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Machine learning for automatic detection of historic stone 
walls using LiDAR data
Ezra Francis Leslie Trottera,b, Ana Cristina Mosebo Fernandes a,b, 
Casper Samsø Fibæka,b and Carsten Keßlera,c

aDepartment of Planning, Aalborg University, Copenhagen, SV, Denmark; bNIRAS Consulting, Sortemosevej, 
Allerød, Denmark; cDepartment of Geodesy, Bochum University of Applied Sciences, Bochum, Germany

ABSTRACT
Stone walls in the landscape of Denmark are protected not only for 
their cultural and historical significance but also for their vital role in 
supporting local biodiversity. Many stone wall structures have either 
disappeared, suffered substantial damage, or had segments 
removed. Additionally, as it stands today, the registry of these struc
tures, managed by each municipality, is outdated and incomplete. 
Leveraging recent developments in Machine Learning and 
Convolutional Neural Networks (CNNs), we analyze the publicly avail
able terrain data (40 cm resolution) derived from the Danish LiDAR 
data, using a U-Net-like CNN model to assess the stone walls dataset 
and provide for an update of the registry. While the Digital Terrain 
Model (DTM) alone provided good results, better results were 
obtained when adding Height Above Terrain (HAT) and an additional 
DTM layer with a Sobel filter applied. Using a pixel-wise evaluation, 
there was an overall agreement of 93% between ground truth and 
prediction of stone walls in a validation area and 88% overall agree
ment for the whole predicted area. Good generalizability was found 
when externally validating the model on new data, showing positive 
results for both the existing stone walls and predicting new potential 
ones upon visualisation. The method performed best in open areas, 
however positive results were also seen in forested areas, although 
denser areas and urban areas presented as challenging. Given the 
lack of a reference dataset or other studies on this specific matter, the 
evaluation of our study was heavily based on the stone walls registry 
itself complemented by visual inspection of the predictions and on 
the ground in the Danish municipality of Ærø. Automating the pro
cess of identifying and updating the stone walls registry in Denmark 
is of great relevance to the local governments. We suggest the 
development of a Decision Support System to allow municipalities 
access to the results of this method.
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1. Introduction

Stone walls are structures in the Danish landscape that are protected for their cultural and 
historical significance. The oldest structures were built in the first century, most com
monly as property boundaries and to mark administrative divisions. The most recent ones 
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were built in the 1800s and were used to divide and mark agriculture fields and to 
delineate forests and woods planted by royal decree (Kulturministeriet 2009).In addition 
to their intended purpose, stone walls also serve as vital green corridors between land
scapes (Pedersen 2021). Therefore, these structures are important to preserve for their 
historical importance and their vital role for local biodiversity.

As a consequence of urban expansion and development of agricultural land, 
a substantial number of Denmark’s stone wall structures have either already disappeared 
or have suffered considerable damage (Kulturministeriet 2009). Danish stone walls and 
sand walls have therefore been classified as protected in 1992 by the nature protection 
law (Kulturministeriet 2004), which was followed by an update in 2004 with the 
“Museums’ law”, which transferred responsibility to the individual municipalities. Today, 
each municipality is responsible for managing and protecting its culturally significant 
stone walls and sand walls. However, as it stands today, the Danish Ministry of Culture’s 
aggregate dataset is not up to date and does not fully account for all the stone walls and 
sand walls in each municipality (Christensen 2020), triggering a need to research methods 
to update the registry in an automated fashion.

The definition of stone walls by the law characterises them as ‘Man-made, linear 
elevations of stone, earth, turf, seaweed or similar materials which function or have 
functioned as fences and have or have had the purpose of marking administrative 
property or use boundaries in the landscape’ (Kulturministeriet 2009). Protected stone 
walls include the structures falling under this definition and those already registered in 
the 1:25 000 topographic maps (SDFE. 1977–1992), in the public domain and those 
situated on or near protected habitats. Their physical characteristics vary in size, shape 
and materials. Generally, the walls are between 0.5 and 1.5 m in height, 1.5 m in width; 
made of either stone, heather peat, soil or a combination thereof (Figure 1).

Figure 1 Different shapes and forms of stone walls and sand walls, in its original form (a and b) and 
how they look like today (Kulturministeriet 2009).
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The removal or partial destruction of protected stone walls is against the established 
law (Kulturministeriet 2004), however, it is possible to apply for a dispensation to the 
respective municipality, who will assess the case for removal or alteration. For this, an up- 
to-date registry is necessary to verify the structure in question and monitor and ensure the 
preservation of the protected stone walls.

With this in mind, this study aims to analyze terrain data derived from the Danish LiDAR 
(Light Detection and Ranging) dataset to assess the stone walls dataset and provide for an 
update of the registry. For updating the registry, the study will focus on two main tasks: (1) 
Analyze stone walls with the terrain data, and identify stone walls or segments of walls 
that no longer are existent on the ground and were removed; (2) Find and map potential 
new stone wall structures that are not registered but should be included in the registry.

To accomplish this, we will analyze LiDAR derived data in order to profile the stone 
walls in Ærø, then we will use a simplified morphometric algorithm to identify their 
topographic peak points. This analysis will also validate the stone walls dataset and 
serve as feature-engineering to prepare the dataset for the second task. We will apply 
a Deep Learning (DL) method by using a Convolutional Neural Network (CNN) model in 
order to find and map potential stone walls that are not registered, using the validated 
stone walls dataset. With this, we intend to provide an automated method for updating 
the registry of protected stone walls, which coupled with a visualisation tool and onsite 
confirmation by experts, will provide the support necessary to the Danish municipalities.

The rest of the study is structured as followed: Section 2 references previous work 
related to the data and methods used in similar contexts to this study; Section 3 describes 
the materials and methods utilised for accomplishing this work, namely the validation of 
the stone walls dataset and its pre-processing, the U-Net-like model for the prediction of 
new stone walls, as well as its post-processing; Section 4 provides the results obtained and 
their assessment; Section 5 engages in the discussion of the results and its applications, 
and finally Section 6 summarises the work performed in this study.

