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INVARIANTS OF DIRECTED SPACES

MARTIN RAUSSEN

1. INTRODUCTION

1.1. Background. With motivations arising originally from concurrency theory within
Computer Science, a new field of research, directed algebraic topology, has emerged.
The main characteristic is, that it involves spaces of ”directed paths” (or timed paths,
executions): these directed paths can be concatenated, but in general not reversed; time
is not reversable. These executions can be viewed as objects themseleves (this is the
point of view of Gaucher, c.f., e.g. [9, 10]) or as elements of subspaces of spaces of paths
in an underlying topological space (with suitable concatenations). We will apply the
latter approach, compare also [14, 7].
Examples of ”directed paths” occur in spaces with a (local) partial order [8] motivated
from Higher Dimensional Automata (HDA) models in concurrency; for these consult
e.g. the recent [20]. Directed paths show the same behaviour (calculations along them
yield the same result) if they are dihomotopic, i.e., if they can be connected through a one-
parameter family of directed paths. Since one cannot reverse directed paths, one can no
longer expect invariants in “reversible structures” like (fundamental) groups etc.; they
will rather live in categories (like the fundamental category and others discussed further
on in this article).
A nice and flexible framework for directed paths was introduced by Marco Grandis
with the notion of d-spaces and, in particular, of d-paths (cf. Def. 2.1) on a topological
space X. In [14] and the subsequent [13], he developed a framework for directed homo-
topy theory. In particular, he proved a van-Kampen theorem for fundamental categories
that allows to do calculations on the (refined) d-homotopy sets (cf. Def. 2.1) of directed
paths. Moreover, in these and more recent papers by Grandis, the methodology was
extended to directed homotopy on general categories.
The objects of a fundamental category consist of all its points; this category is there-
fore a very large tool and not discretized, as is the case with the fundamental group of
a topological space. It was the aim of [7], to divide the underlying space into ”com-
ponents” in a systematic way, so that one only needs to investigate the (dihomotopy
classes of) directed paths between components. The outcome was the component cate-
gory of the fundamental category of a space, with certain generalizations to component
categories of other categories. The approach chosen in [7] had the drawback, that it

The author thanks Institut Mittag-Leffler, Djursholm, Sweden, for its hospitality during his participa-
tion in its Algebraic Topology programme in April 2006, that allowed him to organise the material in this
article.
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2 MARTIN RAUSSEN

involves choices of certain subcategories and thus does not yield the category of compo-
nents. In [11], the authors overcome this dilemma by an additional pullback/pushout
requirement (cf. Def. 4.3) giving rise to unique well-defined component categories. On
the other hand, it is not always clear, how natural this extra requirement is. In partic-
ular, in the presence of loops, this method (and also those of the previous [7]) does not
give satisfying results.

1.2. Aims of this paper. This paper contains several contributions that are linked to
each other. First of all, we begin a systematic study of the topology of spaces of directed
paths and not only of their path components (which are studied via the fundamental
category). To get organized, we need to introduce a zoo of indexing categories, most
prominently the so-called preorder category of a directed space, cf. Section 3.2: Its objects
are pairs of points, reflecting the fact that a directed space is mainly characterized by
the directed paths between a given source and a given target (and the relations between
those). The indexing categories come along with functors to well-known categories
such as the (homotopy) category of topological spaces, homology functors to abelian
groups and so on. Morphisms in the indexing category are then regarded as (weakly)
invertible if they are mapped into isomorphisms by the functor. As a result, one can apply
the localization method leading to components suggested in [7] and modified in [11] to
the indexing category.
Other possibilities of compressing the size of categories and obtaining minor (or even
minimal) models of categories and retaining the essential ”directed information” were
pursued in more recent work of M. Grandis[16, 15] and of S. Krishnan[17]. It is certainly
desirable to compare the various methods and their results in more detail.
In ordinary algebraic topology, topological spaces are considered to have the same
shape if they are homotopy equivalent. It is not clear what the corresponding notion
ought to be for directed spaces, and the obious generalization has very weak proper-
ties with respect to path spaces: corresponding spaces of directed paths are in general
not homotopy equivalent to each other. The ”missing link” is formalized by the no-
tion of an automorphic homotopy flow (Section 5) on a given directed space; such a
homotopy flow produces a family of directed flow lines, but it need not give rise to self-
homeomorphisms. These automorphic homotopy flows can usually only flow within
limited regions; these regions can then be used to give an alternative way to obtain
components and component categories.
Components and component categories are usually not at all preserved under di-
rected continuous maps. We investigate under which conditions at least a directed ho-
motopy equivalence gives rise to equivalent component categories. If a computation of
the component categories of two spaces yields inequivalent results, then they cannot be
directed homotopy equivalent (under an additional coherence condition).

1.3. Outline of the paper. In Section 2 and 3, we extend the toolbox associated to a
directed space from a single tool (the fundamental category) to a kit consisting of sev-
eral related categories and functors reflecting both the underlying path spaces and their
(higher) homotopy and homology. In order to make concatenation associative, we use
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the notion of directed traces (directed paths up to directed reparametrization) investi-
gated in [5]. Path spaces are dipointed (source and target); this is reflected in the (index-
ing) preorder category of a directed space, on which we can define the most important
functors (organising the path spaces, their homology or homotopy groups etc.). In par-
ticular, we ”reorganize” the information contained in the fundamental category through
a functor from the preorder category to Sets as a special case.
Section 4 studies methods of inverting (a collection of) morphisms in the preorder cat-
egory that induce isomorphisms under the functor under investigation. The preorder
setting allows, e.g., to invert a directed path from x to y seen as amorphism between cer-
tain pairs, but not between others; this is quintessential for spaces with loops. System-
atic inversion requires certain extension properties which allow to arrive at component
categories.
In Section 5, we introduce automorphic homotopy flows on a given directed space
and investigate their main properties. This is first applied in Section 6 to the definition
of a dihomotopy equivalence between two given directed spaces; these dihomotopy
equivalences are then shown to induce homotopy equivalences on related spaces of
directed paths.
In Section 7, we describe an alternative way to arrive at components in an organized
way by exploiting automorphic homotopy flows. These homotopy flows lead to invert-
ibles in an extended preorder category that satisfy the extension properties right away.
We show in Section 8, that the component categories from this approach are equivalent
under dihomotopy equivalences satisfying a coherence condition. Finally, we sketch
how these ideas might be generalized from functors on preorder categories to functors
on more general categories.

2. REPARAMETRIZATIONS AND TRACES

2.1. Review on d-spaces. We start with a review of the basic notions, mainly taken
from [14]: Let X denote a Hausdorff topological space, let P(X) = C(I,X) = X I denote
the space of all paths in X, i.e., of all continous maps from the unit interval I into X
equipped with the compact-open topology.

Definition 2.1. [14]

(1) A d-space is a topological space X together with a set ~P(X) ⊆ P(X) of continuous
paths I → X such that

(a) ~P(X) contains all constant paths;

(b) ~P(X) is closed under concatenation;
(c) p ◦ ϕ ∈ ~P(X) for any p ∈ ~P(X) and any continuous increasing (not neces-
sarily surjective, not necessarily strictly increasing) map ϕ : I → I;

(2) Elements of ~P(X) are called d-paths. For x, y ∈ X, ~P(X)(x, y) consists of all d-paths

p ∈ ~P(X) with source x and target y (p(0) = x, p(1) = y).

(3) A continuousmap f : X → Y between two d-spaces is called a d-map if f (~P(X)) ⊆
~P(Y).
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For the oriented unit interval ~I, ~P(~I) consists of the continuous increasing maps ϕ :

I → I. A d-path on X is then a d-map from~I to X.
The product of two d-spaces is a d-space in a natural way. For homotopy purposes,

we will in particular be interested in the products X × I and X ×~I of a d-space X with

the unoriented interval I (~P(I) = P(I)) and the oriented interval~I.

Definition 2.2. (1) A dihomotopy (between d-maps f = H0, g = H1 : X → Y) is a
d-map H : X× I → Y (i.e., each map Ht is a d−map);

(2) A d-homotopy f
H
−→g (from f = H0 to g = H1) in X is a d-map H : X ×~I → Y

(i.e., additionally all paths H(x, t), x ∈ X are d-paths in Y);
(3) Dihomotopy is the equivalence relation defined by (1); d-homotopy is the equiv-
alence relation generated by (2) (as transitive and symmetric closure).

Obviously, d-homotopic maps are dihomotopic; the opposite is in general not true. It
is true, though, for paths in certain cubical complexes [6].

2.2. Reparametrization equivalence. This section reviews the main definitions and re-
sults from [5] concerning continuous reparametrizations of d-paths. A reparametrization
ϕ : I → I is a continuous surjective increasing self-map of the interval I; in particular:
s ≤ t ⇒ ϕ(s) ≤ ϕ(t) and ϕ(0) = 0, ϕ(1) = 1. A regular reparametrization ϕ : I → I
is a reparametrization satisfying s < t ⇒ ϕ(s) < ϕ(t); in other words, it is a self-
homeomorphism of the interval respecting end-points.
Let Rep+(I) denote the topological monoid of all reparametrizations. A topology on
Rep+(I) is induced from the compact-open topology on the space C(I, I) (inherited
from the supremum metric) of all self-maps of the interval. Let Homeo+(I) ⊂ Rep+(I)
denote the topological group of all regular reparametrizations.

The monoid Rep+(I) acts, for all x, y ∈ X, continuously on ~P(X)(x, y) by composition
(on the right). Remark that this action preserves d- and di-homotopy classes.

Definition 2.3. [5] Two d-paths p, q ∈ ~P(X) are called reparametrization equivalent if there
exist reparametrizations ϕ, ψ such that p ◦ ϕ = q ◦ ψ.

Proposition 2.4. [5] Reparametrization equivalence is an equivalence relation, in particular it
is transitive.

Taking quotients with respect to reparametrization equivalence yields a quotient map

qP : ~P(X)(x, y) → ~TP(X)(x, y) := ~P(X)(x, y)/≃; we endow this quotient space with the
quotient topology.

