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Highlights inactivated whole HCV vaccine
� Efficient production of inactivated whole virus antigen for HCV
vaccine candidates.

� Whole inactivated HCV vaccines induce broadly neutralizing anti-
bodies in mice.

� Among adjuvants, AddaVax, analogue of licensed MF-59, shows the
highest immunogenicity.

� Modifications of HCV envelope proteins increase neutralization
epitope exposure.

� HCV with modified and original envelope proteins has
similar immunogenicity.
https://doi.org/10.1016/j.jhep.2021.12.026
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A vaccine against hepatitis C virus
(HCV) is needed to prevent the
estimated 2 million new infections
and 400,000 deaths caused by this
virus each year. We developed

candidates using adjuvants licensed
for human use, which, following
immunization of mice, induced
antibodies that efficiently neutral-
ized all HCV genotypes with
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Inactivated whole hepatitis C virus vaccine employing a licensed
adjuvant elicits cross-genotype neutralizing antibodies in mice
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Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; 2Department of
Molecular Diagnostics, Aalborg University Hospital and Clinical Institute, Aalborg University, Aalborg, Denmark; 3Department of Immunology
and Microbiology, The Scripps Research Institute, La Jolla, California, United States; 4Department of Immunology and Microbiology, Faculty of

Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Background & Aims: A prophylactic vaccine is required to induced broadly neutralizing antibodies, which warrant inves-

eliminate HCV as a global public health threat. We developed
whole virus inactivated HCV vaccine candidates employing a
licensed adjuvant. Further, we investigated the effects of HCV
envelope protein modifications (to increase neutralization
epitope exposure) on immunogenicity.
Methods: Whole virus vaccine antigen was produced in Huh7.5
hepatoma cells, processed using a multistep protocol and
formulated with adjuvant (MF-59 analogue AddaVax or
aluminium hydroxide). We investigated the capacity of IgG pu-
rified from the serum of immunized BALB/c mice to neutralize
genotype 1-6 HCV (by virus neutralization assays) and to bind
homologous envelope proteins (by ELISA). Viruses used for im-
munizations were (i) HCV5aHi with strain SA13 envelope pro-
teins and modification of an O-linked glycosylation site in E2
(T385P), (ii) HCV5aHi(T385) with reversion of T385P to T385,
featuring the original E2 sequence determined in vivo and (iii)
HCV5aHi(DHVR1) with deletion of HVR1. For these viruses,
epitope exposure was investigated using human monoclonal
(AR3A and AR4A) and polyclonal (C211 and H06) antibodies in
neutralization assays.
Results: Processed HCV5aHi formulated with AddaVax induced
antibodies that efficiently bound homologous envelope proteins
and broadly neutralized cultured genotype 1-6 HCV, with half
maximal inhibitory concentrations of between 14 and 192 lg/ml
(mean of 36 lg/ml against the homologous virus). Vaccination
with aluminium hydroxide was less immunogenic. Compared
to HCV5aHi(T385) with the original E2 sequence, HCV5aHi with
a modified glycosylation site and HCV5aHi(DHVR1) without
HVR1 showed increased neutralization epitope exposure but
similar immunogenicity.
Conclusion: Using an adjuvant suitable for human use, we
developed inactivated whole HCV vaccine candidates that
words: hepatitis C virus; hepatitis; neutralizing antibodies; HCV vaccine; whole
l particle vaccine; HCV inactivation; HCV downstream processing; adjuvant;
elope glycoprotein; hypervariable region; glycosylation.
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tigation in further pre-clinical studies.
Lay summary: A vaccine against hepatitis C virus (HCV) is
needed to prevent the estimated 2 million new infections and
400,000 deaths caused by this virus each year. We developed
inactivated whole HCV vaccine candidates using adjuvants
licensed for human use, which, following immunization of mice,
induced antibodies that efficiently neutralized all HCV genotypes
with recognized epidemiological importance. HCV variants with
modified envelope proteins exhibited similar immunogenicity as
the virus with the original envelope proteins.
© 2022 The Authors. Published by Elsevier B.V. on behalf of European
Association for the Study of the Liver. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.
0/).
Introduction
Worldwide �2 million acute HCV infections occur yearly, leading
to chronic infection in �75% of cases.1 More than 70 million in-
dividuals are estimated to be chronically infected, resulting in
�400,000 annual deaths, mostly due to cirrhosis and hepato-
cellular carcinoma.1 Given the asymptomatic nature of HCV
infection prior to development of severe (and often irreversible)
liver damage and the lack of screening programs, it is estimated
that less than 20% of infections are diagnosed. Further, not all
diagnosed individuals receive treatment with direct-acting an-
tivirals, partly due to their high cost.1 Moreover, treatment does
not protect against reinfection, can be associated with severe
side effects in hepatitis B virus co-infected individuals, and does
not always eliminate the risk of hepatocellular carcinoma
following HCV clearance. Finally, observed emergence of anti-
viral resistance could compromise future treatment efficacy.
Therefore, a prophylactic vaccine is essential to achieve the
World Health Organization’s objectives for HCV elimination as a
major public health threat.2