2. Related work

2.1. LiDAR data

While stone walls are prominent features of the Danish landscape, it is difficult to observe 
them when they are located in woods and forests. Therefore, elevation models derived 
from LiDAR data provide a valuable means to identify structures and objects on the 
surface since they are not affected in the same way by vegetation due to the ability of 
LiDAR to penetrate forest and scrub canopies (Chen, Gao and Devereux 2017). A myriad of 
Archeology mapping studies uses derived elevation models from LiDAR data to identify 
objects and structures on the topographic landscape (Øivind, Cowley and Waldeland 
2019; Chase et al. 2012; Guyot et al. 2021).

2.2. Deep learning

Fully Convolutional Neural Networks (FCNs) were originally developed for semantic 
segmentation of medical images. U-net, a popular architecture, was first introduced in 
2015 (Ronneberger, Fischer and Brox 2015). Maxwell et al. (2020) have used semantic 
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segmentation to detect surface disturbance caused by mining from topographic maps, 
where the study mentions a high level of accuracy achieved. The study uses a modified 
U-Net architecture, which classifies each pixel location separately. The output is the 
probability of each pixel belonging to each of the classes defined in the model. This 
method differs from instance segmentation, where the goal is not only to identify the 
object from the background, but to identify and attribute a label to each pixel, as well as 
an individual object of a label. Maxwell, Pourmohammadi and Poyner (2020), proposes 
instance segmentation to map topographic features (valley fill faces) using LiDAR-derived 
data. The study explores the application of Mask R-CNN and mentions successful accura
cies with such method.

3. Data and methodology

Data quality is essential in achieving good model performance and significant results. 
While dealing with datasets representing real-world applications, it is all too common to 
have noisy and faulty data, often necessitating rigorous pre-processing. Neglecting the 
importance of data processing and preparation can lead to data cascades (Sambasivan 
et al. 2021), where data issues cause downstream effects, leading to poor model 
performance and output. In our study, the stone walls dataset represents the stone 
wall structures present in the Danish landscape. The quality of the raw dataset is 
questionable; it is neither an accurate representation the stone walls’ precise geo
graphic locations nor is the dataset current with the ground truth. These dataset 
characteristics determine the design and structure of the project and the approach to 
the problem statement. In order to update the stone walls registry, we will first engage 
in verifying the presence of the individual walls against the Danish elevation model, 
since most of the structures are observable in the terrain data. Here we intend to 
remove sections of stone walls that no longer exist, and adjust the position of the 
walls in the dataset in order to reflect their actual location on the ground better. We will 
then use the validated data to detect and map potential non-registered stone walls, by 
performing a regression task using a Deep Learning model with a U-Net-like 
architecture.

3.1. Terrain data

A digital terrain model (DTM) (SDFE. 2014) and a digital surface model (DSM) (SDFE. 
2014) were used in this study, both of which were downloaded from The Danish Map 
supply’s website and are based on aerial laser scanning measurements taken in 
December of 2014. Both datasets describe Denmark’s surface in relation to mean sea- 
level and are provided as raster layers at 0.4 m resolution, covering the entirety of 
Denmark. Each individual pixel value is precise to 15 cm horizontally and 5 cm vertically, 
and were made available in the ETRS89 UTM 32N coordinate system (EPSG: 25,832) 
(SDFE. 2020a).

A third dataset was created by subtracting the pixel-wise value of the DSM from that of 
the DTM to give the Height Above Terrain (HAT), also known as normalised DSM (nDSM) 
(Chen, Gao and Devereux 2017). This was done over the extent of each raster, thereby 
creating a new raster of the same size, with pixel values ‘HAT = DSM – DTM’. The HAT can 
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describe the height of structures above the surface, providing height information on 
individual objects, such as buildings, and in this case on stone wall structures. The analysis 
of the HAT alone was not sufficient to identify stone walls, as they proved hard to 
distinguish when covered by vegetation or dense forest. However, given its potential of 
providing additional context of the stone wall structures’ location, it was considered as an 
additional layer to the training data.

Additionally, a Sobel filter was used in conjunction with the DTM to create a new 
layer. The Sobel operation implements a 2D spatial gradient calculation on an image 
by sliding a pair of convolution masks (3x3) on the x-direction (horizontal) and on 
the y-direction (vertical), respectively (Vincent and Folorunso 2009). The mask manip
ulates the pixels one by one, changing the value of the pixel according to the 
kernels. The Sobel layer was created in Python using the Buteo toolbox, accessible 
through the project repository https://github.com/casperfibaek/buteo. Such layer was 
added given its usefulness in edge detection to improve the identification of stone 
walls by the model.

3.2. Study site and stone wall dataset

A smaller study area was selected to reduce the amount of data required and overall 
processing time. The island Municipality of Ærø lies in the Baltic Sea between the Danish 
Island of Funen and the German Region of Schleswig and has an area of 88 km2 (Figure 2). 
It was chosen for its smaller size relative to other municipalities, its abundance of stone 
walls, and its gently undulating landscape.

Figure 2 The study site: the municipality of ærø.
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A digitised map of Denmark’s protected stone walls is made available as part of the 
Danish Ministry of Culture’s stone wall registry. This map was first digitised on the 1st of 
July 1992 and updated in 2006, and is made publicly available as a vector dataset for 
download through the Ministry’s data portal (Kulturstyrelsen, Slots- og. 2011). On Ærø, the 
dataset contains 2.766 stone walls for a total length of around 514 kilometers (Figure 3). 
Each wall in the dataset is represented as a vector linestring and the walls’ associated 
metadata. The metadata contains information such as the date of registry, the walls’ 
current condition and the institution responsible for the data integrity.