Definition 2.5. [5]

(1) A d-path α : I → X is called regular if it is either constant or if there is no non-
trivial subinterval J ⊂ I on which it is constant.

(2) Let ~R(X)(x, y) ⊂ ~P(X)(x, y) denote the space of all regular d-paths from x to y
with the induced topology.
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Proposition 2.6. [5] Let x 6= y be elements of a d- space X. The action of Homeo+(I) on
~R(X)(x, y) is free.

The group action of Homeo+(I) defines an (orbit) equivalence relation ≃ and a quo-

tient map qR : ~R(X)(x, y) → ~TR(X)(x, y) := ~P(X)(x, y)/≃. We arrive at a commutative
diagram of inclusions and quotient spaces

~P(X)(x, y)
�

� //

qP
��

~R(X)(x, y)

qR
��

~TP(X)(x, y)
i // ~TR(X)(x, y).

Proposition 2.7. [5] The map i : ~TP(X)(x, y) → ~TR(X)(x, y) is a homeomorphism.

The proof in [5] proceeds in three steps: First, we show that every d-path is a repara-
metrization of a regular d-path. This yields surjectivity. Injectivity relies on a factoriza-
tion property for reparametrizations. It is obvious that i is continuous. To see that it is
also open relies on the fact that Homeo+(I) is dense in Rep+(I), cf. [5].

Lemma 2.8. [5] For x 6= y, the quotient map qR : ~R(X)(x, y) → ~TR(X)(x, y) is a weak
homotopy equivalence.

Proof. The free group action yields a fibration with contractible fiber Homeo+(I). �

Remark 2.9. It would be interesting to know whether (or under which conditions) the
quotient map qR from Lemma 2.8 is a genuine homotopy equivalence.

In conclusion, for calculations of homotopy or homology invariants, we can use any

of the spaces ~R(X)(x, y), ~TP(X)(x, y) or ~TR(X)(x, y). In many cases, the conclusion of
Lemma 2.8 holds also for x = y; cf. [5]. In the following, we will use the notation
~T(X)(x, y) for both ~TP(X)(x, y) and ~TR(X)(x, y).

3. THE TRACE CATEGORY AND ITS RELATIVES

In this section, we describe various indexing categories that can be used to organize
the spaces of traces with given source and target. One may note a certain analogy to
various categories (i.e., orbit categories) organising G-spaces in equivariant topology,
cf. e.g. [19].

3.1. The trace category. The trace category ~T(X) of a d-space has the elements of X as

objects; the morphisms from x to y are given by ~T(X)(x, y) – with the topology as a

quotient space of ~R(X)(x, y). Composition on ~T(X) is inherited from concatenation

on ~R(X). The latter is only associative up to reparametrization, just enough to make

composition on ~T(X) associative!
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A d-map f : X → Y between two d-spaces X and Y induces a functor ~T( f ) : ~T(X) →
~T(Y) by composition on the left on morphisms, i.e., ~T( f ) : ~T(X)(x, y) → ~T(Y)( f x, f y)

is given by ~T( f )[ψ] = [ f ◦ ψ].

The fundamental category ~π1(X)[18, 7] arises from the trace category ~T(X) as the cat-
egory of path components, with the dihomotopy relation. Concatenation on the trace
spaces is homotopy invariant and factors over the fundamental category. In particular,
left and right concatenation define maps

Cl : ~π1(X)(x, y) → Mor(~T(X)(y, z), ~T(X)(x, z)) and(3.1)

Cr : ~π1(X)(y, z) → Mor(~T(X)(x, y), ~T(X)(x, z))(3.2)

with morphisms in the homotopy category Ho− Top.

Remark 3.1. The fundamental category in the sense of Grandis[14] is different, since a
d-homotopy between d-paths is not just a path in the space of d-paths – but for our
considerations, everything works if one uses the d-homotopy relation instead of diho-
motopy.

An algebraic counterpart is the homology category ~H(X) with points as objects and

with ~H∗(X)(x, y) =
⊕

n≥0 Hn(~T(X)(x, y);R), the total homology with coefficients in a
ring R. A composition law is then given by a generalization of the Pontryagin-product
for H-spaces, i.e.,

H∗(~T(X)(x, y))× H∗(~T(X)(y, z))
×
→H∗(~T(X)(x, y)× ~T(X)(y, z))

∗
→H∗(~T(X)(x, z)),

where the first map is given by the homological cross-product and the second is induced
by concatenation.

Taking homology of the trace spaces corresponds to functors ~H∗(X) : ~T(X) → ~H∗(X).
A d-map f : X → Y between two d-spaces X and Y induces natural transformations

f∗ : ~H∗(X) → ~H∗(Y) – with group homomorphisms between the morphism groups.
A similar construction can be done for homotopy groups. Define homotopy cate-

gories ~Πn+1(X) with points of X as objects and with
~Πn+1(X)(x, y) := ∐σ∈~T(X)(x,y) ~πn(~T(X)(x, y); σ) with composition law given by

~πn(~T(X)(x, y); σ1)× ~πn(~T(X)(y, z); σ2)
≃
→~πn(~T(X)(x, y)× ~T(X)(y, z); (σ1, σ2))

∗
→~πn(~T(X)(x, z); σ1 ∗ σ2);

the second map is again induced by concatenation. Since homotopy groups – up to
isomorphism – only depend on the connected component of the base point, one can
instead index the coproduct by ~π1(X)(x, y).

3.2. Preorder categories and homology. More useful indexing devices are several vari-

ants of preorder categories ~D(X) of a d-space X. They have all the same objects, but
different morphisms. A d-space X comes equipped with a natural preorder x � y ⇔
~P(X)(x, y) 6= ∅. In all preorder categories, the objects are the pairs (x, y) ∈ X× X with
x � y.
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The morphisms in ~D(X) are ~D(X)((x, y), (x′ , y′)) := ~T(X)(x′, x) × ~T(X)(y, y′) with
composition given by pairwise contra-, resp. covariant concatenation. Remark that ev-

ery morphism (σx, σy) ∈ ~T(X)(x′, x) × ~T(X)(y, y′) decomposes as follows: (σx, σy) =

(cx′ , σy) ◦ (σx, cy) = (σx, cy′) ◦ (cx, σy) with cu ∈ ~T(X)(u, u) the constant trace at u ∈ X.

A d-map f : X → Y induces a functor ~D( f ) : ~D(X) → ~D(Y) with ~D( f )(x, y) =

( f x, f y) and ~D( f )(σx, σy) = (~T( f )(σx),~T( f )(σy)) = ( f ◦ σx, f ◦ σy).

Trace spaces can be organised by the trace space functor ~TX : ~D(X) → Top given

by ~TX(x, y) = ~T(X)(x, y) and ~TX(σx, σy)(σ) := σx ◦ σ ◦ σy ∈ ~T(X)(x′, y′) for σ ∈
~T(X)(x, y). A d-map f : X → Y induces a natural transformation ~T( f ) from ~TX to
~TY.
A ”smaller” homotopical variant is given by the category ~Dπ(X) with the same ob-

jects as above and with ~Dπ(X)((x, y), (x′ , y′)) := ~π1(X)(x′, x)× ~π1(X)(y, y′). It comes

with a functor ~TXπ : ~Dπ(X) → Ho− Top into the homotopy category; a d-map f : X → Y

induces a natural transformation ~Tπ( f ) from ~TXπ to ~TYπ . Together with the (vertical) for-
getful functors, we obtain a commutative diagram

(3.3) ~D(X)
~TX //

��

Top

��
~Dπ(X)

~TXπ // Ho− Top.

The functors ~TX and ~TXπ may be composed with homology functors into categories of
(graded) abelian groups, R-modules or graded rings. In particular, we obtain, for n ≥ 0,

functors ~Hn+1(X) : ~D(X) → Ab with (x, y) 7→ Hn(~T(X)(x, y)) and (σx, σy)∗ given by
the map induced on n-th homology groups by concatenation with those two traces on

trace space ~T(X)(x, y). This functor factors obviously over ~Dπ(X). In the same spirit,
one can define homologywith coefficients and cohomology; a d-map f : X → Y induces

a natural transformation ~Hn+1( f ) : ~Hn+1(X) → ~Hn+1(Y), n ≥ 0.

Remark 3.2. It would be nice to have better theoretical and computational tools concern-
ing the homology of trace (or path) spaces. First steps in this direction will be the subject
of a current master’s thesis.

3.2.1. Preorder endomorphism categories. The effect of self-d-maps f : X → X (from a d-
space X to itself) on the trace spaces is reflected by the preorder endomorphism category
~DE(X): It has the same objects as the category ~D(X), whereas ~DE(X)(x, y)(x′ , y′) :=
{ f : X → X| f a dimap with f (x) = x′, f (y) = y′} and composition is composition of

d-maps. This category organises trace spaces through the functor ~TEX : ~DE(X) → Top

with ~TEX(x, y) := ~T(X)(x, y) and ~TEX( f ) := ~T( f ) : ~T(X)(x, y) → ~T(X)(x′, y′) for

f ∈ ~DE(X)(x, y)(x′ , y′).
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The quotient functor into Ho− Top factors over a category, where the morphisms are
homotopy classes of d-maps with homotopies fixing “end points”. Also these functors
can be composed with homology functors. Remark that these preorder endomorphism
categories are not functorial with respect to d-maps between different d-spaces. We do
not go into details, since it seems to be difficult to obtain localizations (cf. Section 7) with
good properties within these categories.
It is sometimes more significant to restrict the preorder endomorphism category to

one with the same objects, but with fewer endomorphisms: ~DE0(X)(x, y)(x′ , y′) := { f :
X → X| f a dimap d− homotopic to idX with f (x) = x′, f (y) = y′}.

