

Aalborg Universitet

DisMASTD

An efficient distributed multi-aspect streaming tensor decomposition

Yang, Keyu; Gao, Yunjun; Shen, Yifeng; Zheng, Baihua; Chen, Lu

Published in:
Proceedings - 2021 IEEE 37th International Conference on Data Engineering, ICDE 2021

DOI (link to publication from Publisher):
10.1109/ICDE51399.2021.00098

Publication date:
2021

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Yang, K., Gao, Y., Shen, Y., Zheng, B., & Chen, L. (2021). DisMASTD: An efficient distributed multi-aspect
streaming tensor decomposition. In Proceedings - 2021 IEEE 37th International Conference on Data
Engineering, ICDE 2021 (pp. 1080-1091). Article 9458848 IEEE Computer Society Press.
https://doi.org/10.1109/ICDE51399.2021.00098

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 03, 2024

https://doi.org/10.1109/ICDE51399.2021.00098
https://vbn.aau.dk/en/publications/3ed9d52c-a6e6-4c9e-9983-78443ba0844a
https://doi.org/10.1109/ICDE51399.2021.00098

DisMASTD: An Efficient Distributed Multi-Aspect
Streaming Tensor Decomposition

Keyu Yang† Yunjun Gao†# Yifeng Shen† Baihua Zheng‡ Lu Chen?
†College of Computer Science, Zhejiang University, China

‡School of Information Systems, Singapore Management University, Singapore
?Department of Computer Science, Aalborg University, Denmark

#Alibaba-Zhejiang University Joint Institute of Frontier Technologies, China
{kyyang, gaoyj, yfshen}@zju.edu.cn bhzheng@smu.edu.sg luchen@cs.aau.dk

Abstract—Tensor decomposition is a fundamental multi-
dimensional data analysis tool for many data-driven applications,
such as social computing, computer vision, and bioinformatics,
to name but a few. However, the rapidly increasing streaming
data nowadays introduces new challenges to traditional static
tensor decomposition. It requires an efficient distributed dynamic
tensor decomposition without re-computing the whole tensor
from scratch. In this paper, we propose DisMASTD, an effi-
cient distributed multi-aspect streaming tensor decomposition.
First, we prove the optimal tensor partitioning problem is
NP-hard. Second, we present two heuristic tensor partitioning
approaches to ensure the load balancing. Third, we develop a
distributed multi-aspect streaming tensor decomposition compu-
tation method, which avoids repetitive computation and reduces
network communication by maintaining and reusing the interme-
diate results. Last but not least, we perform extensive experiments
with both real and synthetic datasets to demonstrate the efficiency
and scalability of DisMASTD.

I. INTRODUCTION

Multi-dimensional data rapidly and incrementally arises in
many real-life applications. A natural representation of this
kind of data is called tensor, which is an extension of a
two-dimensional matrix to three or higher dimensions. Tensor
decomposition, which aims at discovering the latent repre-
sentations, has received much attention [1]–[4]. It is used in
many data-driven applications, ranging from social computing
(e.g., recommendation system [5], link prediction [6], and
urban computing [7]) and computer vision (e.g., image/video
completion [8] and compression [9]) to healthcare and medical
applications [10]. Here, we present an example.

Recommendation System Application: Recommendation
system aims at predicting the users’ preferences based on
users’ past behaviors as well as decisions made by other
similar users. If we use the quaternary tuple 〈u, p, t, r〉 to
represent the fact that the user u gives the rating r to the
product p at time t, we can model the prediction of users’
preferences (i.e., ratings) on products as a tensor decomposi-
tion problem, i.e., treating the predicted “ratings” as missing
entries of data tensors that could be complemented by the
latent representations after tensor decomposition.

Beyond the traditional static setting, applications in the real
world nowadays are producing high volume streaming data.

 One-mode

streaming tensor

 Multi-aspect

streaming tensor

Timestamps t t+1 t+2

Fig. 1. Two categories of streaming tensors

According to Data Never Sleeps Report1, over 2.5 × 1018

bytes of data are created every single day. In every minute,
Snapchat users share 2,083,333 photos, Twitter users publish
473,400 tweets, and Skype users make 176,220 calls. These
example digits showcase that not only the large volume but
also the high velocity of data generate nowadays. Considering
the continuous expansion nature of the data, it is definitely not
feasible to perform tensor reconstruction from scratch when-
ever the data is updated [11]. The overwhelmingly increasing
data motivates us to investigate an efficient distributed dynamic
tensor decomposition method.

The existing efforts on tensor decomposition mostly focus
on the static setting [12]–[16]. They all suffer from a com-
mon limitation, i.e., they are not able to tackle the dynamic
tensor setting. To address this, dynamic tensor decomposition
methods have been proposed. However, they mainly aim at a
widely used assumption that tensors will be developed in only
one dimension (or one mode). Following this oversimplified
assumption, online methods have been presented in [17], [18].

Nevertheless, in many real-life applications, a tensor could
be developed in multiple modes. Recall the example about
recommendation system, both users and products can increase
over time. To this end, the problem of multi-aspect streaming
tensor has been studied in [19], [20]. Fig. 1 illustrates the

1https://www.domo.com/solution/data-never-sleeps-6

differences between the traditional one-mode streaming tensor
and the multi-aspect streaming tensor. From timestamps t to
t + 2, the multi-aspect streaming tensor develops in all three
modes, while the tensor in the traditional streaming setting
only develops in one mode. Existing studies on multi-aspect
streaming tensor aim at a centralized environment. They have
limited scalability to support large data sets. Motivated by
the limitations of existing methods, we dedicate this paper
to the development of Distributed Multi-Aspect Streaming
Tensor Decomposition (DisMASTD for short). DisMASTD is,
to the best of our knowledge, the first attempt to perform
the decomposition of multi-aspect streaming tensors in a
distributed environment that aims to improve the scalability.
Towards this, there are two challenges to be addressed.

First, how to ensure load balancing among all the worker
nodes in a distributed environment? Load balancing is a basic
requirement in distributed systems. We formulate an optimal
tensor partitioning problem as the solution. Unfortunately, this
problem is NP-hard. Therefore, we utilize two heuristic tensor
partitioning methods, i.e., the Greedy Tensor Partitioning al-
gorithm (GTP) and the Max-min fit Tensor Partitioning method
(MTP). GTP predetermines the number of non-zero elements,
namely, target, in each tensor partition, and derives the tensor
partitioning to reach the target. MTP aims to split the tensor
such that each tensor partition has roughly-equal number of
non-zero elements.

Second, how to reduce the computational cost during tensor
decomposition? The bottleneck cost of tensor decomposition
is an operator, called Marticized Tensor Times Khatri-Rao
Product (MTTKRP). DisMASTD avoids repetitive computa-
tion, and reduces network communication by maintaining and
reusing MTTKRP results.

To sum up, the key contributions of this paper are summa-
rized as follows:
• We propose DisMASTD, an efficient distributed multi-

aspect streaming tensor decomposition. To our knowl-
edge, it is the first attempt to tackle this problem.

• We prove the optimal partitioning problem is NP-hard
and utilize two heuristic tensor partitioning methods, i.e.,
GTP and MTP, to ensure load balancing in a distributed
environment.

• We design an efficient computation method for the
distributed multi-aspect streaming tensor decomposition,
which is able to avoid repetitive computation and reduce
the network communication.

• We conduct extensive experiments using both real and
synthetic datasets to verify the efficiency and scalability
of DisMASTD.

The rest of the paper is organized in the following. Section II
reviews related work about tensor decomposition. Section III
introduces the definitions related to multi-aspect streaming
tensor decomposition. Section IV elaborates DisMASTD, the
solution to distributed multi-aspect streaming tensor decom-
position studied in this work. Section V reports experimental
results and our findings. Finally, Section VI concludes the
paper.

II. RELATED WORK

In this section, we overview previous studies on tensor
decomposition under both static and dynamic settings.

A. Tensor Decomposition in Static Setting

CANDECOMP/PARAFAC (CP) and Tucker decomposi-
tions are two main widely used tensor decomposition algo-
rithms. CP decomposition is proposed by Hitchcock [21] and
then further enhanced by Carroll and Chang [22] as well as
Harshman [23]. CP decomposition of an N th-order tensor is
an approximation of outer products for N loading matrices.
Tucker decomposition is originally proposed by Tucker [24]
and then is further developed by Kroonenberg and Leeuw
[25] as well as Lathauwer et al. [26]. Unlike CP, Tucker
decomposes an N th-order tensor into N factor matrices,
which are multiplied by a core tensor. There are three most
commonly used optimizing algorithms for tensor decompo-
sition, including Alternating Least Square (ALS) [27], [28],
Stochastic Gradient Descent (SGD) [29], [30], and Coordinate
Descent (CDD) [31], [32].