The majority of stone walls on Ærø were registered as a result of the digitisation of the 
1:25 000 topographic map of Denmark. Most of the metadata is either incomplete or no 
longer current. This is especially critical in some areas where almost 30% of the protected 
stone walls did not appear in the subsequent versions of the topographic map 
(Kulturstyrelsen, Kultur Ministeriet – Slots og. 2020).

An analysis of the 2012 Corine Land Cover (CLC) (SDFE. 2012) sourced from SDFE’s 
data portal reveals that stone walls on Ærø are found in generally similar types of 
landcover as those in the rest of Denmark. This analysis found that ~80% of the stone 
walls in the data set were located on agricultural land, both on Ærø and in the rest of 
Denmark. This similarity continues with ~5% of stone walls being located in discontin
uous urban fabric, both on Ærø and Denmark (Figure 4). Where Ærø differs is in the 
number of stone walls found in forested areas. The municipality has little forested land, 
and as a result, almost no stone walls are found in forests, whereas ~15% of Denmark’s 
stone walls are found in forested areas. For this analysis, all landcover types where 
a stone wall is present were included.

Figure 3 Stone walls and DTM on Ærø.
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3.3. Pre-Processing of the stone wall dataset

The initial step was to validate the stone wall dataset against the most recent DTM data. 
The Digital Terrain Model is useful for detecting stone walls because of their topographic 
characteristics, standing out from their surrounding landscape in a hillshade analysis 
(Figure 5).

This initial step is deemed necessary given the difference between the two 
datasets regarding their production date. The DTM data was current as of 2014, 
while the stone wall reference dataset was digitised in 2006. As discussed earlier, 
when the reference was digitised there was little effort to validate the individual 
walls. Reference data representation accuracy has a large effect on the overall 
performance and results of a DL model (Goodfellow, Bengio and Courville 2016), 
and it was important to find and remove stone walls segments that had been 
removed or altered in the intervening time to achieve the best possible results 
during the later stages of our study.

Figure 4 Land cover types where stone walls are located. Denmark (top), Ærø (bottom).
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The initial inspection and validation had four distinct steps:

(1) Create profiles along each line representing each stone wall
(2) Check each profile for the presence of a stone wall
(3) Redraw the dataset with absent walls removed
(4) Validation of the corrected dataset

Step 1: Creating Profiles
The initial step taken was to segment each line in the dataset into 5 m sections to 

create a profile at the end of each section. Some walls were represented as straight 
linestrings, and others were multi-linestring objects. The presence of multi-linestring 
objects required an initial step of segmenting each multi-linestring into its composite 
lines. This was necessitated by the later process of recreating the dataset in the adjusted 
positions. At each 5 m subsection, a tangential line is created (cross-section) with a length 
of 10 m, which is then broken up into 0.4 m subsections, corresponding to the pixel 
resolution of the DTM. At each of these points, the elevation value of the DTM is extracted, 
and a 3D multipoint object was created containing the x and y positional coordinates of 
the points in each profile, along with the value for the elevation (Figure 6). The initial 
dataset of 2.766 lines yielded 113.089 profiles, each comprising of 50 points.

Step 2: Identifying Stone walls
The datasheets provided by the Culture Ministry provide a reference of which dimen

sions a stone wall can have. Additionally, by plotting and completing a visual inspection, it 
is observable whether or not a profile represents a wall. With a small number of walls or 
profiles, it would be possible to sort the profiles manually. However, due to the large 
number of profiles created in Ærø alone, an automated method was necessary. The ‘find 
peaks’ function of the SciPy Python package (Virtanen, Gommers and Oliphant et al. 2020), 
originally intended for use in Computational Biology and Bioinformatics, was utilised to 
identify ‘peaks’, which in our case were the peaks of the walls. This method was extremely 
successful at identifying stone walls that had a prominent peak, which was the case for 

Figure 5 DTM in hillshade with stone walls dataset shown in red.
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the bulk of the dataset. However, walls that were damaged, partially removed or covered 
with earth over time were more challenging for the algorithm to correctly categorise. 
Walls of such type were marked with an ‘unclear’ category for later manual inspection, 
while the remaining walls were designated either the ‘wall’ or ‘not wall’ category.

Additionally, the ‘find peaks’ function stored the index of each peak. This allowed for 
the calculation of the position of the peak in relation to the cross-section. If multiple peaks 
were found, only the peak that was closest to the center of the profile was stored. These 
peak indexes were used to adjust the position of the linestrings in the stone walls dataset 
to the stone walls actual position on the ground in the following step.

Step 3: Rebuilding the Dataset
Firstly, it was necessary to recreate the dataset with only the sections that were 

categorised as a wall. This was achieved by redrawing the linestrings after their categor
isation. For an individual segment of stone wall, starting at the first profile, a linestring was 
drawn between the peak of the current wall and the peak of the following wall. This was 
performed only in the case that the current and next wall were categorised as walls. In this 
way, the entire dataset was redrawn with the non-wall sections removed and with the 
remaining walls adjusted to their actual position as reflected in the DTM. This provided for 
the feature engineering of the dataset, in order to maximise the extraction of features 
suited to represent the target data for the CNN model training (He, Zhao and Chu 2021).

Step 4: Validation
For the majority (>90%) of the profiles, the presence of a stone wall was easily 

identified. However, for the cases where the wall was either very low, or partially removed, 
the profiles could not be reliably classified by our simple algorithm. As described above, 
for any profile not quickly identified (the prominence of the peak was less than 0.3 m), 
a third class ‘unclear’ was attributed. In lieu of developing a more robust and complex 

Figure 6 Examples of stone wall profiles. The top three profiles show the presence of stone walls, while 
the bottom three are examples of profiles where a wall is no longer present.
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algorithm, it was necessary to manually inspect these profiles with a visualisation software 
tool (QGIS 3.16 (QGIS.org 2021)). This inspection was done by visually comparing the 
‘unclear’ profiles against the DTM in hillshade, coupled with the profile tool plugin. Any 
profiles that suggested the wall no longer was present or if verification was not possible 
using these methods, were removed from the dataset.