Ideally, a vaccine should protect against different HCV vari-
ants.3 Among the 8 reported major HCV genotypes, genotype 1-6
are epidemiologically significant. There are various subtypes.
Genotypes and subtypes differ in �30% and �20% of their
sequence, respectively, and show differential sensitivity to
neutralizing antibodies (nAbs).4–9 The HCV envelope (E)
22 vol. 76 j 1051–1061
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glycoproteins (gp) E1 and E2 are the main targets of nAbs.10 The
highly variable 27 amino acid motif hypervariable region 1
(HVR1) at the E2 N-terminus mediates HCV evasion from nAbs; it
acts as immunological decoy that induces nAbs, which are
rendered inefficient due to mutational escape, and facilitates
closed envelope protein conformational states, which restrict
nAb access to conserved neutralization epitopes.4,11,12 Further,
HCV envelope protein glycosylation induced closed envelope
protein states that protect conserved epitopes.12,13 Thus, in vitro
deletion of HVR1 and mutation of glycosylation sites increased
HCV sensitivity to nAbs.4,11–14

Protective immunity against HCV is achievable as �25% of
acute infections are cleared, likely by nAbs and T cells.15,16 In a
vaccine setting, nAbs might be sufficient for protection, as most
licensed viral vaccines protect by nAbs.16–18 Further, early
development of nAbs was predictive of HCV clearance in humans
and passive immunization with nAbs prevented HCV infection in
chimpanzees.19–23 Moreover, nAbs induced by a recombinant
gpE1/gpE2 vaccine had protective effects in chimpanzees.24,25 In
contrast, a viral vector-based vaccine inducing HCV-specific T
cells did not protect against chronic HCV infection in chimpan-
zees and humans.26,27

In humans, the gpE1/gpE2 vaccine yielded robust nAbs in
<50% of immunized individuals.28,29 Compared to such subunit
vaccines, whole virus vaccines show superior immunogenicity
owing to a more native envelope protein conformation, a
broader epitope array and a denser epitope presentation.30,31 The
development of a whole virus HCV vaccine only became feasible
following the development of infectious cell culture systems for
HCV production.32 However, proof of the immunogenicity of cell-
culture-produced HCV was only obtained with non-licensed
adjuvants.31,33 Additionally, it remains an unresolved question
whether envelope protein modifications designed to expose
conserved neutralization epitopes improve HCV immunogenicity
in the context of a whole virus vaccine.

We aimed to develop inactivated HCV vaccine candidates
employing adjuvants licensed for human use and to investigate
their immunogenicity in mice. We evaluated the capacity of
vaccine-induced antibodies to broadly neutralize cell-culture-
infectious HCV genotype 1-6 recombinants. Finally, we evalu-
ated the impact of envelope protein modifications on vaccine
immunogenicity by deleting HVR1 and mutating a glycosyla-
tion site.

Materials and methods
HCV recombinants
Recombinants for vaccine production and/or neutralization as-
says were: (i) High titer HCV5aHi34 with modification of an O-
linked glycosylation site in E2 (T385P) in comparison to the
reference strain SA13 virus HCV5a,35 (ii) HCV5aHi(T385)
differing from HCV5aHi by reversion of T385P to T385,34 and (iii)
HCV5aHi(DHVR1), newly engineered by deletion of HVR1 from
HCV5aHi. For neutralization assays, HCV with genotype 1-6 en-
velope gp were used.8,9,35–37 Also see Fig. S1.
HCV cell culture
Huh7.5 cells were maintained as described.38,39 Generation of
HCV virus stocks and further cell-culture-adaptation of HCV5a-
Hi(DHVR1) by serial passage are described in the supplementary
materials and methods.
1052 Journal of Hepatology 20
Production of HCV for vaccine generation
HCV-infected Huh7.5 cells were seeded in 10-layer cell factories
(Thermo Fisher Scientific) and maintained in serum-free
Adenovirus Expression Medium (ThermoFisher Scientific)40

during the HCV production phase. For details see the
supplementary materials and methods.

