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Abstract: Information collecting by condition inspection or monitoring is important means to reduce 

uncertainty and improve the quality of maintenance decisions in structural integrity management. 

However, information collecting inevitably involves some costs. When information collecting brings 

added value and to what extent uncertainty reduction suffices are questions that often have not been 

fully accounted for before information collecting activities are carried out. Value of information (VoI) 

computation helps justifying investments and informing efficient strategies for information collecting. 

This paper develops a holistic approach to quantify the VoI from multiple inspections in the lifetime of 

an engineering structure, taking into account combined effects of maintenance interventions and 

dependencies in the intervention decisions. The approach can be used for holistic planning and 

optimization of lifetime inspections at an early stage. Also, a simplified VoI computation approach is 

developed for certain maintenance decision cases based on an alignment decision strategy (ADS). 

The approaches are exemplified on a typical marine structure, and sensitivities of VoI to the number 

of planned interventions, cost ratio, inspection time(s) and method(s) are studied. It is shown that the 

ADS and the simplified method are well applicable when the number of planned interventions is large. 

The optimal maintenance decisions and inspection times obtained by VoI-based and cost-based 

optimization methods are compared. 

 

Key words: Structural integrity management; Uncertainty; Risk analysis; Bayesian inference; 
Decision analysis; Life cycle cost 
 

1.  Introduction 

 

Structures and Infrastructures, such as ship structures, offshore installations, bridge decks, and 

aeroplane structures, are important assets that contribute to the economic growth and society 

development. Failures of these structures can cause significant economic losses, fatalities and 

environmental consequences (Frangopol and Soliman 2016). The performances of 

these structures normally degrade over time due to over-loading, extension of service life, accidental 

damages, natural hazards, deteriorating factors, etc., and it’s of paramount importance to identify 

these threats timely, assess and mitigate the failure risk by inspection and maintenance activities. 

Fatigue crack initiation and propagation is one of the most common deteriorating factors 

compromising integrity and leading to failures in welded structural systems (Fisher, Kulak, and Smith 
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1998). Planning of maintenance activities for structural systems subject to fatigue deterioration is often 

complex due to a large number of hot-spot areas, high degree of uncertainty associated with both 

fatigue loading and resistance, and uncertainty relating to inspection performance and maintenance 

effect. Developing an effective maintenance strategy under uncertainty that balances maintenance 

costs and failure risk is challenging, yet of great significance to realize the economic and safety 

benefits of maintenance. 

 

Optimal maintenance planning relies on availability of data, information, and models for accurate 

structural damage states. Maintenance planning optimization typically requires utilization of the data 

in the design plan, fabrication and as-built data, operational records as well as additional information 

collecting, e.g. by condition inspections, monitoring, surveys, etc. On one hand, additional information 

collecting is essential to collect up-to-date structural condition information and thus help to reduce 

uncertainty and make improved maintenance decisions. On the other hand, information comes at 

certain costs and is often imperfect. To what extent the collected information reveals true damage 

conditions depend on methods and times used for information collecting, which are influential to the 

costs of information, to optimal maintenance decision-making, and ultimately to lifetime safety 

assurance and cost reduction. 

 

Value of information (VoI) computation presents a strong tool for rational decision-making on 

information collecting systems, techniques and activities. The rationale of VoI is that information is an 

asset that is of value to its owner (Moody and Walsh 1999). Uncertainty reduction is one of essential 

attributes of information. Information adds knowledge to the uncertain nature of interest, e.g. an 

inspection result adds knowledge on crack sizes. Due to the availability of additional information, an 

improved decision may be made which acts on the reduced uncertainty more appropriately and is 

associated with a higher expected utility. VoI is defined as the difference between the max utility with 

and without additional information, which can be calculated by Bayesian decision analysis and utility 

theory (Raiffa and Schlaifer 1961), and pre-posterior analysis (Goulet, Der Kiureghian, and Li 2015, 

Thöns 2018). VoI computation has been applied in a wide range of engineering fields, e.g. civil and 

structural engineering (Straub and Faber 2005, Straub 2014, Memarzadeh and Pozzi 2016a), 

transport engineering (Memarzadeh and Pozzi 2016b), geotechnical engineering (Karandikar et al. 

2014), oil and gas industry (Bratvold, Bickel, and Lohne 2009), material technology (Bates et al. 2016), 

environmental engineering (Bates et al. 2014, Rehr et al. 2014, Von Winterfeldt et al. 2012, Cooke et 

al. 2014), etc. Typical applications include quantifying the expected benefits of future testing or 

research project (Thons and Faber 2013, Thöns, Schneider, and Faber 2015, Thöns 2018, Pozzi and 

Der Kiureghian 2011, Straub 2014, Memarzadeh and Pozzi 2016b), VoI-based maintenance 

optimization (Zitrou, Bedford, and Daneshkhah 2013, Goulet, Der Kiureghian, and Li 2015), inspection 

planning (Straub and Faber 2005, Straub 2004, Memarzadeh and Pozzi 2016a), sensor placement 

(Malings and Pozzi 2018, 2016, Malings and Pozzi 2019), etc.  
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VoI calculation becomes prohibitive with the complexity of a decision problem, e.g. system 

characteristics, uncertain parameters, time length of interest (e.g. the required service life of a system), 

available decision alternatives and possible signals (or observations, or results) from information 

collecting (Malings and Pozzi 2016). Rational decision-making is even more complex when multiple 

decisions are involved, e.g. planning of multiple maintenance interventions to the service life of an 

engineering system. As the signals from future inspections are unknown at the time of VoI computation, 

utilities associated with all possible combinations of decisions conditional on each possible 

combination of signals and the expectation of the max utility with respect to the signals must be 

calculated, in order to obtain the max utility with additional information. Such sophisticated 

calculations must be done within a probabilistic framework involving Bayesian updating, which is 

computationally demanding and hinders VoI application to complex decision problems. Approximate 

VoI algorithms for special types of systems have been developed by (Malings and Pozzi 2016, Malings 

and Pozzi 2019, Memarzadeh and Pozzi 2016a). These methods are typically based on Partially 

Observable Markov Decision Processes (POMDPs) and compute the VoI in sequential maintenance 

decision-making. However, it is worth considering combined effects of maintenance interventions and 

computing the VoI in holistic maintenance decision-making.  

  

This paper develops methods to compute the VoI from multiple inspections in holistic planning of 

lifetime maintenance interventions, taking into account combined effects of maintenance interventions 

and dependencies in maintenance decisions, especially the effects of later interventions on the 

decision optimality of earlier interventions. Hence, the term ‘holistic’ refers to holistic maintenance 

decision-making on multi-interventions, and the holistic VoI is the information value to holistic 

decision-making. A simplified method for holistic VoI computation is developed for certain cases based 

on an alignment decision strategy (ADS). The methods are exemplified on a numerical example which 

reveals the combined effects of multiple maintenance interventions and advantages of the proposed 

methods. Sensitivity studies are carried out to explore the determinants of holistic VoI. In Section 2, a 

common maintenance problem in structural management is outlined and probabilistic aspects of crack 

growth are addressed. In Section 3, a generalised modelling framework is developed for holistic 

maintenance decision-making and VoI computation. In Section 4, a simplified VoI computation method 

is developed for the cases when the numbers of possible inspection results and available 

maintenance methods are equal. In Section 5, the methods are exemplified on fatigue crack 

management of a marine structure and sensitivities of holistic VoI to its determinants are shown.  

 

2.  Probabilistic crack growth 

 

Maintenance planning is a typical decision-making problem under uncertainty. Structural damage 

states are uncertain at the time of decision-making. Structural failure probability and risk can be 
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calculated based on a probabilistic model considering uncertainties associated with initial damage 

state, deterioration rate, modelling, etc. (Zou, Banisoleiman, et al. 2019, Zou, González, et al. 2019, 

Konakli, Sudret, and Faber 2015). Some maintenance alternative methods may be available, which 

are associated with different costs and benefits to risk mitigation. An optimal maintenance decision 

can be obtained by prior decision optimization based on prior knowledge and uncertainty. If additional 

inspection results are available, uncertainty on structural damage states is reduced and failure 

probability can be updated by Bayesian Theorem. The expected costs and benefits of the 

maintenance alternatives can be sorted again by posterior analysis, based on which posterior optimal 

maintenance decision can be obtained. The posterior optimal maintenance decision may be different 

from the prior optimal, as they are obtained subjected to different degree of uncertainty. Prior decision 

optimization and posterior decision optimization are the same in principle but differ in the available 

information and thus the degree of uncertainty, the distribution of damage state, and the projected 

failure probability, risk and costs.  

 

2.1 Probabilistic crack growth 

 

Herein, the initial flaw/crack size is labelled as 𝑎0, and the critical crack size as 𝑎𝑐, which defines 

fracture failure of a structural detail. Under a stress range ∆𝜎, the initial crack grows to 𝑎(𝑡) after time 𝑡. 

The required service life is 𝑇𝑆𝐿, and the limit state function 𝐿(𝑡) is given by Equation (1). 

 

𝐿(𝑡) = 𝑎𝑐 − 𝑎(𝑡)                                                                                                                                   (1) 

 

Crack growth is governed by several factors, such as the initial crack size (𝑎0), the stress range (∆𝜎), 

material property parameters (𝐶  and 𝑚) , geometry function  (𝑌) , threshold of the stress intensity 

factor (∆𝐾𝑡ℎ), etc. The relationship between these factors can be expressed by Equation (2).  

 

𝑎(𝑡) = 𝑓(𝑎0, 𝐶, 𝑚, 𝑌, ∆𝐾, ∆𝐾𝑡ℎ, 𝑡 )                                                                                                          (2) 

 

Explicit or implicit models for such a relationship are available, e.g. the well-known Paris’ law (Paris 

and Erdogan 1963), or can be established by experimental, modelling and/or statistical methods for 

specific applications (Ayala-Uraga and Moan 2007, Chryssanthopoulos and Righiniotis 2006, 

Lotsberg et al. 2016). Most often, both fatigue loading and fatigue resistance are subjected to a high 

degree of uncertainty, so most of these crack growth models are integrated with probabilistic modelling 

and structural reliability methods. For example, the parameters associated with large variability and 

uncertainty are treated as random variables and their distributions are established by statistical 

methods based on experimental or in-service data. The failure probability (without any maintenance), 

𝑃𝑓
0, and reliability index, 𝛽, are expressed by Equation (3) and (4) respectively. Equations (3) and (4) 

can be calculated via reliability methods, such as the well-known FORM, SORM, or sampling methods 
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(Ditlevsen and Madsen 1996, Faber 2012). 