Distributed static tensor decomposition has been studied in
the era of big data. GigaTensor [13] is a large-scale tensor
decomposition algorithm on MapReduce. Scout [33] considers
scalable coupled matrix-tensor factorization on MapReduce
for analyzing large tensors with additional information. The
above two tensor decomposition methods have been integrated
into BIGtensor [34], a unified library for tensor data mining.
SPLATT [16], [35] is another library for parallel tensor fac-
torization. CDTF and SALS [15] are two tensor factorization
algorithms for high-order and large-scale tensors in distributed
environments. DisTenC [12] is a distributed tensor completion
algorithm with auxiliary information on Spark. CartHP [36]
improves scalable sparse tensor decomposition by hypergraph-
based partitioning. Moreover, there are several existing studies
that aim at tensor factorization with specific characteristics,
such as sparse [14] and boolean tensor [37], [38].

Nevertheless, all the aforementioned algorithms are de-
signed under the traditional static tensor setting, and thus,
they cannot efficiently handle tensor decomposition for newly
emerging data.

B. Tensor Decomposition in Dynamic Setting

The increasing amount of dynamic data nowadays motivates
the studies of dynamic tensor decomposition. Existing efforts
on dynamic tensor decomposition mostly focus on traditional
streaming tensors, which are assumed to be developed in only
one mode.

As for CP decomposition, Nion and Sidiropoulos [39]
propose two adaptive PARAFAC algorithms. One, termed as
PARAFAC-SDT, is based on simultaneous diagonalization.
The other, called PARAFAC-RLST, utilizes weighted least
squares to track the online third-order tensor decomposition.
Phan and Cichocki [40] divide large-scale tensors into grids,
and propose the tensor factorization method, which could
be used in dynamic tensor factorization. Mardani et al. [17]
leverage rank minimization and subspace learning to enable

TABLE I
COMPARISONS OF DISMASTD AND EXISTING METHODS

Method Distributed Tensor Type
BIGtensor [34] X Static
SPLATT [16], [35] X Static
CDTF & SALS [15] X Static
DisTenC [12] X Static
CartHP [36] X Static
DBTF [37], [38] X Static
PARAFAC-SDT &
PARAFAC-RLST [39]

× Traditional streaming

OnlineCP [18] × Traditional streaming
ITA [41], [42] × Traditional streaming
ALTO [43] × Traditional streaming
MAST [20] × Multi-aspect streaming
SIITA [19] × Multi-aspect streaming
DisMASTD X Multi-aspect streaming

scalable imputation of incomplete streaming tensors. Zhou
et al. [18] develop OnlineCP, an online algorithm that can
incrementally track CP decomposition of dynamic tensors
with arbitrary modes. In addition of CP decomposition, there
are also Tucker decomposition methods. Sun et al. [41],
[42] present an Incremental Tensor Analysis (ITA) frame-
work to solve general streaming tensor analysis. Yu et al.
[43] propose an accelerated online low-rank tensor learning
algorithm (ALTO) for streaming tensor Tucker factorization.
Some online Tucker decomposition approaches aim at not
only one mode increasing setting [44], [45], but also deriving
possible solutions for multi-aspect streaming using matrix-
based methods, e.g., incremental SVD [46]. Recently, Song et
al. [20] formally define the problem of multi-aspect streaming
tensor completion, and present a CP-based algorithm (MAST)
as a solution. Nimishakavi et al. [19] further explore the
problem of multi-aspect streaming tensor completion with side
information (SIITA).

Table I lists a comparison of DisMASTD and existing
methods in terms of whether a method can support distributed
environment and which tensor type it is designed for. Almost
all the listed methods can only support the static or traditional
streaming tensor decomposition. MAST and SIITA, the only
two methods suitable for multi-aspect streaming tensor de-
composition, are in the centralized environment. Our proposed
DisMASTD in this paper is the first attempt to tackle dis-
tributed multi-aspect streaming tensor decomposition, which
is expected to be able to cope with consistent data growth.

III. PRELIMINARIES

In this section, we formally give the definitions related to
multi-aspect streaming tensor decomposition. Table II summa-
rizes the symbols used frequently throughout this paper.

A. Tensor Notations
First, we introduce the notations, definitions, and basic oper-

ations related to multi-aspect streaming tensor decomposition,
following the symbols used in [1], [20].

Definition 1: (Tensor). An N th-order tensor is an N -way
array, also known as an N -dimensional or N -mode tensor,
denoted by X , where X ∈ RI1×I2×...×IN .

TABLE II
SYMBOLS AND DESCRIPTION

Notation Description
X a tensor (Euler script letter)
X̃ the previous snapshot tensor of X
N the order of tensor
X\X̃ the relative complement of X̃ in X
X [it1, . . . , i

t
N] an element of X indexed by [it1, . . . , i

t
N]

X(n) the mode-n unfolding of X
nnz(·) the number of non-zero elements, e.g.,

nnz(X)
A a matrix (boldface capital letter)
Aᵀ the transpose of A
J·K Kruskal operator, e.g., X ≈ JA1, . . . ,AN K
‖ · ‖2F Frobenius norm, e.g., ‖A‖2F
� Khatri-Rao product
∗ Hadamard product
(Ak)

�k 6=n AN � . . .�An+1 �An−1 � . . .�A1

(Ak)
∗k 6=n AN ∗ . . . ∗An+1 ∗An−1 ∗ . . . ∗A1

We utilize the term order to denote the dimensionality of
a tensor (e.g., an N th-order tensor), and the term mode to
refer to a specific dimension of a tensor (e.g., the mode-n of
tensor). Matrices and tensors are denoted by boldface capital
letters (e.g., A) and Euler script letters (e.g. X), respectively.
An element of a tensor X indexed by [it1, . . . , i

t
N] is denoted

as X [it1, . . . , i
t
N]. To denote a varying index, we use the colon.

For example, A[i, :] denotes the i-th row of matrix A.
Definition 2: (Tensor Matricization). A tensor can be

unfolded, or matricized, into a matrix by any of its modes.
The mode-n unfolding of X , denoted as X(n), arranges the
mode-n fibers to be the columns of the resulting matrix.

If X is of dimension I ×J ×K, then X(1) is of dimension
I × JK. Note that, Aᵀ and ‖A‖2F denote the transpose and
Frobenius norm of matrix A, respectively. Notations J·K, �,
and ∗ represent the Kruskal operator, Khatri-Rao product, and
Hadamard product, respectively.

Definition 3: (CP Decomposition). Given an N th-order
tensor X , CP decomposition is an approximation of N factor
matrices An ∈ RIn×R, n = 1, . . . , N , such that

X ≈ JA1, . . . ,AN K.

where R is usually a small positive integer denoting an upper
bound of the rank of X .

CP decomposition could be further written in matricized
form as follows:

X unfold
=⇒ X(n) ≈ An(AN � . . .An+1 �An−1 . . .�A1)ᵀ

= An[(Ak)�k 6=n]ᵀ.

Definition 4: (Multi-Aspect Streaming Tensor Sequence
[20]). A sequence of N th-order tensors {X (T)} is called multi-
aspect streaming tensor sequence if ∀T ∈ Z+, X (T−1) is the
sub-tensor of X (T), denoted as X (T−1) ⊆ X (T). T increases
with time, and X (T) is the snapshot tensor of this sequence
taken at time T .

Based on the definitions above, the definition of multi-aspect
streaming tensor decomposition is formalized in Definition 5
below.

Tensor

Dividing
(0,0,0)

(1,0,0)

(1,0,1)

(0,0,1)

(1,1,0)

(0,1,0)

(0,1,1)

(1,1,1)

T-1

T

Fig. 2. Illustration of tensor division

Definition 5: (Multi-Aspect Streaming Tensor Decompo-
sition, MASTD [20]). Given a multi-aspect streaming tensor
sequence {X (T)}, Multi-Aspect Streaming Tensor Decompo-
sition (MASTD) aims at decomposing the tensor in current
snapshot X (T) based on decomposition result corresponding
to the tensor X (T−1) in the previous time step.

B. Dynamic Tensor Decomposition

Towards efficient MASTD, a dynamic CP-based decomposi-
tion method DTD is proposed [20]. To simplify the discussion
on DTD, Song et al. [20] focus on third-order multi-aspect
streaming tensor decomposition. We will firstly introduce DTD
in third-order tensors, and then, we extend it to general N th-
order tensors.