Evaluation of HCV-infected cell cultures
Details regarding the evaluation of the percentage of HCV
antigen-positive cells in infected cell cultures by immunostain-
ing,37,39 as well as HCV infectivity,38,41,42 RNA39 and core titers43

in culture supernatants, are provided in the supplementary
materials and methods.

HCV sequencing
Sanger sequencing of the HCV sequence of DNA maxi-
preparations or of amplicons of the HCV RNA genome of cell-
culture-derived HCV generated by reverse-transcription PCR
was carried out at Macrogen Europe as described38,44 and as
detailed in the supplementary materials and methods.

HCV concentration
HCV in serum-free culture supernatant was concentrated using a
multistep process consisting of tangential flow filtration, ultra-
centrifugation and chromatography steps, as specified in the
supplementary materials and methods.

Immunization of mice
BALB/c mice (Taconic Farms, Denmark) were vaccinated
with concentrated and inactivated HCV or EndoFitTMOvalbumin
(Invivogen) formulated with aluminium hydroxide
(Alum)+monophosphoryl lipid A (MPLA) (Invivogen), AddaVaxTM

(Invivogen) or Freund’s adjuvant (Invivogen) according to Danish
regulations, as specified in the supplementary materials
and methods.

Mouse serum IgG purification and quantification
IgG was purified (Amicon® Pro Affinity Concentration Kit Protein
G, Millipore), concentrated (Vivaspin® 500, 30,000 molecular
weight cut-off (MWCO), GE Lifesciences) and quantified (IgG
(total) Mouse Uncoated ELISA Kit, ThermoFisher or Cedex Bio
Analyzer, Roche) according to the manufacturer�s instructions
and as specified in the supplementary materials and methods.

In vitro neutralization assays
Neutralization assays for characterization of HCV with envelope
protein modifications were performed as described,35 using
human monoclonal antibodies (mAbs: AR3A,45 AR4A46) or hu-
man polyclonal IgG preparations (C21112 or H0647). Neutraliza-
tion assays with purified mouse IgG were carried out in a smaller
volume than assays for characterization of HCV. The E1/E2
sequence of viruses used in neutralization assays was sequence
confirmed to be identical to the plasmid sequence. For details see
the supplementary materials and methods.

E1/E2 complexes and soluble E2 (sE2) ELISA
Binding of mouse serum IgG to recombinantly expressed native
HCV5a (strain SA13) E1/E2 complexes derived from cell lysates of
transfected HEK293T cells or his-tag purified HCV5a SA13 sE2
derived from supernatant of transfected HEK293T cells was
22 vol. 76 j 1051–1061



evaluated by ELISA, as described in the supplementary materials
and methods.

Results
Production of HCV vaccine antigen
HCV for immunizations was produced in Huh7.5 cells in 10-layer
cell factories under serum-free conditions and processed using a
multistep protocol. A representative production with the cell-
culture-infectious HCV recombinant HCV5aHi34 (Fig. S1) is
shown in Fig. 1A-E. Following UV inactivation, the HCV antigen
was formulated with adjuvant and used for 4 subcutaneous
immunizations of BALB/c mice at 3-week intervals (Fig. 1F).

Immunization of mice with an inactivated whole virus HCV
vaccine formulated with Alum+MPLA elicited nAbs with
limited efficacy
First, mice were immunized with inactivated HCV5aHi formu-
lated with Alum+MPLA, licensed for human use. Following sac-
rifice, serum IgG was purified and tested for nAbs against
homologous HCV5aHi, showing dose-dependent neutralization,
however, with limited efficacy. The half maximal inhibitory
concentration (IC50) ranged from 64 to 589 lg/ml (mean 313 lg/
ml) for 4 animals, while for 2 animals 50% neutralization was not
observed at 1,000 lg/ml, the highest IgG concentration used
(Fig. 2A). Near complete neutralization was only observed for 1
animal, while 18–72% was achieved for the other animals at the
highest IgG concentration. No HCV-specific nAbs were detected
in control mice immunized with ovalbumin and Alum+MPLA
(Fig. S2). Vaccine-induced IgG specifically bound to homologous
E1/E2 complexes and less strongly to sE2 (Fig. S3). Immunization
with HCV5aHi formulated with the widely used experimental
Freund’s adjuvant induced slightly better nAb responses, with
mean IC50 at 286 lg/ml IgG and mean maximum neutralization
of 83% against HCV5aHi (Fig. S4).