 

𝑃𝑓
0(𝑡) = 𝑃(𝐿(𝑡) < 0)                                                                                                                              (3) 

𝛽(𝑡) = −Φ−1 (𝑃𝑓(𝑡))                                                                                                                           (4) 

 

where Φ−1[∙] is the inverse function of standard normal cumulative density function. 

 

3.  Holistic maintenance optimization and VoI computation 

3.1 Holistic decision problem formulation 

 

Fatigue and fracture reliability decreases with time due to crack growth, and maintenance 

interventions need to be assigned to ensure that structural reliability is above a target level and failure 

risk is well controlled. It is of great significance that at the beginning of service, maintenance 

interventions are well planned in terms of the number of interventions, maintenance areas, times and 

methods, as these determine the benefits and costs, and thus the efficiency of maintenance 

interventions. A maintenance strategy is beneficial only when expected maintenance costs are less 

than risk reductions. 

 

Let the time of maintenance decision-making be at the beginning of service (𝑡 = 0), the number of 

planned maintenance interventions be 𝑛, the interventions be scheduled to times 𝑡1,  𝑡2 ⋯ 𝑡𝑛 and the 

available maintenance methods (action alternatives) be 𝑚1,  𝑚1 ⋯ 𝑚𝑛. The future crack size 𝑎(𝑡) is 

uncertain at the decision time  𝑡 = 0 . However, based on available statistical information on the 

variables, the distribution of 𝑎(𝑡)  can be predicted by sampling methods based on a probabilistic 

model formulated by Equation (2). Herein, the crack size 𝑎(𝑡) is the uncertain nature of interest, which 

makes the outcomes and costs associated with a maintenance decision uncertain, and thus makes 

decision-making process obscure. Structured decision analysis formulated below helps to make the 

process clearer.  

Table 1. Action alternatives in a two-action maintenance decision problem 

Action alternative  Maintenance method Crack size after repair 

𝑦1 No action (N) N/A 

𝑦2 Welding (W) 𝑎0 

 

Table 2. Action alternatives in a three-action maintenance decision problem 

Action alternative  Maintenance method Crack size after repair 

𝑦1 No action (N) N/A 

𝑦2 Grinding (G) 𝑎𝐺  

𝑦3 Welding (W) 𝑎0 
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The action alternatives are the maintenance methods that can be chosen for an intervention. As listed 

in Table 1, in a two-action maintenance decision problem, the action alternatives are ‘No action’ 

(denoted by ‘N’) and ‘Welding’ (denoted by ‘W’). The performance of repaired components by welding 

are usually good and maintenance effect of welding can be represented by a ‘as good as new’ model. 

The model assumes that the crack size after repair returns to the initial size, i.e. 𝑎0 (Madsen, Torhaug, 

and Cramer 1991, Zitrou, Bedford, and Daneshkhah 2013, Huynh, Grall, and Bérenguer 2017, 

Garbatov and Soares 2001). The model allows for modelling of behaviours of repaired structural 

components. In engineering practice, cracks are also repaired by grinding (denoted by ‘G’), which is 

a less effective and less expensive approach. Action alternatives in a three-action maintenance 

decision problem are listed in Table 2. The maintenance effect by grinding is modelled as imperfect, 

e.g. the crack size after repair returns to an equivalent size 𝑎𝐺, the mean value of which is larger than 

𝑎0 (Madsen, Torhaug, and Cramer 1991). By these maintenance models, the failure probability of 

repaired components by welding or grinding can also be calculated using Equations (1) - (3). It is 

worth noting that this paper addresses holistic maintenance decision for 𝑛 interventions in the lifetime, 

so the number of action alternatives is the number of possible combinations, i.e. 2𝑛 or 3𝑛. Also, as 

‘No action’ is an alternative, the optimised number of actual interventions may be less than𝑛, which is 

thus understood as the maximum allowable number of interventions in the lifetime.  

 

The outcomes of a holistic decision are uncertain at the time of decision-making, as the crack sizes 

at the maintenance intervention times 𝑎(𝑡1), 𝑎(𝑡2) ⋯ 𝑎(𝑡𝑛) are uncertain. To make a right decision, the 

relationship between present decisions, uncertainties and future outcomes must be formulated 

explicitly. These outcomes are integrated into life cycle costs 𝐶𝐿(𝑥, 𝑦), given by Equation (5).  

 

𝐶𝐿(𝑥, 𝑦) = 𝐶𝑀(𝑥, 𝑦) + 𝐶𝐹(𝑥, 𝑦)                                                                                                              (5) 

 

where 𝐶𝑀(𝑥, 𝑦) is expected maintenance costs, including expected costs of inspections and repairs; 

𝐶𝐹(𝑥, 𝑦)  is failure risk in terms of monetary loss; 𝑦  signifies a decision on a sequence of 𝑛 

maintenance interventions; 𝑥 is a representation of all variables, e.g. initial crack size 𝑎0, material 

property parameter 𝐶, stress range ∆𝜎. 

 

A value function is defined based on the life cycle costs 𝐶𝐿(𝑥, 𝑦) as per Equation (6), and a utility 

function based on value function, as per Equation (7). These functions are assigned by a decision 

maker (DM) according to his/her engineering experience, risk attitude, subjective judgement, etc. on 

a specific decision problem (Howard 1988, Mehrez 1985, Sun and Abbas 2014, Abbas et al. 2013). 

Note that these functions are used to provide a consistent utility metric for the action alternatives. To 

make the right decision, the DM may only care about the sort order of the action alternatives according 

to the adopted the utility metric, not specific values and utilities. The aim of decision analysis is to 

rationalise the decision-making process by sorting the action alternatives, so that the DM is certain at 
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the decision time that he/she is making the right decision in face of uncertain outcomes.  

 

𝑣(𝑥, 𝑦) = 𝑣(𝐶𝐿(𝑥, 𝑦))                                                                                                                             (6) 

𝑢(𝑥, 𝑦) = 𝑢(𝑣(𝑥, 𝑦))                                                                                                                            (7) 

 

3.2 Prior maintenance decision optimization  

 

Prior decision optimization is based on existing information. For a given structural model, existing 

information include the required service life  𝑇𝑆𝐿 , the critical crack size  𝑎𝑐 , a deterioration model 

(Equation (2)), and associated parameters and random variables. The distributions of variables 

represent prior degree of belief on their uncertainties. Based on prior information, a prior lifetime failure 

probability 𝑃𝑓
0 can be calculated by Equations (1) - (3). 

 

Prior maintenance action alternatives are: ‘N’ and ‘W’) or ‘N’, ‘G’ and ‘W’. In a holistic decision problem 

involving 𝑛 maintenance interventions, and the number of combinations of action alternatives is 2𝑛 or 

3𝑛. For given intervention times 𝑡1, 𝑡2 ⋯ 𝑡𝑛, the life cycle costs 𝐶𝐿 adopting each combination of actions 

(CA) is calculated based on decision tree analysis. For example, Figure 1 shows decision tree analysis 

for 𝑛 = 3, and the CA is (W, W, W), where 𝐹, �̅� mean failure, survival respectively. At the time an 

action is carried out, the crack size is reduced physically and new simulations for crack growth must 

be run. More discussions on life cycle costs analysis 𝐶𝐿 are given in Section 4.4.  

 

Figure 1. Decision tree analysis for a sequence of maintenance actions (W, W, W) 

 

The value and utility of each CA is calculated based on Equations (6) and (7) respectively. Equation 

(8) provides the optimal CA and Equation (9) gives the max utility 𝑢max. 

 

𝑦𝑜𝑝𝑡 = arg max
𝑦

𝐸(𝑢( 𝑥, 𝑦))                                                                                                                     (8) 

𝑢max = 𝐸 (𝑢( 𝑥, 𝑦𝑜𝑝𝑡))                                                                                                                           (9) 

 

3.3 Posterior maintenance optimization with additional information 

 

When additional information on the crack size becomes available, the information could be integrated 
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as a likelihood function and used to update the prior failure probability 𝑃𝑓
0 . The updated failure 

probability 𝑃𝑓
1is appreciated as posterior failure probability. For example, if an inspection is carried out 

(using an inspection method with a detectable crack size 𝑎𝑑) at time 𝑡1 and the obtained inspection 

signal showing no detection (�̅�), then the additional information can be formulated by Equation (10). 

Utilizing the additional information by Bayesian Theorem (Ditlevsen and Madsen 1996), the failure 

probability after time 𝑡1 can be updated by Equation (11), in which 𝐹 signifies the event of failure, 

formulated by Equation (12). 

 

�̅�: 𝑎(𝑡1) < 𝑎𝑑                                                                                                                                                (10) 

𝑃𝑓
1(𝑡) = 𝑃(𝐹|�̅�) =

𝑃(𝐹⋂�̅�)

𝑃(�̅�)
=

𝑃{[𝑎𝑐−𝑎(𝑡)]<0⋂[𝑎(𝑡1)−𝑎𝑑]<0}

𝑃{[𝑎(𝑡1)−𝑎𝑑]<0}
, 𝑡 > 𝑡1                                                               (11) 

𝐹: 𝑎𝑐 − 𝑎(𝑡) < 0                                                                                                                                 (12) 

 

By substituting the prior failure probability 𝑃𝑓
0 with posterior failure probability 𝑃𝑓

1(𝑡), posterior decision 

optimization can be done based on the same procedure as Section 3.2. The posterior optimal decision 

𝑦𝑜𝑝𝑡
𝑧   conditional on signal 𝑧 , can be the same or different from the prior optimal decision 𝑦𝑜𝑝𝑡 , 

depending on the implication of the additional information 𝑧 on failure probability (i.e. the changes in 

failure probability) and on specific utility function. 

 

3.4 Holistic VoI computation  

 

The aim of VoI computation is to evaluate whether there is added value in carrying out inspections 

with given methods. If the VoI is larger than zero, then there is added value and maintenance decision 

can be improved. At the time of decision analysis and VoI computation, inspections have not been 

implemented, and the signals (or results) are unknown. Thus, all possible signals must be considered 

in VoI computation.  

Table 3. Two types of inspection activities under investigation 

Number Inspection activity The number of possible 

results  

Formulations for all possible 

results from an inspection 

IA1 Detecting  2  

(�̅�; 𝐷) 

�̅�: 𝑎(𝑡1) < 𝑎𝑑 

𝐷: 𝑎(𝑡1) ≥ 𝑎𝑑 

IA2 Step 1: Detecting  

Step 2: Sizing, following crack 

detection 

3  

(�̅�; 𝐷&�̅�; 𝐷&𝐸) 

�̅�: 𝑎(𝑡1) < 𝑎𝑑 

𝐷&�̅�: 𝑎(𝑡1) ≥ 𝑎𝑑 ∩ 𝑎(𝑡1) < 𝑎𝑟  

𝐷&𝐸: 𝑎(𝑡1) ≥ 𝑎𝑑 ∩ 𝑎(𝑡1) ≥ 𝑎𝑟  

 

Herein the VoI provided by two kinds of inspection activities are discussed comparatively. The features 

of the inspection activities (IA) are summarized in Table 3. Activity 1 (IA1) involves only crack detecting, 

while activity 2 (IA2) involves crack sizing following crack detection. As more in-depth information 
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collection is pursued by IA2, it is obvious that the costs of IA2 would be higher than IA1. 

