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Stochastic Safety for Random Dynamical Systems

Manuela L. Bujorianu1, Rafał Wisniewski2, Evangelos Boulougouris1

Abstract— In the paper, we study the so-called p-safety of a
random dynamical system. We generalize the existing results for
safety barrier certificates for deterministic dynamical systems
and Markov processes. Moreover, we consider the case of
random obstacles, modelled as random sets. This leads to the
necessity of using integrals with respect to lower and upper
distributions. We prove that if there exists at least one barrier
certificate then the random dynamical system is safe. The
barrier certificates are also defined using such nonlinear distri-
butions. Furthermore, when the family of stochastic Koopman
operators has the semigroup property, the barrier certificates
are solutions for some type of Dirichlet problems.
Keywords: random dynamical system, Koopman operator, p-
safety, random set, occupation measure, hitting measure, su-
permedian function, barrier certificates.

I. INTRODUCTION

In this paper, we broaden our studies on stochastic safety
verification via barrier certificates [4], [15], [16] considering
the case of random dynamical systems. These are dynamical
systems, in which the motion equation is randomized. The
theory of random dynamical systems unites and develops
the classical deterministic theory of dynamical systems and
probability theory, with many applications in a very wide
range of disciplines from physics to engineering, finance, or
economics.

The results, presented here, can be instantiated for safety
of deterministic dynamical systems and Markov models.
The safety barriers are defined as elements of the class
of supermedian functions, which are related to Lyapunov
functions. Moreover, in this paper, we extend our investi-
gations considering random obstacles that will be modelled
as random sets. Modelling unsafe regions using random sets
has been used in different applications, for example in air
traffic management - for the random spread of winds and
storms [14], in fire safety — for description of the process
of accidental spread of a forest fire [18], and so on.

Formally, we define the concept of stochastic safety for
random dynamical systems, as a sort of reach avoidance
problem. The forbidden set is modelled by a random set,
which is defined as a set-valued random variable. As in the
case of Markov processes [4], we define hitting times, occu-
pation and hitting measures for random dynamical systems.
These will be employed in the description of random safety.
Then we extend the concept of barrier certificate from [16]
to make it able to deal with random obstacles. When defining
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the new type of barrier certificates, the difficulty that arises
is the need to use nonlinear integrals with respect to the
lower or upper distributions of random sets. Then for proving
further properties, we use the probability distributions of the
random selectors for the underlined random sets.

For the given random dynamical system, we define two
types of Koopman operators: random and stochastic. The
family of random Koopman operators has always the semi-
group property (derived from the definition of random dy-
namical system). But, the family of stochastic Koopman
operators has the semigroup property only if the underlying
dynamical system is Markovian. If this is true, we prove that
the safety function is solution for a nonstandard Dirichlet
problem associated to the infinitesimal generator of the
stochastic Koopman semigroup.

The problem of stochastic safety verification using barrier
certificates has been initiated in [12]. The overarching goal
of barrier certificates of dynamical systems is to ensure
that the dynamical system does not violate constraints. In
the Markovian case (and the more general RDS case) this
corresponds to the stability of the density dynamics, the con-
trol of which is mandated via optimal control [6]. Recently,
the optimal control related Hamilton-Jacobi-Bellman theory
has also been used in combination with barrier certificate
methods to address robust and safe operation of stochastic
systems [19].

The paper is structured as follows. In Section II, we
give the main definitions for random dynamical systems and
their random Koopman operators. As well, we define the
concept of random hitting time, which will be later used
in the definition of safety. In Section III, we generalize the
stochastic safety to random dynamical systems with random
obstacles, modelled as random sets. Then, using generalized
distributions of random sets, we define the occupation mea-
sure and the hitting measure associated to the random safety
problem. The connection between these measures is also
discussed. Section IV comprises the main contribution of this
paper. First, we define the concept of barrier certificate for
random safety. Then, we prove in theorem 1 that if a random
dynamical system has a barrier certificate, then it is safe. In
this section, we refine the concept of Koopman operators
introducing stochastic Koopman operators. To obtain further
results, we suppose that the family of stochastic Koopman
operators has the semigroup property. Under this assumption,
we prove in Theorem 2 that the safety function is a solution
of a nonlinear Dirichlet problem. In this setting, non-linearity
does not refer to the Laplace operator (in our case, we work
with the infinitesimal generator of the stochastic Koopman
operator semigroup), but to the integration with respect to



the generalized distributions of random sets. In the Section
V, we present some standard examples of random dynamical
systems and sketch the methods to design barrier certificates.
The paper ends with some conclusions.