3.4. Data preparation and image patches generation

The next step was to train a CNN on the updated stone wall dataset. For this, the stone 
wall would first need to be converted into a raster format. The DEM data, which would 
be used as training data, had a spatial resolution of 0.4 m per pixel; therefore the stone 
walls dataset would need to be rasterised to match this resolution. During the transfor
mation to raster format, a down-sample of pixels was first performed (down-sampled to 
10 cm) to expand the number of presence pixels. The pixels were then restored back to 
the target resolution of 0.4 m, resulting in a ‘anti-aliased’ walls dataset (example on 
Figure 7). All the pixels covering the location of the wall were given a float value (0 < x ≤  
1), commensurate to the distance from the center of the pixel to the center of the wall. 
Pixels that intersected the centreline of the wall were given a value 1.0. This transforma
tion helped to account for spatial uncertainty but also gave flexibility to the output 
prediction. In doing this, we turn the problem into one of regression to compensate for 
the number of absence pixels present in the patches while extracting the target data for 
training the model. A high number of absence pixels can occur due to the relationship 
between the buffer distance and the size of the patches (64x64), where some patches 
contained no stone wall segments.

Deep Learning models that employ CNNs require the training data to be in the form of 
small patches since the spatial context information is learned by filters. Additionally, labels 
must be provided along with associated environmental data. In our case, the rasterised 
stone walls acted as the labels, and the stacked DTM, HAT and Sobel filter were the 
associated image data. Using scripts produced in Python, the training data was broken 
into 64 × 64 pixel patches, resulting in 24.782 patches of stacked DEM data and the same 
amount of associated rasterised stone wall labels.

Figure 7 (a) example of an “anti-aliased” stone wall; (b) example of the location and size of the 64 × 64 
pixel patches used for the label data.
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Given the size of the training data, and to increase generalizability and decrease 
overfitting within the model, Data Augmentation was used (Shorten and 
Khoshgoftaar 2019). Data Augmentation is the process of increasing the amount of 
available data by adding manipulations to the ‘real’ dataset to create additional data 
that is similar – this new data is called ‘synthetically modified data’. Specifically, we 
implemented a geometric transformation by rotation augmentation on each patch, 
such that each patch was rotated 0, 90, 180, and 270 degrees. In the case of our 
data, this method is considered a ‘safe’ augmentation transformation, given its like
lihood in preserving the label (Shorten and Khoshgoftaar 2019), because the assump
tion was that stone wall structures do not have a specific orientation. After splitting 
the dataset into train and test sets, the Data Augmentation process was applied to 
the train set only. Such transformations can help reduce overfitting by creating more 
training data (Shorten and Khoshgoftaar 2019).

For the image inputs, patches were extracted in the buffered area around the ras
terised stone wall dataset. Additionally, to investigate the effect that absence data had on 
our results, additional absence data was added to the final dataset, which was created by 
extracting patches from other areas on Ærø. Because it was initially theorised that the 
model would have the most difficulty in urban areas and in differentiating modern walls 
from historic stone walls, 9.307 patches of absence data were added to the dataset from 
urban areas. This was done by analyzing the land cover of the island using a CORINE 
landcover type layer and extracting the patches from urban areas where no protected 
walls were located. Once the absence data was added, the initial dataset of size 24.782 ×  
64x64 was increased to size 33.819 × 64x64.

When training the model, the dataset was shuffled and then split in train and test sets 
in a 70–30% ratio, respectively, using Scikit-Learn’s function ‘train_test_split’ (Pedregosa 
et al. 2012). For the train set, after augmenting the data with rotations, the final size of the 
dataset was 94.692 × 64x64.

The inherent imbalance in the dataset, where each patch contained many more 0’ (no 
wall) pixels than the number of 1' (wall) pixels, caused difficulties with the loss function. 
Mean Squared Error (MSE) was used as the model’s loss function, and given its calculation 
method, the loss values ended up being very small. In this way, the input data was scaled 
to prevent the optimizer to set all the weights to zero.

3.5. Model training and prediction

The creation and training of the DL model was completed in Python, using the Keras API 
(Chollet 2015) for TensorFlow (Abadi et al. 2016) to create the model.

For this step, A Fully Convolutional Neural Network (FCCN) model design was used, as 
this allowed for the output of a prediction raster of the same size as the input (64x64 
pixels). The model used has a U-Net-like architecture, with initial down-sampling followed 
by up-sampling. The U-Net model has an expansive path symmetric to the contracting 
path, leading to a U-shaped architecture. After each down-sampling convolution (a 3 × 3 
convolution followed by a rectified linear unit (ReLU) and a 2 × 2 max pooling layer of 
stride 2), a skip connection (concatenation of a corresponding layer between the con
tracting and expansive path) is performed to provide information of localisation accuracy, 
reduced by the use of max-pooling layers (Ronneberger, Fischer and Brox 2015). In this 
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study, the model architecture followed a similar architecture to that of U-net, employing 6 
down-sampling blocks, each containing two convolution layers of 3 × 3-sized filters, 
where each block was followed by a 2 × 2 max pooling layer of stride 2 and with 0’ 
padding. The three down-sampling blocks used 32, 64 and 96 filters each respectively. 
Two 3 × 3 transposed convolution layers were used for the expansive path, with 64 and 96 
filters, respectively, followed by a concatenation of the previous transposed layer with 
a layer from the expansive path (see Figure 8 for a visualisation of the model architecture). 
The model accepted an input vector of size 64 × 64x3, one channel each for the layers 
DTM, HAT and DTM with Sobel filter. The output was a vector of size 64 × 64x1. A ReLU 
activation function was used in the final layer, where each individual pixel within the 
patch was designated with a value higher than 0, corresponding to the likelihood that 
each pixel contained a stone wall. Each pixel corresponds to an area of 0.4 m2 on the 
original raster.