 

In IA1, the number of possible inspection results is 2 and the results are: detection (𝐷 ) and no 

detection (�̅�). In IA2, following detection, an in-depth inspection is assigned to measure the size of 

the crack to see if the size exceeds a limiting size 𝑎𝑟. The number of possible results is 3 and the 

results are: no detection (�̅�), detection but within the limiting size (𝐷&�̅�), detection and exceedance 

of the limiting size (𝐷&𝐸). Formulae for these inspection results are listed in Table 3. 

 

To quantify the VoI from 𝑛 inspections, all possible combinations of 𝑛 inspection signals must be taken 

into account. The number of combinations of signals is 2𝑛 (IA1) or 3𝑛 (IA2). For example, when 𝑛 = 3 

and IA2 is considered, a combination of signals (CS) could be (𝐷&�̅� , �̅� , 𝐷&𝐸 ), which can be 

formulated by Equation (16). 

 

[𝑎(𝑡1) ≥ 𝑎𝑑 ∩ 𝑎(𝑡1) < 𝑎𝑟] ∩ [𝑎(𝑡1) < 𝑎𝑑] ∩ ⌈𝑎(𝑡1) ≥ 𝑎𝑑 ∩ 𝑎(𝑡1) ≥ 𝑎𝑟⌉                                                 (16) 

 

Given a combination of actions (CA) and a combination of signals (CS), an updated failure probability 

𝑃𝑓
1 can be obtained by Bayesian Theorem. The life cycle costs, value and utility associated with the 

CA and conditional on the specific CS can also be obtained based on Section 3.2 using the updated 

failure probability 𝑃𝑓
1. The maximum utility 𝑢max

′ ( ℎ) with the availability of a combination of inspection 

signals 𝑍  is equal to the expectation value of posterior maximum utility 𝑢max
𝑍 (ℎ)  with respect to 𝑍 , 

given by Equation (17). Note that 𝑍 is a combination of signals which are unknown at the time of VoI 

computation. The holistic VoI from 𝑛 inspection is equal to the value of ℎ that solves the Equation (18). 

 

𝑢max
′ (ℎ) = 𝐸𝑍(𝑢max

𝑍 (ℎ)) = ∫ 𝑢max
𝑧 ∙ 𝑝(𝑧)𝑑𝑧                                                                                                   (17) 

𝑢𝑚𝑎𝑥
′ (ℎ) = 𝑢𝑚𝑎𝑥                                                                                                                            (18) 

 

Where ℎ  denotes the costs of obtaining a sequence of inspection signals; 𝑢max
𝑧   is the max utility 

conditional on a specific combination of signals 𝑧; 𝑝(𝑧) is the probability of that a specific combination 

of signals 𝑧 would occur.  

 

The probability 𝑝(𝑧) can be obtained based on the probability of detection (PoD) functions of adopted 

inspection methods (Dong and Frangopol 2016, Madsen, Torhaug, and Cramer 1991, Meyer et al. 

2014). By a PoD function, the detectable crack size (𝑎𝑑) of an inspection method is modelled as a 

random variable with a distribution. The probabilities of signals such as detection and no detection 

can be calculated based on the distributions of 𝑎(𝑡𝑖) and 𝑎𝑑. The 𝑝(𝑧) is obtained by considering that 

a sequence of inspections are independent on each other and the same method is used. 
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4 A simplified VoI computation method  

4.1 Alignment decision strategy  

 

The proposed holistic computation method for VoI from a sequence of future inspections in Section 3 

involves the following steps: 

 

(a) Calculate the prior max utility (by sorting the prior utilities of all combinations of action alternatives) 

(b) Calculate the likelihoods of all possible combinations of signals (based on prior distribution of 

crack size and PoD functions of adopted inspection methods) 

(c) Calculate the posterior max utility conditional on each combination of signals (by sorting the 

posterior utilities of all combinations of actions conditional on each combination of signals) 

(d) Calculate the expectation of posterior max utility with respect to a sequence of unknown signals 

(e) The VoI is equal to the expectation value of posterior max utility minus the prior max utility 

 

To calculate the VoI, all possible combinations of signals must be considered. What’s more, posterior 

decision optimization must be performed conditional on each combination. Finally, the expectation of 

posterior max utility needs to be calculated. These calculations can be rather cumbersome, especially 

when the number of action alternatives and the number of all possible signals are large.  

 

In this section, a method is proposed to simplify the calculation steps (b) - (d) based on a new 

perspective on an unknown inspection signal, and an alignment decision strategy (ADS) reacting to 

an unknown signal. Let the number of action alternatives and the number of possible signals be 

denoted by 𝑠. Let all possible signals from an inspection be defined by a set 𝑍, and actions mapped 

to the signals be a set Y, then a specific set of actions mapped to all possible signals is defined as a 

decision strategy (DS). For example, Figure 2 shows a random DS which assigns method 𝑦𝑖 if an 

unknown signal is 𝑧1, method 𝑦𝑠 if the unknown signal is 𝑧2, ⋯ method 𝑦1 if the unknown signal is 𝑧𝑖, 

⋯ method 𝑦2 if the unknown signal is 𝑧𝑠. 

 

If: 𝑑(𝑧1) > 𝑑(𝑧2) >  ⋯ > 𝑑(𝑧𝑖) >  ⋯ > 𝑑(𝑧𝑠)                                                                                           (20) 

and 𝑒(𝑦1) > 𝑒(𝑦2) >  ⋯ > 𝑒(𝑦𝑖) >  ⋯  > 𝑒(𝑦𝑠)                                                                                         (21) 

then ADS: (𝑧1, 𝑧2, ⋯ ,  𝑧𝑖 , ⋯ , 𝑧𝑠) → (𝑦1, 𝑦2, ⋯ ,  𝑦𝑖 , ⋯ , 𝑦𝑠)                                                                           (22) 

 

Although the number of possible DS is 𝑠𝑛, the one that is most relevant to VoI computation is ADS. 

The definition of alignment decision strategy is illustrated by Figure 3. Let 𝑑(𝑧𝑖)  be the damage 

severity (e.g. the mean value of crack size) indicated by a realization of signal 𝑧𝑖 and 𝑒(𝑦𝑘) be the 

effect of an action alternative 𝑦𝑘 (e.g. the extent of crack mitigation by a maintenance method). Sort 

all possible realizations of an unknown signal according to damage severity, shown by Equation (20). 

Also, sort the available action alternatives according to their effects, shown by Equation (21). Then 
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adopting the ADS (shown by Equation (22)), a DM would align his/her decision to the extent of damage 

severity indicated by a realization of an unknown inspection signal (based on the sort order of action 

alternatives and the sort order of possible realizations).  

 

 

 

 

Figure 2. Signal set and decision strategy Figure 3. Alignment decision strategy (ADS) 

 

4.2 VoI computation based on ADS 

 

To justify VoI computation based on ADS, two essential questions need to be addressed:  

 What is the additional information to present decision-making when future signals are unknown?  

 How maintenance decision-making can be improved by unknown information?  

 

Herein, although the specific signal that would be provided by a future inspection is unknown at the 

time of VoI computation and decision analysis, the likelihoods of possible signals can be predicated 

based on prior belief on the uncertain parameters and on the reliability of the adopted inspection 

method. Thus, the future signal from an inspection is a random variable, but with a predictable 

distribution. The information provided by a future inspection to the present decision-making lies in:  

 A future inspection provides a categorization of the uncertain crack size;  

 Each possible signal indicates a category of crack size, and;  

 The likelihoods of the categories (the probabilities that the uncertain crack size would fall into the 

categories) can be calculated at the time of VoI computation.  

 

Hence, a future information collection activity does not remove the uncertainty affecting the present 

decision-making but reduces uncertainty by providing a categorization. Due to the availability of such 

categorization, an ADS can be taken. The ADS is superior to the prior optimal decision which assigns 

a single action method.  
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The VoI is attributed to improved decision due to the availability of additional information. If the 

additional information provided by the categorization is of value, the optimal decision should be 

different from the prior optimal decision without the information (i.e. a single action method). The 

biggest value is created when the categorization is best utilized and acted upon, i.e. deciding different 

action methods according to different categories (which are signified by different inspection signals). 

Specifically, the action methods for two different signals should not the same; otherwise, there would 

be no value in providing two different signals, i.e. distinguishing between two categories of crack size. 

Upon availability of the categorization, the ADS is optimal, as it well tunes available action alternatives 

to the order of crack size indicated by the signal set.  

 

4.3 Efficient information utilization by ADS 

 

The VoI from a given information collecting system (characterized by its capacity, reliability, costs, the 

number of possible signals, etc.) to given decision contexts (characterized by uncertainties, available 

action alternatives, and the utility function, etc.) can be zero. The VoI = 0 indicates that the degree of 

uncertainty reduction by additional information can not lead to change in decision and thus the 

information collecting system is not fit for given decision contexts. If VoI = 0, the optimal decision is 

the same with or without the additional information. Irrespective of the future signal (i.e. an inspection 

result), the posterior optimal decision is the same as the prior optimal decision (i.e. a single action 

method). In such cases, it is not optimal to adopt the ADS, i.e. assign action methods in alignment to 

the realizations of future signal. Conversely, if the ADS is not optimal, VoI = 0, or at least part of 

information collection does not provide any value to decision-making. The ADS is not optimal means 

that the optimal decisions are the same upon at least two realizations of future signal. Thus, there is 

no added value to the decision problem in distinguishing between these two realizations.  

 

 

Figure 4. ADS and valuable information 

collecting by inspection activity 1 (IA1) 

Figure 5. Valueless information collecting by 

inspection activity 1 (IA1) 

 

When the IA1 (Table 3) is adopted to provide additional information for the two-action decision problem 

summarised in Table 1,  

 The ADS (Figure 4) is to take ‘welding’ (𝑊) when the inspection result (or signal) indicates crack 

detection (𝐷) and take ‘no action’ (𝑁) when the result indicates no detection (�̅�).  
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 If the optimal decision is to take the same action method (e.g. 𝑊 or 𝑁), irrespective of inspection 

result (Figure 5), then the information provided by the IA1 cannot contribute to an improved 

decision and is thus completely of no value to maintenance decision-making, i.e. VoI = 0. 