Immunization of mice with an inactivated whole virus HCV
vaccine formulated with AddaVax elicited potent cross-
genotype nAb responses
Next, we immunized mice with inactivated HCV5aHi formulated
with AddaVax, an analogue of MF-59; MF-59 is licensed for
human use. IgG purified from 9 vaccinated animals neutralized
homologous HCV5aHi at IC50 of 15-66 lg/ml (mean 36 lg/ml)
and near complete neutralization at the highest IgG concentra-
tion (Fig. 2B). Thus, AddaVax showed superior efficacy, with
mean IC50 more than 15-fold lower than that of the Alum+MPLA
vaccination group (Fig. 2C). Further, mean maximum neutrali-
zation at the highest IgG concentration was 97% vs. 61% for IgG
induced by AddaVax vs. Alum+MPLA (Fig. 2D). Importantly, IgG
pooled from these 9 animals efficiently cross-neutralized HCV
genotypes 1-6 at IC50 of 14-192 lg/ml, with near complete
neutralization at the highest IgG concentration (Fig. 2E). No HCV-
specific nAbs were detected in control mice (Fig. S2). Further, IgG
purified from pooled serum of these 9 animals after the 2nd and
3rd immunization neutralized HCV5aHi at IC50 of 50 and 76 lg/
ml, respectively, and with near complete neutralization at the
highest IgG concentration (Fig. 2F). Moreover, vaccine-induced
IgG specifically bound to homologous E1/E2 complexes and sE2
individually (Fig. 3), showing stronger binding than IgG induced
by Alum+MPLA (Fig. S3). IgG induced following 3 and 4 immu-
nizations showed similar, concentration-dependent binding.
Journal of Hepatology 20
Slightly lower binding was observed for IgG derived following 2
immunizations (Fig. 3).

HCV with modified envelope proteins showed differential
sensitivity to nAbs
Deletion of HVR1 or mutation of glycosylation sites has been
reported to influence the neutralization sensitivity of cell-
culture-derived HCV, presumably by influencing exposure of
neutralization epitopes.4,11–14 However, how such modifications
influence immunogenicity in the context of a whole virus vaccine
has not been studied. HCV5aHi harbored the E2 substitution
T385P, which has been shown to increase neutralization sensi-
tivity.34 To investigate the influence of T385P on immunoge-
nicity, we produced HCV5aHi(T385) with the substitution
reverted to T385,34 yielding 5.6 log10 focus-forming units (FFUs)/
ml in pooled supernatant from cell factories. Further, to study the
influence of HVR1 on immunogenicity we developed HCV5a-
Hi(DHVR1) by deleting HVR1 from HCV5aHi and by further
culture adaptation, carrying out 18 passages in Huh7.5 cells to
compensate for fitness impairment. The resulting polyclonal vi-
rus had acquired 3 additional dominant substitutions based on
Sanger sequencing: N532D and L735I in E2 as well as K1609R in
non-structural protein 3 (amino acid positions are related to the
polyprotein of the 1a H77 reference sequence (GenBank acces-
sion no. AF009606)) (Fig. S1). Pooled passage 20 supernatant
from cell factories inoculated with a passage 19 seed stock
yielded 5.8 log10 FFUs/ml.

We characterized neutralization sensitivity of HCV5a-
Hi(T385), HCV5aHi(DHVR1) and HCV5aHi in comparison to the
reference virus HCV5a with the original envelope protein
sequence35 using well characterized human mAbs (AR3A45 and
AR4A46) and human polyclonal IgG (C211 and H06) (Fig. 4A-
D).12,47 In line with previous results, HCV5aHi showed 6- to 18-
fold increased neutralization sensitivity compared to HCV5a34

(Fig. 4E and F). HCV5aHi(DHVR1) showed a similar (6- to 22-
fold) increase in neutralization sensitivity. In contrast, HCV5a-
Hi(T385), also harboring the original E2 sequence, showed
similar neutralization sensitivity as HCV5a. Similar differences in
neutralization profiles were observed for processed HCV5aHi,
HCV5aHi(DHVR1) and HCV5aHi(T385) (Fig. S5).

