandom number varying 
between 0 and 0.5. The second condition ensures that any input 
subscript is of non-integer type before proceeding to randomly 

rounding up or down. Note that, for 0≤ r≤ 0.5, it is an 

exception if r > x. Therefore, in such an exceptional case, the 
SR function rounds up (e.g., see Table I: See the first line in the 
4X group). 

Fig. 2 shows an example of destination pixel coordinates 
subscripts before round-off operations. In Fig. 2(a) and (b) 
results were obtained by doubling a 3-by-3 matrix and plotting 
the coordinates of the matrix elements. Note that, when the 
rounding operation is random - this results in stochastic pixel 
selection in NNI. 

 
(a) 

 
(b) 

Fig. 2. (a) Shows Pixel Coordinate Subscripts before Round-off Operations. 

(b) Shows Row (y) and Column (x) Subscripts before Round-off Operations. 

IV. NUMERICAL EXAMPLES 

In Table I, the authors compare the output of SR and DR 
functions - after upscaling the original 3-by-3 matrix, two 
times, three times, and four times. As can be seen, Table I 
shows a column of subscripts, a column of random numbers, a 
column of DR results, and a column of SR results as well as 
columns of the elapsed time in both cases. Again, in Table I, 
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when the scaling ratio is equal to two, the SR results differ 
from the DR results, twice. The same happens when the scaling 
ratio is equal to three. When the scaling ratio is equal to four, 
the SR results differ from the DR results, three times, except 
that in this case, there is an exception, mentioned earlier - 
about when x<r. 

TABLE I. X REPRESENTS SUBSCRIPTS AND R REPRESENTS A RANDOM 

NUMBER (ROUNDED TO ONE DIGIT). THE DR(X) IS EQUIVALENT TO THE 

CEIL(X) FUNCTION 

ratio x r DR(x) SR(x) DR (sec) SR (sec) 

2X 

0.5000 0.4 1 1 

0.18 × 

1.0e-05 
0.68 × 

1.0e-05 

1.0000 0.5 1 1 

1.5000 0.5 2 1 

2.0000 0.1 2 2 

2.5000 0.5 3 2 

3.0000 0.3 3 3 

3X 

0.3333 0.1 1 1 

0.15 × 

1.0e-05 

0.60 × 

1.0e-05 

0.6667 0.4 1 1 

1.0000 0.3 1 1 

1.3333 0.5 2 1 

1.6667 0.3 2 2 

2.0000 0.2 2 2 

2.3333 0.4 3 2 

2.6667 0.3 3 3 

3.0000 0.1 3 3 

4X 

0.2500 0.5 1 1 

0.04 × 

1.0e-05 
0.17 × 

1.0e-05 

0.5000 0.1 1 1 

0.7500 0.4 1 1 

1.0000 0 1 1 

1.2500 0.4 2 1 

1.5000 0.4 2 2 

1.7500 0.4 2 2 

2.0000 0.4 2 2 

2.2500 0.5 3 2 

2.5000 0.1 3 3 

2.7500 0.3 3 3 

3.0000 0.4 3 3 

3.2500 0.4 4 3 

3.5000 0.4 4 4 

3.7500 0.5 4 4 

4.0000 0.1 4 4 

Note that, SR may also produce similar results to DR 
results, but that is not guaranteed because the SR’s output 
relies on the pseudorandom value. Also, it is important to note 
that, the results presented in Table I are specific to a particular 
case of r value and input numbers. Still, in Table I, it can be 
seen, in the first case involving 2X (1.5 and 2.5), the SR 
behaved like the floor function, instead of the traditional 

otherwise. In the second case involving 4X (1.5, 2.5, and 3.5), 
the SR behaved like the ceil function – in this way, the pseudo-
randomness of the SR function has answered the question or 
removed the challenge of how to reasonably round a non-
integer subscript in when the fractional part is equal to half a 
unity (i.e., 0.5). Note that, the most interesting point of DR and 
SR functions is that, when the fraction part of a non-integer 
equals 0.5, the DR function always rounds a non-integer in a 
predetermined or deterministic way, which is not the case with 
the SR function. Now, comparing the elapsed time or line 
reading time, it can be seen, in Table I, that the time taken by 
both the SR and DR functions (to round a given series of non-
integers) is too small to make any significant difference. 

V. EXPERIMENTS 

A. Datasets, Smoothing / Sharpening Method, IQA Metrics 

1) Dataset: Here, the used image dataset originated from 

the USC-SIPI Database of 210 Textures, Aerials, 

Miscellaneous, and Sequences images [12]. Here the author 

uses input images of 128 ×128 size and reference images of 

512 x 512 size, all converted to 8bits using R2020a MATLAB. 