NOTATION

R+ ≡ {x ∈ R| x ≥ 0}. The complement of a set D is
denoted by Dc. ID denotes the indicator function of D, i.e.,
ID is 1 on D, and 0 on its complement Dc.

The Borel sigma-algebra on a topological space Y is
denoted by B(Y). In this paper, Y will be a Polish space
that will be the state space for the given dynamical system.
Bb(Y) will be the Banach space of bounded measurable
real-valued functions on Y , equipped with the supremum-
norm. We will denote by (Ω,F ,P) the reference probability
space. We denote by E the expectation corresponding to a
probability P.

By a cone, we understand a set C that satisfies 1) C+C ⊆
C, 2) R+C ⊆ C, 3) C ∩ (−C) = {0}.

II. RANDOM DYNAMICAL SYSTEMS

A. Definitions

In this subsection, we briefly present the main definitions
for random dynamical systems (RDS) (see, e.g. [1]). A
continuous RDS comprises two components:

1) A metric dynamical system θ defined on (Ω,F ,P),
which is given as a mapping θ : R×Ω→ Ω such that

(t, ω) 7→ θt(ω) := θ(t, ω)

and the following conditions are satisfied:
• shift condition: θs+t = θs ◦ θt, θ0 = IΩ, for any
t, s ∈ R;

• measurability: (t, ω) 7→ θ(t, ω) is measurable
w.r.t. both arguments;

• θ-invariance: P(θ−1(F )) = P(F ) for any t ∈ R

and F ∈ F .
2) A cocycle φ on Y over θ, which is given as a mapping

φ : R× Ω× Y → Y such that

(t, ω, x) 7→ φ(t, ω, x)

and the following conditions are satisfied:
• measurability: (t, ω, x) 7→ φ(t, ω, x) is measur-

able;
• continuity: for each ω ∈ Ω, the mapping (t, x) 7→
φ(t, ω, x) is continuous;

• cocycle equation: the family of random maps
φt(ω) := φ(t, ω, ·) : Y → Y satisfies the cocycle
equations, i.e.,

φs+t(ω) = φs(θtω) ◦ φt(ω), φ0(ω) = IY .

The RDS is denoted by (θ, φ). It is possible to associate to
it, the skew product defined as a mapping Φ : R×Ω×Y →
Ω× Y , with (t, ω, x) 7→ Φt(ω, x) given by:

Φt(ω, x) := (θt(ω), φt(ω)x). (1)

The skew product is the main tool used to generalize the
concepts from deterministic dynamical systems to RDS.

B. Random Koopman operators

Let (θ, φ) be a continuous RDS. The random Koopman
operator semigroup is defined by:

Utf(ω, x) := f(Φt(ω, x)) = f(θtω, φt(ω)x), (2)

for all f ∈ Bb(Ω×Y), ω ∈ Ω, x ∈ Y. Note that the family of
random Koopman operators is, in fact, associated to the skew
product (1), which is a dynamical system. Therefore, the
semigroup property holds. The associated random potential
operator is defined by:

Gf(ω, x) :=

∫ ∞
0

Utf(ω, x)dt, (3)

for all f ∈ Bb(Ω× Y), ω ∈ Ω, x ∈ Y.
The cone of supermedian functions associated to the

semigroup U := (Ut)t≥0 is defined as:

SU := {u ∈ Bb(Ω× Y)|Utu ≤ u, t ≥ 0}. (4)

The class of Lyapunov functions of RDS is a particular
subclass of SU with some continuity properties [3]. The
supermedian functions characterize globally the RDS be-
haviour. They are related with the so-called complete Lya-
punov functions (see [8] for an overview).

C. Hitting times

Given a point x ∈ Y , we define the first random hitting
time of the random orbit of x to the measurable subset F ×
E ⊂ Ω× Y by:

TF×E(ω, x) := inf{t > 0|Φt(ω, x) ∈ F × E}. (5)

If we fix ω ∈ Ω, we define the first random hitting time of
the random orbit of x to the measurable subset E ⊂ Y by:

TωE (x) := TΩ×E(ω, x). (6)

If the space Y is equipped with a metric d, we can define
the first hitting time of E as follows:

TωE (x) := inf{t ≥ 0|d(φt(ω)x,E) = 0}. (7)

We define the first random exit time from E, denoted by ζωE
of the random orbit of x to the measurable subset E ⊂ Y
by ζωE(x) := TωY\E(x).