HCV vaccine candidates with modified envelope proteins
induced similar nAb responses in mice
To evaluate if differences in neutralization sensitivity affected
immunogenicity, mice were immunized with HCV5aHi, HCV5a-
Hi(DHVR1) and HCV5aHi(T385) equivalent to 7.5 log10 FFUs us-
ing AddaVax. First, we proved that serum IgG purified from each
animal neutralized HCV5aHi with similar efficacy (Fig. 2B and
S6). Then, for each group, IgG pools were generated and used to
neutralize HCV5aHi, HCV5aHi(DHVR1), HCV5aHi(T385) and the
HCV5a reference virus (Fig. 5A-D). In these assays, IC50 ranged
from 17 to 654 lg/ml. The HCV5aHi IgG pool showed somewhat
higher neutralization efficacy than the other pools with IC50 of
17, 267, 126 and 69 lg/ml against HCV5aHi, HCV5aHi(T385),
HCV5aHi(DHVR1) and HCV5a, respectively. Further, the IgG pools
neutralized HCV1a at IC50 of 14–143 lg/ml (Fig. 5E) and HCV3a at
IC50 of 192–295 lg/ml (Fig. 5F), with HCV5aHi-induced IgG
showing the highest efficacy. Finally, IgG pools showed similar
concentration-dependent binding to E1/E2 complexes and sE2
(Fig. 6). Overall, while modifications of the envelope proteins did
not have major effects on immunogenicity, we observed a trend
22 vol. 76 j 1051–1061 1053
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towards superior induction of nAbs by the HCV5aHi vi-
rus antigen.
Discussion
We provide proof-of-concept for immunogenicity of a whole
virus inactivated HCV vaccine employing an adjuvant analogue
of MF-59, which is licensed for human use. Immunizations
resulted in induction of potent antibodies broadly neutralizing
all major HCV genotypes with recognized epidemiological
importance. HCV envelope protein variants with deletion of
HVR1 and mutation of a putative O-linked glycosylation site
Journal of Hepatology 20
showed differential neutralization sensitivity but overall
similar immunogenicity.

Broadly nAbs are associated with protection from chronic
HCV infection.16,20,23,48 Our results suggest that induction of
broadly nAbs by a single virus antigen is possible. This is in line
with proof-of-concept findings in chronically HCV-infected pa-
tients and in humans immunized with the gpE1/gpE2 vaccine,
where cross-nAb targeting conformational epitopes were elicited
by single isolates.7,28,49 HCV5aHi vaccine-induced nAbs exhibited
slight differences in efficacy against different HCV isolates,
overall reflecting differences previously observed using other
nAbs, such as the relatively low efficacy against the HCV3a
22 vol. 76 j 1051–1061 1055
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virus.4,8,9,24,49,50 These observations are in line with the hy-
pothesis that conformational epitopes targeted by potent cross-
genotype neutralizing mAbs, such as AR3A and AR4A, are
conserved among HCV isolates, and that different neutralization
sensitivity is mainly caused by isolate-specific epitope protection
by HVR1- and glycan-dependent closed envelope protein
conformational states.4,7,12,51

The highest IgG concentrations used in in vitro neutraliza-
tion assays, yielding close to complete neutralization, were
�10-fold lower than mean IgG concentrations in human serum.
IC50 were comparable to those achieved in previous immuno-
genicity studies using whole inactivated genotype 2a HCV,
however, formulated with non-licensed adjuvants; in these
studies cross-neutralization of genotype 1a/b and 3a was
observed, while genotypes 4-6 were not tested.31,33 Moreover,
IC50 were in the range of IC50 of IgG in chimpanzees protected
from HCV challenge following vaccination with the gpE1/gpE2
vaccine24,25 and at least comparable to that of IgG induced by
vaccines based on sE2 in small animal models.14,52–54