Besides the lower number of blocks and filters used in both the contracting and 
expansive paths, the activation function used in the convolution layers differed from 
the original U-Net architecture. Instead of the ReLU function, a similar function named 
Swish (Ramachandran, Zoph and Le 2018) was applied, after testing the model through 
various iterations with both, and the latter resulted in better overall model performance. 
The adaptive moment estimation (Adam) optimisation was used (Kingma and Ba 2015), 
and a callback was defined, which included a step decay for the learning rate, initialised at 
0.001, in order to optimise learning and lead the model to quickly converge to a good 
solution, and Early Stopping, by monitoring the validation loss function during training. 
For more details on the specification of the model parameters, we refer to the source code 
at the associated GitHub repository1.

Figure 8 Model architecture of the CNN model with a shallower structure compared to the U-Net 
original model.
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The optimisation of hyperparameters is important for achieving the best possible results 
with a CNN (LeCun, Bengio and Hinton 2015; Goodfellow, Bengio and Courville 2016)). With 
an FCCN, the most significant being the number of filters used in each convolution layer, 
the size of the kernel that executes the filter, the size of the ‘stride’ as the kernel moves 
across the patch, and the padding for the cases where the kernel area goes off the edge of 
the patch. A complete grid search of the entire hyperparameter space was not possible due 
to time constraints, however after narrowing down to a certain number of parameters, the 
final set of values previously described was defined after iterating the model 5 times, 
averaging the results and selecting the values with the best overall performance. This 
evaluation method also includes the additional parameters previously described.

The loss function used was the Mean Squared Error (MSE). The MSE loss function 
minimises the squared differences between the estimated and the target values and is 
one of the most typically used for regression problems (Carvalho et al. 2018). According to 
(Lathuilière et al. 2020) study, the choice of a loss function to use depends on dataset and 
the model architecture, and it is recommended to try different losses at the initial stage of 
the process. During training, four other losses were used to run the model, namely the 
Mean Absolute Error (MAE), Huber loss, log cosh, and MSE. We iterated the model training 
multiple times over the same loss function and adapted the parameters to understand the 
impact of the loss on the results.

After model training, a prediction could be made using stacked DTM, HAT and Sobel 
filter data as inputs, outputting a series of patches representing the predicted areas of 
stone walls. The output was in the form of a 3-Dimensional array which was then 
converted to raster format using the Buteo Toolbox in Python. During the prediction, 
offsets were applied on the predicted patches in order to reduce the noise produced by 
the patches borders during the extraction of the images. A sequence of offsets was 
used: 1) 16 × 16, 2) 32 × 32, and 3) 48 × 48; merged with the median.

3.6. Assessment and post-processing

The lack of studies referencing this stone walls dataset and the dataset’s inaccuracy and 
overall poor condition presents a serious challenge when comparing our results. Because 
of this, the results of our analysis are compared with the original dataset, where the 
assumption is made that the locations of the stone walls here are correct.

The assessment of the results was undertaken using a combination of quantitative and 
qualitative analysis. During a quantitative assessment analysis, the performance and 
results from the loss function (MSE), additional metrics (MAE and RMSE), and the valida
tion loss were analyzed. This was done after iterating the model multiple times and 
averaging the results. An assessment based on the pixel value of the prediction was 
done by comparing the true values and the predicted values for each patch. Taking the 
intersection of the presence pixels in the input and prediction and the intersection of the 
absence pixels and dividing by the number of pixels, giving a number between 0 and 1, 
a representation of the overall accuracy of the prediction was calculated.

In order to obtain a more accurate assessment of the predictions on the true values, 
a small validation area was selected. This area, as best as could be ascertained given the 
dataset, reflected the ground truth. The values of the pixels for the selected area ‘ground 
truth’ were compared with the predicted values using the same pixel-wise metric.
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The qualitative analysis was focused on the assessment based on the visualisation of 
the predicted images. The results from the different training runs were inspected and 
compared with the original stone walls dataset to verify: 1) the prediction of stone walls in 
relation to the existing structures; 2) new predicted walls; 3) walls or segments of walls 
that were no longer present, therefore not predicted; 4) prediction errors and false 
positives; 5) general noise present in the predictions, surrounding the predicted values 
and the absence areas. As a final assessment, a field inspection was conducted by first 
selecting cases of stone walls relevant to verify. In this way, a verification of predicted 
stone walls and a comparison with the ground truth was made to provide additional 
validation.

The output of the model shows predicted wall locations in the study area, where pixels 
with a value >0 indicated the presence of a stone wall. The final step of the analysis is to 
separate the walls into their respective categories: 1) walls that appear both in the initial 
dataset and the prediction 2) walls that appear in the initial dataset and not in the 
prediction, 3) walls that are not present in the initial dataset but do appear in the 
prediction.

In order to separate the new and removed walls from the dataset, a comparative 
analysis was undertaken between the initial and prediction datasets. Removing walls that 
appear in both the prediction and the original wall dataset from the prediction raster 
reveals the new walls that have been ‘discovered’ by the algorithm. Removing walls that 
appear in both the original dataset and the prediction from the original dataset raster 
leaves only the walls that have been ‘removed’.

Because of the discrepancies in wall placement between the original data and the 
prediction raster, it was not possible to use raster algebra (original – prediction = result). 
Instead, it was necessary to create a proximity raster and use this raster to delete any wall 
within 25 pixels (10 m) distance of the wall. This lead to the final ‘found’ and ‘removed’ 
walls being represented as shorter than they were in reality. However, it gave the clearest 
and most straightforward to interpret results. Lastly, a field visit was conducted to the 
study area to validate some of the predictions obtained.

4. Results

The methodology applied produced overall positive results, with the model outputting 
a general identification of the stone walls in Ærø, as well as new structures classified as 
potentially new walls. A description of the results is done in a quantitative and qualitative 
assessment, performed below.