All experimental images are also available at the author’s 

GitHub via GitHub.com/orukundo [13]. 

2) Smoothing / sharpening method: The 2-D Gaussian 

smoothing kernel and sharpened using the unsharp masking 

methods - available in the MATLAB 2020a image processing 

toolbox - are used to extend experiments via evaluating 

smoothed and sharpened interpolation results. 

3) IQA metrics: In the beginning, only full-reference (FR) 

IQA metrics are used. Those included the mean-squared error 

(MSE), structural similarity index (SSIM), and peak signal to 

noise ratio (PSNR). These FR-IQA metrics are selected to 

quantify or measure the closeness or similarity of modified or 

distorted images (i.e., in this case, interpolated images) against 

their corresponding pristine images (i.e., reference images), 

[14]. Note that for SSIM and PSNR, normally when the scores 

are higher (closer to 1 and 100) that means the better visual 

quality. For MSE when the scores are lower (closer to 0), that 

normally means better visual quality. Here, it is important to 

note that MATLAB’s tic and toc command function is also 

used to check the elapsed time while reading code lines of the 

SR and DR functions (as shown in Table I). In the end, - given 

that there exist no reference images or videos for cardiac 

ultrasound images or videos - the video frames quality 

assessment is done using no-reference (NR) IQA metrics. The 

selected NR-IQA metric of interest is the Perception-based 

Image Quality Evaluator (PIQE) [15], [16]. Specifically, PIQE 

is used to calculate one frame's no-reference perceptual image 

quality after every 78-milliseconds for 10 000 milliseconds 

(i.e., entire video duration). This 78 milliseconds timestamp is 

estimated based on the number of frames of each video and the 

entire video duration as well as the suitability for graphical 

representation. To understand the PIQE scores, the quality 

scale, and score range are as follows: Excellent [0 ↔ 20]. 

Good [21 ↔ 35]. Fair [36 ↔ 50]. Poor [51 ↔ 80]. Bad [81 ↔ 

100], [16]. For scan conversion operations, T5D data files are 
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used after being acquired from Duke University’s 

Experimental Ultrasound System, T5, [10], [17]. More 

information on Duke University’s Experimental Ultrasound 

System, T5 can be found via [18],[19],[20]. Note that, with 

T5D files, scan conversion operations are doable using a 

dedicated graphical user interface, developed in MATLAB, for 

post-processing of those ultrasound image sequences (from 

Duke University’s Experimental Ultrasound System, T5). 

B. Automatic / Objective Evaluation Results (Natural Images) 

In Table II and Table III, priority is given to NNI-DR and 
NNI-SR results over the bicubic and bilinear results – keeping 
in mind that traditional bicubic and bilinear algorithms 
generally perform much better than the traditional NNI 
algorithm. 

TABLE II. SSIM, PSNR AND MSE METRICS SCORE ESTIMATES BEFORE 

APPLYING SMOOTHING AND SHARPENING FILTERS) 

 

SSIM PSNR MSE 

NNI-

DR 

NNI-

SR 

NNI-

DR 

NNI-

SR 
NNI-DR NNI-SR 

IMAGE1 0.4809 0.5127 21.387 22.058 472.42 404.82 

IMAGE2 0.5306 0.5688 21.443 22.391 466.41 374.34 

IMAGE3 0.8713 0.8825 30.174 31.395 62.469 47.152 

IMAGE4 0.8230 0.8388 23.667 24.903 279.46 210.24 

IMAGE5 0.5555 0.5859 20.186 21.162 622.88 497.50 

IMAGE6 0.5067 0.5480 20.606 21.586 565.45 451.30 

TABLE III. SSIM, PSNR AND MSE METRICS SCORE ESTIMATES AFTER 

APPLYING SMOOTHING AND SHARPENING FILTERS 

 

SSIM PSNR MSE 

NNI-

DR 

NNI-

SR 

NNI-

DR 

NNI-

SR 
NNI-DR NNI-SR 

IMAGE1 0.5112 0.5481 21.381 22.334 473.03 379.89 

IMAGE2 0.5627 0.6081 21.338 22.658 477.77 352.58 

IMAGE3 0.8857 0.9050 29.910 31.727 66.38 43.68 

IMAGE4 0.8358 0.8637 23.221 25.070 309.67 202.32 

IMAGE5 0.5876 0.6354 20.009 21.528 648.86 457.30 

IMAGE6 0.5333 0.5895 20.516 21.977 577.32 412.45 

C. Subjective / Human Evaluation Results (Natural Images) 

   
(a)   (b)  (c) 

   
(d)   (e)  (f) 

Fig. 3. (a) Input Image1. (b) NNI-DR Interpolated Image1. (c) NNI-SR 

Interpolated Image1. (d) RF Image1. (e) (b)-Filtered. (f) (c)-Filtered. 

