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Two applications of the footprint (or A-set) bound

Estimation of generalized Hamming weights

Olav Geil, Aalborg Universit

Based on joint works with T. Hgholdt and

1 The Footprint (or A-set) bound

Definition 1 Let <bea ial ordering on #(X,...,X,}and k a
field. Given an ideal / C k{X,, ..., X,] the set

Al = {Me .#(X,...,Xn) | there does not
existany F €/ with Im{(F) =M}

is calied the footprint of /
Theorem 2 If A(/) is finite then #V(/) < #A_(f) holds. Equality

holds if / is radical. In particular #V (1) = #A(TU(X) - X,,..., X4~
X))

2 Generalized Hamming weights

Definition 3 The sth lized H:

weight of a code C is

d,(C} = min{#Sup(l/) | U is a linear subcode of C
of dimension 1}

Let {Pr,.... Pa} = Vi, ((Gry... Gp)) and ev(F) = (F(P)),...,F(Ry).

ev(F)
A= i
ev(F,)

[F} = {F+ 27\ oy | oy € F}

Dye,).lr s = max{#{P, €V | F(P) = - = F(P) = 0} | F, € [F,],
t=1,...5}

.= max{Dygy..irp |1 S <-- <<}

Theorem 4 Let C be a code with parity check matrix A (not necessarily
of full rank) then for d* < a+1,1 < k d < n we have

& 2d" S D gy Sd* =2

4 <d" S Do iy 2d”
Theorem 5 Let C be a code with generator matrix A (assumed to be of
full rank) then fors = 1,...k we have d, = n—D,.
Observation 6

Dy ey = max{#A{(Fy,...,F;,Gu..., Gy,
X=Xy XS =X} | FL € [Fl = 1.5}

< #A((m(F,), .., Im(F,), Gy, ., Gy

3 Weighted degree orderings

Definition 7 Given weights w(X)),...,w(X.,) € R, define <, on
(X, Xn) by X'+ Xim <, X['-.-XJm if one of following condi-
tions holds

(1) WX Ximy < w(X{" - X Jm) _ )
(2) WKt Xy = WX Xjm) and XXl <o Xt X

Proposition 8 Define a weighted degree
weights w(X) = b and w(¥) = a and consider

| ordering by the

F(X,Y) = X“+ar® + F'(X,Y)
G(X,Y) = X'V +G'(X,Y)

where a is non-zero and a,b > 0, w(F”') < ab, and w(G') < bi+aj. The
equation set F(X,Y) = G(X,Y) = 0 has at most bi + aj solutions

4 Parity check matrix description

Improved Hermitian codes
Let V be the 64 points on the Hermitian curve X5+ Y4+ Y over F)q.
Let parity check matrix be

ev(l)
ev(X)
ev(Y)
ev(X?)
ev(XY)
ev(Y)
ev(X)
ev(Y +X%)

Dyxy|r+x4y < 7 follows from Proposition 8
D2 r3ex4yy <8 follows by choosing w(X) =1 and w(¥) = 1.1
Dyxix)ir+x4y S 6 follows by choosing w(X) =1 and w(¥) =14

Going through all combinations gives Dy < 16, D; < 8, D3 < 6 and
Dy<4.

This implies d| >6,d:>8,d; > i+7fori=3,...,.9and d; = i+ 8 for
i=10,...,56. Not only minimum distance is improved.

. E. Andersen

5 Generator matrix description

Hermitian codes over F; Defining polynomial X* + Y% + ¥ has 64
zeros which gives an evaluation map ev : Fig[X, Y] — F$4.

Choose w(X) = 5, w(Y} = 4 and lexicographic ordering with X <, ¥.
By standard results

V(AL (X +Y* 4 Y, X"+ X, Y+ 1))
constitutes a basis for F§§. Below is listed
#AL(XY X LY NALXT+ Y+, X0+ X, Y10+ 1))

for all o
XV e A (X3+Y+Y, XS4 X,7'%47))

15 19 23 27 31 35 39 43 47 51 55 59 60 61 62 63

10 14 18 22 26 30 34 38 42 46 50 54 56 58 60 62

5 9 1317212529 33 37 41 45 49 52 55 58 61

0 4 8 1216 20 24 28 32 36 40 44 48 52 56 60
Traditional codes corresponds to finear span of all ev(X'¥/) with
w(XiY) <s.

Emproved codes corresponds to linear span of all ev(X'Y/) with A-size
at most some chosen number.

K |dy|ds dy|da|ds|dg|dy dy|dy
Tmproved [55] 6|8 9 [11]12[T4]15 1%18

Traditional|S5] 4 | 8 9 |12]13]14]16 i7]18
k |d|{dy dy|ds|ds|ds|dy|dy
Improved 51912 14]15[17]18]19]31
ditional [ 51| 8112 13[16[17]18]20]21
Traditional|50] 9|13 14]17|18]19]21[22

Certainly, mini di are i
NOT be.

P d, but higher weights need
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