 

 

Figure 6. ADS and valuable information 

collecting by inspection activity 2 (IA2) 

 
 

Figure 8. Partly valuable information collecting 

by inspection activity 2 (IA2) 

Figure 7. Valueless information collecting  

by inspection activity 2 (IA2) 

 

When the IA2 (Table 3) is adopted to provide additional information for the three-action decision 

problem summarised in Table 2,  

 The ADS (Figure 6) is to take ‘welding’ ( 𝑊 ) when the inspection result is detection and 

exceedance of a limiting size (𝐷&𝐸), take ‘grinding’ (𝐺) when the result is detection but within the 

limiting size (𝐷&�̅�), and take ‘no action’ (𝑁) when the result is no detection (�̅�).  

 If the optimal decision is to take the same action method (e.g. 𝑊, 𝐺 or 𝑁), whether the inspection 

result is 𝐷&𝐸  or 𝐷&�̅�  or �̅�  (Figure 7), then the information provided by the IA2 would not 

contribute to an improved decision and is thus completely of no value to maintenance decision-

making, i.e. VoI = 0.  

 If the optimal decision is to take the same action method (e.g. 𝑊 or 𝐺), whether the inspection 

result is 𝐷&𝐸 or 𝐷&�̅� (Figure 8), and take ‘no action’ (𝑁) when the result is no detection (�̅�), then 

only part of the information provided by IA2 (i.e. detection or not, by step1) is of value to the 

decision problem, and part of the information (i.e. exceed a limiting size or not, by step 2) is of no 

value. In such a case, there is no need to take the step 2, which may be costly yet of little help to 

the decision problem.  
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Note that the step 2 does provide information and contribute to reduced uncertainty, because it 

provides another categorization of crack size. However, before taking the step 2, by decision analysis 

it can be evaluated weather the information and uncertainty reduction contribute to an improved 

decision. If not, then there is no need to perform such information collecting, or the information 

collecting system is not fit for the specific decision contexts and thus needs to be changed.  

 

In summary, for a given decision problem,  

 If an information collecting system is well designed (in terms of its capacity and reliability, etc.) 

based on the decision contexts (e.g. degree of uncertainty, available action alternatives, utility 

function, etc.), the ADS (e.g. see Figures 3, 4 and 6) is the optimal decision strategy considering 

additional information, and the VoI brought by the system is the maximum;  

 If an information collecting system is not fit for decision contexts, additional information can not 

lead to change in decision and the optimal decisions upon all realizations of signal are the same 

as the prior optimal decision (e.g. see Figures 5 and 7). In such case, VoI = 0 and additional 

information collection using the system is completely unnecessary.  

 If the information collecting system is average, the ADS is generally the optimal decision strategy 

considering additional information. But the optimal decisions upon some realizations of signal 

may be the same (e.g. see Figure 8), which means that part of the information could not be 

appropriately acted upon based on given action alternatives and thus could not be utilized. In 

such case, there is no need to distinguish between the realizations upon which the decisions are 

same. Thus, part of the information is valueless to decision-making, and the information collecting 

system is not fit for the decision contexts and needs to be optimized. 

 

Hence, it is strongly recommended to frame an information collecting system based on given decision 

contexts and on the results of decision analysis and VoI computation.  

 

4.4 Life cycle costs adopting ADS  

 

After the optimal decision strategy (i.e. ADS) is identified, the expected life cycle costs 𝐶𝐿 associated 

with the strategy can be calculated based on decision tree analysis. Figures 9 provides the decision 

tree for IA1. Herein the inspection result is probabilistic, but the maintenance method upon each 

possible inspection result is identified according to the ADS. Let the monetary consequences of failure 

be 𝑐𝑓0, the costs of a repair activity 𝑐𝑟0, and the costs of an inspection activity 𝑐𝑖0, then the life cycle 

costs 𝐶𝐿 are given be Equations (23) – (25). 

 

𝐶𝐿 = 𝐶𝑀 + 𝐶𝐹                                                                                                                                         (23) 

𝐶𝐹 = 𝑃𝑓
𝑛(𝑇𝑆𝐿) ∙ 𝑐𝑓0                                                                                                                                (24) 
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𝐶𝑀 = ∑ 𝑃𝑖𝑛𝑠
𝑖 ∙ 𝑐𝑖0

𝑛
𝑖=1 ∙

1

(1+𝑟)𝑡𝑖𝑛𝑠
𝑖 + ∑ 𝑃𝑟𝑒𝑝

𝑖 ∙ 𝑐𝑟0
𝑛
𝑖=1 ∙

1

(1+𝑟)𝑡𝑖𝑛𝑠
𝑖                                                                         (25) 

 

Where 𝐶𝑀  is expected maintenance costs; 𝐶𝐹  is failure risk in terms of monetary loss; 𝑃𝑓
𝑛(𝑇𝑆𝐿)  is 

lifetime failure probability considering 𝑛  planned maintenance interventions; 𝑃𝑖𝑛𝑠
𝑖   and 𝑃𝑟𝑒𝑝

𝑖   are the 

probabilities of the ith inspection and repair would be carried out; 𝑡𝑖𝑛𝑠
𝑖  is scheduled time for the ith 

inspection, and; 𝑟 is average annual discount rate. 

 

Equations (24) and (25) can be obtained easily by life cycle cost analysis methods, adopting some 

reasonable assumptions for simplification (Kim, Soliman, and Frangopol 2013, Soliman, Frangopol, 

and Mondoro 2016, Valdebenito and Schuëller 2010, Straub and Faber 2005). The posterior 

maximum value and utility can be defined based on life cycle costs 𝐶𝐿, i.e. by Equations (6) and (7). 

 

Figure 9. Decision tree analysis when adopting IA1 and ADS 

 

5. An illustrative example 

 

 

Figure 10. Fatigue-sensitive structural detail 

under investigation 

Table 4. Design Parameters for the structural 

detail 

Parameter Unit Value 

𝑇𝑆𝐿  Year 20 

𝑁0 Cycle 5 × 106 

log10 𝑓1̅ [N, mm] 11.855 

log10 𝑓2̅ [N, mm] 15.091 

𝑇 mm 25 

∆𝜎𝑒  MPa 21.03 

𝑚1 - 3 

𝑚2 - 5 
 

 

The objective of this case study is to apply the proposed methods to quantifying the value of 
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inspections for a stiffened plate in a ship structure subjected to wave loading, which causes fatigue 

cracks. The welding toes of stiffeners are very prone to cracks and periodical inspections are needed 

to support maintenance decisions. The geometry of fatigue-critical detail is shown in Figure 10. 

 

5.1 Probabilistic fatigue modelling  

 

Herein crack growth in the depth direction perpendicular to the plate plane is examined, and the critical 

crack size 𝑎𝑐 is defined to be equal to the plate thickness 𝑇 = 25 mm. The one-dimensional Paris’ law 

(Paris and Erdogan 1963), given by Equations (26) and (27) is adopted for crack growth prediction. 

 

𝑑𝑎

𝑑𝑁
= 𝐶∆𝐾𝑚,    ∆𝐾𝑡ℎ ≤ ∆𝐾 ≤ 𝐾𝑚𝑎𝑡                                                                                                             (26) 

∆𝐾 = ∆𝜎𝑌(𝑎)√𝜋𝑎                                                                                                                                (27) 

where 𝑑𝑎 𝑑𝑁 ⁄ is crack growth rate; ∆𝐾 is stress intensity factor range; ∆𝐾𝑡ℎ is a threshold of ∆𝐾 and, 

𝐾𝑚𝑎𝑡 is material fracture toughness.  

 

The required service life is 𝑇𝑆𝐿 = 20  years, and the frequency of wave loading is 0.16 Hz, which 

corresponding to 𝑁0 = 5 × 106 cycles per year (Lotsberg et al. 2016, DNVGL 2015). The structural 

detail has been designed by a S-N method, with a fatigue design factor 𝐹𝐷𝐹 = 3. Fatigue strength of 

the structural detail is given by the two-segment S-N curve given by Equation (28).  

 

{
𝑁𝐹∆𝜎𝑚1 = 𝑓1̅              𝑁𝐹 ≤ 107

𝑁𝐹∆𝜎𝑚2 = 𝑓2̅              𝑁𝐹 ≥ 107                                                                                                             (28) 

 

where 𝑁𝐹  is fatigue life,  𝑚1  and 𝑚2  are the fatigue strength exponents, and 𝑓1̅ and 𝑓2̅  are fatigue 

strength coefficients. The fatigue strength exponents and coefficients for the structural detail are 

adopted from a ship classification society (DNV 2014). Input parameters are summarized in Table 4.  

 

Table 5. Variables and statistical descriptors used in reliability analysis 

Variable Distribution Unit Mean Value (E) Standard Deviation 

𝑎0 Exponential mm 0.04 0.04 

log10 𝐶 Normal [N, mm] -12.74 0.11 

𝐵 Normal - 1.00 0.15 

𝑎𝑑  Exponential mm 0.89/2.00/4.35 0.89/2.00/4.35 

 

Uncertainties associated with initial crack size 𝑎0, material property 𝐶, and equivalent stress range 

∆𝜎𝑒 are considered to be the main sources of uncertainty in using the one-dimensional model for 

prediction of crack growth 𝑎(𝑡). It is assumed that 𝑎0 follows an exponential distribution (Lotsberg et 

al. 2016, DNVGL 2015). Uncertainties associated ∆𝜎𝑒 are modelled as an additional variable 𝐵, which 



17 
 

follows a normal distribution (Lassen and Recho 2015). Following common practice, 𝐶 is assumed to 

be lognormally distributed while 𝑚 is fixed (Lotsberg et al. 2016, DNVGL 2015). Table 5 provides the 

statistical descriptors adopted for all variables. 

 

Monte Carlo simulations are carried out to calculate probabilities, reliability indexes and expected 

values of life cycle costs and VoI, with 5 × 106 samples for each variable. It is checked that a larger 

number of samples do not lead to much change in results. The initial lifetime fatigue reliability with no 

maintenance is 1.11, which is low, e.g. lower than the typical target reliability (𝛽𝑡 = 2) for structural 

details with not serious failure consequences (Chen, Wang, and Guedes Soares 2011, Mansour 1996). 

So, maintenance interventions need to be scheduled to increase operational reliability. The reliability 

index becomes higher with more maintenance interventions. 