Given two consecutive snapshot third-order tensors X (T−1)

and X (T) (T ∈ Z+), we denote them as X̃ ∈ RI1×I2×I3

and X ∈ R(I1+d1)×(I2+d2)×(I3+d3), respectively. Let A ∈
R(I1+d1)×R, B ∈ R(I2+d2)×R, and C ∈ R(I3+d3)×R be the
CP factor matrices of tensor X . CP decomposition solves the
following optimization problem,

minimize
A,B,C

L(A,B,C) = ‖X − JA,B,CK‖2F . (1)

The third-order tensor X can be divided into eight sub-
tensors according to X̃ (as shown in Fig. 2). Each of those
eight sub-tensors could be denoted by a binary tuple (i, j, k) ∈
{0, 1}3 , Θ, with X̃ = X 0,0,0. Each pair of adjacent
sub-tensors is coupled with each other. Based on the good
division property of CP decomposition, each sub-tensor of X
could also be approximated via the sub-matrices of A, B,
and C, i.e., X i,j,k ≈ JAi,Bj ,CkK, in which A0 ∈ RI1×R

and A1 ∈ Rd1×R are the divided sub-matrices of A, i.e.,
Aᵀ = [Aᵀ

0 ,A
ᵀ
1] (it applies to Bj and Ck, too). Given the CP

decomposition of previous snapshot X̃ ≈ JÃ, B̃, C̃K, X 0,0,0

could be approximated by the decomposition, and the loss
function stated in the Equation (1) can be rewritten below,

minimize
Ai,Bj,Ck

L(A,B,C) =
∑

(i,j,k)∈Θ

‖X i,j,k − JAi,Bj ,CkK‖2F

= ‖X 0,0,0 − JA0,B0,C0K‖2F + L0

≈ µ‖JÃ, B̃, C̃K− JA0,B0,C0K‖2F + L0.

(2)

Here, L0 ,
∑

(i,j,k)∈Θ\(0,0,0) ‖X i,j,k − JAi,Bj ,CkK‖2F ,
and weight µ is the forgetting factor [17] used to alleviate the
influence of the previous decomposition error.

Algorithm 1: Dynamic Tensor Decomposition
Input: the current snapshot tensor X , the CP

decomposition {Ãn}Nn=1 of previous snapshot
tensor X̃ , the forgetting factor µ

Output: the CP decomposition of current snapshot
tensor {An}Nn=1

1 {A(0)
n }Nn=1 ← {Ãn}Nn=1

2 {A(1)
n }Nn=1 ← {rand(dn, R)}Nn=1

3 repeat
4 for n← 1 : N do
5 update A

(0)
n and A

(1)
n by the update rules (5)

6 update the loss L using the Equation (4)
7 until fit ceases to improve or maximum iterations
8 return {An}Nn=1

The optimization problem defined in the Equation (2) can
be solved by alternating least squares (ALS). The update rule
for Ai has been derived in [20], as stated in the Equation (3).

A0 ←
µÃ[(C̃ᵀC0) ∗ (B̃ᵀB0)] +

∑
(j,k)6=(0,0) X

0,j,k
(1)

(Ck �Bj)

(
∑1

k=0 Cᵀ
kCk) ∗ (

∑1
j=0 Bᵀ

jBj)− (1− µ)(Cᵀ
0C0) ∗ (Bᵀ

0B0)
,

A1 ←

∑
j,k X1,j,k

(1)
(Ck �Bj)

(
∑1

k=0 Cᵀ
kCk) ∗ (

∑1
j=0 Bᵀ

jBj)
.

(3)
Note that the same update rules are also applicable to matrices
B0, C0, B1, and C1.

Next, we extend the update rules mentioned above to
tensors of arbitrary orders. Given an N th-order tensor X , we
generate and update factor matrices {A(0)

n } and {A(1)
n }(n =

1, 2, . . . , N) to solve the following optimization problem,

minimize
{An}Nn=1

L(A1, . . . ,AN)

= µ‖JÃ1, . . . , ÃN K− JA0, . . . ,AN K‖2F + L0.

(4)

in which,

L0 ,
∑
i∈Sn

‖X i − JA1, . . . ,AN K‖2F ,

Sn = {(s1, . . . , sN) |
N∑

k=1

sk 6= 0, sk ∈ {0, 1}}.

The corresponding update rules are as follows:

A
(0)
n ←

µÃn[(Ã
ᵀ
kA

(0)
k)
∗k 6=n

] +
∑

i∈S0
n
Xi

(n)
(A

(ik)
k)

�k 6=n

(A
(0)ᵀ

k A
(0)
k +A

(1)ᵀ

k A
(1)
k)
∗k 6=n − (1− µ)(A(0)ᵀ

k A
(0)
k)
∗k 6=n

,

A
(1)
n ←

∑
i∈S1

n
Xi

(n)
(A

(ik)
k)�k 6=n

(A
(0)ᵀ

k A
(0)
k +A

(1)ᵀ

k A
(1)
k)∗k 6=n

.

(5)
in which,

S0
n = {(s1, . . . , sN) |

N∑
k=1

sk 6= 0, sk ∈ {0, 1}, sn = 0},

S1
n = {(s1, . . . , sN) |∀k ∈ {1, . . . , N}, sk ∈ {0, 1}, sn = 1}.

Algorithm 1 depicts the pseudo-code of our extended Dy-
namic Tensor Decomposition (DTD) algorithm for any N th-
order multi-aspect streaming tensor. It takes as inputs the

current snapshot tensor X , the CP decomposition {Ãn}Nn=1

of previous snapshot tensor X̃ , i.e., X̃ ≈ JÃ1, . . . , ÃN K, and
the forgetting factor µ. First, DTD uses the CP decompo-
sition {Ãn}Nn=1 of previous snapshot tensor X̃ to initialize
{A(0)

n }Nn=1 (line 1). Then, it randomly initializes the rest of
factor matrices {A(1)

n }Nn=1 (line 2). Next, it iteratively updates
the {An}Nn=1 and the loss L (lines 3-6) until the convergence
condition is satisfied (line 7). After the convergence, DTD
outputs the CP decomposition of current snapshot tensor X ,
i.e., {An}Nn=1, to stop the tensor decomposition (line 8).

IV. OUR PROPOSED DISMASTD

In this section, we present the details of our proposed
DisMASTD. DisMASTD contains two main parts, namely
data partitioning and distributed tensor decomposition, as
listed below:
• Part 1: Data Partitioning. In the first part, we try to

partition large-scale multi-aspect streaming tensors and
the corresponding factor matrices to ensure the load
balancing among all the worker nodes in a distributed
environment. We detail this part in Section IV-A.

• Part 2: Distributed Tensor Decomposition. In the sec-
ond part, we focus on the computation of tensor decom-
position with the objective to avoid repetitive computation
and to reduce network communication. We describe this
part in Section IV-B.

In addition, we analyze the complexity of DisMASTD in
Section IV-C.

A. Data Partitioning

In order to ensure load balancing, which is the basic require-
ment of distributed environments, large-scale tensors should
be partitioned to ensure each worker node in the distributed
platform has an equal or close-to-equal workload. The existing
medium-grain partitioning methods [16], [36] have achieved
state-of-the-art performance in normal distributed tensor de-
composition. Unfortunately, they cannot efficiently support
the distributed multi-aspect streaming tensor decomposition,
because none of them has considered the special characteristics
of multi-aspect streaming tensors as well as they can only
re-compute the tensor decomposition from sketch. In the fol-
lowing, we first introduce the special characteristics of multi-
aspect streaming tensors, and then, we show how to utilize
them to design data partitioning and to avoid the computation
from the sketch.

1) Characteristics of Multi-Aspect Streaming Tensors: For
ease of presentation, we again take the third-order multi-aspect
streaming tensors as an example. Let’s revisit the update rules
for the factor matrices defined in the Equation (3). There
are two important characteristics in the update rules. First,
the previous snapshot tensor X̃ = X 0,0,0 is independent in
the decomposition for the current snapshot tensor X , since
the CP decomposition of previous snapshot tensor could
approximately replace it. In other words, X̃ ≈ JÃ, B̃, C̃K
holds. We only need to focus on the relative complement of X̃

I1+d1
I1

I2+d2

I2

Fig. 3. Illustration of tensor partitioning

in X , and denote it as X\X̃ . Here, X\X̃ = {X i,j,k|(i, j.k) 6=
(0, 0, 0), (i, j, k) ∈ {0, 1}3 , Θ}.

The second important characteristic is that there is an
expensive operation in the Equation (3), which has the greatest
potential to become the performance bottleneck. We denote
Â = X(1)(C � B) as the Matricized Tensor Times Khatri-
Rao Product (MTTKRP). The related terms in the Equa-
tion (3) include Â0 =

∑
(j,k)6=(0,0) X

0,j,k
(1) (Ck � Bj) and

Â1 =
∑

j,k X
1,j,k
(1) (Ck � Bj). Each element Â[i, f] could

be computed as follows:

Â[i, f] =
∑

X\X̃ [i,:,:]

X\X̃ [i, j, k]B[j, f]C[k, f].