3.3. Factorization categories and higher homotopy. For indexing purposes, that are

finer than those in Sect. 3.2, it is convenient to consider the factorization category F~T(X)[1]

of the trace category ~T(X): The objects of F~T(X) are just the morphisms of the trace

category ~T(X). Moreover, we define

F~T(X)(σxy, σ
′
x′y′) := {(ϕx′x, ϕyy′) ∈ ~T(X)(x′, x)× ~T(X)(y, y′) | σ′x′y′ = ϕyy′ ◦ σxy ◦ ϕx′x};

composition is defined as in Sect. 3.2 above, by restriction.

This category comes with a functor F~TX : F~T(X) → Top∗ into the category of pointed

topological spaces. It associates to σxy the pointed topological space (~T(X)(x, y); σxy).

As in Sect. 3.2, one may consider homotopical variants, a category Fπ~T(X) with pairs of

dihomotopy classes of commuting traces as morphisms and a functor Fπ~TX : Fπ~T(X) →
Ho− Top∗.
The main interest in these categories and fuctors arises after composition with ho-
motopy functors from either Top∗ or from Ho − Top∗ and to arrive at homotopy func-

tors ~π2(X) : F~T(X) → Groups and ~πn+1(X)(σxy) : F~T(X) → Ab, n > 1, given by

~πn+1(X) := πn(~T(X)(x, y); σxy) and the obvious induced maps. These homotopy func-

tors factor over Fπ~T(X). The constructions are again functorial with respect to d-maps.
A dihomotopy between dipaths σ1 and σ2 corresponds to a change of base point in
the same component of the trace space. In particular, the associated homotopy groups
~πn+1(X)(σ1) and ~πn+1(X)(σ2) are isomorphic. Another way to express this fact: Up to
isomorphism, the functor ~πn+1(X) factorizes over the factorization category F~π1(X) of
the fundamental category ~π1(X).

3.3.1. Endomorphism trace categories. Looking at the effect of d-self maps leads to the
consideration of yet another category related to a d-space X. The endomorphism trace

category E~T(X) has the same objects as F~T(X), whereas E~T(X)(σxy, σ
′
x′y′) := { f : X →

X| f a d-map with f (σxy) = σ′x′y′}; equality means of course reparametrization equiva-

lence of representatives. Endomorphism trace categories are not functorial with respect
to d-maps between different d-spaces; they do not seem to enjoy good enough proper-
ties for localization purposes (cf. Sect. 7).
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The significance of endomorphism trace categories arises from the functor E~TX :

E~T(X) → Top∗, which to a d−map f seen as morphism from σxy to σ′x′y′ associates

the pointed map ~T( f ) : (~T(X)(x, y); σxy) → (~T(X)(x′, y′); σ′x′y′). Also this functor can

be composed with homotopy functors.

As before, onemay restrict attention to the category E0~T(X)with E0~T(X)(σxy, σ
′
x′y′) :=

{ f : X → X| f a dimap d− homotopic to idX with f (σxy) = σ′x′y′}.

It is also possible to view these endomorphism trace categories as 2-categories with
points as objects, traces as 1-morphisms and d-self maps as 2-morphisms; it is easy to
check that the interchange law holds.

4. WEAKLY INVERTIBLE SYSTEMS AND COMPONENT CATEGORIES

4.1. Motivation. An example. The article [7] describes a method of ”compressing” in-
formation in a small category by quotienting out a subcategory of so-called weakly in-
vertible morphisms satisfying certain properties. This method has since been refined
in [11] and related to a quotient approach based on general congruences on small cate-
gories that was described earlier in [2].

Definition 4.1. [11] A morphism σ ∈ C(x, y) in a small category C is called Yoneda
invertible if, for every object z of C with C(y, z) 6= ∅, resp. C(z, x) 6= ∅ the maps

C(y, z)
σ◦
−→C(x, z) and C(z, x)

◦σ
−→C(z, y) are bijections.

Yoneda invertible morphisms are at the base of the quotienting process described and
applied to the fundamental category of a d-space in [7, 11]. While these seem to be very
adequate for categories where all isomorphisms are identities (as in d-spaces arising
from a partial order), the presence of loops causes serious problems.

Example 4.2. The simplest example is that of the oriented circle ~S1 with ~P(~S1) consisting
of the counterclockwise paths (arising from non-decreasing paths on the reals under the
exponential map). In this case, for every pair of angles α, β ∈ S1, the trace space (after
dividing out reparametrizations) is the discrete space represented by rotations by angles
β− α + 2kπ, k ∈ Z, k ≥ 0. The trace category and the fundamental category (cf. Section

3.1) agree: ~π1(~S
1)(α, β) = ~T(~S1)(α, β) = {β − α + 2kπ, k ∈ Z, k ≥ 0}. Concatenation

with a rotation by an angle ρ, 0 < ρ < 2π, corresponds to addition of angles and yields
thus maps

~T(~S1)(α, β)
+ρ
−→ ~T(~S1)(α, β + ρ mod 2π) ~T(~S1)(α, β)

ρ+
−→ ~T(~S1)(α− ρ mod 2π, β)

β− α + 2kπ 7→ β− α + ρ + 2kπ β− α + 2kπ 7→ β− α + ρ + 2kπ.

Remark that the addition of ρ is mod 2π on the objects and ”on the nose” on the
morphisms. In particular, for β− α + ρ > 2π, neither of the maps+ρ or ρ+ is surjective.
Given any β ∈ S1 and ρ 6= 0, the morphism +ρ is certainly not a bijection for α = β + ρ

2

and the morphism ρ+ is not a bijection for β = α−
ρ
2 . In conclusion, the only Yoneda
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invertible morphisms in the fundamental category of ~S1 are the identities; nothing is
gained by going over to a quotient category.

As a cure, we will consider the homotopy preorder category ~Dπ(~S1), cf. Section 3.2
of the trace=fundamental category. In this category, the morphism (using analogous

notation) ~Dπ(~S1)(α, β)
ρ+,+σ
−→ ~Dπ(~S1)(α− ρ, β + σ) will be considered asweakly invertible

if and only if β− α + ρ + σ < 2π. Remark that these weakly invertible morphisms form

a closed wide subcategory in the homotopy preorder category of ~S1. To be continued in
Example 4.6.

4.2. Weakly invertible morphisms with respect to a functor. We now present a very
general method of pointing out subcategories of weakly invertible morphisms: Con-
sider a functor F : C → D between two small categories. A morphism σ ∈ C(x, y)
will be called F-invertible if and only if T(σ) ∈ D(Fx, Fy) is an isomorphism in D. Let
CF(x, y) ⊆ C(x, y) denote the set of all F-invertible morphisms from x to y. The col-
lection of all CF(x, y) form a wide subcategory CF of C since the composition of two
F-invertible morphisms obviously is F-invertible again; remark that CF(x, y) contains
the C-isomorphisms.

For example, consider the functor ~TX : ~Dπ(X) → Ho− Top or the functors ~Hn+1(X) :

Dπ(X) → Ab from Sect. 3.2. Amorphism (σx, σy) ∈ ~Dπ(X)((x, y), (x′ , y′) is ~TX-invertible

if and only if ~T(X)(σx , σy) : ~T(X)(x, y) → ~T(X)(x′, y′) is a homotopy equivalence; it is
~Hn+1-invertible if (σx, σy)∗ : Hn(~T(X)(x, y)) → Hn(~T(X)(x′, y′)) is an isomorphism.

In Example 4.2, the weakly invertible morphisms on ~S1 correspond exactly to the T
~S1-

invertible morphisms, which again are the same as the ~H1(~S
1)-invertible morphisms.

4.3. Component categories. Having defined the wide category CF of C, we can proceed
along the lines of [7] or of [11] to arrive at a quotient category identifying objects and
morphisms that are linked to each other by CF-morphisms. In order to get a consistent
construction, it is usually necessary to restrict the morphisms furthermore to a wide
subcategory Σ ⊆ CF ⊆ C:

Definition 4.3. [3, 7, 11] Let Σ ⊆ C denote a wide subcategory of a small category C.
The pair (C,Σ)

LEP/REP: has the left/right extension property LEP/REP if and only if the diagrams

(4.1) x′
τ′ //___ y′ x

τ // y

x

σ

OO

τ // y

σ′

OO�
�
�

x′
τ′ //___

σ′

OO�
�

�

y′

σ

OO

can be filled in with τ′ ∈ C, σ′ ∈ Σ given any τ ∈ C, σ ∈ Σ).
pure: is pure if and only if σ ◦ τ ∈ Σ ⇔ σ, τ ∈ Σ; (and left pure, resp. right pure, if
one can only conclude σ ∈ Σ, resp. τ ∈ Σ.
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SLEP/SREP: has the strong left/right extension property SLEP/SREP if the diagrams
(4.1) can be filled in to yield pushout, resp. pullback squares in C.

Proposition 4.4. [11] LetB denote a wide subcategory of C and suppose that the pair (C, Iso(C))
is pure.

(1) If (C, B) satisfies SLEP and SREP, then (C, B) is pure.
(2) The family of all wide subcategories Iso(C) ⊆ D ⊆ B ⊆ C such that (C,D) satisfies
SLEP and SREP is a complete lattice; in particular, there is a wide subcategory ΣB ⊆ B
such that (C,ΣB) satisfies SLEP and SREP and such that D ⊆ ΣB for all D above.

There are now two possible points of departure from which to obtain a component
category from a wide subcategory Iso(C) ⊆ Σ ⊆ CF ⊆ C:

(1) Σ is a subcategory such that (C,Σ) satisfies LEP/REP and purity; no maximality
ensured.

(2) Σ = ΣCF , the maximal subcategory satisfying SLEP and SREP.