 

5.2 VoI quantification and decision analysis 

 

Table 6. Decision parameters defining maintenance decision contexts 

Parameter Symbol  Value  

The number of interventions 𝑛 1/ 2/ 3 

Action alternatives  

(in prior analysis) 

𝑦 ‘-’/ ‘r’ 

Action alternatives  

(in posterior analysis) 

𝑦′  ‘-’/ ‘r’/ ‘a’ 

Inspection method 𝑚𝑖𝑛𝑠 MPI/ CVI/ VI 

Cost ratio 𝑐𝑟0 𝑐𝑓0⁄  1:25/ 1:10/ 1:4 

Intervention times  𝑡𝑖𝑛𝑠 5 years/10 years/15 years 

 

At the beginning of service (𝑡 = 0), it is decided to schedule some maintenance interventions. Decision 

optimization and VoI computation is employed at 𝑡 = 0  to develop efficient inspection and 

maintenance strategies. The number of planned interventions 𝑛 is given. The cases when 𝑛=1, 2 and 

3 are investigated, i.e. the VoIs from one inspection, a sequence of two inspections and a sequence 

of three inspections. When 𝑛=3, three inspections are scheduled to 𝑡1=5 years, 𝑡2=10 years, 𝑡3=15 

years (i.e. time interval ∆𝑡=5 years). When 𝑛=2, two inspections are scheduled to any two of the times 

𝑡1 , 𝑡2  and 𝑡3 . When 𝑛 =1, one inspection is scheduled to any one of the times 𝑡1 , 𝑡2  and 𝑡3 . The 

decision alternatives in prior decision optimization (without any inspection) are: ‘-’ (No action) and ‘r’ 

(time-based repair, repair to the as-good-as-new condition). Herein, IA1 is considered, i.e. an 

inspection providing information of detection or no detection. The decision alternatives in posterior 

decision optimization (with inspections) are: ‘-’, ‘r’ and ‘a’ (alignment decision strategy). As discussed 

in Section 4.3, ‘a’ means to repair to as-good-as-new condition (i.e. take ‘r’) when the inspection result 

indicates detection and take no action (‘-’) when the result indicates no detection. Three inspection 
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methods are studied: magnetic particle inspection (MPI, with good detection capacity and reliability), 

close visual inspection (CVI, with average detection capacity and reliability) and visual inspection (VI, 

with pool detection capacity and reliability). Important factor affecting optimal decisions and VoIs are 

the input costs, e.g. monetary costs of failure 𝑐𝑓0, and costs of one repair activity 𝑐𝑟0. Three values of 

the cost ratio 𝑐𝑟0 𝑐𝑓0⁄  are tested: 1:25, 1:10 and 1:4. It is assumed that the costs of an inspection are 

negligible, compared with the costs of repair (Huynh, Barros, and Bérenguer 2012, Breysse et al. 

2009, Kulkarni and Achenbach 2007). All decision parameters are summarized in Table 6. In order to 

compare the VoI based and cost based approaches to inspection optimization, in this numerical 

example simple value and utility functions are applied: the value associated with a decision is equal 

to minus life cycle costs, and the utility of decision is equal to its value.  

 

Tables 7 - 13 give prior and posterior optimal decisions (𝑦𝑜𝑝𝑡  and 𝑦𝑜𝑝𝑡
′  ), expected life cycle costs 

associated with the prior and posterior optimal decisions (𝐶𝐿  and  𝐶𝐿
′ ), VoIs and posterior failure 

probability (𝑃𝑓
𝑛), under different inspection methods (𝑚𝑖𝑛𝑠) and times (𝑡𝑖𝑛𝑠). Tables 7 - 9 provide results 

when 𝑛 = 1 and 𝑐𝑟0 𝑐𝑓0⁄ =1:25, 1:10 and 1:4 respectively; Tables 10 - 12 give results when 𝑛 = 2 and 

𝑐𝑟0 𝑐𝑓0⁄ =1:25, 1:10 and 1:4 respectively, and; Table 13 gives results when 𝑛 = 3. In the tables, the unit 

of inspection time is ‘year’. Life cycle costs and VoI are given as ratios to the costs of an inspection. 

 

Table 7. Optimal decisions, life cycle costs and VoI (𝒏 = 𝟏, 𝒄𝒓𝟎 𝒄𝒇𝟎 = 𝟏: 𝟐𝟓⁄ ) 

𝑚𝑖𝑛𝑠 MPI CVI VI 

𝑡𝑖𝑛𝑠 5  10 15 5 10 15 5 10 15 

𝑦𝑜𝑝𝑡  r r  r  r r  r  r r  r  

𝐶𝐿 818.2 480.2 801.5 817.8 481.2 801.1 818.4 480.7 801.6 

𝑦𝑜𝑝𝑡
′  r a a r a a r r a 

𝐶𝐿
′  818.2 208.0 665.3 817.8 144.6 579.8 818.4 480.7 505.9 

𝑉𝑜𝐿 0 272.2 136.2 0 336.6 221.3 0 0 295.7 

𝑃𝑓
𝑛 0.0394 0.0057 0.0418 0.0394 0.0073 0.0419 0.0394 0.0083 0.0418 

 

Table 8. Optimal decisions, life cycle costs and VoI (𝒏 = 𝟏, 𝒄𝒓𝟎 𝒄𝒇𝟎 = 𝟏: 𝟏𝟎⁄ ) 

𝑚𝑖𝑛𝑠 MPI CVI VI 

𝑡𝑖𝑛𝑠 5 10 15 5 10 15 5 10 15 

𝑦𝑜𝑝𝑡  - r  - - r  - - r  - 

𝐶𝐿 1327.2 1077.8 1327.2 1327.2 1077.8 1327.2 1327.2 1077.8 1327.2 

𝑦𝑜𝑝𝑡
′  a a a a a a a a a 

𝐶𝐿
′  864.3 435.2 1036.0 1239.9 251.1 823.1 1314.7 725.1 636.6 

𝑉𝑜𝐿 462.9 642.6 291.2 87.3 826.7 504.1 12.5 352.7 690.6 

𝑃𝑓
𝑛 0.0806 0.0057 0.0418 0.1233 0.0073 0.0419 0.1313 0.0658 0.0418 
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Table 9. Optimal decisions, life cycle costs and VoI (𝒏 = 𝟏, 𝒄𝒓𝟎 𝒄𝒇𝟎 = 𝟏: 𝟒⁄ ) 

𝑚𝑖𝑛𝑠 MPI CVI VI 

𝑡𝑖𝑛𝑠 5 10 15 5 10 15 5 10 15 

𝑦𝑜𝑝𝑡  - - - - - - - - - 

𝐶𝐿 1327.2 1327.2 1327.2 1327.2 1327.2 1327.2 1327.2 1327.2 1327.2 

𝑦𝑜𝑝𝑡
′  a a - a a - a a a 

𝐶𝐿
′  950.5 1003.1 1327.2 1255.1 518.5 1327.2 1316.9 825.9 965.0 

𝑉𝑜𝐿 376.7 324.1 0 72.1 808.7 0 10.3 501.3 362.2 

𝑃𝑓
𝑛 0.0806 0.0057 0.1328 0.1233 0.0073 0.1328 0.1313 0.0658 0.0418 

 

Table 10. Optimal decisions, life cycle costs and VoI (𝒏 = 𝟐, 𝒄𝒓𝟎 𝒄𝒇𝟎 = 𝟏: 𝟐𝟓⁄ ) 

𝑚𝑖𝑛𝑠 MPI CVI VI 

𝑡𝑖𝑛𝑠 (5, 10) (5, 15) (10, 15) (5, 10) (5, 15) (10, 15) (5, 10) (5, 15) (10, 15) 

𝑦𝑜𝑝𝑡  (-, r) (-, r) (r, -) (-, r) (-, r) (r, -) (-, r) (-, r) (r, -) 

𝐶𝐿 480.7 802.4 480.7 480.7 802.4 480.7 480.7 802.4 480.7 

𝑦𝑜𝑝𝑡
′  (a, a) (a, a) (a, -) (a, a) (a, a) (a, -) (a, r) (r, a) (a, a) 

𝐶𝐿
′  171.9 332.8 208.0 108.2 483.2 144.6 467.5 468.2 147.4 

𝑉𝑜𝐿 308.8 469.6 272.7 372.5 319.2 336.1 13.2 334.2 333.3 

𝑃𝑓
𝑛 0.0035 0.0071 0.0057 0.0036 0.0316 0.0073 0.0068 0.0036 0.0043 

 

Table 11. Optimal decisions, life cycle costs and VoI (𝒏 = 𝟐, 𝒄𝒓𝟎 𝒄𝒇𝟎 = 𝟏: 𝟏𝟎⁄ ) 

𝑚𝑖𝑛𝑠 MPI CVI VI 

𝑡𝑖𝑛𝑠 (5, 10) (5, 15) (10, 15) (5, 10) (5, 15) (10, 15) (5, 10) (5, 15) (10, 15) 

𝑦𝑜𝑝𝑡  (-, r) (-, -) (r, -) (-, r) (-, -) (r, -) (-, r) (-, -) (r, -) 

𝐶𝐿 1077.8 1327.2 1077.8 1077.8 1327.2 1077.8 1077.8 1327.2 1077.8 

𝑦𝑜𝑝𝑡
′  (a, a) (a, a) (a, -) (a, a) (a, a) (a, -) (a, a) (a, a) (a, a) 

𝐶𝐿
′  403.7 726.4 435.2 217.2 732.1 251.1 711.6 624.9 304.2 

𝑉𝑜𝐿 674.1 600.8 642.6 860.6 595.1 826.7 366.2 702.3 773.6 

𝑃𝑓
𝑛 0.0035 0.0071 0.0057 0.0036 0.0316 0.0073 0.0644 0.0403 0.0043 

Table 12. Optimal decisions, life cycle costs and VoI (𝒏 = 𝟐, 𝒄𝒓𝟎 𝒄𝒇𝟎 = 𝟏: 𝟒⁄ ) 

𝑚𝑖𝑛𝑠 MPI CVI VI 

𝑡𝑖𝑛𝑠 (5, 10) (5, 15) (10, 15) (5, 10) (5, 15) (10, 15) (5, 10) (5, 15) (10, 15) 

𝑦𝑜𝑝𝑡  (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) 

𝐶𝐿 1327.2 1327.2 1327.2 1327.2 1327.2 1327.2 1327.2 1327.2 1327.2 

𝑦𝑜𝑝𝑡
′  (a, -) (a, -) (a, -) (a, a) (a, -) (a, -) (a, a) (a, a) (a, a) 