III. RANDOM SAFETY PROBLEM

In this section, we present the safety framework for
RDS. The safety concepts are similar to those defined for
stochastic processes [16], but we allow the randomization
of the forbidden set. Then, some of these concepts become
nonlinear.

A. Safety concepts

Let S ⊂ Y a measurable subset that represents the living
state space of the RDS (θ, φ). Like in the previous sections,
we denote the forbidden measurable set by U , which is a
strict subset of S.

A point x ∈ S is called strongly safe w.r.t. the unsafe set
U , for an orbit ω starting in x, if TωU (x) < ζωS (x).



1) p-Safety: To make the safety definition more flexible,
we need to consider the probability measure of the orbits
starting in x. We define the concept of p-safety (where p ∈
[0, 1)) asking that this probability is dominated by p.

A point x ∈ S is called p-safe if

q(x) := P{ω|TωU (x) < ζωS (x)} ≤ p. (8)

This p-safety is the direct generalization of the similar
concept defined for Markov processes.

2) Random safety: In the context of RDS, all the defini-
tions are presented in a randomized setting. Therefore the
natural generalization is to consider safety for random sets.
We will call the new concept random safety.

First we define the concept of random set [3]. Intuitively,
random sets are set-valued random variables. They also
can be thought of as representations of imprecise random
variables.

We suppose that Y is a subset of the Euclidean space Rd.
A function ω 7→ M(ω) taking values in the non-empty

closed (respectively, compact) subsets of Y is called random
closed (respectively, compact) set if

ω 7→ d(x,M(ω))

is measurable for each x ∈ Y , where

d(x,M(ω)) := inf
y∈M(ω)

d(x, y).

A simple example of random closed set can be described as
follows. Let ξ be a random vector in the Euclidean space Rd

and γ a non-negative random variable. Then the random ball
Bγ(ξ) with radius γ and centred in ξ is a random closed set.

A function ω 7→ U(ω) is called random open set if ω 7→
U(ω)c is a random closed set.

A classical example of random set, can be defined as a
level set. Suppose that S is finite. Let ψ : S → [0, 1] and
α : Ω → [0, 1] be a random variable uniformly distributed.
Then define the random set U : Ω→ 2S by

U(ω) := {y ∈ S|ψ(y) ≥ α(ω)}

Knowledge about an arbitrary random set Γ is provided by
the set of measurable selections (or, selectors):

S(Γ) := {γ : Ω→ S measurable|γ(ω) ∈ Γ(ω), ∀ω ∈ Ω}.
(9)

Each selection γ ∈ S(Γ) induces a probability distribution
Pγ on the Borel σ-algebra of S defined by:

Pγ(E) := P[(γ−1)(E)].

These probability distributions will have an essential role in
the characterization of general distributions of random sets.

Let S be a closed set and U a random open set of Y
with U ⊂ S. Then the concepts of safety are adapted
straightforward to random forbidden sets. We may consider
both closed and open random sets to model the forbidden
set U . A simplified picture of random safety can be found
in the Fig. 1.

Fig. 1. Random safety. State-space is S = R, and the unsafe set is a
random set U(ω).

For each selector ρ ∈ S(U) of the forbidden set, we can
think the random safety as a reach avoidance problem for a
probabilistic obstacle whose distribution is Pρ.

B. Occupation and Hitting Measures

We define the occupation measure for the complement
(w.r.t. S) of the random open set U , denoted by V . By
duality, we define the hitting measure associated to U .
Note that both measures are nonlinear, but they are still
connected with the occupation kernel as in the case of
Markov processes.

In the theory of random sets, all information about a
random closed (respectively, open) set is contained in its
generalized probability distribution. This distribution is de-
fined as the capacity hitting functional for random closed
sets, and as capacity inclusion functional for random open
sets.