This element-wise computation lists two important properties
of the MTTKRP operator. First, only the non-zero elements
in X will contribute to the MTTKRP result. If an element in
tensor is zero, the corresponding MTTKRP term is zero and
hence will not contribute to the MTTKRP result. Second, the
j and k indices in X determine the rows of factor matrices B
and C that require accessing during the computation.

2) Tensor partitioning: The characteristics of multi-Aspect
streaming tensors motivates us to derive a tensor partitioning
such that it divides the tensor into partitions that contain
equal-number non-zero tensor elements. This could achieve
the optimal load balancing tensor partitioning. Fig. 3 illustrates
an example for a third-order multi-aspect streaming tensor
partitioning, in which black, orange, and red dashed lines
depict the partitioning boundaries for the first, second, and
third modes of tensor, respectively. However, the optimal
tensor partitioning problem is NP-hard. In the following, we
first prove this in Theorem 1, and then, we propose two
heuristic-based tensor partitioning approaches.

Theorem 1: The optimal tensor partitioning problem is NP-
hard.

Proof 1: We prove this by reducing our optimal tensor
partitioning problem to the Partition problem [47], which is

NP-complete. In number theory and computer science, the
Partition problem is the task of deciding whether a given
multiset S of n positive integers, i.e., S = {si|i = 1, 2, ..., n,
si ∈ Z+}, can be partitioned into two subsets S1 and S2

such that
∑

si∈S1
si =

∑
sj∈S2

sj , where S1 ∩ S2 = ∅ and
S1 ∪ S2 = S. We are able to reduce the optimal tensor
partitioning problem as follows:

First, we could set the partition number p to 2, meaning that
we divide the given tensor into 2 parts such that the optimal
load balancing could be achieved. Second, we assume that the
mode to be split is the first mode (otherwise, we could traverse
all the modes to find the eligible mode in linear time), and
denote the number of non-zero elements in i-th slice of the
first-mode tensor as ai = nnz(X\X̃ [i, :, :]), i = 1, 2, . . . , I .

The workload of each partition depends on the number of
non-zero elements in the partition. Thus, the solution of the
optimal load balancing tensor partitioning is to derive two par-
titions P1 and P2 of X\X̃ such that

∑
ai∈P1

ai =
∑

ai∈P2
ai,

P1 ∩ P2 = ∅ and P1 ∪ P2 = X\X̃ . This is equivalent to the
Partition problem. Therefore, the optimal tensor partitioning
problem is NP-hard. The proof completes. �

Due to the hardness of the optimal tensor partitioning
problem, we utilize two heuristic-based approaches to perform
the partitioning, namely, Greedy Tensor Partitioning (GTP)
and Max-min Tensor Partitioning (MTP), as detailed below.
Greedy Tensor Partitioning. GTP assigns partition bound-
aries greedily in each mode. To be more specific, GTP first
partitions the tensor in the first mode. It greedily assigns
partition boundaries such that the nnz(X\X̃) of each partition
in the first mode reaches the target size nnz(X\X̃))/q. Note
that, the target size is an optimal set such that each partition
shares the same number of non-zero elements. The same
strategy could be applied to every other mode.

Algorithm 2 presents the corresponding pseudo-code of
GTP. It takes as inputs the relative complement tensor X\X̃
∈ RI1×I2×...×IN and the number of partitions in each mode
{pn}Nn=1, and outputs the partition results {P (n)

p }pn

p=1, n =
1, 2, . . . , N . The main body of the algorithm is a for-loop,
which greedily assigns slices to the partitions for each mode
of the given tensor (lines 1-17). For a given mode n (line 1),
it first computes the target ω, i.e., the optimal number of non-
zero elements (i.e., nnz, which denotes the number of non-
zero elements) in each partition (line 2). Then, it computes
and stores nnz in the i-th slice in the current mode to a

(n)
i

(line 3). Meanwhile, it initializes the container {P (n)
p }pn

p=1 to
store partition results, as well as other temporary container
variables (lines 4-5). Next, GTP greedily assigns the slices
to the current partition, i.e., the temporary variable P , until
the total number of non-zero elements in the current partition
(captured by variable sum) is no smaller than the target ω
(lines 6-9). Note that, slices could have skewed density of non-
zero elements. When GTP adds a slice i with large nnz to the
current partition, the nnz in the partition could be significantly
larger than the target ω. Thus, if the current sum is larger than
ω (line 10), GTP compares the partition without slice i against

Algorithm 2: Greedy Tensor Partitioning
Input: the relative tensor complement

X\X̃ ∈ RI1×I2×...×IN , the number of
partitions in each mode {pn}Nn=1

Output: the partition results {P (n)
p }pn

p=1, n = 1, 2, . . .,
N

1 for n← 1 : N do
2 ω ← nnz(X\X̃)/pn

3 {a(n)
i }

In
i=1 ← the nnz of each slice in mode n

4 {P (n)
p }pn

p=1 ← {∅}
5 P ← ∅, count← 0, sum← 0
6 for i← 1 : In do
7 sum← sum+ a

(n)
i .nnz

8 if sum < ω then
9 assign slice i to P

10 else // sum ≥ ω
11 if sum− ω < ω − (sum− a(n)

i .nnz) then
12 assign slice i to P

13 if count < pn then
// form a new partition

14 P
(n)
count ← P

15 P ← ∅, count← count+ 1, sum← 0

16 else
17 assign remaining slices to P (n)

pn , break

18 return {P (n)
p }pn

p=1, n = 1, 2, . . . , N

the partition having included slice i, and chooses whichever
that leads to a better balance (lines 11-12). After that, GTP
generates a partition P (n)

count for mode n, and proceeds to the
next partition (lines 13-15) until pn partitions are generated.
Note that, when the number of partitions reaches pn, GTP
stops the evaluation, and adds all the remaining slices to the
last partition (i.e., the pn-th partition in mode n) to end the
partitioning process corresponding to the current mode n (lines
16-17). After all modes are partitioned, GTP outputs the tensor
partitioning results {P (n)

p }pn

p=1, n = 1, 2, . . . , N (line 18).
Max-min Fit Tensor Partitioning. GTP follows the original
order of the slices when grouping slices into partitions. Con-
sidering the skewed non-zero element distribution in tensors,
GTP might not be able to achieve a balanced partitioning.
Motivated by this observation, we present MTP algorithm.
Unlike GTP, MTP first sorts the slices by the number of
non-zero elements in each slice, and then, it assigns the slice
with the current biggest nnz to the partition with the current
smallest nnz.

Algorithm 3 shows the pseudo-code of MTP. It shares the
same inputs and same output as GTP. MTP partitions the
tensor mode by mode in the for-loop (lines 1-7). For a given
mode n (line 1), it first computes the nnz {a(n)

i }
In
i=1 in each

slice (line 2), and sorts the slices according to descending

Algorithm 3: Max-min Fit Tensor Partitioning
Input: the relative tensor complement

X\X̃ ∈ RI1×I2×...×IN , the number of
partitions in each mode {pn}Nn=1

Output: the partition results
{P (n)

p }pn

p=1, n = 1, 2, . . . , N
1 for n← 1 : N do
2 {a(n)

i }
In
i=1 ← the nnz of each slice in mode n

3 sort {a(n)
i } based on descending order of nnz

4 {P (n)
p }pn

p=1 ← {∅}
5 for i← 1 : In do
6 p← P

(n)
p in {P (n)

p } with the minimal nnz
sum

7 assign a(n)
i to p

8 return {P (n)
p }pn

p=1, n = 1, 2, . . . , N

order of their nnz values (i.e., ∀1 ≤ j < k ≤ In, a(n)
j ≥ a(n)

k ,
line 3). Then, it initializes the container {P (n)

p }pn

p=1 to store
partition results (line 4). Next, MTP iteratively assigns the
current slice that contains at least as many non-zero elements
as any of the remaining slices to a partition with the smallest
number of non-zero elements (lines 5-7). The partition of one
mode is completed after all a(n)

i s are assigned to different
partitions. After all the N modes are partitioned, MTP outputs
the tensor partitioning results {P (n)

p }pn

p=1, n = 1, 2, . . . , N
(line 8).

3) Factor Matrix Partitioning: After the tensor partitioning,
we induce the partitions for the factor matrices based on the
non-zero elements in tensor partitions. Let’s revisit the Equa-
tion (6). The indices of non-zero tensor elements determine
the related rows of factor matrices that need to be accessed
during the MTTKRP computation. Thus, we assign all the
related factor matrices to the corresponding tensor partitions in
a row-wise pattern. Fig. 4 illustrates a tensor partition (shown
as the cube), with its corresponding rows of factor matrices
(shown as the rectangles). Note that, more details about Fig. 4
will be stated in Section IV-B1.