4.1. Quantitative assessment

The loss results per epoch is shown on Figure 9, averaged from after five iterations of the 
model. The average run had 21 epochs with early stopping (set to run for 50 epochs), 
which monitored the validation loss (the loss calculated for the validation data) after 
reaching a maximum of five epochs without improvement on its value.

The evaluation of the test data shows an MSE value of 7,29 (Figure 9), indicating the 
summed error for all pixels that compose one patch. This was useful to compare between 
the iterations of the model and during the testing of other additional attempts, 
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alterations, and improvements to the model. Since comparable data or previous research 
is not available, we cannot compare such evaluation results with reference values. These 
values were used to measure the results from constant optimisation and improvement of 
the model. The results from the model training with using only the DTM, or DTM and 
Height above Terrain (HAT) were slightly similar in comparison to the ones obtained with 
the three layers, where the evaluation loss and MAE had higher values (Table 1).

With more significance in the evaluation metrics’ values, the inclusion of absence data 
improved the results and significantly lowered MSE and MAE values. The absence data added 
represented the areas where stone walls are not supposed to be present (mainly representing 
urban areas). The difference between the pixel values predicted and the true pixels repre
senting a stone wall for the validation area also changed with the different data layers used in 
the prediction model. The addition of the Sobel filter and the HAT increased the similarity on 
the number of pixels representing stone walls during the prediction on the test data. The final 
model adds an average of 0.88 for the pixel-wise metric, corresponding to an 88% overall 
match between the number of pixels predicted true and the and actual true data. 
Importantly, numbers should be considered with some reservation since they do not provide 
much knowledge on the accuracy in the prediction of existing structures or new walls; 
however, they do indicate the differences in results between model runs. More significatively, 
the pixel-wise metric calculated for the validation area, from the overall prediction of the 
municipality of Ærø, was 0.93 for the final model, indicating a high prediction performance.

The output of the predictions on the evaluation data (test dataset) shows a clear 
picture of the ability of the terrain data to identify stone walls on the landscape. 
Figure 10 shows some examples of predicted stone walls (first row (a)), where images 
i and iv display a clear detection of stone walls, as confirmed by the ground truth data 
(rows b and d) and stone walls dataset (row c). In column iii, an example of an unsure 
result of a stone wall prediction is displayed, where no stone wall exists in the dataset, and 
the aerial image shows on what might be a ridge, in need of further validation.

Figure 9 (Left) Median loss and validation loss for all the model’s final iterations. (right) Summary 
statistics of the model training, validation and evaluation, test, data.

Table 1. Evaluation metric for different training datasets.

DTM DTM & HAT
DTM, Sobel & HAT  

Without Absence Data DTM, Sobel & HAT

Loss Function (MSE) 6,329 6,414 11,029 7,294
MAE 0,015 0,014 0,024 0,016
RMSE 0,079 0,080 0,105 0,085
Pixel-wise metric 0,86 0,88 0,83 0,88
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4.2. Qualitative assessment and external validation

Before considering using DL, an attempt at applying a raster-based feature extraction 
method was made by applying the Sobel filter to be able to identify stone wall structures. 
The results of such an approach demonstrated the difficulty in identifying stone wall 
structures, and differentiating them from modern walls structures, or other structures 
such as ditches. It was assumed protected stone wall structures have more complex 
structures, and do not have a similar signature, shape or form across the landscape.

The results from applying the DL technique previously described show a clearer 
identification of stone wall-like structures (Figure 11), and presents less false positives 
structures identified by the model. Further attempts using off-the-shelf GIS techniques 
did not bear satisfying results, so that the application of a DL-based approach was 
considered.

Figure 10 Example of patches of stone wall predictions and respective labels and ground truth. 
Columns (i), (ii) and (iv) are examples of correctly predicted stone walls, and column (iii), a suspiciously 
predicted stone wall. Horizontally: (a) prediction patches; (b) DTM in hillshade; (c) stone wall dataset 
(label); (d) aerial image from kortforsyning.Dk (Spring 2020).
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The final predictions for the municipality of Ærø showed positive results for both the 
identification of removed segments and walls, and new stone walls. The visualisation of 
the final predictions suggests that the model can generally identify stone walls corre
sponding to the stone wall dataset, even in areas with more dense vegetation. However, 
for walls located in areas of dense forest or wall structures that have very little salience, 
some errors of false-negative predictions can occur (Figure 12).

For the models trained only on the DTM, or DTM and HAT layers, it is possible to 
identify the differences in the predictions. For the first one, a lower ability to identify the 
stone walls was detected, especially in differentiating amongst different types of edges, 
while for the latter, the level of noise, composed of low pixel values, was considerable 
(Figure 14). A considerable difference is also visible for the predictions that included 
absence data, where much of the noise and scattered pixels were removed (Figure 13).

Figure 11 (a) example of an area with Sobel filter, in hillshade for better visualization. (b) results of the 
predictions by the DL model, represented in color. (In yellow: the original stone walls dataset). on (a) it 
is possible to visualize wall structures being identified by the feature extraction method, clearer on the 
bottom-right corner, while on (b), the prediction results from the DL model discard on what it seems 
to be road-side embankment structure.

Figure 12 Examples of model predictions: (a) shows an example of the challenge in predicting on 
dense forested areas; (b) examples of registered as well as unregistered walls predicted.
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In order to test the generalisation of the model, external validation was done by 
predicting for a new dataset. The municipality of Silkeborg in the region of Jutland has 
a more diversified landscape and has a larger geographical size.

On a visual inspection, the prediction shows an overall good generalisation of the 
model, where the stone walls are distinguished (Figure 15). New, well-defined stone walls 
appear on the prediction, suggesting a good application of the model for detecting new 
potential stone walls in Denmark.