For the convenience of the reader, we include a brief description of the construction
of the component category of C with respect to Σ from [7] starting with the category
of fractions C[Σ−1][3, 7]. The exposition can be simplified since the extension prop-
erties from Def. 4.3 imply that the subcategory Σ admits a left, resp. right calculus of
fractions[3, 7] on mcC. A morphism in this category (with the same objects as those
of C) is a (”zig-zag”)-morphisms of the form σ−1 ◦ τ, resp. τ ◦ σ−1, σ ∈ Σ, τ ∈ C; the
extension properties make sure that the composite of two morphisms can be written in

this ”standard form” again. Morphisms of the form σ−11 ◦ σ2, resp. σ1 ◦ σ−12 , σi ∈ Σ are
the Σ-zig-zag morphisms [7]. The functor F maps Σ ⊆ CF into Iso(D) and can therefore
be extended to a functor F[Σ−1] : C[Σ−1] → D, σ−1 ◦ τ 7→ (F(σ))−1 ◦ F(τ); likewise for
F[Σ−1].
Two objects x, y of C are called Σ-equivalent (x ≃Σ y) if there exists a Σ-zig-zag-
morphism between them. The equivalence classes are called the Σ-components of C; they
are the path components with respect to the Σ-zig-zag morphisms. Moreover, we generate
an equivalence relation on the morphisms of C[Σ−1] by requiring that τ ≃ τ ◦ σ, τ ≃
σ ◦ τ whenever σ ∈ Σ and the composition is defined.
The component category π0(C;Σ) of the preorder category has the Σ-components as
objects; the morphisms from [x] to [y] are the equivalence classes of morphisms in
⋃

x′≃x,y′≃y C[Σ−1]. Two morphisms in π0(C;Σ) represented by τi ∈ C(xi, yi), 1 ≤ i ≤ 2
with y1 ≃Σ x2 can be composed by inserting any Σ-zig-zag-morphism connecting y1
and x2, cf. [7] for details.
Taking equivalence classes results in a functor qΣ : C → π0(C;Σ). By construction,
the functor F : C → D factors over qΣ and the component category to yield a functor
F : π0(C;Σ) → D.
The extension and pureness properties have the following consequences:

Proposition 4.5. (1) ([7], Proposition 5): (Σ,Σ) satisfies LEP/REP.
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(2) ([7], Proposition 3): Given a component C ⊆ ob(C and elements x, y ∈ C. Every
morphism τ′ ∈ C(x′, y′) with x′ ∈ C (resp. y′ ∈ C) is Σ-equivalent to a morphism
τ ∈ C(x,−) (resp. τ ∈ C(−, y)).

(3) Every isomorphism in π0(C;Σ) is an endomorphism.
(4) If τ1 ◦ τ2 ∈ π0(C;Σ)(C,C) is an isomorphism, then the τi, 1 ≤ i ≤ 2. are isomorphisms.

The last property is particularly important: it makes it impossible to leave and then
reenter a component.

Example 4.6. (1) Let X denote the subspace of ~I2 obtained by removing an (open)

isothetic subsquare ~J2, cf. Figure 2. This space is divided into four components
A (below the hole), B,C,D (above the hole). It is easy to see that the trace spaces
~T(X)(x, y), x � y, are homotopy equivalent to a discrete space consisting of two
elements if and only if x ∈ A and y ∈ D and of one element else. Concatenation
with a d-path is a homotopy equivalence unless the d-path crosses one of the
boarders of A, resp. D (the stipled lines in Figure 2.)

It is not difficult to see that the subcategory Σ(~X) ⊆ ~Dπ(X) consisting of pairs
(σx, σy) with source and target in the same of the blocks A, B,C,D maps into

homotopy equivalences under TX and it satisfies SLEP/SREP. As a result, the

component category π0(~Dπ(X);~Σ(X)) can be depicted as follows (e.g., AD is
represented by a trace from a point in A to a point in D):

AA

))RRRRRRRRRRRRRRRR

��3
33

33
33

33
33

33
33

BB

uulllllllllllllllll

����
��

��
��
��
��
��

��

AB

��
AC // AD BDoo

CD

OO

CC

55lllllllllllllllll

EE����������������
DD

YY3333333333333333

iiRRRRRRRRRRRRRRRR

The quadrilaterals from BB and from CC to AD commute, the other two quarilat-
erals do not: there are two essentially different ways to extend a d-path starting
and ending in A to a d-path starting in A and ending in D.

(2) Let ~S1 denote the oriented circle from Example 4.2. Let Σ(~S1) ⊆ ~Dπ(~S1) denote
the wide subcategory consisting of all morphisms

~Dπ~S1(α, β)
ρ+,+σ
−→ ~Dπ~S1(α− ρ, β + σ) with β− α + ρ + σ < 2π;
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these are exactly the morphisms that are mapped to homotopy equivalences un-

der ~T
~S1 . Also in this case, it is easy to see that the pair of categories satisfies

SLEP/SREP – by extending to the maximum of the targets/minimum of the
sources.
The following diagram yields a zig-zag of~Σ(~S1)-paths between arbitrary pairs
of angles (α, β), (γ, δ):

(α, β) (β, δ) (γ, δ)

(β, β)
(+α−β,cβ)

ccHHHHHHHHH

(cβ,+δ−β)
;;vvvvvvvvv

(δ, δ)
(+β−δ,cδ)

ccGGGGGGGGG (+γ− δ,cδ)

;;wwwwwwwww

.

As a result, the component category π0(~Dπ(~S1);~Σ(~S1)) has a single object and a
morphism set in bijective correspondance with the non-negative integers gener-
ated by a single loop +2π.

4.4. Component categories with respect to homotopy equivalences, homology, homo-
topy. Wewill now apply the general construction of a component category from Section
4.3 to the case where C is the homotopy preorder category or the homotopy factoriza-
tion category of a d-space X and F is one of the functors TX, resp. the homology and
homotopy functors considered in Section 3). In both the preorder and the factorization
category, only the identities are isomorphisms. Moreover, the factorization category is
loopfree (This property is essential for the later parts of [11].)
In these cases, CF will be the subcategory consisting of concatenation morphisms that
induce homotopy equivalences, resp. induce isomorphisms on certain homology or ho-
motopy groups.
We will indicate later in Sect. 5 a topologically natural way to ensure LEP/REP. The
delicate point is then to choose a suitable subcategory Σ ⊆ CF satisfying pureness, in
addition. It is not so clear to me how natural it is to require SLEP/SREP (with pureness
as a consequence), and case studies (in particular in spaces/categories with non-trivial
loops) should be performed.
Having chosen a suitable such subcategory ΣF ⊆ CF, we can construct the com-

ponent categories π0(~Dπ(X),ΣF). This leads to a consistent way of identifying pairs

(x, y), (x′, y′) in the preorder category with ~T(X)(x, y), ~T(X)(x′, y′) being homotopy
equivalent, homology equivalent in certain dimensions etc. We obtain factorizations of
the original functors

~TXπ : ~Dπ(X)
qΣT−→π0(~Dπ(X),ΣT)

π0(~T
X
π )

−→ Ho− Top,

~Hn+1(X) : ~Dπ(X)
qΣH−→π0(~Dπ(X),ΣH)

π0(~Hn+1(X))
−→ Ab,

~πn+1(X) : F~Tπ(X)
qΣπ−→π0(F~Tπ(X),Σπ)

π0(~πn+1(X))
−→ Sets/Grps/Ab.
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Remark 4.7. A similar and somewhat simpler situation has been investigated under the
heading ”persistent homology” by G. Carlsson and collaborators, in particular for ap-
plications in the analysis of statistical point cloud data, c.f. e.g. [4, 21]. The indexing
category corresponds to the preorder category of ordinals 1→ 2→ 3→ · · · . A (homol-
ogy) fuctor from this category into k-modules, k a field, is a k[t]-module and splits as
such into irreducible modules of the form Σik[t] or Σik[t]/(tj) of classes that are ”born
at step” i and possibly annihilated after j steps. These are denoted by ”barcodes” with
bars from i to ∞ or to i+ j. In our case, we can have homology classes that are born at

(x, y) (in the cokernel of maps into ~H∗(X)(x, y)) that survive to (x′, y′) and are annihi-

lated at (x′′, y′′) (in the kernel of the map into ~H∗(X)(x′′, y′′)). These births and deaths

are obstructions to invertibility with respect to the functors ~H∗.

5. AUTOMORPHIC HOMOTOPY FLOWS

This section prepares a new definition for directed homotopy equivalences and an
investigation of their properties. Which requirements should a d-map f : X → Y sat-
isfy in order to qualify as a directed homotopy equivalence? Obviously, there should
be a reverse d-map g : Y → X such that both g ◦ f and f ◦ g are d-homotopic to the

resp. identity maps.1 But this is not enough: The (d-path) structures on X and Y ought

to be homotopically related, i.e., the maps ~T( f ) : ~T(X)(x, y) → ~T(Y; f x, f y) should

be ordinary homotopy equivalences – for all x, y with ~T(X)(x, y) 6= ∅ – and that in a
natural way.

Remark 5.1. (1) For the lpo-spaces of [8] one might instead ask, that the ”intervals”
[x, y], resp. [ f x, f y] containing all points between x and y, resp. between f x and
f y are homotopy equivalent.

(2) Compare with the future, resp. past homotopy equivalence from [16]; note also
the coherence requirements there.

This is in general not the case: A first indication for this is that a self-d-map h : X →
X that is d-or di-homotopic to the identity map idX : X → X does not always yield

homotopy equivalences ~T(X)(x, y) → ~T(X)(hx, hy), cf. Example 5.10 below.
To get an idea of what a dihomotopy equivalence should satisfy – and also for a sug-
gestion on subcategories related to components, one needs to understand d-homotopies
of the identity idX of a d-space X.

Definition 5.2. (1) A d-map H : X × ~I to X is called a future homotopy flow, if
H0 = idX and a past homotopy flow, if H1 = idX .

(2) The sets consisting of all future homotopy flows, resp. of all past homotopy flows

will be denoted by ~P+C0(X,X), resp. by ~P−C0(X,X).

1One may moreover ask for future/past homotopy equivalence as in [16]; note also the coherence
requirements in that paper.
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Homotopy flows (and the later refinements) generalise the concept of a flow on a
differentiable manifold. We do not require that the maps H(−, t) : X → X are homeo-
morphisms. The orbits of a flow have the following counterpart: For every x ∈ X, the

map Hx : ~I → X, t 7→ H(x, t) is a d-path (with Hx(0) = x, resp. Hx(1) = x. Evaluation
at x ∈ X defines maps

(5.1) evx+ : ~P+C0(X,X) → ~T(X)(x,−), resp. evx− : ~P−C0(X,X) → ~T(X)(−, x).