For the random closed set V , some standard functional
distributions can be defined [11]. The capacity functional
TV (K), where K is a compact set of S, of random set V is
defined as follows:

TV (K) := P{ω|K ∩ V (ω) 6= ∅}. (10)

Sometimes TV is called upper distribution of the random
set V . The avoidance function is defined as QV (K) := 1−
TV (K), i.e.,

QV (K) := P{ω|V (ω) ⊂ Kc}. (11)

It is possible to integrate with respect to the capacity func-
tional. The Choquet integral of a non-negative measurable
function is defined as in [11]:∫

fdTV :=

∫ ∞
0

TV [f ≥ s]ds = E sup
v∈V

f(v). (12)

Here, the Choquet integral is defined as a Riemann integral
applied to the capacitary measure TV of variable level sets
of f , i.e., applied to g(s) := TV ({x|f(x) ≥ s}).

When K is a singleton, i.e. K = {x} the capacity
functional applied to this gives rise to the so-called covering
function:

pV (x) := P{ω|x ∈ V (ω)}. (13)



The covering function can also be interpreted as the expec-
tation of the indicator function IV associated to the random
set, i.e.,

pV (x) = E[IV (x)]. (14)

For a random open set U , the role of capacity functional is
taking the inclusion functional:

IU (F ) := P{ω|F ⊂ U(ω)} (15)

where F is an arbitrary closed set of S. Sometimes, IU
is called also lower distribution of the random set U . In a
similar way, according to [11], the Choquet integral with
respect to IU is defined as:∫

fdIU :=

∫ ∞
0

IU [f ≥ s]ds = E inf
u∈U

f(u). (16)

We define the following occupation measure of the closed
random set V corresponding to the RDS (θ, φ), as the
covering function

µφV (x) := E[sup
t≥0

IV (φt(·, x))]. (17)

By duality, we define the hitting measure of the open random
set U corresponding to the RDS (θ, φ), as

νφU (x) := E[inf
t≥0

IU (φt(·, x))]. (18)

Let us consider the occupation measure of S, given by:

GS(x) := E

∫ ζωS

0

φt(ω)xdt. (19)

The evolution equation for the RDS (θ, φ) is

GS(x) = µφV (x) + E[ inf
t≥Tω

V

IU (φt(·, x))]. (20)

The equation (20) may have resemblance with the analogous
one existing for the case when the forbidden set is deter-
ministic. The main problem in the random case is that the
occupation and hitting measures are not additive. Therefore,
the optimization techniques developed in [15] need to be
extended for the nonlinear case.

IV. RANDOM BARRIER CERTIFICATES

Let S ⊂ Y be the living space of the RDS (θ, φ). Suppose
now that an initial (measurable) set of states A ⊂ S is given.
The forbidden set U is given as a random open set of Y with
U ⊂ S. We use the notations, for a measurable function h
on Y

HA := sup{h(a)| a ∈ A} and (21)

HU :=

∫
hdIU := E inf

x∈U
h(x). (22)

We will define barrier certificates as a subcone of the cone
of supermedian functions.

Remark 1: If the forbidden set is modelled as a closed
random set, then we define:

HU :=

∫
hdTU := E sup

x∈U
h(x).

A function h : Y → R+ is called a barrier function for the
RDS (θ, φ) w.r.t. a triple (A,U, S) if
• h is supermedian on S, i.e.,

h(φt(ω)x) ≤ h(x), ∀x ∈ S, ω ∈ Ω, t ≤ ζS . (23)

• The separation condition holds:

HA ≤ HU . (24)

Theorem 1: Let (θ, φ) be an RDS with a given safety
triplet (A,U, S). Suppose that there exists a barrier function
h such that: HA ≤ p, HU ≥ 1. Then the following
probability bound holds:

P{ω|∃t ≤ ζS(ω) s.t. φt(ω)x ∈ U(ω)} ≤ p, ∀x ∈ A. (25)
Proof: Based on the fact that HU ≥ 1, we obtain the

following inequality:

P{ω|∃t ≤ ζS(ω) s.t. φt(ω)x ∈ U(ω)} ≤
P{ sup

t∈[0,∞)

h(φt(ω)x) ≥ 1}, ∀x ∈ A.

Applying the Markov’s inequality for the random variable
supt∈[0,∞) h(φt(ω)x), and using the supermedian property
of the barrier certificate, we obtain for all x ∈ A:

P{ sup
t∈[0,∞)

h(φt(ω)x) ≥ 1} ≤

E sup
t∈[0,∞)

h(φt(ω)x) ≤ h(x) ≤ HA.