4.3. Post-processing

An initial post-processing method was done to reduce the noise created by the edges of 
the patches by applying offsets during the prediction. Such a method allowed for the 
creation of clearer prediction images and eliminated unrelated values. For the visualisa
tion of the predictions, a visual scale was applied, where first values between 0 and 1 

Figure 13 Difference between prediction with absence data (a) and without (b).

Figure 14 Difference of predictions between using DTM alone (left), DTM and HAT (center), and the 
final model (DTM, Sobel filter and HAT) (left). in yellow: stone walls dataset.
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would be considered (corresponding to the reference values of stone walls), but ending 
up including only values above 0.2. Most of the values below this threshold were shown 
to be mostly noise values.

The final step of post-processing analysis, which highlighted the ‘removed’ and ‘found’ 
stone walls from the final prediction, showed that around 391 stone walls (Figure 15) were 
flagged with either segments or entire removed walls (a total of around 37 km). These 
were primarily located in agriculture areas, where it is possible to identify whole segments 
of wall removed on crop fields and segments on the edges of walls for perhaps accessi
bility purposes.

Many new stone walls were found in the prediction for Ærø, where varying sizes and 
definitions could be identified. Such structures were then filtered by their pixel value and 
length, where only structures with values above 0.50 were considered, and smaller 
structures with less than 10 meters were excluded (Figure 16).

A field visit was conducted to the study site to evaluate the results against ground 
truth. It was possible to verify some of the predictions, namely the removal of stone walls 
edges, during the onsite visit. An entire wall that was identified as removed by our 
predictions was also verified and confirmed. Additionally, verification onsite allowed for 

Figure 15 Example of external validation predictions in Silkeborg: (a) shows the prediction of 
registered walls and a possible unregistered wall; (b) the prediction follows the stone walls registry; 
(c) possible unregistered stone walls are clearly predicted; (d) shows where probable inexistent 
registered walls that were not predicted as such.
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the confirmation of predictions of unregistered stone walls, confirming in at least some of 
the cases, the existence of similar structures to protected stone walls, indicating the 
positive output of the prediction results (Figure 17 and Figure 18).

Additionally, prediction errors were also verified, and the validation onsite allowed us 
to perceive the nature of the predicted stone walls. This included structures identified as 
unregistered stone walls, which were in fact embankments or ridges (Figure 19).

Figure 16 Stone walls that were predicted as removed or damaged after post-processing.

Figure 17 Examples of post-processed found walls in Ærø (in orange; in yellow, the original stone walls 
dataset).
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The final results of the analysis can be seen here displayed in a prototype of a WebGIS 
visualisation tool. This tool was created using Leaflet (Agafonkin 2021) for JavaScript 
(Figure 20).

Figure 18 Onsite photo 1: hidden wall structure, where it is possible to observe the untouched wall 
primarily composed of stones and rocks. This structure was predicted as a stone wall, and it is not 
included in the official registry.

Figure 19 Onsite Photo 2: The model indicates a stone wall running parallel to a sealed 
section of the road. This transpired to be a small earthen embankment. These sections of 
predicted wall span the length of the study area and indicate a systemic inaccuracy in the 
prediction.
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5. Discussion

Our results suggest that LiDAR-derived digital elevation data can be used to extract 
terrain features from digital elevation data, as also found by (Guyot et al. 2021; Maxwell, 
Pourmohammadi and Poyner 2020)) and (Chase et al. 2012). Our first step sought to 
validate the stone walls dataset by comparing them with the DTM and analyzing their 
elevation profile. Interestingly, this method proved successful in identifying protected 
stone walls or segments of walls that no longer are present in the landscape, but are still 
registered, which was easily validated by inspecting the aerial images and elevation 
model to confirm the results. This method was applied as feature engineering for the 
Deep Learning step in the project, preparing the proper target data to be compatible with 
the model training (He, Zhao and Chu 2021).

The application of Deep Learning techniques, specifically the use of Convoluted Neural 
Networks on digital elevation data, presented promising results in identifying specific 
pixels where stone walls are present. Pixel-wise based analysis of the output predictions in 
the validation area suggested a high level of regression-based accuracy (0.93), and on the 
overall area, an average of 0.88. The algorithm discovered areas where the existing 
dataset needed to be updated due to the removal of stone walls and new stone walls. 
These discrepancies seemed to be correct with the results from the first step analysis, as 
well as manual verification on location, where a selected number of new predicted stone 
walls presented similar characteristics as the ones already registered, however, this 
remains to be confirmed by an expert in stone walls. Additionally, the post-processing 
of the predictions identified a total of 391 stone walls removed or having segments that 
were removed/taken down in Ærø.

The use of multiple data sources showed an improvement over using the DTM alone. 
The model results improved with the inclusion of additional data layers, with the best 
model being trained on a combination of the DTM, HAT, and DTM (Sobel) layers. The 
visual inspection showed a decrease in noisy pixels on detected edges that are not stone 

Figure 20 Example of a prototype for a WebGIS to visualise the results of the predictions.
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walls, especially in urban areas. Future studies should look at the effects of including 
supplementary data such as aerial imagery, historical maps, or the locations of munici
pality borders, where the presence of walls is most likely. Given the relation of stone walls 
with vegetation, where some structures have vegetation and even trees located on top, 
the use of NDVI imagery could potentially yield interesting results. A future study should 
relate the presence of stone walls with a biodiversity measurement such as the bioscore 
(Ejrnæs et al. 2018), relevant not only for structures detection, but also for promoting their 
value in biodiversity conservation in areas of persistent habitat fragmentation due to 
agricultural development.

The results of this analysis could be compared to a raster-based analysis where the 
Sobel filter or comparative edge detection techniques could be used. Such an approach 
was initially considered but dismissed after the first analysis. The difficulty with this 
approach is that it is far less discriminating, identifying all of the edges present in the 
image, making it necessary to differentiate the walls from other edge-type objects. For 
this specific case, it showed that additional spatial context is needed in order to distin
guish amongst the different structures. The findings of this study show a significant 
improvement on the edge-detection method because the algorithm is able to distinguish 
a stone wall apart from most edge-like structures. However, given the unique nature and 
context of our dataset, we are not able to relate our findings with other studies approach
ing the same problem, nevertheless, our findings do support those of Øivind, Cowley and 
Waldeland (2019) and Maxwell, Pourmohammadi and Poyner (2020), who also explored 
the value of CNNs for extracting features from digital terrain data.