𝐶𝐿
′  950.5 950.5 1003.7 491.5 1255.1 518.5 814.7 955.4 696.1 

𝑉𝑜𝐿 376.7 376.7 323.5 835.7 72.1 808.7 512.5 371.8 631.1 

𝑃𝑓
𝑛 0.0806 0.0806 0.0057 0.0036 0.1233 0.0073 0.0644 0.0403 0.0043 
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Table 13. Optimal decisions, life cycle costs and VoI (𝒏 = 𝟑) 

𝑚𝑖𝑛𝑠 1:25 1:10 1:4 

𝑡𝑖𝑛𝑠 MPI CVI VI MPI CVI VI MPI CVI VI 

𝑦𝑜𝑝𝑡  (-, r, -) (-, r, -) (-, r, -) (-, r, -) (-, r, -) (-, r, -) (-, -, -) (-, -, -) (-, -, -) 

𝐶𝐿 480.7 480.7 480.7 1077.8 1077.8 1077.8 1327.2 1327.2 1327.2 

𝑦𝑜𝑝𝑡
′  (a, a, -) (a, a, -) (a, a, a) (a, a, -) (a, a, -) (a, a, a) (a, -, -) (a, a, -) (a, a, a) 

𝐶𝐿
′  171.9 108.2 132.2 403.7 217.2 287.0 950.5 491.5 674.3 

𝑉𝑜𝐿 308.8 372.5 348.5 674.1 860.6 790.8 376.7 835.7 652.9 

𝑃𝑓
𝑛 0.0035 0.0036 0.0029 0.0035 0.0036 0.0029 0.0806 0.0036 0.0029 

 

5.3 Advantages of holistic decision-making and VoI computation 

 

 

Figure 11. The benefit of holistic decision optimization and VoI computation 

 

It is important to quantify the VoI and optimize a sequence of inspections holistically, rather than to 

quantify the VoI and optimize each inspection separately and sequentially, because combined effects 

of interventions can only be captured by a holistic approach. For example, when 𝑐𝑟0 𝑐𝑓0⁄ =1:25 (Table 

10), and adopting VI, the prior and posterior optimal decisions are (-, r) and (r, a) respectively for 

interventions at 𝑡1=5 years and 𝑡3=15 years (𝑛 = 2). The posterior optimal decision (r, a) indicates 

that only one inspection needs to be scheduled to 𝑡3 =15 years, although the number of planned 

interventions is 𝑛 = 2. Due to this planned inspection, the optimal decisions for both interventions 

change. The posterior optimal decisions capture combined effects of two interventions. The following 

discussions are made on this case. 

 By a holistic approach, when an inspection is scheduled to an intervention, the optimal 

decision for another intervention (even a prior intervention) can change. In this case, when an 

inspection is scheduled to 𝑡3 =15 years (the 2nd intervention), the optimal decision for the 
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intervention at 𝑡1=5 years (the 1st intervention) has changed from ‘-’ to ‘r’. This result captures 

combined effects of a sequence of interventions and exemplifies dependencies in decisions, 

i.e. a decision on one intervention can improve the decision optimality of other interventions, 

even prior interventions. This dependency and related decision improvement can only be 

captured by a holistic approach. 

 By a holistic approach, the VoI (whether from one inspection or multiple inspections) is the 

value to the holistic decision problem involving multi-decisions, not only the value to the 

decisions that adopt inspections. In other words, the VoI comes from improvement of a holistic 

decision on multi-interventions, due to the availability of additional information. As shown by 

Figure 11, when an inspection is scheduled to the 2nd intervention, the optimal decision for this 

intervention changes from ‘r’ to ‘a’. If we only consider the decision improvement for this 

intervention, the life cycle costs reduce to 505.9 and VoI=296.5, while by a holistic decision 

optimization approach, the life cycle costs reduce to 468.2 and the holistic VoI=334.2. 

 The posterior optimal decision for the intervention scheduled to 𝑡1=5 years is ‘-’ (Table 10) 

rather than ‘a’, which means that an inspection, if scheduled to 𝑡1=5 years, cannot add value 

to decision-making.  

 

5.4 Influences of the number of planned interventions and decision flexibility on VoI and 

optimal decisions 

 

As ‘-’ (No action) is a decision alternative, the optimal number of interventions (i.e. the decisions ‘a’ 

and ‘r’) 𝑁𝑖𝑛𝑣 can be less than the number of planned interventions 𝑛, i.e. 𝑁𝑖𝑛𝑡 ≤ 𝑛. Also, as ‘r’ (Repair) 

is a decision alternative, the optimal number of inspections (i.e. the decision ‘a’) 𝑁𝑖𝑛𝑝 can be less than 

the optimal number of interventions, i.e. 𝑁𝑖𝑛𝑠 ≤ 𝑁𝑖𝑛𝑡 ≤ 𝑛.  

 

Tables 7 - 13 show that the optimal number of interventions 𝑁𝑖𝑛𝑣 by posterior analysis is generally 

larger than by prior analysis. This is due to the fact that when inspections are considered, ‘a’ (i.e. ADS) 

is the optimal posterior decision in most cases. Further, the 𝑁𝑖𝑛𝑣 by posterior analysis decreases with 

an increase in 𝑐𝑟0 𝑐𝑓0⁄  or in the detection capacity of the adopted inspection method. This is because 

‘r’ becomes a less cost-effective decision with an increase in 𝑐𝑟0 𝑐𝑓0⁄ . Also, with an increase in the 

detection capacity, the probability of repair increases, and ‘a’ becomes less cost-effective either.  

 

5.4.1 The number of planned interventions 𝒏 = 𝟏 

Tables 7 - 9 show that ‘a’ is not always the optimal decision. When ‘a’ is not the optimal decision, VoI 

= 0, which indicates there is no need to plan an inspection or the given inspection method is not 

appropriate. When ‘a’ is the optimal decision, then VoI > 0. 
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5.4.2 The number of planned interventions 𝒏 = 𝟐 

Tables 10 - 12 show that in most cases, the posterior optimal decision is ‘a’ for both interventions. 

There are however cases with the optimal decision being ‘a’ and ‘-’ for the 1st and 2nd interventions 

respectively. The optimal decision for the second intervention are more likely to be ‘-’ with a larger 

𝑐𝑟0 𝑐𝑓0⁄   and MPI is used. Besides, there are two cases with the optimal decision for one of the 

interventions being ‘r’ (Table 10).  

 

The VoI = 0, if an inspection was scheduled to an intervention for which the optimal decision is ‘-’ or 

‘r’. For example, when 𝑐𝑟0 𝑐𝑓0⁄ =1:25 (Table 10), and adopting MPI, the posterior optimal decision is ‘a’ 

and ‘-’ for interventions scheduled to 𝑡2=10 years and 𝑡3=15 years (𝐶𝐿
′=208.0, and VoI=272.7). If two 

inspections were scheduled and ‘a’ was adopted for both interventions,  𝐶𝐿
′=360.4, which is higher 

than 208.0, and thus the information provided by the inspection scheduled to 𝑡3=15 years would not 

be utilized by the DM and thus valueless.  

 

5.4.3 The number of planned interventions 𝒏 = 𝟑 

 

Tables 7-13 show that ‘a’ is more likely to be the posterior optimal decision when 𝑛 = 3 than when 𝑛 =

1 or 2. The reason for this interesting finding has been explored. It is believed that the finding shows 

the VoI depends also on the number of available action alternatives, i.e. depends on decision flexibility, 

which has been studied in management science and operational research (Merkhofer 1977, 

Ketzenberg et al. 2007), but herein discussed for the first time in civil and structural engineering. In 

the maintenance decision-making problem herein discussed, the number of combinations of 

maintenance action alternatives is 3𝑛, which increases exponentially with 𝑛. When 𝑛 = 3 , there are 

more combinations of action alternative available (than when 𝑛 = 1 or 2), and thus it is more likely 

that the additional information provided by inspections can be acted upon and utilized. Therefore when 

𝑛 = 3, it is more likely that VoI>0, and the ‘a’ is the posterior optimal decision.  

 

5.5 Optimal decisions by VoI based and cost based methods 

 

The obtained posterior optimal decisions by VoI method are fully validated by the cost-optimal repair 

(crack size) criterion method established in (Zou, González, et al. 2019), in which the following points 

are presented. 

 The cost-optimal repair criterion 𝑎𝑟,𝑜𝑝𝑡 defines a bound for optimal repair. Repairing of cracks 

larger or equal to 𝑎𝑟,𝑜𝑝𝑡  (i.e.  𝑎 ≥ 𝑎𝑟,𝑜𝑝𝑡 ) would be cost-beneficial and smaller than 𝑎𝑟,𝑜𝑝𝑡 

(i.e. 𝑎 < 𝑎𝑟,𝑜𝑝𝑡) would not be beneficial.  

 The value of 𝑎𝑟,𝑜𝑝𝑡  depends on both the intervention time 𝑡𝑖𝑛𝑠  (𝑡𝑖𝑛𝑠  =𝑡1  or 𝑡2  or 𝑡3 ) and cost 

ratio  𝑐𝑟0 𝑐𝑓0⁄  . It becomes larger with a later intervention time, i.e. the cost-optimal repair 
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criterion 𝑎𝑟,𝑜𝑝𝑡 for maintenance scheduled to 𝑡3=15 years should be larger than to 𝑡1=5 years. 

Also, it becomes larger with a larger cost ratio 𝑐𝑟0 𝑐𝑓0⁄ , i.e. the cost-optimal repair criterion 

𝑎𝑟,𝑜𝑝𝑡 should be larger when 𝑐𝑟0 𝑐𝑓0⁄ = 1: 4 than when 𝑐𝑟0 𝑐𝑓0⁄ = 1: 25.   

 The crack size 𝑎  is updated with inspection results and thus depends on the adopted 

inspection method  𝑚𝑖𝑛𝑠 . The inferred crack sizes are different using different inspection 

methods (associated with different values of 𝐸(𝑎𝑑)).  

 

Employing the cost-optimal repair criterion method, the optimal decisions by the VoI method can be 

analysed. For example, when the ratio 𝑐𝑟0 𝑐𝑓⁄  is small (Table 7), the prior optimal decision is ‘r’, and 

thus the VoI, if larger than 0, can only be attributed to choosing the decision ‘-’ when the inspection 

result is ‘no detection’. Based on the above points, whether ‘-’ is the optimal decision when the 

additional information is ‘no detection’ (and whether VoI > 0) depends on the intervention time 𝑡𝑖𝑛𝑠 

and the adopted inspection method 𝑚𝑖𝑛𝑠. 

 The VoI from an inspection scheduled to 𝑡1=5 years is 0 and the optimal decision is ‘r’, whether 

using MPI or CVI or VI (Tables 7 - 9). These results are explained by that the optimal 𝑎𝑟,𝑜𝑝𝑡 for 

a repair scheduled to 𝑡1=5 years is smaller than the smallest 𝐸(𝑎𝑑) of MPI, CVI and VI (i.e. 