B. Distributed Tensor Decomposition

After data partitioning, each partition holds a non-zero
tensor as well as the related rows of factor matrices. In the fol-
lowing, we detail each computation step of distributed tensor
decomposition. For brevity, we consider the computation cor-
responding to the first mode of a third-order tensor, although
the computations of other modes or even the computations of
more general order tensors could be extended and performed
in a similar manner.

1) Distributed MTTKRP Computation: In each partition,
for each non-zero element in X\X̃ , we first perform MTTKRP
computation for the factor matrix A as follows:

Â[i, :] =
∑

X\X̃ [i,:,:]

X\X̃ [i, j, k]B[j, :]C[k, :]. (6)

Tensor PartitionA

B

C

A[i,:]

Fig. 4. Illustration of a tensor partition and the corresponding rows of factor
matrices

This computation could be done at the granularity of factor
matrix rows. Consider the example in Fig. 4 again. For the row
A[i, :] of factor matrix A, the MTTKRP computation needs
to access every non-zero element X\X̃ [i, :, :] from the i-th
slice of the first mode in tensor X\X̃ , shown as the dots in
the area bounded by dashed-lines in Fig. 4. In addition, it
needs to access every row B[j, :] and every row C[k, :] in
factor matrices B and C indexed by every non-zero element
X\X̃ [i, j, k] in the i-th tensor slice X\X̃ [i, :, :], depicted as
strips in Fig. 4. Finally, all the MTTKRP partial terms are
aggregated to get the result Â[i, :].

2) Distributed Factor Matrix Update: After the distributed
MTTKRP computation, the intermediate results should be
processed with other factor matrices to update the factor
matrices shown as the update rules defined in the Equation (3).
In the following, we first introduce the update of factor matrix
A0, and then consider the update of factor matrix A1.

For the factor matrix A0, the related factor matrices include
Ã, B̃, C̃, B0, B1, C0, and C1. To be more specific, given a
local row A0[i, :] of the factor matrix A0, we need to access
the corresponding Ã[i, :] row of Ã, C̃ᵀC0, B̃ᵀB0, Cᵀ

kCk

(k = 0, 1), and Bᵀ
jBj (j = 0, 1) for the update. Among

these matrices, the products of factor matrices are R × R
matrices, which are small enough to be fit into the memory
of each partition. Here, we assume that they are cached in
every partition. Besides, all the related rows of factor matrices
have been already cached in each partition. Thus, we could
perform the update rule of A0 in row-wise distribution pattern,
as detailed below.

A0[i, :]←
µÃ[i, :][(C̃ᵀC0) ∗ (B̃ᵀB0)] + Â[i, :]

(
∑1

k=0 C
ᵀ
kCk) ∗ (

∑1
j=0 B

ᵀ
jBj)− (1− µ)(Cᵀ

0C0) ∗ (Bᵀ
0B0)

.

The update of factor matrix A1 is similar to that of factor
matrix A0. Moreover, the factor matrix A1 is independent on
the previous snapshot factor matrices (i.e., Ã, B̃, C̃). Thus,

the update of A1 is even simpler than that of A0. The
corresponding update rule of A1 is as follows:

A1[i, :]←
Â[i, :]

(
∑1

k=0 C
ᵀ
kCk) ∗ (

∑1
j=0 B

ᵀ
jBj)

.

3) Distributed Matrix Product Update: Since we assume
that all the products of matrices are cached when updating the
factor matrix, each partition needs to compute the products of
matrices for the next iteration round.

Given a matrix product AᵀB, we could compute it in a
row-wise form:

AᵀB =
[
Aᵀ

P1
Aᵀ

p2 . . . Aᵀ
Pp

] BP1

BP2

· · ·
BPp

 =

p∑
i=1

Aᵀ
Pi
BPi .

After each partition updates the corresponding rows of
factor matrix A0[i, :], it first computes its local A0[i, :]ᵀA0[i, :]
and Ã[i, :]ᵀA0[i, :]. Then, it performs an All-to-All reduction
to aggregate the final matrices ÃᵀA0 and Aᵀ

0A0, and dis-
tributes them among all partitions.

As for the factor matrix A1, we could follow the above
process to generate the matrix product Aᵀ

1A1 for the next
iteration round.

4) Distributed Loss Function Computation: The the loss
function should be computed at the end of each iteration round
for the convergence condition. As stated in the Equation (2),
the loss function could be divided into two parts:

L = L(0,0,0) +
∑

(i,j,k)∈Θ\(0,0,0)

L(i,j,k),

L(0,0,0) , µ‖JÃ, B̃, C̃K− JA0,B0,C0K‖2F ,
L(i,j,k) , ‖X i,j,k − JAi,Bj ,CkK‖2F .

where weight µ is the forgetting factor.
In the following, we first discuss the computation of the first

part L(0,0,0), and then detail the computation of the second part
L(i,j,k) ((i, j, k) ∈ Θ\(0, 0, 0)).

The first part of loss function L(0,0,0) could be rewritten
as:

L(0,0,0) = µ‖JÃ, B̃, C̃K− JA0,B0,C0K‖2F ,
= µ(‖ÃᵀÃ ∗ B̃ᵀB̃ ∗ C̃ᵀC̃‖2F + ‖Aᵀ

0A0 ∗Bᵀ
0B0 ∗Cᵀ

0C0‖2F
− 2‖ÃᵀA0 ∗ B̃ᵀB0 ∗ C̃ᵀC0‖2F).

The first term ‖ÃᵀÃ ∗ B̃ᵀB̃ ∗ C̃ᵀC̃‖2F is a constant, i.e.,
it does not change its value in the iteration. These factor
matrices of the previous snapshot including Ã, B̃, and C̃ are
constant inputs, and thus, ‖ÃᵀÃ ∗ B̃ᵀB̃ ∗ C̃ᵀC̃‖2F could be
pre-computed. The other terms of L(0,0,0) can be computed
directly, as the products of factor matrices Aᵀ

0A0 and ÃᵀA0

(similar to B and C) are computed during the iteration, as
stated in the above discussion. We could maintain and reuse
these intermediate results.

The second part of the loss function could be computed
as follows. Given a tuple (i, j, k) ∈ Θ\(0, 0, 0), we aim to
compute the partial loss L(i,j,k) = ‖X i,j,k− JAi,Bj ,CkK‖2F .
We denote the approximation of X i,j,k as Yi,j,k, i.e. Yi,j,k =

JAi,Bj ,CkK. Then, the partial loss L(i,j,k) can be represented
as: √

〈X i,j,k,X i,j,k〉+ 〈Yi,j,k,Yi,j,k〉 − 2〈X i,j,k,Yi,j,k〉.

The first term 〈X i,j,k,X i,j,k〉 = ‖X i,j,k‖2F is the tensor
norm, which is the square root of the sum of the squares of
all its non-zero elements. X i,j,k is also a constant input, and
hence, its norm can be pre-computed.

The second norm of the approximate tensor Yi,j,k can be
represented as:

〈Yi,j,k,Yi,j,k〉 = ‖Yi,j,k‖2F = ‖Aᵀ
iAi ∗Bᵀ

jBj ∗Cᵀ
kCk‖2F .

Again, the norm can be computed by using the intermediate
results. This is because the matrix products are computed
during the iteration.

The last term, i.e., the inner product term 〈X i,j,k,Yi,j,k〉,
could be represented as follows:

〈X i,j,k,Yi,j,k〉 =
∑

nnz(X)

X [i, j, k]A[i, f]B[j, f]C[k, f]. (7)

Before we explain the detailed calculation of this term, let’s
revisit the MTTKRP computation defined in the Equation (6).
We could observe that the partial product between B, C,
and X is already computed as Â. In other words, we have
Â[i, f] =

∑
nnz(X) X [i, j, k]B[j, f]C[k, f]. Inspired by this,

we could maintain Â, and rewrite the Equation (7) in a row-
wise form, and then, we aggregate to get the inner product
term 〈X i,j,k,Yi,j,k〉, as follows:

〈X i,j,k,Yi,j,k〉 =
∑
i

Â[i, :]ᵀA[i, :].

In other words, we could reuse the row of factor matrix and
its corresponding MTTKRP result to derive the inner product
in a row-wise form and to aggregate the inner product term
〈X i,j,k,Yi,j,k〉.

So far, we have detailed each and every step to compute
the distributed multi-aspect streaming tensor decomposition.
DisMASTD iterates the above computation steps until the
convergence.

C. Complexity Analysis

In this subsection, we theoretically analyze our proposed
DisMASTD, including time complexity, memory requirement,
and network communication, in Theorem 2, Theorem 3, and
Theorem 4, respectively.

For the sake of simplicity, we assume that notations X̃ ∈
RI×I×...×I , X ∈ R(I+d)×(I+d)×...×(I+d) represent the two
N th-order consecutive snapshots tensors, notation Ãi ∈ RI×R

refers to the previous snapshot factor matrix, and notation
Ai ∈ R(I+d)×R, i = 1, 2, . . . , N stands for the current
snapshot factor matrix, respectively. Let M be the number
of worker nodes in a distributed environment. Note that, we
take one iteration round of distributed tensor decomposition
in DisMASTD as an example to analyze the complexity.