A maximal element x+ ∈ X – with the constant path as the only d-path with source x+
– will be fixed under a future homotopy flow, likewise a minimal element under a past
homotopy flow.
Remark that future homotopy flows can be pieced together in various natural ways:

(5.2) (H1 ∗ H2)(x, t) =

{

H1(x, 2t), t ≤ 1
2

H2(H1(x, 1), 2t− 1), t ≥
1
2 ,
resp. (H1�H2)(x, t) = H2(H1(x, t), t).

Similarly for past homotopy flows. In particular, if f , g : X → X are future, resp. past
d-homotopic to idX , then their compositions f ◦ g : X → X and g ◦ f : X → X are so, as

well; they form thus sub-monoids of the monoid ~C(X,X) of all self-d-maps of X. Like-
wise for traces of past/future homotopy flows (quotienting out ”global” reparametriza-
tions).
Homotopy flows induce several interesting maps on trace spaces: Let H+,H− : X ×

~I → X denote d-homotopies idX → f , resp. g → idX . These d-homotopies define, for
every x ∈ X the d-paths H±x from x to f x, resp. from gx to x. For reasons to be explained
in Rem. 5.7 below, we need moreover to consider restrictions of the homotopies and
their effect on trace spaces: for every s ∈ I, there is a (restricted ) d-homotopy Hs± : X×
~I → X,Hs±(x, t) = H±(x, st) with associated d-paths Hs±x from x to H+(x, s), resp. from
H−(x, s) to x. As explained in Sect. 3, the maps Hs±,H

s
+y,H

s
−x induce maps on trace

spaces, that are linked to each other by the following homotopy commutative diagrams:

(5.3)

~T(X)(x, y)

~T(Hs+)

��

~TX (cx,Hs+y)

**TTTTTTTTTTTTTTTT
~T(X)(x, y)

~T(Hs−)

��

~TX(Hs−x,cy)

**TTTTTTTTTTTTTTTT

~T(X)(x,H+(y, s)) ~T(X)(H−(x, s), y)

~T(X)(H+(x, s),H+(y, s))

~TX(Hs+x,cH+(y,s))

44jjjjjjjjjjjjjjj
~T(X)(H−(x, s),H−(y, s))

~TX(cH−(x,s) ,H
s
−y)

44jjjjjjjjjjjjjjj

(The maps ~TX(−,−) are defined in Sect. 3.2 and arise from concatenation). Commuta-
tivity in the diagram is a consequence of a more general

Lemma 5.3. A d-homotopy H : X × ~I → Y induces, for every object (x, y) in ~D(X), a

d-homotopy H̄(x, y) : ~T(X)(x, y) × I → ~T(Y)(H(x, 0),H(y, 1)) between H̄0(x, y)(σ) =
H(σ, 0) ∗ H(y, t) and H̄1(x, y)(σ) = H(x, t) ∗ H(σ, 1).
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A similar construction has been used in [6].

Proof. Consider the d-map K : ~I2 → ~I2 given by

K(s, t) =











(0, 3st) for t ≤ 1
3

(3t− 1, s) for 13 ≤ t ≤
2
3

(1, 3(t+ s− st))− 2 for 23 ≤ t,

cf. Figure 1. Remark that K(s, 0) = (0, 0),K(s, 1) = (1, 1), s ∈ I, and that K(0, t),K(1, t)
are parametrizations of the two d-paths connecting (0, 0)with (1, 1) along the boundary

∂~I2 of~I2.

FIGURE 1. The path K(12 , t)

Composition H ◦ K defines a d-homotopy (with fixed boundary) connecting a repa-
rametrization of H̄0(x, y)(σ) to a reparametrization of H̄1(x, y). �

Definition 5.4. A future/past homotopy flow H : X×~I → X is called

(1) automorphic if, for all x, y ∈ X with ~T(X)(x, y) 6= ∅ and all s ∈ I, the maps
~T(Hs+), resp. ~T(Hs−) (vertical in (5.3)) are homotopy equivalences;

(2) The sets consisting of all automorphic future/past homotopy flows will be de-

noted by ~P±Aut(X).
(3) A self-d-map f : X → X is called a future/past-automorphism if there ex-
ists an automorphic future/past homotopy flow between f and the identity on
X. The set of all future/past-automorphisms on X will be denoted Aut∗(X) ⊆
~C(X,X), ∗ = +,−.

Remark 5.5. (1) In particular, the maps

~T( f ) : ~T(X)(x, y) → ~T(X)( f x, f y) resp. ~T(g) : ~T(X)(gx, gy) → ~T(X)(x, y)

are homotopy equivalences.
(2) Using the concatenation ∗ of homotopy flows from (5.2), it is obvious that auto-

morphisms form submonoids of ~C(X,X).
(3) The definitions above come close to that of a flow on a manifold. But remark
again, that the maps H(−, t) :→ X are not required to be homeormorphic; in
particular, they will in general not be invertible.
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Lemma 5.6. Let H denote a future/past homotopy flow on X.

(1) If all (skew) concatenation maps in (5.3) are homotopy equivalences, then H is automor-
phic.

(2) Let H be automorphic. If one of the (skew) concatenation maps in (5.3) is a homotopy
equivalence, then the other is as well.

Proof. Immediate from (5.3). �

Remark 5.7. It is in general not enough to ask that the maps induced by the entire d-
homotopy H in (5.3) are homotopy equivalences. In general, one cannot conclude that
the maps induced by Hs are homotopy equivalences, as well. We need that finer re-
quirement crucially in the discussion of components in Sect. 7.

Remark 5.8. In the undirected case, it is unnecessary to ask homotopies to be automor-
phic : if x, y, x′, y′ ∈ X are in the same path-component of a topological space, then the
sets of paths P(X)(x, y) and P(X)(x′, y′) are always homotopy equivalent to each other.

One may also study the effects of the maps induced by a homotopy flow under the

homology, resp. homotopy functors from Sect. 3 (n > 0 and ~T(X)(x, y) 6= ∅):
(5.4)

~Hn+1(X)(x, y)

~T(Hs+)∗

��

~TX (cx ,H
s
+y)∗

**TTTTTTTTTTTTTTT
~Hn+1(X)(x, y)

~T(Hs−)∗

��

~TX (Hs−x ,cy)∗

**TTTTTTTTTTTTTTT

~Hn+1(X)(x,H+(y, s)) ~Hn+1(X)(H−(x, s), y)

~Hn+1(X)(H+(x, s),H+(y, s))

~TX (Hs+x ,cy)∗

44jjjjjjjjjjjjjjj
~Hn+1(X)(H−(x, s),H−(y, s))

~TX (cx ,Hs−y)∗

44jjjjjjjjjjjjjjj

and
(5.5)

~πn+1(X)(σxy)

~T(Hs+)#

��

~TX(cx,Hs+y)#

))SSSSSSSSSSSSSSS
~πn+1(X)(σxy)

~T(Hs−)#

��

~TX(Hs−x,cy)#

))SSSSSSSSSSSSSSS

~πn+1(X)(σxy ∗ Hs+y) ~πn+1(X)(Hs−x ∗ σxy)

~πn+1(X)(Hs+σxy)

~TX(Hs+x,cy)#

55kkkkkkkkkkkkkkk

~πn+1(X)(Hs−σxy)

~TX(cx,Hs−y)#

55kkkkkkkkkkkkkkk

An automorphic homotopy flow induces bijections/group isomorphisms ~T(Hs)∗ on
~H∗(X), resp. ~T(Hs)# on ~π∗(X). Sometimes, a weaker requirement can do (and will be
used in Sect.7):

Definition 5.9. (1) A homotopy flow is said to be automorphic up to homology, if it
induces isomorphisms on all relevant homology groups in (5.4).
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FIGURE 2. The po-spaces X and S from Ex. 5.10 and L from Ex. 6.3

(2) A homotopy flow is said to be automorphic up to homotopy/homology in or
up to a fixed dimension k if it induces isomorphisms on all homotopy/homology
sets/groups in (5.5)/(5.4) in or up to dimension k.

(3) Spaces of such homotopy flows are denoted by an additional decoration, we

write e.g. ~P±AutH≤k (X).

Again, maps that are future/past d-homotopic to the identity by a d-homotopy satis-

fying one of the requirements above, form a submonoid of ~C(X,X).

Example 5.10. (1) Let X denote the d-space (square with a hole) from Ex. 4.6. A
future homotopy flow will always preserve A and D, but it may move elements
of both B, resp. C into D. An automorphic future homotopy flow does not allow

this: Let f : X → X denote a d-map, x, f x ∈ A, y ∈ B, f y ∈ D. Then ~T(X)(x, y)

is contractable whereas ~T(X)( f x, f y) consists of two path-components. Hence,
there cannot exist an automorphic future homotopy flow H : idX → f .

(2) Let S denote the “Swiss flag” po-space[8], cf. the drawing in the middle of Fig. 2.
By a combination of a future and a past homotopy flow, the identity on S is d-
homotopic to a map that sends X to the 1-skeleton of the outer square; the area
Y1 and in particular the ”deadlock” d will be sent to the minimal element x0.
But the dihomotopies involved are not automorphic. It is important for appli-
cations in concurrency theory that the Swiss-flag space and its outer boundary
should not be considered as equivalent: Deadlocks should not disappear under
an equivalence!