𝑎𝑟,𝑜𝑝𝑡 < 𝐸(𝑎𝑑)=0.89 mm), so ‘’r is the optimal decision even when the inspection results by 

MPI, CVI and VI are no detection (i.e. when 𝑎 <0.89 mm).  

 An inspection scheduled to 𝑡3 =15 years brings added value (i.e. VoI > 0) and the optimal 

decision is ‘a’, whether using MPI or CVI or VI. These results are explained by that the optimal 

𝑎𝑟,𝑜𝑝𝑡 for a repair scheduled to 𝑡3=15 years is larger than the largest 𝐸(𝑎𝑑) of MPI, CVI and VI 

(i.e. 𝑎𝑟,𝑜𝑝𝑡 > 𝐸(𝑎𝑑)=4.35 mm), so ‘’r is not the optimal decision (i.e. ‘-’ is the optimal decision) 

when the inspection results by MPI, CVI and VI are no detection (i.e. when 𝑎 <4.35 mm).  

 For 𝑡2=10 years, the VoI > 0 by MPI or CVI, and VoI = 0 by VI, which indicates the VoI from an 

inspection scheduled to 𝑡2 =10 years depends on the adopted inspection method. These 

results are explained by that the optimal 𝑎𝑟,𝑜𝑝𝑡 for a repair scheduled to 𝑡2=10 years is larger 

than the detectable crack size 𝐸(𝑎𝑑)  of CVI but smaller than the 𝐸(𝑎𝑑)  of VI (i.e. 2 mm <

𝑎𝑟,𝑜𝑝𝑡 <4.35 mm), so ‘r’ is not the optimal decision (i.e. ‘-’ is the optimal decision) when the ‘no 

detection’ result is obtained by MPI and CVI (i.e. when 𝑎 <0.89 or 2 mm), but ‘r’ is the optimal 

decision when is ‘no detection’ result is obtained by VI (i.e. when 𝑎 <4.35 mm). 

 

In summary, the posterior optimal decision and VoI are dependent not only on the adopted inspection 

method, but also on the prior optimal decision, which is further dependent on the given intervention 

time and cost ratio. The influences of inspection the method, intervention time and cost ratio shown 

in this paper are in agreement with the discussions in (Zou, González, et al. 2019). 
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5.6 Optimal inspection methods 

 

The detection capacity of the adopted inspection method (characterized by 𝐸(𝑎𝑑)) affects posterior 

life cycle costs 𝐶𝐿
′  , the optimal decision 𝑎𝑜𝑝𝑡

′  , the optimal number of inspections 𝑁𝑖𝑛𝑠  and VoI. For 

example, when 𝑛 = 3 (Table 13) and 𝑐𝑟0 𝑐𝑓0⁄ =1:4, the posterior optimal decisions are (a, -, -), (a, a, -), 

and (a, a, a) when MPI, CVI and VI are adopted respectively, with the optimal number of inspections 

being 𝑁𝑖𝑛𝑠 =1 (MPI), 2 (CVI), 3 (VI), and the VoI=376.7 (MPI), 835.7 (CVI), 652.9 (VI) respectively. 

The influences of the parameter 𝐸(𝑎𝑑) on posterior life cycle costs 𝐶𝐿
′   are twofold: on one hand, the 

parameter determines probability of detection (& repair) and thus expected maintenance costs 𝐶𝑀; on 

the other hand, the parameter 𝐸(𝑎𝑑) affects the lifetime failure risk 𝐶𝐹 inferred from the inspection 

result of no detection. In total, the parameter 𝐸(𝑎𝑑) affects the expected life cycle costs 𝐶𝐿
′ associated 

with the decision ‘a’, and thus affects the posterior optimal decision.  

 

Tables 7-13 however show that VoI from an inspection method with a higher detection capacity (i.e. a 

smaller 𝐸(𝑎𝑑)) can be less. For example, when 𝑛 = 3 (Table 13), under all cost ratios, the VoI is the 

largest when using CVI (𝐸(𝑎𝑑)=2 mm), and smallest when using MPI (𝐸(𝑎𝑑)=0.89 mm). When 𝑛 = 3, 

𝑐𝑟0 𝑐𝑓0⁄ =1:10 and adopting MPI and CVI respectively, the posterior optimal decisions are the same: 

(a, a, -). The 𝐶𝐿
′ is higher when using MPI than CVI (403.7 versus 217.2) and the VoI is smaller when 

using MPI than CVI (674.1 versus 860.6). This can be explained reasonably. When the optimal 

decisions using MPI and CVI are both ‘a’, it means that repair to as-good-as-new condition is the 

optimal decision, when the inspection results (by both MPI and CVI) are crack detection. Since the 

𝐸(𝑎𝑑) of MPI is smaller than CVI, using MPI can lead to a larger probability of repair and higher 

maintenance costs (386.4 versus 182.3), higher posterior life cycle costs 𝐶𝐿
′ (403.7 versus 217.2) and 

thus smaller VoI (674.1 versus 860.6). As per the discussions in Section 4, the VoI depends on 

information utilization in given maintenance decision contexts (given action alternatives). Although a 

crack is more likely to be detected by MPI, this information may not be acted upon appropriately. In a 

two-action decision problem, if (by decision analysis) repair is the optimal decision upon crack 

detection, a higher detection probability (using MPI) leads to higher maintenance costs and smaller 

VoI. Hence, the VoI brought by an inspection method with a high detection capacity can be less, 

depending on specific decision contexts.  

 

Also, it is shown that more inspections can add more or the same value. Table 13 clearly shows that 

when the given max number of interventions is 𝑛=3, the optimal number of inspections is 𝑁𝑖𝑛𝑠=2 in 

most cases, and an inspection scheduled to 𝑡3 = 15 years is unnecessary. When 𝑐𝑟0 𝑐𝑓0⁄ =1:4 and 

MPI is adopted, only one inspection scheduled to 𝑡1 = 5 years adds value to decision-making.  

 

In addition, it is sensible to adopt better inspection methods (with a higher detection capacity) for 
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earlier interventions. Tables 4 - 6 show that when 𝑛 = 1, the inspection methods that bring the largest 

VoI for  𝑡1=5, 10 or 15 years are MPI, CVI and VI respectively. When 𝑛 = 2 (Tables 10 - 12), for early 

maintenance interventions, e.g. the intervention times are (5, 10) years, the VoI by MPI or CVI is the 

largest, while for late interventions, e.g. the intervention times are (10, 15) years, the VoI by VI or CVI 

is the largest. This is because the maintenance strategy ‘a’ is most effective when the detectable crack 

size 𝐸(𝑎𝑑) of the adopted inspection method is close to the cost-optimal repair criterion 𝑎𝑟,𝑜𝑝𝑡, and the 

 𝑎𝑟,𝑜𝑝𝑡 becomes smaller with an earlier intervention time (Zou, González, et al. 2019).  

 

5.7 VoI-based and cost-based optimal inspection times  

 

Table 14. Optimal inspection times by VoI-based 

and cost-based optimization methods  

(𝒏 = 𝟏, 𝒄𝒓𝟎 𝒄𝒇𝟎 = 𝟏: 𝟐𝟓,⁄  VI) 

Table 15. Optimal inspection times by VoI-based 

and cost-based optimization methods  

(𝒏 = 𝟐, 𝒄𝒓𝟎 𝒄𝒇𝟎 = 𝟏: 𝟐𝟓,⁄  MPI) 

 VoI-based 

optimization 

Cost-based 

optimization  

𝑦𝑜𝑝𝑡  (-, -, r) (-, r, -) 

𝐶𝐿 801.6 480.7 

𝑦𝑜𝑝𝑡
′  (-, -, a) (-, r, -) 

𝑡𝑖𝑛𝑠 15  10  

𝐶𝐿
′  505.9 480.7 

𝑉𝑜𝐿 295.7 0 
 

 VoI-based 

optimization 

Cost-based 

optimization  

𝑦𝑜𝑝𝑡  (-, -, r) (-, r, -) 

𝐶𝐿 802.4 480.7 

𝑦𝑜𝑝𝑡
′  (a, -, a) (a, a, -) 

𝑡𝑖𝑛𝑠 (5, 15) (5, 10) 

𝐶𝐿
′  332.8 171.9 

𝑉𝑜𝐿 469.6 308.8 
 

 

  

Figure 12. A comparison of VoI-based and cost-

based inspection timing optimization 

(𝒏 = 𝟏, 𝒄𝒓𝟎 𝒄𝒇𝟎 = 𝟏: 𝟐𝟓,⁄  VI) 

Figure 13. A comparison of VoI-based and cost-

based inspection timing optimization 

(𝒏 = 𝟐, 𝒄𝒓𝟎 𝒄𝒇𝟎 = 𝟏: 𝟐𝟓,⁄  MPI) 

 

The VoI is dependent not only on the posterior optimal decision, but also on the prior optimal decision, 

as per the formulae in Section 3 and discussions in Section 5.5. When inspection times are given, the 



26 
 

prior optimal decision and associated life cycle costs 𝐶𝐿 are specific, the VoI then only depends on 

the posterior optimal decision and associated life cycle costs 𝐶𝐿
′ . In such cases, the obtained optimal 

inspection methods by VoI maximization and (life cycle) cost minimization are the same (Section 5.6).  

 

However, when inspection times are optimization variables, the prior optimal decision and associated 

life cycle costs 𝐶𝐿  are not specific, the obtained inspection times by VoI-based and cost-based (Zou, 

González, et al. 2019) optimization approaches may not be the same. In this section, optimization of 

inspection time(s) is performed by both VoI-based and cost-based approaches, i.e. inspection times 

are optimization variables, rather than given. To narrow the domain of optimization variables, 

inspection times are limited to three discrete values: a) when 𝑛 = 1, possible times are 5, 10 and 15 

years; b) when 𝑛 = 2, possible times are (5, 10), (5, 15) and (10, 15) years.  

 

Table 14 shows the optimal inspection times by VoI-based optimization when 𝑛 = 1, 𝑐𝑟0 𝑐𝑓0⁄ =1:25, and 

using VI, compared to the cost-based optimization method developed in  (Zou, González, et al. 2019). 