The dataset itself diverges from classical deep learning problems in that the training 
data itself is not completely validated. Given the data science adage ‘garbage in garbage 
out’, it is paramount that the training data is correctly labeled in all machine learning 
tasks. In the case of our study, the original dataset from which the study is based is not 
actually representative of ground truth. The first step of our analysis sought to curb the 
effects of this issue, by removing as many walls as possible from the dataset that were 
either absent, or dubious. Additionally, given that the task was to find new walls within 
the dataset, it is notable that our aim was not to achieve the lowest possible loss value, as 
a perfect agreement between the prediction and the test data would suggest no new 
walls, which we knew not to be the case.

The advantage of the analysis of DEM data is that the algorithm is able to identify 
patterns that are not visible using aerial or satellite spectral imagery. This useful in 
archeological applications, for example, where vegetation cover can be an issue (Chase 
et al. 2012).

There are some limitations associated with our study. Firstly, we are limited by the 
availability of our terrain data. This data is available for the entirety of Denmark, in 
connection with new aerial LiDAR missions, renewed on a rolling basis, depending on 
the region (SDFE. 2020). However, the Danish digital elevation model is only released 
every 5 years. The data used in this study was from 2014, and therefore is unable to detect 
and map changes that have occurred in the intervening time. The results can also be 
highly dependent on the quality of the LiDAR-derived data, where point cloud densities 
can influence the ability to detect and correctly identify small and narrow objects and 
structures, as mentioned by Angelidis et al. (2017). In order to apply the same analysis on 
an updated product from a new LiDAR mission, such differences and consequent biases 
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need to be considered. Additionally, while terrain data is available for Denmark, it is not 
necessarily available in other locations nor with the same characteristics. Although the 
application of this study can be generalised to the context of other countries with similar 
protected structures, such as Sweden, Norway or Scotland, it is dependent on the level of 
resolution of their available national LiDAR data, a relevant component, as confirmed by 
Angelidis et al. (2017).

Due to computational time required, it was not possible to further optimise the CNN 
method for the task of identifying stone walls. Exhaustively testing the model for the best 
possible hyperparameters and architecture was not practical given time constraints and 
computer power and was also outside the scope of this study. In either case: 1) all findings 
would probably require validation by an expert in the field, 2) small increases in model 
accuracy were unlikely to result in the discovery of new walls, only that the walls extent 
would be slightly more accurate. If this method were to be utilised for a similar task, it may 
be worth experimenting with other model architectures such as Mask R-CNN, as has been 
used by Maxwell, Pourmohammadi and Poyner (2020), or ResNet, by Øivind, Cowley and 
Waldeland (2019).

Some difficulties were encountered in applying the CNN performing a regression task, 
given the challenge in evaluating the results. Considering that the target data presented 
a high imbalance between presence and absence data for each patch extracted, 
a classification into wall/no-wall proved to be less stable while running the same model 
with a classified output (where the last layer activation function was switched to Sigmoid, 
and the loss function to binary cross-entropy). Therefore, deep regression was applied for 
this specific problem, whereby the output pixel values give a float value representing the 
probability of presence of a stone wall, rather than a presence or absence classification. 
Nonetheless, the regression-based method produces results which are harder to interpret 
and compare. Furthermore, to the best of our knowledge, there are no previous studies 
on automatically identifying stone walls that would enable a comparison of performance 
or results, where the only reference source is the stone walls dataset itself.

The application of this study is relevant to the municipalities of Denmark, and to other 
countries that have an interest in verifying the position of historical stone walls, such as 
England and Ireland. It can contribute to the automatisation of the identification and 
update of the stone walls’ registry, and in this way fulfil the recommendations outlined by 
the Ministry of Culture in Denmark (Christensen 2020). The development of such tool can 
come in a shape of a Decision Support System, where each municipality could visualise 
and apply analysis on their specific dataset, and in this way, contributing to the update of 
the national registry. A prototype is in development, and will also require the involvement 
of experts, and feedback of its usability by municipalities. Additionally, it would also be 
interesting to consider the benefits that citizen science can offer, whereby citizens could 
update the stone walls registry by providing information in the field.

6. Conclusion

This study demonstrates the use of a CNN Deep Learning model for extracting features 
from Digital Elevation Data to map stone walls in a study site in Denmark, and in this way, 
update their registry. We used publicly available data and concentrated on the Danish 
municipalities of Ærø and Silkeborg (for external validation).There was an overall 

2208 E. F. L. TROTTER ET AL.



agreement of 93% between ground truth and the prediction of stone walls in the valida
tion area using pixel-wise evaluation. Good results were seen using the DTM alone, 
however, better results were obtained when adding HAT and an additional DTM layer 
with a Sobel filter applied. Good generalizability was found when externally validating the 
model on new data, showing good results for either the existent stone walls and predicting 
new potential ones. The method performed best in open areas; however, positive results 
were also seen in forested areas, which suggests that this method could be useful in the 
identification of features that might be challenging to detect, using remote sensing 
techniques alone. In order to further improve the identification of stone walls, we suggest 
that the inclusion of a multi-modal dataset could be beneficial to add additional context 
and improve differentiation. Further improvements can also be made by exploring the 
methodology and optimisation of the deep learning CNN model. The next steps for this 
research is the provision of the model outputs in a web-based spatial decision support 
system that helps municipalities maintain an up-to-date registry of stone wall structures.

Note

1. The code used in this study is openly available in the associated GitHub repository: https:// 
github.com/AnaCMFernandes/stonewalls.
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