Theorem 2: The time complexity of our proposed Dis-
MASTD is O(N(nnz(X\X̃)R + R3 + IR2 + dR2 + IR +

dR + R2 + I)) when it uses GTP to partition tensors, or
O(N(nnz(X\X̃)R+R3+IR2+dR2+IR+dR+R2+IlogI))
when it uses MTP to partition tensors.

Proof 2: As stated in the beginning of Section IV, there are
two main parts in DisMASTD, namely, data partitioning and
distributed tensor decomposition.

In the data partitioning, DisMASTD firstly needs
O(nnz(X\X̃)) time to traverse the X\X̃ , and compute
nnz by slices in each mode. Then, it uses the statistics to
derive the partition boundaries. For each mode, GTP takes
O(I) time in assigning partition boundaries, while MTP
needs O(IlogI) time. Since each non-zero tensor element
is mapped to a partition with a constant time, mapping
all the non-zero elements to corresponding partitions in
each mode takes O(nnz(X\X̃)) time. After the tensor
partitioning, all the previous snapshot factor matrices Ãi

are read in O(NIR) time, and all the current snapshot
factor matrices Ai are initialized in O(NIR + NdR) time,
i = 1, 2, . . . , N . Meanwhile, all the factor matrices are
assigned to corresponding partitions. Consequently, the data
partitioning needs O(N(nnz(X\X̃) + I + IR + dR)) time
using GTP or O(N(nnz(X\X̃) + IlogI + IR + dR)) time
using MTP.

In the distributed tensor decomposition, computing MT-
TKRP in the granularity of matrix row for all the factor
matrices takes O(Nnnz(X\X̃)R). Updating a factor matrix
should compute the multiplication of two matrices, i.e., the
numerator term and the inverse matrix of denominator term
in the Equation (5). It requires O(IR2 + IR) time to get
the numerator term; it needs O(R2) time to aggregates the
matrix products to get the denominator term, and O(R3)
time to inverse the denominator term. The multiplication of
the two matrices takes O((I + d)R2) time. In total, it takes
O(N(R3 + IR2 + dR2 + IR + R2)) time in updating all
the factor matrices. Updating all the matrix products needs
O(N(I + d)R2) time. Computing the convergence condition
takes O(NR2 + (I + d)R2) time, thanks to the reuse of
the intermediate results. Overall, the distributed tensor de-
composition part needs O(Nnnz(X\X̃)R + N(R3 + IR2 +
dR2 + IR + R2) + N(I + d)R2 + NR2 + (I + d)R2) =
O(N(nnz(X\X̃)R+R3 + IR2 + dR2 + IR+R2)) time.

By considering the costs corresponding to the two parts of
DisMASTD, the total time complexity is O(N(nnz(X\X̃)R+
R3 + IR2 + dR2 + IR + dR + R2 + I)) using GTP or
O(N(nnz(X\X̃)R+R3+IR2+dR2+IR+dR+R2+IlogI))
using MTP. The proof completes. �

Theorem 3: The memory requirement of our proposed
DisMASTD is O(nnz(X\X̃) +MNR2 +NIR+NdR).

Proof 3: DisMASTD needs to store following data items
in memory to facilitate the decomposition of tensor: i) the
tensor X\X̃ ; ii) the previous snapshot factor matrices Ãi;
iii) the current snapshot factor matrices Ai; iv) the result of
MTTKRP Âi; and v) the matrix products Ãᵀ

i Ai0 , Aᵀ
i0
Ai0 ,

Aᵀ
i1
Ai1 , i = 1, 2, . . . , N . DisMASTD store X\X̃ by all

the non-zero elements with the coordinate format in the

TABLE III
STATISTICS OF THE DATASETS USED

Dataset I J K nnz
Clothing 1.2× 107 2.7× 106 7.0× 103 3.2× 107

Book 1.5× 107 2.9× 106 8.2× 103 5.1× 107

Netflix 4.8× 105 1.8× 104 2.2× 103 1.0× 108

Synthetic 5.0× 104 5.0× 104 5.0× 104 5.0× 108

distributed system. Thus, it needs O(nnz(X\X̃)) memory
to store the tensor X\X̃ . Every factor matrix as well as the
corresponding MTTKRP result are collectively owned by all
the M worker nodes, which take O(NIR + NdR) memory
in total. In each mode, the matrix products require O(R2)
memory. As DisMASTD broadcasts those matrix products
among all the M worker nodes, the total memory requirement
is O(MNR2). Hence, the amount of memory for storing data
is O(nnz(X\X̃) +MNR2 +NIR+NdR), which completes
the proof. �

Theorem 4: The network communication of our proposed
DisMASTD is O(nnz(X\X̃) +MNR2 +NIR+NdR).

Proof 4: In the data partitioning, it takes O(nnz(X\X̃))
network communication in mapping the non-zero elements
to the corresponding partitions. All the factor matrices are
mapped to corresponding partitions in the row-wise pattern,
which takes O(NIR + NdR) communication. In the dis-
tributed tensor decomposition, it needs O(MNR2) communi-
cation to aggregate and broadcost all those matrix products to
M worker nodes. Besides, it takes O(IR+dR) communication
for the reuse of MTTKRP results to aggregate the loss. Thus,
the total network communication is O(nnz(X\X̃)+MNR2+
NIR+NdR). The proof completes. �

V. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate DisMASTD
using both real and synthetic datasets, compared with the state-
of-the-art competitor.

A. Experimental Setup

We employ three real datasets, i.e., Clothing, Book, and
Netflix as well as one synthetic dataset Synthetic. Table III lists
the statistics of the above-mentioned four datasets. Here, I , J ,
and K represent three different modes; and nnz is the number
of non-zero elements in each dataset. Clothing and Book
are two categories of reviews obtained from Amazon review
dataset2. They can be parsed as two reviewer-product-time
rating tensors. Netflix is a customer-movie-date rating tensor,
which is taken from the Netflix Prize open competition3.
Tensor decomposition in the three real datasets could be
used for recommendation purpose as discussed in Section I.
Synthetic is a third-order tensor, and its non-zero elements are
set with uniform distribution.

We set the second dimension R of factor matrices to 10 and
the forgetting factor µ to 0.8. Besides, we set the maximum

2https://nijianmo.github.io/amazon/index.html
3https://www.kaggle.com/netflix-inc/netflix-prize-data

DMS-MG-GTP DMS-MG-MTP DisMASTD-GTP DisMASTD-MTP
ru

n
n

in
g
 t

im
e
 p

er
 i

te
r.

 (
se

c)

220

340

280

160
9590

tensor size (%)

10080 85

(a) Clothing
ru

n
n

in
g
 t

im
e
 p

er
 i

te
r.

 (
se

c)

250

450

350

150
9590

tensor size (%)

10080 85

(b) Book

ru
n
n

in
g
 t

im
e
 p

er
 i

te
r.

 (
se

c)

100

300

200

0
9590

tensor size (%)

10080 85

(c) Netflix

ru
n
n

in
g
 t

im
e
 p

er
 i

te
r.

 (
se

c)

50

150

100

0
9590

tensor size (%)

10080 85

(d) Synthetic

Fig. 5. Running time per iteration versus the multi-aspect streaming tensor

TABLE IV
THE STANDARD DEVIATION STATICS OF nnz IN TENSOR PARTITIONS

Dataset p 8 15 23 30 38

Clothing GTP 0.7843 1.2743 1.6197 1.9361 2.1954
MTP 0.0273 0.0716 0.1222 0.1720 0.2208

Book GTP 0.9456 1.3321 1.6210 1.8491 2.1628
MTP 0.0284 0.0617 0.1020 0.1496 0.2119

Netflix GTP 0.4259 0.6496 1.1004 0.8861 0.9712
MTP 0.0284 0.1095 0.2008 0.2457 0.2888

Synthetic GTP 0.0047 0.0124 0.0240 0.0363 0.0503
MTP 0.0048 0.0117 0.0223 0.0331 0.0473

number of iterations to 10, and report the average running
time per iteration. Note that, we focus on the efficiency
and scalability of tensor decomposition in this paper. The
parameters mentioned above only have an impact on the
accuracy of tensor decomposition, i.e., the similarity between
the decomposition result and the origin tensor. We consistently
set the parameters in all the experiments considering both
accuracy and speed for fair comparison. All the experiments
were implemented in Scala 2.11 on Spark 2.2, and run on a 15-
node Dell cluster. Each node has two Intel(R) Xeon(R) CPU
E5-2650 v4 @ 2.20GHz processors with 12 cores, 128GB
RAM, 1TB disk, and connect in Gigabit Ethernet.