The conclusion follows since HA ≤ p.
In practice, the set of barrier functions of interest can be
written as follows:

Cb(A,U, S) := {h ∈ SU (S)|HA(h) ≤ p and HU (h) ≥ 1},
(26)

where SU (S) is the set of (nonrandom) supermedian func-
tions on S.

The main novelty, comparing with the case when we
deal with deterministic obstacles, in the definition of barrier
certificates is the computation of HU as an integral w.r.t. the
lower distribution of U . In practice, this condition has to be
verified for each selector probability distribution of U .

In order to generate barrier certificates for RDS, one useful
tool is provided by the stochastic Koopman operators. We
call them stochastic and not random, since in the formula
(2), we take the expectations.

Formally, the stochastic Koopman operators Kt are de-
fined on a space of measurable bounded functions (observ-
ables) f : Y → R for which the following functional exists:

Ktf(x) := E[f(φt(ω)x)], x ∈ Y. (27)

The stochastic potential operator will be defined in a standard
way:

Qf(x) := E

∫ ∞
0

f(φt(ω)x)dt, x ∈ Y. (28)

Note that in the definition of the family of stochastic Koop-
man operators and its associated potential we apply the



observables only to the cocycle part of RDS (not to the skew
product as in the case of random Koopman operators).

Remark 2: 1) If u : Y → R+ is supermedian with
respect to the random Koopman semigroup, then

Ktu ≤ u.

2) Based on the cocycle equations, it can be observed that
Qf is supermedian for all positive measurable bounded
functions f : Y → R+.

It is obvious that barrier certificates are intimately connected
with the Lyapunov functions that can be defined for RDS.
Therefore, they can be generated using the eigenfunctions
associated to the stochastic Koopman operators [9], but this
topic will be investigated in a forthcoming paper. This ap-
proach will involve the approximation of stochastic Koopman
operators using their spectrum [7].

In the following, we suppose that the associated stochastic
Koopman operator family satisfies the semigroup property.
This implies the Markov property of our RDS. This assump-
tion is necessary to obtain more valuable characterizations
of barrier certificates.

Define the generator of the stochastic Koopman family
K = (Kt)t≥0 acting on the observable functions f ∈ Bb(Y)
by the limit:

Lf(x) := lim
t↘0

Ktf(x)− f(x)

t
. (29)

Using the Remark 2, we obtain the following result.
Proposition 1: If K = (Kt)t≥0 is an operator semigroup,

then any barrier function h is super-regular, i.e.,

Lh ≤ 0.
Remark 3: Note that the semigroup property is not suffi-

cient to allow us to apply the barrier certificates character-
izations for deterministic forbidden set obtained in [16] for
Markov processes. The difficulty comes from the definition
of HU as the integral with respect to a non-additive measure
(functional capacity). Then the balayage methods for the
super-regular functions do not apply in this case.

Theorem 2: The safety function q is solution for the
following Dirichlet problem:∫

LfdTV = 0; (30)

where V := S \ U , with boundary conditions:∫
fdIU = 1, f = 0 on Sc. (31)

Proof:
The proof is the result of the representations of the

Choquet integrals with respect to upper, respectively lower,
distributions as supremum, respectively infimum of the inte-
grals of the set of all measurable selections of the random
sets V and U .

Since, the space Y is Polish, applying Th.3.2 from [10],
we obtain the following representations:∫

LfdTV = sup
γ∈S(V )

∫
LfdPγ (32)

and ∫
fdIU = inf

ρ∈S(U)

∫
fdPρ. (33)

An RDS can be thought also a family of dynamical systems
or Markov processes. Then for each ω ∈ Ω, the safety
function is solution for the classical Dirichlet problem [16].
Then for two fixed selectors γ ∈ S(V ) and ρ ∈ S(U), we
have the corresponding safety function qγ,ρ characterized as
solution for the following equation:∫

LfdPγ = 0

with boundary conditions:∫
fdPρ = 1 and f = 0 on Sc.

Remark that the supports of Pγ and Pρ are disjoint. Then
the conclusion comes from the representations (32) and (33).

Remark 4: Theorem 2 shows that choosing appropriate
measurable selectors for the random sets U and V , one
can find suitable approximations for the safety function. The
selector sets are not convex, but they can be embedded
in some convex cores as follows. The core(IU ) is the set
of all countably additive probability measures that setwise
dominate this functional. The core(TV ) is the set of all
countably additive probability measures that setwise are
dominated by TV . The sets of selectors are weak*-closed
convex hull in their cores [5]. In this way, it is possible
to obtain upper and lower bounds of the Choquet integrals,
which appear in the above theorem.

