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Abstract—In practice, because of different factors, the supply
voltage (especially in the distribution level) almost always has
some degrees of unbalance and harmonic pollution. With increas-
ing the level of these power quality issues in recent years, their
monitoring and compensation using custom power devices have
received much attention. In addition, modern power converter-
based renewable energy sources are expected to provide some an-
cillary services to mitigate these power quality issues. These tasks
and requirements often involve using a signal processing tool for
the online detection of the fundamental sequence components
and harmonics of the voltage and/or current signals. The typical
choice for this purpose is the discrete-Fourier transform (DFT) as
it offers a fast computational speed. It, however, may not be a very
attractive solution for applications where the selective extraction
of a few frequency components is required as it demands a high
computational effort. In such scenarios, using time-domain signal
decomposition algorithms is more desirable. Generally speaking,
these algorithms are nonlinear feedback control systems, which
include two or more dynamically-interactive frequency-adaptive
filters tuned to concerned frequency components. The complex
structure of these algorithms, however, makes them complicated
to analyze, especially for those who are not experienced in this
field. This paper aims to address this difficulty by developing
harmonic models for these algorithms and investigating them. To
this end, three case studies are considered. Through a harmonic
linearization procedure, developing harmonic models for them
is shown. The accuracy of these models is then investigated,
and performing the harmonic stability analysis using them is
demonstrated.

Index Terms—Frequency-locked loop (FLL), harmonics,
phase-locked loop (PLL), reduced-order generalized integrator
(ROGI), second-order generalized integrator (SOGI), signal de-
composition, synchronization, three-phase systems, voltage un-
balance.
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I. INTRODUCTION

ATHREE-PHASE supply voltage is balanced if all signals
have the same magnitude with 120◦ phase difference

compared to each other. In practice, however, a completely
balanced supply voltage may not be reached. In fact, be-
cause of different factors, such as supplying single-phase
and/or unbalanced three-phase loads, asymmetry in the line
impedance and/or transformer windings, and occurring faults,
the supply voltage may have some degrees of unbalance [1].
In addition to the phase and amplitude unbalance, the non-
fundamental current (the harmonic current) drawn by nonlinear
loads may cause some deformities in the supply voltage. This
is especially true in the distribution level, where the current
drawn by some nonlinear loads is far away from a sine-wave
[2].

The presence of harmonics in the supply voltage and its
phase/amplitude unbalance may have adverse effects on the
efficiency and lifetime of the equipment and may even jeopar-
dize the power system stability. For example, it is known that
the unbalance of the voltage supplying three-phase induction
motors, which consume around 70% of industrial electricity,
results in an oscillating electromagnetic force [1]. Such an os-
cillating force increases vibrations and losses in induction mo-
tors and hence reduces their efficiency and lifetime. The grid
voltage unbalance may also cause an uncontrolled negative-
sequence current flow into grid-tied power converters and,
therefore, generate uncontrolled double-frequency oscillations
in their output power and dc-link voltage [3]. Such oscillations
may give rise to a system trip and, consequently, the loss
of generation and even instability. Regarding the presence of
harmonics in the supply voltage, these disturbances may lead
to extra losses in conductors of both neutral and line and also
in the winding and core of transformers and cause resonance
in the power system [4].

To deal with the ever-increasing problems associated with
harmonics and unbalance in the supply voltage, monitoring
and compensation of these disturbances using custom power
devices have received a considerable attention [5], [6]. In
addition, power converter-interfaced renewable energy gener-
ation systems, which their penetration in power systems is
significantly increasing, are expected to have some additional
control functions to deal with these power quality issues and
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provide some ancillary services to support the power grid
in the presence of them [3], [7]–[10]. In wind farms, for
example, the national and international grid codes [11], [12]
demand power converter-interfaced wind turbines to have a
fault ride-through capability to support the power grid during
faults, which are almost always unbalanced. In microgrids, as
another example, power converters are expected to have the
harmonic and negative-sequence current sharing capability in
addition to the standard active/reactive power sharing ability to
ensure proper operation under unbalanced and/or harmonically
distorted grid conditions [10]. All these requirements and
functions often involve an on-line detection of the fundamental
symmetrical components and/or harmonics of the voltage
and/or current signals [3], [13].

The typical choice for the extraction of harmonics and
sequence components is computing the discrete Fourier trans-
form (DFT) using a fast Fourier transform (FFT) algorithm
[2], [14], [15]. From the computing speed point of view, the
FFT has a fast response as it only requires one cycle of the
sampled data. It means that extracting the harmonic content of
a 50-Hz signal only takes 0.02 s. Besides, the FFT does not
require the knowledge of expected harmonics. The accuracy
of the FFT, however, may be considerably affected under
frequency drifts and non-stationary situations. In addition, it
is a computationally demanding algorithm as it calculates all
harmonics within the signal bandwidth. The DFT and its close
variants are subsumed under the category of frequency-domain
methods [2], [14].

In a large number of applications, especially in microgrid
and renewable energy areas, only extracting the fundamental
symmetrical components and/or few low-order harmonics are
required, and quite large frequency drifts are expected. In such
scenarios, time-domain approaches are more cost-effective
solutions than frequency-domain ones from the computational
point of view.