The optimal inspection time is 𝑡𝑖𝑛𝑠=15 years (VoI= 295.7, 𝐶𝐿
′=505.9) by VoI-based method and 𝑡𝑖𝑛𝑠=10 

years (VoI= 0, 𝐶𝐿
′ =480.7) by cost-based method. Table 15 compares the optimal inspection times 

obtained by VoI-based and cost-based optimization methods when 𝑛 = 2, 𝑐𝑟0 𝑐𝑓0⁄ =1:25, and using 

MPI. The optimal inspection times are (5, 15) years (VoI= 469.6, 𝐶𝐿
′=332.8) by VoI-based method and 

(5, 10) years (VoI= 308.8, 𝐶𝐿
′=171.9) by cost-based method. Tables 14 & 15 show that the VoI-based 

inspection optimization method can result in inspection times at which the VoI is larger (mainly due to 

higher prior life cycle costs 𝐶𝐿, as can be seen from Figures 12 & 13), but the posterior life cycle costs 

𝐶𝐿
′ are higher than the cost-based inspection optimization method. Such inspection times are optimal 

in terms of inspection efficiency but not optimal in terms of maintenance efficiency. Note that 

inspections are means to collect additional information in support of decision-making and thus focus 

should be placed upon maintenance efficiency, i.e. the life cycle costs 𝐶𝐿
′. Hence, the cost-based 

method is more suitable for optimisation of inspection times.  

 

Tables 16 and 17 provide optimal decisions and inspection times by cost-based method when 𝑛 = 1 

and 𝑛 = 2  respectively under different cost ratios and using different inspection methods, i.e. the 

inspection times leading to the minimum life cycle costs 𝐶𝐿
′ . For example, in Table 17 (𝑛 = 2), when 

𝑐𝑟0 𝑐𝑓0⁄ = 1: 25 and MPI is adopted, the optimum inspection times are (5, 10) years and the optimum 

decision is (a, a, -), which corresponds to the minimum life cycle costs, i.e. 𝐶𝐿
′=171.9. Note that in 

Table 16, when 𝑐𝑟0 𝑐𝑓0⁄ = 1: 10 and different inspection methods are adopted, the prior life cycle costs 

𝐶𝐿 are different, due to different optimal inspection times, not due to different inspection methods. 

When intervention times are specific, the prior optimal decision 𝑦𝑜𝑝𝑡 and associated life cycle costs 𝐶𝐿 

should be independent on the inspection method (as evidence by Tables 7 - 13), because prior 

decision optimization is performed based on existing information without any inspection.  



27 
 

Table 16. Optimal inspection times, decisions, life cycle costs and VoIs  

under different cost ratios and inspection methods (𝒏 = 𝟏) 

𝑐𝑟0 𝑐𝑓0⁄  1:25 1:10 1:4 

𝑚𝑖𝑛𝑠 MPI CVI VI MPI CVI VI MPI CVI VI 

𝑦𝑜𝑝𝑡  (-, r, -) (-, r, -) (-, r, -) (-, r, -) (-, r, -) (-, -, -) (-, -, -) (-, -, -) (-, -, -) 

𝐶𝐿 480.7 480.7 480.7 1077.8 1077.8 1327.2 1327.2 1327.2 1327.2 

𝑦𝑜𝑝𝑡
′  (-, a, -) (-, a, -) (-, r, -) (-, a, -) (-, a, -) (-, -, a) (a, -, -) (-, a, -) (-, a, -) 

𝑡𝑖𝑛𝑠 10 10  No insp. 10 10 15 5 10 10 

𝐶𝐿
′  208.0 144.6 480.7 435.2 251.1 636.6 950.5 518.5 825.9 

𝑉𝑜𝐿 272.2 336.6 0 642.6 826.7 690.6 376.7 808.7 501.3 

 

Table 17. Optimal inspection times, decisions, life cycle costs and VoIs  

under different cost ratios and inspection methods (𝒏 = 𝟐) 

𝑐𝑟0 𝑐𝑓0⁄  1:25 1:10 1:4 

𝑚𝑖𝑛𝑠 MPI CVI VI MPI CVI VI MPI CVI VI 

𝑦𝑜𝑝𝑡  (-, r, -) (-, r, -) (-, r, -) (-, r, -) (-, r, -) (-, r, -) (-, -, -) (-, -, -) (-, -, -) 

𝐶𝐿 480.7 480.7 480.7 1077.8 1077.8 1077.8 1327.2 1327.2 1327.2 

𝑦𝑜𝑝𝑡
′  (a, a, -) (a, a, -) (-, a, a) (a, a, -) (a, a, -) (-, a, a) (-, -, a) (a, a, -) (-, a, a) 

𝑡𝑖𝑛𝑠 (5, 10) (5, 10) (10, 15) (5, 10) (5, 10) (10, 15) 15 (5, 10) (10, 15) 

𝐶𝐿
′  171.9 108.2 147.4 403.7 217.2 304.2 950.5 491.5 696.1 

𝑉𝑜𝐿 308.8 372.5 333.3 674.1 860.6 773.6 376.7 835.7 631.1 

 

When 𝑛 = 1 (Table 16), the optimal inspection time is 𝑡𝑖𝑛𝑠=10 years in most cases. The exceptions 

are: when 𝑐𝑟0 𝑐𝑓0⁄ =1:10 and using VI, the optimal inspection time is 𝑡𝑖𝑛𝑠=15 years; when 𝑐𝑟0 𝑐𝑓0⁄ =1:4 

and using MPI, the optimal inspection time is 𝑡𝑖𝑛𝑠=5 years, and; when 𝑐𝑟0 𝑐𝑓0⁄ =1:25 and using VI, 

there is no need to schedule an inspection. When 𝑛 = 2 (Table 17), the optimal inspection times are 

5 and 10 years in most cases. The exceptions are: when VI is used, the optimal inspection times are 

10 and 15 years under all cost ratios, and; when 𝑐𝑟0 𝑐𝑓0⁄ =1:4 and MPI are used, the optimal inspection 

time is 5 years (i.e. only one inspection adds value to maintenance decision-making).  

 

6 Conclusions 

 

Information contributes to a reduced level of uncertainty, based on which a decision maker (DM) may 

be able to make an improved decision and thus, mitigate the risk of making a wrong decision and 

incurring significant losses. This paper has addressed maintenance planning problem in life cycle 

management of structures against fatigue cracks by a holistic VoI computation method. Rather than 

considering one maintenance intervention, herein a holistic decision on multiple interventions has 

been sought for and a method has been developed to quantify the VoI from multiple inspections in 
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holistic maintenance decision-making. It has been shown that the method is able to capture combined 

effects of a sequence of interventions and dependencies in decisions, i.e. a decision on one 

intervention can affect the decision optimality of other interventions, even prior interventions. 

 

An efficient simplified method for holistic VoI computation has also been proposed based on an 

alignment decision strategy (ADS), which reduces computational costs The simplified method is 

applicable when each inspection adds value and when the number of possible results from one 

inspection is equal to the number of available action alternatives in one intervention. Although the 

results from future inspections are unknown at the time of decision-making, a future inspection can 

provide a categorization of the probabilistic crack size and the likelihood of each category can be 

calculated based on the reliability of the adopted inspection method. Such categorization reduces 

uncertainty on crack size and thus provides additional ‘known’ information to maintenance decision-

making, based on which an improved decision can be derived. This is a new perspective on a future 

inspection and the information provided to present decision-making.  

 

The relationship between VoI and ADS has been discussed, and the simplified VoI computation 

method validated via proof by contradiction. It has been shown that for a well-designed inspection 

system and activity, VoI > 0 and the ADS is the optimal strategy. When the ADS is not optimal, VoI = 

0 or at least part of the inspection activity is of no value, which indicates that there is no need to 

schedule an inspection or that the planned inspection system and activity does not fit given 

maintenance decision contexts and need to be optimised. When VoI = 0, the optimal maintenance 

decision is the same as the prior optimal decision without inspection.  

 

The holistic VoI computation method has been exemplified on a typical fatigue-sensitive structural 

detail in ships. Sensitivities of VoI and optimal decisions to the number of planned interventions, cost 

ratio, inspection time(s), and method(s) have been investigated. It has been shown that it is more 

likely that the ADS is the posterior optimal strategy and VoI > 0 when the number of planned 

interventions is larger. The cause for this finding has been attributed to a larger number of possible 

combinations of action alternatives and higher decision flexibility, when the number of planned 

interventions is larger. This is the first time that decision flexibility has been discussed in maintenance 

planning for engineering structures.  

 

The optimal maintenance decisions obtained by VoI-based method have been checked against the 

cost-optimal repair (crack size) criterion method established in (Zou, González, et al. 2019), and good 

agreements have been found in the derived optimal decisions. The cost-optimal repair criterion can 

be derived based on a given cost ratio and inspection time, while the mean detectable crack size of 

an inspection method represents a repair criterion that can actually be utilized in practice. Whether 

ADS is the optimal decision and whether VoI > 0 depend on how close the mean detectable crack 
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size to the cost-optimal repair criterion.  

 

It has been found that the VoI from an inspection method with a higher detection capacity can be less. 

This is because that an inspection method with a higher detection capacity (e.g. MPI) leads to a higher 

probability of detection, which indicates higher maintenance costs. In addition, it has been found that 

more inspections can bring more or the same value, as some inspections may not add value if not 

well-designed. These findings highlight the importance of VoI computation (to confirm that VoI > 0) 

and VoI based inspection method optimisation. When the costs of an inspection are not negligible, 

the VoI would be slightly smaller than shown in the numerical example, it is likely that VoI = 0 in more 

cases and thus VoI computation is even more important.  

 

The optimal inspection times obtained by VoI-based optimization have been compared with the cost-

based optimization method (Zou, González, et al. 2019). It has been shown that there are cases in 

which the VoI-based method results in inspection times associated with a higher VoI and higher life 

cycle costs. Such inspection times are optimal in terms of inspection efficiency but not optimal in terms 

of maintenance efficiency.  

 

This paper has proposed holistic VoI computation methods to take into account combined effects of 

maintenance interventions and dependencies in the decisions. The methods support holistic 

maintenance planning at an early stage by giving a decision which is optimal from the perspective of 

whole lifetime and ensures the quality of the decision for earlier interventions. The methods have been 

applied to life cycle management of engineering structures and provided some useful conclusions 

and insights in terms of inspection method and time optimization. It is acknowledged that when an 

inspection (or measurement) has been carried out and additional information available, the decision 

for remaining interventions can be updated holistically. The optimal decision for the first intervention 

is ‘a’ (as shown by Tables 10 – 13) in most cases. Thus, if an inspection result is detection and a 

repair is carried out during the first intervention, then the structural system is renewed to initial 

condition, and the remaining service life is shortened. If the structural reliability is high, a probable 

inspection result would be no detection, which indicates a slightly lower failure probability than prior 

prediction. A simplified method has been developed for VoI calculation for certain cases. In future 

work, the cases would be studied in which the numbers of possible inspection results and available 

maintenance methods are not equal. 
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