   
(a)   (b)  (c) 

   
(d)   (e)  (f) 

Fig. 4. (a) Input Image2. (b) NNI-DR Interpolated Image2. (c) NNI-SR 

Interpolated Image2. (d) RF Image2. (e) (b)-Filtered. (f) (c)-Filtered. 
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(a)   (b)  (c) 

   
(d)   (e)  (f) 

Fig. 5. (a) Input Image3. (b) NNI-DR Interpolated Image3. (c) NNI-SR 

Interpolated Image3. (d) RF Image3. (e) (b)-Filtered. (f) (c)-Filtered. 

   
(a)   (b)  (c) 

    
(d)   (e)  (f) 

Fig. 6. (a) Input Image4. (b) NNI-DR Interpolated Image4. (c) NNI-SR 

Interpolated Image4. (d) RF Image4. (e) (b)-Filtered. (f) (c)-Filtered. 

   
(a)   (b)  (c) 

   
(d)   (e)  (f) 

Fig. 7. (a) Input Image5. (b) NNI-DR Interpolated Image5. (c) NNI-SR 

Interpolated Image5. (d) RF Image5. (e) (b)-Filtered. (f) (c)-Filtered. 

    
(a)   (b)  (c) 

   
(d)   (e)  (f) 

Fig. 8. (a) Input Image6. (b) NNI-DR Interpolated Image6. (c) NNI-SR 

Interpolated Image6. (d) RF Image6. (e) (b)-Filtered. (f) (c)-Filtered. 

D. Subjective / Human Evaluation Results (Sectored Images) 

  
(a)    (b) 

  
(c)    (d) 

Fig. 9. (a) Bicubic, (b) Bilinear, (c) NNI-DR, (d) NNI-SR (Also see [36]: 

Interpolated Scan Conversion - 60). 
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VI. DISCUSSION 

Table II shows columns of score estimates achieved by 
NNI-DR and NNI-SR algorithms (using the SSIM, PSNR, and 
MSE FR-IQA metrics). In all five image cases presented, the 
NNI-SR algorithm achieved score estimates slightly higher 
than the NNI-DR score estimates relevant to SSIM and PSNR. 
Also, in all five image cases, the NNI-SR algorithm achieved 
score estimates slightly lower than the NNI-DR score estimates 
relevant to MSE. The same situation is repeated in Table III, 
where, unlike in Table III, the results presented are achieved 
after applying the smoothing and sharpening filters. The 
Table II comparison concludes that the NNI-SR performed 
better than the NNI-DR, in this specific situation. However, 
from the author’s observation, it is also possible that the slight 
betterment of the NNI-SR may have been caused by the fact 
that the content of NNI-SR images was better aligned with the 
content of the reference images than the content of the NNI-
DR images. 

 
(a)    (b) 

 
(c)    (d) 

Fig. 10. (a) Bicubic, (b) Bilinear, (c) NNI-DR, (d) NNI-SR (Also see [36]: 

Interpolated Scan Conversion - 1000). 

In Fig. 3, (b) and (c) images have both produced jagged 
edges on the outline of the planes as well as the rest of the 
building. Also, comparing the results achieved by NNI-SR and 
NNI-DR against the (d) RF image, it is clear that only the NNI-
SR algorithm reconstructed the white dots in a way almost 
similar to the way such dots look in (d) image. Also, it is clear, 
the NNI-DR changed the three white dots or circles to squares. 
A similar situation did not repeat after smoothing and 
sharpening the results of NNI-DR and NNI-SR algorithms, 
shown in (e) and (f), respectively. Note that, here, getting a 
closer and clear view of the planes (and/or their locations) was 
not possible, even if the results could show plans and airport 
terminal (even without having previously seen the RF image in 
(d)). In Fig. 4, (b) and (c) images have shown jagged edges on 
the outline of the standing man as well as the rest of the ship 
edges. As can be seen, the NNI-DR algorithm produced so 
heavy jagged artefacts that the silhouette of the man 
disappeared completely, as shown in (b). Now, with the image 
produced by the NNI-SR algorithm, in (c), the man's silhouette 