Future development of an inactivated HCV vaccine candi-
date will be facilitated by development of optimized serum-
free bioreactor-based upstream and downstream pro-
cesses.38,40,55 Future immunogenicity studies should aim at
defining an optimal immunization schedule and HCV antigen
dose. For production of whole virus vaccines, amounts of viral
particles required to achieve a given immune response are of
interest. In this study, antigen doses were defined by infectious
unit equivalents, as infectivity titrations were used to monitor
viral processing, providing evidence for the presence of intact
particles, and as reported by others.56,57 This might not allow
for an optimal comparison of amounts of particles for viruses
showing different specific infectivities. Therefore, we retro-
spectively determined amounts of HCV core and genome copies
in vaccine preparations. This analysis suggested that 3- to 6-
fold higher amounts of viral particles might have been con-
tained in the HCV5aHi(DHVR1) vaccine compared to the
HCV5aHi and HCV5aHi(T385) vaccines (Table S1). This could
explain the slightly higher E1/E2 binding by HCV5aHi(DHVR1)-
induced IgG compared to IgG induced by the other 2 viruses.
Based on core determinations, vaccine doses used in this study
were comparable to doses used in previous inactivated HCV
1056 Journal of Hepatology 20
vaccine studies.31,33 A future research focus should be
establishment of assays to quantify the amount of HCV
envelope proteins, being the main antigenic proteins, in
vaccine preparations.

An important achievement of our study is the development of
a whole inactivated HCV vaccine candidate employing an
analogue of a licensed adjuvant, facilitating its use in humans. In
line with previous findings, MF-59 analogue AddaVax, also used
in the gpE1/gpE2 vaccine,29 was superior in inducing binding
Abs and nAbs compared to Alum used in most human vaccines
and the experimental golden standard Freund�s adjuvant.56,58

Further, whole inactivated genotype 2a HCV formulated with
Alum yielded nAbs showing <20% neutralization.33 Nevertheless,
comparatively high neutralization sensitivity of our vaccine an-
tigens might have contributed to comparatively high immuno-
genicity. Thus, compared to the genotype 2a (isolate J6) HCV,31,33

HCV5aHi showed at least 200-fold higher sensitivity to the hu-
man antibodies used for characterization of HCV neutralization
sensitivity (unpublished results).12

For other viruses, increased neutralization epitope exposure
resulted in enhanced induction of nAbs following vaccina-
tion.59–61 According to assays applied in this study, increased
HCV neutralization epitope exposure mediated by deletion of
HVR1 did not result in increased immunogenicity, while modi-
fication of an O-linked glycosylation site in HCV5aHi resulted in
somewhat increased induction of nAbs. While this question had
not been addressed using whole HCV vaccines that would be
expected to show close to native envelope conformations, similar
findings were reported using envelope protein subunit vaccines.
Thus, gpE1/gpE2 heterodimers50 or sE214 without HVR1, with or
without an additional modification of a glycosylation site,
enzymatically deglycosylated sE2,14 or insect cell produced
sE252,54 showed no or slightly increased immunogenicity.
Somewhat increased immunogenicity was observed for sE2
lacking all 3 variable regions.53

Future vaccine studies with HCV showing greater differ-
ences in neutralization sensitivity than the viruses used in this
study might further clarify the potential of envelope protein
engineering to increase immunogenicity. Compared to the
reference virus HCV5a, both HCV5aHi and HCV5aHi(DHVR1)
showed up to �20-fold increased neutralization sensitivity,
22 vol. 76 j 1051–1061
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while for other HCV recombinants, HVR1 deletion and modi-
fications of glycosylation sites increased neutralization sensi-
tivity by up to 5 orders of magnitude.4,12,14,51 This phenomenon
is likely explained by the inherent high neutralization
Journal of Hepatology 20
sensitivity of the HCV5a (strain SA13) reference virus, sug-
gesting a predominantly open envelope protein conformational
state with relatively high epitope exposure, which could only
be somewhat increased by envelope modifications.4,12,51
22 vol. 76 j 1051–1061 1057
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In conclusion, using an analogue of the licensed adjuvant MF-
59 and whole inactivated cell-culture-derived HCV, we have
developed an attractive HCV vaccine approach for further pre-
1058 Journal of Hepatology 20
clinical development. While a recently tested immunogenic T
cell-based vaccine did not protect against chronic HCV infection
in a phase I/II study,27 we here describe a vaccine platform
22 vol. 76 j 1051–1061
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inducing potent nAbs. In the future, following optimization of
the vaccine preparation processes, clinical studies will be needed
to elucidate if this vaccine approach will confer protection
against chronic HCV infection.
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