6. DIHOMOTOPY EQUIVALENCES

6.1. Definitions.

Definition 6.1. (1) A d-map f : X → Y is called a future dihomotopy equivalence if
there exist d-maps f+ : X → Y, g+ : Y → X such that f , f+ are d-homotopic and
automorphic d-homotopies HX : idX → g+ ◦ f+ on X and H

Y : idY → f+ ◦ g+ on
Y.
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(2) The d-map f : X → Y is called a past dihomotopy equivalence if there exist d-maps
f− : X → Y, g− : Y → X such that f , f− are d-homotopic and automorphic d-
homotopies HX : g− ◦ f− → idX on X and H

Y : f− ◦ g− → idY on Y.
(3) The d-map f is called a dihomotopy equivalence if it is both a future and a past
dihomotopy equivalence.

Remark 6.2. (1) The requirements in Definition 6.1 above should be seen as a require-
ment to a d-homotopy class of dimaps from X to Y.

(2) Example 5.10 shows that we ask for more than just the existence of an inverse up
to d-homotopy.

(3) Only the essential extra (automorphism) requirement allows to arrive at valuable
conclusions regarding effects on the trace, fundamental, homotopy and homol-
ogy categories; cf. Prop. 6.4 below.

(4) A similar requirement is unneccessary in the classical undirected case; cf. Remark
5.8.

(5) Our definition above is related to the definition of a faithful future, resp. past
equivalence in the work of Grandis[16] between (general) categories. For a cate-

gory like the fundamental category C = ~π1(X) or the trace category C = ~T(X),
faithfulness amounts to asking that the map induced by right concatenation with
HXy from C(x, y) to C(x, g f y) is epi and monowithin the category C. This require-
ment has nice consequences (cf. the Cancellation Lemma 2.2 in [16], which re-
quires an extra coherence condition), but it is restricted to what can be seen from
within the category C. Our requirements are expressed with respect to a functor

(e.g., ~TX) to a different category (e.g. Ho− Top).
(6) An argument similar to that used for p f -equivalences in [16], Section 3, shows
that the ”homotopy inverses” g+, g− of a dihomotopy equivalence are d-homo-
topic to each other: g− 7→ g+ ◦ f+ ◦ g− (by HX+), g+ ◦ f+ ◦ g− is d-homotopic to
g+ ◦ f− ◦ g−, and g+ ◦ f− ◦ g− 7→ g+ (by HY−). Another d-homotopy is given by
g− 7→ g− ◦ f+ ◦ g+ ≃ g− ◦ f− ◦ g+ 7→ g+. Grandis requires f = f+ = f− and, for
coherence, that the two compositions above agree.

Example 6.3. Here is a simple example of a past dihomotopy equivalence that is not fu-
ture: Let L denote a ”branching” po-space (a subspace of Euclidean space with induced
partial order and hence d-space structure) in the shape of the letter L with base point ∗
as its lower left vertex, cf. drawing in Fig. 2 on the right.
Inclusion i : {∗} → L and the constant map c : L → {∗} satisfy c ◦ i = id∗; moreover,
there is an (increasing) dihomotopy i ◦ c→ idL. But for nomap i+ : {∗} → L does there
exist an (increasing) dihomotopy idL → i+ ◦ c. Another way to phrase this is: The space
L is past contractible, but not future contractible. Compare [14]. It is crucial for applications
in concurrency that dihomotopy equivalence distinguish between a branching and a
non-branching space.
In general, a d-spacewithmore than one localmaximum cannot be future contractible;
if it has more than one local minimum, it cannot be past contractible.
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6.2. Properties of dihomotopy equivalences.

Proposition 6.4. The natural transformation ~Tπ( f ) : ~TXπ → ~TYπ induced by a (past or future)
dihomotopy equivalence f : X → Y between d-spaces X and Y is an equivalence, i.e., the

induced maps ~T( f )(x, y) : ~T(X)(x, y) → ~T(Y)( f x, f y) are homotopy equivalences.

Proof. By abuse of notation, wewrite f , g instead of f+, g+, resp. f−, g− in the following.
In the diagram

~T(X)(x, y)
~T( f )

// ~T(Y)( f x, f y)
~T(g)

// ~T(X)(g f x, g f y)
~T( f )

//

I
ii

~T(Y)( f g f x, f g f y),
J

jj

let I denote a homotopy inverse to ~T(g) ◦ ~T( f ) and let J denote a homotopy inverse

to ~T( f ) ◦ ~T(g). Then ~T(g) has a homotopy right inverse ~T( f ) ◦ I and a homotopy left

inverse J ◦ ~T( f ). By general nonsense, the right homotopy inverse and the left homo-

topy inverse are homotopic to each other, and thus ~T(g) is a homotopy equivalence.

Since ~T(g ◦ f ) = ~T(g) ◦ ~T( f ) is a homotopy equivalence by definition, the map ~T( f ) is
a homotopy equivalence, as well. �

Example 6.5. The ”Swiss flag” space S cannot be dihomotopy equivalent to a graph G:
With reference to the middle drawing in Fig. 2, assume f : S → G is a dihomotopy
equivalence. By Prop. 6.4, there are unique directed paths ρy : f x0 → f y (from f x0 to
f y), ρz : f x0 → f z, σy : f y→ f d, σz : f y→ f d, τy : f y → f x1, τz : f z→ f x1 and

(6.1) ρy ∗ σy = ρz ∗ σz, ρy ∗ τy 6= ρz ∗ τz.

There is only one directed connection from f x0 to f d in G. Hence, we can assume
without restriction of generality, that ρy is a ”prefix” of ρz, i.e., there exists ρyz : f y→ f z
such that ρz = ρy ∗ ρyz. But then ρz ∗ τz = ρy ∗ ρyz ∗ τz = ρy ∗ τy. This contradicts (6.1)!

As in [16], a future dihomotopy equivalence gives rise to ”adjunction” maps induced
by the homotopy flows HX ,HY from Definition 6.1 above; in the following, we shall
write f , g instead of f+, g+, f−, g−:

(6.2) HX : ~T(Y)( f x, y)
~T(g)
−→~T(X)(g f x, gy)

~TX (H+x,cgy)
−→ ~T(X)(x, gy), α 7→ H+x ∗ gα,

(6.3) HY : ~T(X)(gy, x)
~T( f )
−→~T(Y)( f gy, f x)

~TY (H+y,c f x)
−→ ~T(Y)(y, f x), β 7→ H+y ∗ f β.

For past equivalences, the respective maps are given by α 7→ gα ∗ H−x, resp. β 7→

f β ∗ H−y. These maps are homotopy equivalences if and only if the maps ~TX(H+x, cgy)
are homotopy equivalences.
Ruture and past dihomotopy equivalences behave well under composition:

Proposition 6.6. The composition g ◦ f : X → Z of (future or past) dihomotopy equivalences

X
f
→Y

g
→Z is again a (f/p) dihomotopy equivalence.
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Proof. Let Z
g′

→Y
f ′

→X denote homotopy inverses to f , resp. g, and let HX : idX → f ′ ◦ f
and HY : idY → g′ ◦ g denote strictly automorphic d-homotopies. By a slight abuse of
notation, let f ′ ◦ HY ◦ f : f ′ ◦ f → f ′ ◦ g′ ◦ g ◦ f denote the induced d-homotopy on X.

The composition H̄ : idX
HX
→ f ′ ◦ f

f ′◦HY◦ f
−→ f ′ ◦ g′ ◦ g ◦ f is a homotopy flow; we have to

show that it is automorphic. The ”levels” H̄s of H̄ are either of the form H
X
s – which

induce homotopy equivalences by definition – or of the form f ′ ◦ HYs ◦ f .

Let I : ~T(X)( f ′ f x, f ′ f y) → ~T(X)(x, y) denote a homotopy inverse to ~T( f ′) ◦ ~T( f ), let

J : ~T(Y)( f f ′ f x, f f ′ f y) → ~T(Y)( f x, f y) denote a homotopy inverse to ~T( f ) ◦ ~T( f ′), and

let Ks : ~T(Y)(HYs ( f x), f HYs ( f y)) → ~T(Y)( f x, f y) denote a homotopy inverse to ~T(HYs ).

Then ~T( f ′) ◦ ~T(HYs ) ◦ ~T( f ) has homotopy right and left inverses:

• (I ◦ ~T( f ′) ◦ Ks ◦ J ◦ ~T( f )) ◦ (~T( f ′) ◦ ~T(HYs ) ◦ ~T( f )) ≃ id on ~T(X)(x, y);

• (~T( f ′) ◦ ~T(HYs ) ◦ ~T( f )) ◦ (~T( f ′) ◦ J ◦ Ks ◦ ~T( f ) ◦ I) ≃ id on ~T(X)(x, y),

which have to agree by general nonsense. �

7. AUTOMORPHIC HOMOTOPY FLOWS AND COMPONENTS

7.1. Motivation. The localization construction from Section 4 has a drawback: It is in
general difficult to get hold on a (preferably large) subcategory Σ of the original category
that both maps into isomorphisms and satisfies the extension properties (and hopefully
also pureness). The construction in [11] focussing on the strong extension properties is
categorically very satisfactory, but it is not clear that the resulting category will be ”large
enough” to yield satisfactory compression.
The construction below is of a more ”geometric nature” and uses the automorphic ho-
motopy flows introduced in Section 5. On the positive side, the (non-strong) extension
properties follow right away. Moreover, the set-up is very much related to the dihomo-
topy equivalences from Section 6, a fact that will be exploited in the final section 8. On
the negative side, it seems not to be possible to prove that the resulting subcategory is
pure and Prop. 4.5.(4) need not always be satisfied: the associated component category
can therefore have isomorphisms that split into non-isomorphisms (which may leave
component of the start point).