is only less hardly imaginable than in the NNI-DR case, shown 
in (b). After smoothing and sharpening, the results became too 
blurred that is impossible to imagine the man's silhouette, as 
shown in (e) and (f). If one sees the (e) and (f) images without 
having previously seen the RF image in (d), it is not possible to 
imagine the presence of a man's silhouette or ship edges. Here, 
it is also important to note that by cropping a small part of the 
image (a), the aim was to get a closer and clear view of the 
man. In Fig. 5(b) and (c) images have both produced heavy 
jagged edges on the outline of the two men as well as the rest 
of the beach. This demonstrates that getting a closer and clear 
view of the two men was not possible using both NNI-DR and 
NNI-SR. But, after smoothing and sharpening the (b) and (c) 
images, the results shown in (e) and (f) allow one to imagine 
the presence of two men, one standing and one sitting, without 
even having previously seen the RF image in (d). A similar 
situation is repeated in Fig. 6, Fig. 7, and Fig. 8. 

Fig. 9 and Fig. 10 show two cardiac ultrasound imaging 
sectored images obtained using different interpolated scan 
conversion algorithms. Here, the bicubic interpolated scan 
conversion sectored image-(a) looks better than the rest of 
bilinear, NNI-DR, and NNI-SR interpolated scan conversion 
images in (b), (c), and (d), respectively. It is important to note 
that originally the frame rate was 60 and 1074 frames per 
second for images in Fig. 9 and Fig. 10, respectively. The value 
of frame rates could be seen on the Graphical User Interface 
developed for cardiac ultrasound video visualization. Note that 
relevant videos are available at 
https://github.com/orukundo/Interpolated-Scan-Conversion-of-
B-Mode-Cardiac-Ultrasound-Image-Sequences (see the link 
entitled: Interpolated Scan Conversion-1000 and/or 
Interpolated Scan Conversion-60). Also, note that to easily 
perceive the video quality difference – relevant to the 
mentioned interpolated scan conversion algorithms - the 
monitor resolution must be high enough. 

Further assessments were done via plotting and comparing 
graphs of pixel intensity distributions in NNI-DR and NNI-SR 
interpolated images against the pixel intensity distribution in 
reference images before and after filtering operations. 
Fig. 11(a) shows the number of pixels counts versus the 
corresponding number of bins in NNI-DR interpolated and 
unfiltered IMAGE1, NNI-SR interpolated and unfiltered 
IMAGE1, and RF IMAGE1. Fig. 11(b) shows the number of 
pixels counts versus the corresponding number of bins in NNI-
DR interpolated and filtered IMAGE1, NNI-SR interpolated 
and filtered IMAGE1 and RF IMAGE1. As can be seen, in 
each case, none of the NNI-DR or NNI-SR results (represented 
by the blue and green line) matched perfectly with the RF 
results (represented by a red line). In other words, the number 
of pixels belonging to each bin of the FR IMAGE1 remained 
different from the number of pixels belonging to each bin of 
the NNI-DR and NNI-SR IMAGE1. This difference is also 
visible between NNI-DR and NNI-SR results, otherwise, it 
would not be possible to see the blue and green lines. Although 
not exactly at the same extent, a similar situation is generally 
repeated in Fig. 12, Fig. 13, Fig. 14, Fig. 15, and Fig. 16 based 
on IMAGE2, IMAGE3, IMAGE4, IMAGE5, and IMAGE6. 
Note that the number of empty bins in the source image 
remained equal to the number of empty bins in the images 
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interpolated by NNI-DR and NNI-SR (i.e., a condition in the 
non-extra pixel category). 

In Fig. 17(a) and (b) cases, the video frames were 
repeatedly evaluated after 78 milliseconds (instead of 
evaluating every frame), in each of the 10-seconds videos. This 
option for evaluation of video frames was opted to better 
understand the performance of each interpolated scan 
conversion algorithm, or else understand why an image or 
frame quality was bad or good at a specific time, in ultrasound 
systems. Here, it is important to note that, in the past, many 
attempts were done to develop methods to assess the quality of 
ultrasound imaging systems automatically or objectively [21], 
[22], [23]. In the recent past, the author introduced an index for 
image interpolation quality assessment as a preliminary step to 
a suitable method for image quality assessment in ultrasound 
imaging – only focusing on undesirable artefacts, known as 
aliasing [24]. 

 
(a) 

 
(b) 

Fig. 11. (a) and (b) show the Number of Pixels Counts versus the Number of 

Bins in RF, NNI-DR and NNI-SR-based IMAGE1 before and after Filtering. 