B. Performance Study

In this subsection, we evaluate the effectiveness and effi-
ciency of our proposed DisMASTD. We first compare Dis-
MASTD with the extended DMS-MG [16] on the multi-aspect
streaming tensor in Section V-B1. Note that, DMS-MG is the
state-of-the-art static tensor decomposition method. We extend
DMS-MG to Spark using our framework, and implement
two versions, including DMS-MG-GTP which uses GTP to
partition tensors and DMS-MG-MTP which utilizes MTP to
partition tensors. Then, we study the effect of the tensor
partitioning and give the experimental guide to set the number
of tensor partitions in Section V-B2. Finally, we conduct
the experiments to verify the scalability of DisMASTD in
Section V-B3.

1) Performance on the Multi-Aspect Streaming Tensor:
We first study the efficiency of our proposed DisMASTD, in-

cluding DisMASTD-GTP which uses GTP to partition tensors,
and DisMASTD-MTP which utilizes MTP to partition tensors,
compared against DMS-MG-GTP and DMS-MG-MTP on the
multi-aspect streaming tensor.

Fig. 5 plots the average running time per iteration with
respect to the multi-aspect streaming tensor, i.e., the tensor
size increases from 75% to 100% of the whole dataset by
5% at each time step. We have made four observations
in the following. First, DisMASTD performs much better
than DMS-MG. Second, DisMASTD demonstrates signifi-
cantly better scalability than DMS-MG. Furthermore, DMS-
MG even fails to perform the tensor decomposition when the
underlying dataset reaches certain size, e.g., Synthetic shown
in Fig. 5(d). This is because DisMASTD benefits from an
important characteristic of multi-aspect streaming tensors, i.e.,
the decomposition of the current snapshot tensor is inde-
pendent of the previous snapshot tensor. Thanks to the CP
decomposition of previous snapshot, DisMASTD could focus
on the computation of relative complement of two consecutive
tensor snapshots. In contrast, DMS-MG, as a traditional static
tensor decomposition method, has to re-compute the tensor
decomposition from the sketch, not able to benefit from the
decomposition of previous tensors.

Third, as the tensor size grows, the running time of two
DMS-MG methods increases while that of two DisMASTD
methods stays much more stable. This clearly demonstrates
the resilience of DisMASTD to the tensor size, which is very
desirable in the era of big data. The reason is that the cost of
DMS-MG depends on the number of non-zero elements within
the tensor. However, the cost of DisMASTD depends on the
number of non-zero elements in the relative complement of
two consecutive tensor snapshots as discussed in Section IV-C.
Besides, it is observed that the partitioning algorithm MTP
performs slightly better than GTP. This is because MTP could
achieve better load-balancing tensor partitioning than GTP. We
will detail this in the next subsection.

2) Effect of the Tensor Partitioning: The second set of
experiments is to compare the efficiency of the two different
versions of our proposed tensor partitioning method and to
explore the effect of the number of partitions.

ru
n
n

in
g
 t

im
e
 p

er
 i

te
r.

 (
se

c)

200

240

220

180
3023

the number of partitions
388 15

DisMASTD-GTP

DisMASTD-MTP

(a) Clothing
ru

n
n

in
g
 t

im
e
 p

er
 i

te
r.

 (
se

c)

240

280

260

220
3023

the number of partitions
388 15

DisMASTD-GTP

DisMASTD-MTP

(b) Book

ru
n
n

in
g
 t

im
e
 p

er
 i

te
r.

 (
se

c)

90

110

100

70
3023

the number of partitions
388 15

DisMASTD-GTP

DisMASTD-MTP

80

(c) Netflix

ru
n
n

in
g
 t

im
e
 p

er
 i

te
r.

 (
se

c)

200

600

400

0
3023

the number of partitions
388 15

DisMASTD-GTP

DisMASTD-MTP

(d) Synthetic

Fig. 6. Running time per iteration versus the number of partitions

ru
n
n

in
g
 t

im
e
 p

er
 i

te
r.

 (
se

c)

200

240

220

180
129

the number of nodes
153 6

DisMASTD-GTP

DisMASTD-MTP

(a) Clothing

ru
n
n

in
g
 t

im
e
 p

er
 i

te
r.

 (
se

c)

300

400

350

200
129

the number of nodes
153 6

DisMASTD-GTP

DisMASTD-MTP

250

(b) Book

ru
n
n

in
g
 t

im
e
 p

er
 i

te
r.

 (
se

c)

90

130

110

70
129

the number of nodes
153 6

DisMASTD-GTP

DisMASTD-MTP

(c) Netflix

ru
n
n

in
g
 t

im
e
 p

er
 i

te
r.

 (
se

c)

200

300

250

100
129

the number of nodes
153 6

DisMASTD-GTP

DisMASTD-MTP

150

(d) Synthetic

Fig. 7. Running time per iteration versus the number of nodes

Table IV lists the standard deviation statistics of nnz in
the tensor partitioning result w.r.t. various the numbers of
tensor partitions from 8 to 38 per mode, which could clearly
demonstrate the load balancing of tensor partitioning. It is
observed that the standard deviation values of MTP are smaller
than that of GTP in all the real datasets (i.e., Clothing, Book,
and Netflix). As for Synthetic dataset, the standard deviation
values of both tensor partitioning methods are close. The
reason behind is that the three real datasets are tensors with
skewed non-zero element distribution while Synthetic dataset
is randomly generated with uniform non-zero element distri-
bution. This implies that MTP is more adaptive to the tensor
with skewed non-zero element distribution as it partitions
the tensor in over-all load balancing pattern. However, GTP
simply assigns the partitioning boundaries as it greedily moves
forward.

In addition, Fig. 6 illustrates the results under various
numbers of tensor partitions from 8 to 38 per mode. The first
observation is that the running time per iteration of both two
DisMASTD methods first drops and then ascends or stays sta-
ble as the number of tensor partitions grows. This is because,
the larger the number of partitions is, the more parallelism the
distributed system has. However, more partitions require more
overhead in the distributed system. Considering the trade-off
above, it seems to be a good empirical setting to set the number
of partitions to be the number of nodes in the distributed
system. It is also observed that MTP performs slightly better
than GTP.

3) Effect of the Number of Nodes: The third set of experi-
ments is to verify the scalability of our proposed DisMASTD.
Fig. 7 depicts the running time per iteration w.r.t. the number
of nodes in the distributed system, which is changed from 3
nodes to 15 nodes. As expected, the running time drops as the
number of nodes increases, since the computational resources
grow with more nodes. It is worth mentioning that the speedup
over the increasing number of nodes in Synthetic dataset is
larger than that in the datasets with small nnz (e.g., Clothing).
The reason is that the startup costs of Spark tasks dominate
the running time when the datasets are small.

VI. CONCLUSION

In this paper, we study the problem of distributed multi-
aspect streaming tensor decomposition. This is, to our best
knowledge, the first attempt to tackle the problem in the dis-
tributed platform to support the arising high volume streaming
data analysis. We propose DisMASTD, an efficient distributed
multi-aspect streaming tensor decomposition. First, we prove
the optimal partitioning problem is NP-hard. Second, we
utilize two heuristic tensor partitioning methods, namely GTP
and MTP, to achieve the load balancing. The former follows
the order of slices, and tries to locate the boundary of each
partition such that the number of non-zero elements within
each partition is close to the target size. The latter allows
each partition to contain non-adjacent slices, and strives to
make sure the number of non-zero elements with each partition
is close to each other. Third, we design a distributed multi-

aspect streaming tensor decomposition computation method,
which avoids repetitive computation and reduces the network
communication by maintaining and reusing the intermediate
results. Finally, we conduct extensive experiments using both
real and synthetic datasets to confirm that DisMASTD is more
efficient and meanwhile scales better than the state-of-the-art
competitor.

ACKNOWLEDGMENTS

This work was supported in part by the National Key R&D
Program of China under Grant No. 2018YFB1004003, the
NSFC under Grant No. 61972338, the NSFC Zhejiang Joint
Fund under Grant No. U1609217, and the National Research
Foundation, Prime Minister's Office, Singapore under its In-
ternational Research Centres in Singapore Funding Initiative.
Yunjun Gao is the corresponding author of the work.

REFERENCES

[1] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.

[2] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Tensors
for data mining and data fusion: Models, applications, and scalable
algorithms,” ACM TIST, vol. 8, no. 2, pp. 16:1–16:44, 2017.

[3] Q. Song, H. Ge, J. Caverlee, and X. Hu, “Tensor completion algorithms
in big data analytics,” TKDD, vol. 13, no. 1, pp. 6:1–6:48, 2019.