V. BARRIER CERTIFICATES FOR PARTICULAR RDS

A. Random differential equations

Let (Ω,F ,P, θt) be a metric dynamical systems. We
consider a continuous-time RDS generated by the random
differential equation (RDE) of the following form:

.
x= F (θt(ω), x), (34)

defined on the space Y ⊂ Rd. Note that here, the randomness
is regarding the parameters that do not depend the system
state. The RDS generated by the RDE (34) is defined by:

φt(ω)x = x+

∫ t

0

F (θs(ω), φs(ω)x)ds. (35)

This kind of RDS under different regularity assumptions on
F has been studied in [1]. The solution of the RDE (34) with
initial condition φ0(ω)x = x is thought of as a family of
random variables, which are the trajectories φt(ω)x starting
in x. Because the RDE solutions are defined pathwise, for
each fixed ω, the RDE (34) is, in fact, an ordinary differential
equation. If the solution of the RDE (34) is differentiable
with respect to t and the family of stochastic Koopman
operators is a semigroup, then the generator of (Kt) has
the following expression:

Lf := E[F (ω, x)]∇f(x), ∀f ∈ C1
b (Rd). (36)



This result can be found in [7]. The barrier certificates for
such an RDS can be generated using the eigenfunctions of
the generator (36).

B. Diffusion processes as RDS

Let Ω := {ω : R → Rd|ω is continuous and ω(0) = 0}.
Let F := B(Ω) be the Borel σ-algebra of Ω. Denote the
Wiener process (Brownian motion) by Wt : Ω→ Rd, given
by Wt(ω) := ω(t). For t ∈ R, define the Wiener shift θt :
Ω→ Ω by:

θtω(s) := ω(s+ t)− ω(t). (37)

Then, (Ω,F ,P, θ) is a metric dynamical system.
Let us consider the standard stochastic differential equa-

tion (SDE):

dXt = b(Xt)dt+ σ(Xt)dWt, X0(ω) = x, t ∈ R (38)

where b : Rd → Rd and σ : Rd → Rd ×Rd are such that

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ D|x− y|, ∀x, y ∈ Rd,
(39)

for some constant D > 0.
Then (38) admits a unique solution (called diffusion

process):

φt(ω)x = x+

∫ t

0

b(φs(ω)x)ds+

∫ t

0

σ(φs(ω)x)dWs(ω)

(40)

where
∫ t

0
σ(φs(ω)x)dWs(ω) is the standard stochastic inte-

gral w.r.t. the Wiener process. The generator of the stochastic
Koopman generator has the following expression:

Lf(x) = b(x)∇f(x) +
1

2
Tr(σ(x)(∇2f(x))σ(x)>) (41)

where Tr denotes the trace of the matrix.
We have studied barrier certificates for SDEs in [16],

when the forbidden set is supposed to be deterministic.
When the forbidden set is random, the Dirichlet problem
characterization of the safety function becomes nonlinear.

C. Markov chains as RDS

Markov chain are related to i.i.d. RDS. Their connection
has become a classical topic in the specialised literature (see,
e.g., [1], [17]). We do not elaborate the topic here. We only
mention that, for control Markov chains, the reach avoidance
problem with random obstacles with applications in air traffic
management has been studied in [14].

VI. CONCLUSIONS

In this paper, we have studied safety of a random dy-
namical system, precisely the reach-avoidance problem with
a random obstacle. We have provided characterizations of
random safety using occupation and hitting measures and
Koopman operators. The main difficulty that we had to
overcome is that the randomness of the obstacle set leads
to some nonlinear constraints in the definition of barrier
certificates. Therefore, the Dirichlet problem characterization

of barrier certificates is nonlinear, in the sense we need
to consider the integration with respect to upper or lower
distributions of random sets.

Furthermore, in this paper, we have opened new research
avenues for obtaining data-driven approximations of barrier
certificates by applying data-driven techniques for the Koop-
man operators [7]. The techniques developed in this paper
will be used in a follow-up paper for studying the problem
of ship capsizing, when the ship dynamics is modelled as an
RDS.
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