7.2. The extended preorder category. We extend the preorder category ~Dπ(X) to a cat-

egory ~D
Aut+
π (X) with the same objects but with more morphisms. The morphisms in

this new category are generated by those from the previous and additionally by mor-
phisms f (x, y) from (x, y) to ( f x, f y) for every f ∈ Aut(X+) and every x � y subject
to the following relations (compare (5.3) for every automorphic future homotopy flow
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H+, resp. every past homotopy flow H−):

(7.1) ( f x, f y)
(c f x, fσ)

// ( f x, f z) ( f x, f y)
( f τ,c f y)

// ( f u, f y)

(x, y)

f (x,y)

OO

(cx,σ)
// (x, z)

f (x,z)

OO

(x, y)

f (x,y)

OO

(τ,cy)
// (u, y)

f (u,y)

OO

for σ ∈ ~T(X)(y, z), τ ∈ ~T(u, x), and

(7.2) (x, y)

H+(x,y)

��

(cx,H+y)

((QQQQQQQQQQQQQQ
(x, y)

H−(x,y)

��

(H−x ,cy)

((QQQQQQQQQQQQQQ

(x,H+(y)) (H−(x), y)

(H+(x),H+(y))
(H+x ,cH+(y))

66mmmmmmmmmmmmm

(H−(x),H−(y))
(cH−(x) ,H−y)

66mmmmmmmmmmmmm

for a an automorphic future homotopry flow H+, resp. a past homotopy flow H−.

By abuse of notation, we let Aut+(X) denote the wide subcategory of ~DAut+π (X) with
morphisms stemming from automorphisms alone; this is in fact a subcategory, since
Aut+(X) is closed under concatenation. There is an obvious variant Aut−(X) giving

rise to an extended preorder category ~D
Aut−
π (X). Considering future and past homo-

topy flows simultaneously leads to the category Aut(X)withmorphisms ( f+, f−)(x, y) :

(x, y) → (x′, y′)with f+(x) = x′, f+(y) = y′, f−(x′) = x, f−(y′) = y such that ~T( f− f+) ≃

id on ~T(X)(x, y) and ~T( f+ f−) ≃ id on ~T(X)(x′, y′). The remainig part of this section are
formulated for Aut(X), but most of it applies also for the future, resp. past versions.

Proposition 7.1. (1) Every element of ~D
Aut+
π (X) can be written in the form c ◦ f with c a

morphism in the preorder category and f ∈ Aut(X).

(2) Within ~DAutπ (X), the subcategory Aut(X) satisfies LEP/REP with respect to ~Dπ(X)
– explanation in the proof.

(3) The functor ~TX : ~Dπ(X) → Ho − Top extends to ~DAutπ (X) and maps Aut(X) into
isomorphisms.

Proof. (1) Successive application of (7.1) applied to a ”mixed” morphism.

(2) For f+ ∈ Aut+(X), f− ∈ Aut−(X), τ ∈ ~T(X)(x, y), we can fill in extension dia-
grams as follows:

( f+x, f+y)
(c f+x, f+τ)

//___ ( f+x, f+y′) (x, y)
τ // (x, y′)

(x, y)

f+(x,y)

OO

(cx,τ)
// (x, y′)

f+(x,y′)

OO�
�
�

( f−x, f−y)

f−(x,y′)

OO�
�
�

(c f−x, f−τ)
//___ ( f−x, f−y′).

f−(x,y)

OO
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(3) ~TX maps f (x, y) : (x, y) → ( f x, f y) into the homotopy equivalence ~T( f )(x, y) :
~T(X)(x, y) → ~T(X)( f x, f y). The relations in (7.1,7.2) are respected.

�

Remark 7.2. The coherent automorphisms (cf. Definition 7.6) satisfy LEP/REP with re-

spect to all of ~DAutπ (X).

7.3. Category of fractions and components. Now we construct a component category

from the pair (~DAutπ (X), Aut(X)) along the outline from Section 4.3. Since Proposition
7.1(2) only leads to solutions of extension properties with respect to the subcategory
~Dπ(X), elements of the category of fractions ~DAutπ (X)[Aut(X)−1 ] will in general have a
normal form of the type c ◦ g with g = g1 ◦ h

−1
1 ◦ · · · ◦ gn ◦ h−1n ∈ Aut(X)−1. Still, the

component category π0(~D
Aut
π (X), Aut(X)) is well-defined, coming with a factorization

~Tπ(X) : ~DAutπ (X)
qAut
−→π0(~D

Aut
π (X), Aut(X))

π0(~Tπ(X))
−→ Ho− Top.

More serious is the following fact: Morphisms in the original preorder category ~Dπ(X)
can contribute to the isomorphisms in the category of fractions: For example, assume

that h = g ◦ f ∈ Aut(X),H : idX → g with g f x = f x and τ = H f y ∈ ~T( f y, g f y = hy).

Then h(x, y) = (c f x, τ) ◦ f (x, y) and hence (c f x, τ) = h(x, y) ◦ f (x, y)−1 is an isomor-

phism with inverse f (x, y) ◦ h(x, y)−1.

The pureness condition can be decided within the preorder category ~Dπ(X): Let
Inv(Dπ(X)) denote the pullback subcategory in the diagram

Aut(X)−1

��
~Dπ(X) // ~DAutπ (X)[Aut(X)−1 ]

.

It is easy to check that

Lemma 7.3. (~DAutπ (X)[Aut(X)−1], Aut(X)−1) is pure if and only if (~Dπ(X), Inv(Dπ(X)))
is pure. If this is the case, isomorphisms in the component category can only split up into
isomorphisms.

If the construction above does not result in a pure subcategory, the biggest subcate-
gory of Aut(X)−1 satisfying SLEP/SREP will yield one, but there will in general be no
control of its size.
The approach above will (for Aut(X), not necessarily for Autpm(X)) lead to particular
components containing only elements in the diagonal as objects; both a future flow and
a past flow preserve the diagonal.

Example 7.4. Using the approach described above yields almost the same component

categories for the spaces X and ~S1 from Example 4.6 as depicted previously.
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X: Every future homotopy flow preserves A, since its maximum is a fixed point;
likewise, every past homotopy flow preserves D. No flow line can ever connect a

point in B to a point in C. For x � y, the trace spaces ~T(X)(x, y) are contractable
unless x ∈ A and y ∈ B, in which case the trace space has two contractable com-
ponents. It is not difficult to construct (piecewise linear) automorphic homotopy
flows with flow lines connecting any two x � y from a given ”component”. As a
result, we get additional initial components ∆A,∆B,∆C,∆D, that have to be taken
from the components AA etc.

~S1: The component category has two objects: the diagonal ∆ in the torus S1 × S1

and its complement T′, the torus with the diagonal deleted. To see that pairs
(αi, βi), i = 1, 2 are connected within Aut(X), note that a rotation (in Aut(X))
connects (α1, β1) to (α2, β1 + (α2 − α1)), which is connected to (α2, β2) by an au-
tomorphism that inflates/deflates the arc starting at α2 and its complement.
The category has morphisms a : ∆ → ∆, b : T′ → T′, c : ∆ → T′, d : T′ → ∆ with
dc = a and cd = b.

Remark 7.5. The set-up goes through without major changes if one replaces automor-
phisms by automorphisms up to homology/homotopy in a given range of dimensions.

7.4. Naturality issues. As discussed earlier [12, 18, 7], a general d-map does in gen-
eral not preserve components. Some coherence with the automorphic flows on the two
spaces is needed.

Definition 7.6. (1) A d-map f : X → Y is called coherent if, for every pair x � y
and every morphism F(x, y) ∈ Aut(X)((x, y), (Fx, Fy)) there exists a morphism
G ∈ Aut(Y)−1(( f x, f y)( f Fx, f Fy)).

(2) f is called strongly coherent if, for every strictly automorphic past/future homo-
topy flow H on X, there is a strictly automorphic homotopy flowH̄ on Y solving
the diagram

X
f

// Y

X×~I

H

OO

f×idI

// Y×~I.

H̄

OO�
�
�

It is in general not easy to check for coherence unless one already knows the compo-
nents of the two spaces. On the other hand, strong coherence (which applies coherence)
is more rare, but it is, e.g., satisfied for certain inclusion maps. As a direct consequence
of the definitions, we obtain

Proposition 7.7. A coherent d-map f : X → Y satisfies ~TX( f )(Aut(X)) ⊆ Aut(Y)−1.
Hence it maps components of X into components of Y and induces a functor

f# : π0(~D
Aut
π (X); Aut(X)) → π0(~D

Aut
π (Y); Aut(Y)).

�
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8. COMPONENTS AND DIHOMOTOPY EQUIVALENCES

In the following, we collect what we know about the behaviour of dihomotopy equiv-
alences on components. There are many examples of d-maps (e.g. , inclusions, cf. [12])
that do not respect components (with respect to whatever equivalence relation). It is not
clear from the definitions either whether a dihomotopy equivalence always does; one
needs to impose weak coherence (Definition 8.6) as an extra requirement; we will show
that weakly coherent dihomotopy equivalences give rise to isomorphic component cat-
egories.

8.1. Homotopy flows and components. We start by considering the effects of strictly
automorphic d-homotopies H1 : idX → h1, resp. H2 : h2 → idX on the components
of a d-space X with respect to the subcategory Aut(X). The following result follows
immediately from the definitions:

Lemma 8.1. (1) The pairs (h2(x), h2(y)) 7→ (x, y) 7→ (h1(x), h1(y)) are contained in the

same component for every object (x, y) in ~Dπ(X).

(2) For h = hi, i = 1, 2, the morphisms τ ∈ ~Dπ(X)((x, y), (x′ , y′)) and

(h ◦ τ) ∈ ~Dπ(X)((hx, hy), (hx′ , hy′)) are equivalent for every morphism τ in the pre-
order category.

(3) h induces the identity on the component category π0(~D
Aut
π (X); Aut(X)).

Analogous results hold for the other component categories considered in Section 7.

8.2. Dihomotopy equivalences and components. In order to phrase our first result
concerning dihomotopy equivalences, we make use of

Definition 8.2. Let Y′ ⊂ Y denote a (non-empty) subset of a d-space Y. Y′ is called dense

if for every pair (x, x′) in ~D(Y) there is a pair (y, y′) in ~D(Y′) with (x, x′) �D (y, y′).

Remark 8.3. The definition corresponds in fact to denseness in an appropriate order
topology.

In the following, we consider components with respect to Aut(X) ⊆ ~DAutπ (X).