[4] G. Vargas-Solar, J. Zechinelli-Martini, and J. Espinosa-Oviedo, “Big
data management: What to keep from the past to face future challenges?”
Data Science and Engineering, vol. 2, no. 4, pp. 328–345, 2017.

[5] M. T. Bahadori, Q. R. Yu, and Y. Liu, “Fast multivariate spatio-temporal
analysis via low rank tensor learning,” in NIPS, 2014, pp. 3491–3499.

[6] D. M. Dunlavy, T. G. Kolda, and E. Acar, “Temporal link prediction
using matrix and tensor factorizations,” TKDD, vol. 5, no. 2, pp. 10:1–
10:27, 2011.

[7] Y. Wang, Y. Zheng, and Y. Xue, “Travel time estimation of a path using
sparse trajectories,” in SIGKDD, 2014, pp. 25–34.

[8] M. Signoretto, D. Q. Tran, L. D. Lathauwer, and J. A. K. Suykens,
“Learning with tensors: A framework based on convex optimization and
spectral regularization,” Machine Learning, vol. 94, no. 3, pp. 303–351,
2014.

[9] H. Wang and N. Ahuja, “Facial expression decomposition,” in ICCV,
2003, pp. 958–965.

[10] T. Yokota, B. Erem, S. Guler, S. K. Warfield, and H. Hontani, “Missing
slice recovery for tensors using a low-rank model in embedded space,”
in CVPR, 2018, pp. 8251–8259.

[11] H. Fanaee-T and J. Gama, “Multi-aspect-streaming tensor analysis,”
Knowl.-Based Syst., vol. 89, pp. 332–345, 2015.

[12] H. Ge, K. Zhang, M. Alfifi, X. Hu, and J. Caverlee, “DisTenC: A
distributed algorithm for scalable tensor completion on spark,” in ICDE,
2018, pp. 137–148.

[13] U. Kang, E. E. Papalexakis, A. Harpale, and C. Faloutsos, “Gigatensor:
Scaling tensor analysis up by 100 times - algorithms and discoveries,”
in SIGKDD, 2012, pp. 316–324.

[14] S. Oh, N. Park, L. Sael, and U. Kang, “Scalable tucker factorization
for sparse tensors - algorithms and discoveries,” in ICDE, 2018, pp.
1120–1131.

[15] K. Shin, L. Sael, and U. Kang, “Fully scalable methods for distributed
tensor factorization,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 1, pp.
100–113, 2017.

[16] S. Smith and G. Karypis, “A medium-grained algorithm for distributed
sparse tensor factorization,” in IPDPS, 2016, pp. 902–911.

[17] M. Mardani, G. Mateos, and G. B. Giannakis, “Subspace learning and
imputation for streaming big data matrices and tensors,” IEEE Trans.
Signal Processing, vol. 63, no. 10, pp. 2663–2677, 2015.

[18] S. Zhou, X. V. Nguyen, J. Bailey, Y. Jia, and I. Davidson, “Accelerating
online CP decompositions for higher order tensors,” in SIGKDD, 2016,
pp. 1375–1384.

[19] M. Nimishakavi, B. Mishra, M. Gupta, and P. P. Talukdar, “Inductive
framework for multi-aspect streaming tensor completion with side
information,” in CIKM, 2018, pp. 307–316.

[20] Q. Song, X. Huang, H. Ge, J. Caverlee, and X. Hu, “Multi-aspect
streaming tensor completion,” in SIGKDD, 2017, pp. 435–443.

[21] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum
of products,” Journal of Mathematics and Physics, vol. 6, no. 1-4, pp.
164–189, 1927.

[22] J. D. Carroll and J.-J. Chang, “Analysis of individual differences in
multidimensional scaling via an n-way generalization of “eckart-young”
decomposition,” Psychometrika, vol. 35, no. 3, pp. 283–319, 1970.

[23] R. A. Harshman et al., “Foundations of the parafac procedure: Models
and conditions for an “explanatory” multimodal factor analysis,” 1970.

[24] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[25] P. M. Kroonenberg and J. De Leeuw, “Principal component analysis
of three-mode data by means of alternating least squares algorithms,”
Psychometrika, vol. 45, no. 1, pp. 69–97, 1980.

[26] L. D. Lathauwer, B. D. Moor, and J. Vandewalle, “A multilinear singular
value decomposition,” SIAM J. Matrix Analysis Applications, vol. 21,
no. 4, pp. 1253–1278, 2000.

[27] B. W. Bader and T. G. Kolda, “Efficient MATLAB computations with
sparse and factored tensors,” SIAM J. Scientific Computing, vol. 30,
no. 1, pp. 205–231, 2007.

[28] J. H. Choi and S. Vishwanathan, “Dfacto: Distributed factorization of
tensors,” in NIPS, 2014, pp. 1296–1304.

[29] A. Beutel, P. P. Talukdar, A. Kumar, C. Faloutsos, E. E. Papalexakis, and
E. P. Xing, “Flexifact: Scalable flexible factorization of coupled tensors
on Hadoop,” in SDM, 2014, pp. 109–117.

[30] E. E. Papalexakis, C. Faloutsos, T. M. Mitchell, P. P. Talukdar, N. D.
Sidiropoulos, and B. Murphy, “Turbo-smt: Accelerating coupled sparse
matrix-tensor factorizations by 200x,” in SDM, 2014, pp. 118–126.

[31] L. Karlsson, D. Kressner, and A. Uschmajew, “Parallel algorithms for
tensor completion in the CP format,” Parallel Computing, vol. 57, pp.
222–234, 2016.

[32] K. Shin and U. Kang, “Distributed methods for high-dimensional and
large-scale tensor factorization,” in ICDM, 2014, pp. 989–994.

[33] B. Jeon, I. Jeon, L. Sael, and U. Kang, “Scout: Scalable coupled matrix-
tensor factorization - algorithm and discoveries,” in ICDE, 2016, pp.
811–822.

[34] N. Park, B. Jeon, J. Lee, and U. Kang, “BIGtensor: Mining billion-scale
tensor made easy,” in CIKM, 2016, pp. 2457–2460.

[35] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis, “SPLATT:
Efficient and parallel sparse tensor-matrix multiplication,” in IPDPS,
2015, pp. 61–70.

[36] S. Acer, T. Torun, and C. Aykanat, “Improving medium-grain parti-
tioning for scalable sparse tensor decomposition,” IEEE Trans. Parallel
Distrib. Syst., vol. 29, no. 12, pp. 2814–2825, 2018.

[37] N. Park, S. Oh, and U. Kang, “Fast and scalable distributed boolean
tensor factorization,” in ICDE, 2017, pp. 1071–1082.

[38] ——, “Fast and scalable method for distributed boolean tensor factor-
ization,” VLDB J., vol. 28, no. 4, pp. 549–574, 2019.

[39] D. Nion and N. D. Sidiropoulos, “Adaptive algorithms to track the
PARAFAC decomposition of a third-order tensor,” IEEE Trans. Signal
Processing, vol. 57, no. 6, pp. 2299–2310, 2009.

[40] A. H. Phan and A. Cichocki, “PARAFAC algorithms for large-scale
problems,” Neurocomputing, vol. 74, no. 11, pp. 1970–1984, 2011.

[41] J. Sun, D. Tao, and C. Faloutsos, “Beyond streams and graphs: Dynamic
tensor analysis,” in SIGKDD, 2006, pp. 374–383.

[42] J. Sun, D. Tao, S. Papadimitriou, P. S. Yu, and C. Faloutsos, “Incremental
tensor analysis: Theory and applications,” TKDD, vol. 2, no. 3, pp. 11:1–
11:37, 2008.

[43] R. Yu, D. Cheng, and Y. Liu, “Accelerated online low rank tensor
learning for multivariate spatiotemporal streams,” in ICML, 2015, pp.
238–247.

[44] W. Hu, X. Li, X. Zhang, X. Shi, S. J. Maybank, and Z. Zhang,
“Incremental tensor subspace learning and its applications to foreground
segmentation and tracking,” International Journal of Computer Vision,
vol. 91, no. 3, pp. 303–327, 2011.

[45] A. Sobral, C. G. Baker, T. Bouwmans, and E. Zahzah, “Incremental and
multi-feature tensor subspace learning applied for background modeling
and subtraction,” in ICIAR, 2014, pp. 94–103.

[46] X. Ma, D. Schonfeld, and A. A. Khokhar, “Dynamic updating and
downdating matrix SVD and tensor HOSVD for adaptive indexing and
retrieval of motion trajectories,” in ICASSP, 2009, pp. 1129–1132.

[47] R. E. Korf, “A complete anytime algorithm for number partitioning,”
Artificial Intelligence, vol. 106, no. 2, pp. 181–203, 1998.

	DisMASTD: An efficient distributed multi-aspect streaming tensor decomposition
	Citation

	tmp.1632918003.pdf.VtmZE