However, until now, the PIQE remains the only NR-IQA 
metric very sensitive to two interesting cases of undesirable 
artefacts in ultrasound imaging, namely: grain-like or speckle-
like noise and blurriness. As can be seen, the bilinear 
interpolated scan conversion algorithm achieved the lowest 
mean score (i.e., blurriest video frames) in both (a) and (b) 
cases. Also, note that the current literature demonstrates that 

the bilinear interpolation has always been associated with 
being the most blurriness productive among all non-adaptive 
interpolation algorithms [25], [26], [27], [28] even if it has 
proved to be useful in other image processing techniques [29], 
[30], [31]. The fact that bilinear performed poorer than others 
in both (a) and (b) cases, confirms its inherent flaw of being the 
most interpolation blurriness productive. 

 
(a) 

 
(b) 

Fig. 12. (a) and (b) show the Number of Pixels Counts versus the Number of 

Bins in RF, NNI-DR and NNI-SR-based IMAGE2 before and after Filtering. 

Now, considering (b), where the original video frame rate 
was 60, NNI-SR achieved higher PIQE scores than NNI-DR 
and in general, both NNI-DR and NNI-SR interpolated scan 
conversion algorithms achieved the best PIQE scores compared 
to the other two interpolation algorithms of the extra-pixel 
category. Considering (a), where the original video frame rate 
was 1074, the bicubic interpolated scan conversion algorithm 
demonstrated strength that would normally be expected, as it 
normally produces better image quality than most non-adaptive 
interpolation algorithms [32], [33], [34], [35]. The mean scores 
were provided, in the legend, to quickly assess the performance 
of each interpolated scan conversion algorithm. Note that, 
these mean scores are specific to these cases. Also, note that 
these mean score values may change. It is important to note 
that, the 78 milliseconds timestamp was adopted referring to 
the frame rate and video duration to enable the more 
informative and clearer plotting of graphs – otherwise with 
only 10 seconds videos, the graphs would have looked like 
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straight lines or similar. Note that the results in (a) and (b) also 
prove that the PIQE can be considered as the most suitable NR-
IQA metric for ultrasound image quality assessment because, 
in (a) and (b) example, PIQE-based results match perfectly 
with the well-known performances of interpolation methods, 
mentioned. 

 
(a) 

 
(b) 

Fig. 13. (a) and (b) show the Number of Pixels Counts versus the Number of 

Bins in RF, NNI-DR and NNI-SR-based IMAGE3 before and after Filtering. 

 
(a) 

 
(b) 

Fig. 14. (a) and (b) show the Number of Pixels Counts versus the Number of 

Bins in RF, NNI-DR and NNI-SR-based IMAGE4 before and after Filtering. 

 
 (a) 

 
 (b) 

Fig. 15. (a) and (b) show the Number of Pixels Counts versus the Number of 

Bins in RF, NNI-DR and NNI-SR-based IMAGE5 before and after Filtering. 
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(a) 

 
(b) 

Fig. 16. (a) and (b) show the Number of Pixels Counts versus the Number of 

Bins in RF, NNI-DR and NNI-SR-based IMAGE6 before and after Filtering. 

  
(a) 

 
(b) 

Fig. 17. (a): Video1 - Original Frame Rate Equals 1074. (b) Video2 - Original 

Frame Rate Equals 60. 

VII. CONCLUSION 

Evaluation and demonstration of effects of stochastically 
rounding row and column subscripts in NNI-based image 
interpolation and interpolated scan conversion were presented 
and discussed. Here, evaluation of effects of SR function was 
achieved using both human evaluation and automatic IQA 
metrics of interest while experimental demonstrations were 
conducted using natural and ultrasound images. With natural 
images, the automatic evaluation showed that the NNI-SR 
algorithm could achieve slightly better score estimates than the 
NNI-DR score estimates in terms of SSIM, PSNR and MSE - 
before and after applying the smoothing and sharpening filters. 
However, the human evaluation showed that both rounding 
functions could result in heavy jagged artefacts at the edges of 
image objects, with the exception after the smoothing and 
sharpening of interpolated images. With cardiac ultrasound 
images, the human evaluation suggested that the bicubic 
interpolated scan conversion algorithm could achieve the best 
results among the rest of the algorithms (in these specific cases 
involving sectored images). With 60-fps and 1074 fps videos, 
the NNI-SR and NNI-DR almost tied in terms of PIQE scores 
thus raising the question of which algorithm could perform 
better than the other if longer videos were used. It is important 
to remind that relevant research challenges and extensive 
findings were presented and explained especially in the 
introduction and discussion parts. Future works could focus on 
applying the SR function in other engineering areas – for 
example, in a data augmentation to create more deep learning 
training samples, etc. 
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