Proposition 8.4. Let f : X → Y denote a dihomotopy equivalence. Then

(1) The intersection of the image f (~Dπ(X)) ⊂ ~Dπ(Y) with every component in ~Dπ(Y) is
dense.

(2) If f (x1) = f (x2), f (x
′
1) = f (x′2), xi, x

′
i ∈ X, then (x1, x

′
1) and (x2, x

′
2) are contained

in the same component of ~Dπ(X).

(3) Every morphism β in ~Dπ(Y) is Aut(Y)-equivalent to a morphism f ◦ α with α a mor-

phism in ~Dπ(X).

(4) If f ◦ α1 = f ◦ α2 for morphisms αi in ~Dπ(X), then α1 and α2 are Aut(X)-equivalent.

Similar results hold also for the other component categories considered previously.

Proof. Let g : Y → X denote a dihomotopy inverse to f .
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(1) By Lemma 8.1(1), (y, y′) and ( f gy, f gy′) are contained in the same component in
~D(Y).

(2) (xi, x
′
i) is contained in the same component as (g f x1, g f x

′
1) = (g f x2, g f x

′
2).

(3) β is Aut(Y)-equivalent to f g(β).
(4) αi is Aut(X)-equivalent to g f (α1) = g f (α2).

�

Dihomotopy equivalences behave well with respect to preserving the topology of
trace spaces:

Proposition 8.5. Let f : X → Y denote a dihomotopy equivalence. Let (x, y), (x′, y′) be

objects of Dπ(X) such that ~T(x, y) and ~T(x′, y′) are homotopy equivalent. Then the trace spaces
~T( f x, f y) and ~T( f x′, f y′) are homotopy equivalent, too. Similarly for trace spaces that induce
isomorphisms in homology or homotopy in a range of dimensions.

Proof. The diagram

~T(Y)( f x, f y)
~T(g)

≃
// ~T(X)(g f x, g f y) ~T(X)(x, y)

~T(g f )

≃
oo

≃
��

~T(Y)( f x′, f y′)
~T(g)

≃ // ~T(X)(g f x′ , g f y′) ~T(X)(x′, y′)
~T(g f )

≃oo

yields the homotopy equivalence asked for. �

8.3. Weakly coherent dihomotopy equivalences.

8.3.1. Definition. Unfortunately, Proposition 8.5 does not imply that a dihomotopy equiv-
alence induces isomorphisms of component categories. In order to get functoriality, a
coherence condition has to be imposed. Note that the condition below is weaker than
asking the map f to be coherent itself in the sense of Definition 7.6.

Definition 8.6. Let f : X → Y denote a (future/past) dihomotopy equivalence with
homotopy inverse g : Y → X. The pair ( f , g) is called weakly coherent, if the d-self
maps g ◦ f : X → X and f ◦ g : Y → Y are coherent (cf. Definition 7.6). The map f is
called weakly coherent itself, if there exists a homotopy inverse such that ( f , g) is weakly
coherent.

The extra coherence requirement will be crucial in the investigation of the effect of a
dihomotopy equivalence from X to Y on component categories associated to these two
d-spaces. One may ask how natural weak coherence is:

Remark 8.7. (1) In an analogous situation, a self-diffeomorphism F : X → X con-
jugates a flow diffeomorphism h1 : X → X to the flow diffeomorphism h2 =
F ◦ h1 ◦ F

−1 – of a different dynamical system.
(2) The coherence condition corresponds to a weaker form of the coherence require-
ment in the defintion of future and past equivalences in [16].
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8.3.2. Coherent dihomotopy equivalences induce isomorphisms of component categories.

Proposition 8.8. A weakly coherent dihomotopy equivalence f : X → Y induces an isomor-

phism π0~T( f ) : π0(~Dπ(X), Aut(X)) → π0(~Dπ(Y), Aut(Y)) of component categories.

Proof. The only substantial difficulty arises in proving the existence of a functor π0~T( f )
as above; it is here that weak coherence is needed. Let h1 ∈ Aut+(X) and (x, y) ∈
~Dπ(X). We have to show, that there is an Aut(Y)−1-morphism connecting ( f x, f y) and
f h1x, f h1y).
Since g f : X → X is coherent, there exists h2 ∈ Aut(X)−1 with (g f h1x, g f h1y) =

(h2g f x, h2g f y). Then f h2g : Y → Y is an automorphism (see the proof of Proposition
6.6) that connects ( f x, f y) to ( f h2g f x, f h2g f y), whereas the automorphism f g connects
( f h1x, f h1y) to ( f g f x, f g f h1y) = ( f g f x, f h2g f y):

( f h2g f x, f h2g f y)
= // (g f gh1x, f g f h1y)oo

( f x, f y)

f h2g(x,y)

OO

( f h1x, f h2y)

f g( f h1x, f h1y)

OO

Iterating the argument above, (for a zig-zag path in ~DAutπ (X)) shows that equivalent

pairs in ~DAutπ (X) are mapped to equivalent pairs in ~DAutπ (Y) under ~Tπ( f ). The construc-
tion is well-behaved with respect to concatenation maps and yields therefore a functor

π0~T( f ) : π0(~D
Aut
π (X), Aut(X)) → π0(~D

Aut
π (Y), Aut(Y))

Using the coherence of f g : Y → Y, one obtains a reverse functorπ0~T(g) : π0~Dπ(Y) →

π0~Dπ(X). By Lemma 8.1(3), the compositions of the two functors yield identity functors
on the component categories of X, resp. Y.

�

In conclusion, if two d-spaces have non-isomorphic component categories, then there
cannot exist a weakly coherent dihomotopy equivalence between them.

8.4. A more general perspective? The preceeding sections dealt only with categories
arising from path spaces of (topological) d-spaces as quotients etc. A straightforward
generalization of the approach to more general categories can be described as follows:
We consider small categories over a given small category D, i.e., every category C is
endowed with a functor F : C → D into D; typically, D = Ho− Top, Ab etc.
Given a category F : C → D over D, consider an endofunctor Φ : C → C together
with a ”directed homotopy” ϕ : 1C → Φ in the sense of [14], i.e., a natural transfor-
mation. Such a pair (Φ, ϕ) is called a future auto-equivalence over D if the morphisms
F(ϕ(x)) : F(x) → F(Φ(x)) are D-isomorphisms for all objects x in C. Note the fol-
lowing consequence for every C-morphism a: F(a) is a D-isomorphism if and only if
F(Φ(a)) is aD-isomorphism. Past auto-equivalences are defined in the same way using
directed homotopies ϕ : Φ → 1C .
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Let MC denote a monoid of such auto-equivalences over D. Two C-objects are then
MC -equivalent if there is a zig-zag of MC -auto-equivalences relating them.
Two functors Fi : Ci → D can be related by a functor pair (Ψ : C1 → C2,ψ : D → D)
such that the diagram

C1
Ψ //

F1
��

C2

F2
��

D
ψ

// D

commutes on both objects and morphisms.
Let MC1 , resp. MC2 denote monoids of auto-equivalences over D. A functor pair

(Ψ,ψ) : C1 → C2 over D is then called a future homotopy equivalence if there is a functor
pair (Γ,γ) : C2 → C1 over D such that every C-object x is MC1-equivalent to (Γ ◦ Ψ)(x),
and every C2-object y is MC2-equivalent to (Ψ ◦ Γ)(y).
Arguing formally as in the proof of Proposition 6.4, it can then be seen that

ψ : F1(x) → F2(Ψ(x)) is an isomorphism for every object x in C1.

Example 8.9. Compare Example 7.4. Let D denote the category with one object repre-
senting the monoid N≥0 = {0, 1, 2, . . . } of non-negative integers; its morphisms cor-
respond to the k-th successor functions on N≥0, k ≥ 0; the only invertible morphism
corresponds to 0.

Let C1 denote the preorder category of the circle ~S1. With exp : R → S1 denoting the
exponential function exp(t) = e2πit, we consider the following functor F1 : C1 → D: Let

ω denote a d-path on S1 from y to y′ considered as a morphism in D(~S1)((x, y), (x, y′)).
Let α denote a shortest d-path from x to y, and consider any lift l(α ∗ ω) from x to
y′. Let F1(ω) = [|l(α ∗ ω)|], the integral part of the length (winding number) of that
lift. The morphism ω is thus D-invertible if |l(α ∗ ω)| < 1. F1 is in fact functorial,
whereas a similar construction does notwork if the perorder category is replaced by the
fundamental category.
A d-map f : S1 → S1 induces an auto-equivalence of C1 over D if and only if it is of
degree one (ensuring the existence of d-homotopies to and from idS1) and if it is injective:
If f x = f y for some x 6= y, i.e, f is constant on the arc from x to y, then any d-path ω
from y to x (of length less than 1) is mapped to a loop (of length 1). Hence one may
choose for MC1 the transformations induced by injective degree one self d-maps. Two
equivalence classes arise on the objects of C1: the diagonal ∆ and its complement ∆̄.
Let C2 denote the category on two objects ∆, ∆̄ freely generated by two morphisms
a ∈ C2(∆, ∆̄) and b ∈ C2(∆̄,∆). Let F2 : C2 → D denote the functor determined by
F2(a) = 0 and F2(b) = 1. The only auto-equivalence of this category over D is the
identity.
A functor Ψ : C1 → C2 over the identity is given by

Ψ(x, y) =

{

∆ x = y,

∆̄ x 6= y
,
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and Ψ(ω) is the morphism between the corresponding objects that satisfies: F1(ω) =
F2(Ψ(ω)). A reverse functor Γ : C2 → C1 over the identity is defined by Γ(∆) =
(1, 1), Γ(∆̄) = (1,−1); Γ(a) is represented by the arc from 1 to −1 and Γ(b) by the
arc from −1 to 1. Obviously, Ψ ◦ Γ = id whereas Γ ◦ Ψ preserves the diagonal and its
complement.
There is good reason to distinguish the diagonal and its complement: The only iso-
morphism with target (x, x) is the identity, whereas there are infinitely many objects
(x, y′) with isomorphisms into (x, y) for x 6= y.
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