The theory of symmetrical components [16] plays a key role
in designing time-domain signal decomposition algorithms.
According to this theory, an unbalanced set of three-phase
signals is decomposable into three sets of signals called the
positive-, negative-, and zero-sequence components. Such a
decomposition involves generating 120◦ phase-shifted versions
of the three-phase signals, which can be translated into a
90◦ shift for facilitating its practical implementation [17]. The
way of generating this 90◦ phase shift is the key difference
between the algorithms that work based on the theory of
symmetrical components. Using generalized integrators and
enhanced PLL (EPLL) are probably two of the most popular
approaches for this purpose [17]–[21]. It is worth mentioning
here that for applications where the zero-sequence component
is not required, the procedure for extracting the positive-
and negative-sequence components can be further simplified
by transferring the three-phase signals to the αβ frame by
applying Clarke’s transformation.1

Using complex-coefficient filters (CCFs) are also highly
popular for detecting and separating harmonics and fundamen-
tal sequence components of three-phase signals in the time

1The Clarke’s transformation eliminates the zero-sequence component.

domain. A CCF, which is characterized by having an asym-
metrical frequency response around zero Hz and, therefore, a
sequence-selective filtering ability, is often realized by creating
couplings between two orthogonal axes in the αβ frame [22],
[23]. Using the concept of the synchronous reference frame
PLL (SRF-PLL), which has been proven to be an adaptive
complex filter [24], is an alternative way [25].

In summary, time-domain signal decomposition algorithms,
regardless of their design concept, are adaptive nonlinear
feedback control systems that are widely employed in the
control system of grid-tied power converters and custom
power devices. As these algorithms may significantly affect
the stability and performance of this equipment, ensuring their
robustness and stable operation is of paramount importance.
This task, however, is not trivial at all because of the nonlin-
ear nature and interactive elements of these algorithms. The
traditional solution to deal with this challenge is developing
linear time-invariant (LTI) models for them. Such a solution,
however, may not be practical here as the main instability
cause in these algorithms is dynamic interactions between their
parallel-connected frequency-adaptive elements, but develop-
ing an LTI model involves neglecting them. To deal with this
problem, the harmonic linearization2 of time-domain signal
decomposition algorithms and developing linear time-periodic
(LTP) models for them are presented in this paper. The LTP
model, contrary to the LTI one, can take into account the
presence of harmonics and/or imbalance in the input of time-
domain signal decomposition algorithms and also the dynamic
interactions between their elements. Therefore, it can be a
very efficient and reliable tool for the stability and dynamics
assessment of these algorithms.

This paper focuses on the LTP modeling and investigation
of three-phase parallel-structured signal decomposition algo-
rithms and makes the following contributions to the field.

• To demonstrate the procedure for developing LTP mod-
els for different time-domain signal decomposition al-
gorithms, three case studies, namely, the dual reduced-
order generalized integrator-based frequency-locked loop
(DROGI-FLL) [26]–[30], dual second-order generalized
integrator-based FLL (DSOGI-FLL) [19], and modified
universal three-phase signal processor (UTSP) [25] are
considered, and their LTP models are derived using a de-
tailed mathematical procedure. To ensure the accuracy of
these models, extensive numerical results are presented.

• The procedure for obtaining the harmonic transfer func-
tion (HTF) of a signal decomposition algorithm from its
LTP model is presented, its stability assessment using its
HTF is discussed, and the effect of control parameters
on its stability is theoretically analyzed and numerically
verified.

• It is demonstrated that the case studies of this paper,
despite having completely different structures, have very
close relationships together. It means that the observations
and conclusions made for one case are valid for other
cases.

2The harmonic linearization means the linearization around a periodic
trajectory, which is determined according to the number and frequency of
concerned disturbance components.
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Fig. 1. DROGI-FLL. k1, kh, and λ are the control gains.v̂+α,1 and v̂+β,1 (v̂α,h and v̂β,h) are estimations of the FFPS (h-order frequency) component of the
grid voltage in the αβ frame. θ̂+1 and V̂ +

1 (θ̂h and V̂h) are the estimation of the phase angle and amplitude of the FFPS (h-order frequency) component of
the grid voltage. ω̂ is an estimation of the fundamental angular frequency of the grid voltage. ωn = 2π50 rad/s.

II. DROGI-FLL

A. Overview

A complex signal, which is a mathematical concept, is a
set of two signals in two distinct paths at a moment in time,
where their couplings are described by a complex operator j.
In this way, signal processing and filter design become more
compact and insightful. The complex signal processing and
filter design have a long history of use in different engineer-
ing applications. For example, in grid-connected applications,
designing complex filters dates back to around two decades
ago [31], [32].

In the power and energy area, a basic building block in
designing complex filters is often a complex integrator [33],
also known as the reduced-order generalized integrator (ROGI)
[34]. The ROGI is described in the Laplace domain as

GROGI(s) =
1

s− jωc
(1)

where ωc is the ROGI’s center frequency.
Depending on the application in hand, different complex

filters may be designed through a different combination of
ROGIs. In designing signal decomposition algorithms, which
this paper focuses on, a parallel connection of multiple ROGIs
tuned to concerned frequency components is often recom-
mended [26]–[30]. Adapting the ROGIs center frequency to
grid frequency changes is often carried out using a frequency
observer, which is called FLL. The interested reader can find
more details in this regard in [26]–[30].

In its simplest possible form, a ROGI-based signal decom-
position algorithm includes two parallel ROGIs centered at
the fundamental positive frequency and an h-order disturbance
frequency and an FLL for adapting their center frequencies
to frequency changes. This structure, which is referred to
as the DROGI-FLL (see Fig. 1), is considered as the first
case study in this paper. The DROGI-FLL can extract the
fundamental-frequency positive-sequence (FFPS) component,

an h-order frequency component, and their phase, frequency,
and amplitude. It should be mentioned that:

• h in the DROGI-FLL in Fig. 1 can be a positive or
negative integer. A negative value means that extracting
a frequency component of the negative sequence is re-
quired.

• h = −1 means that extracting the fundamental-frequency
negative-sequence (FFNS) component is intended.

• By adding additional ROGIs tuned to concerned harmonic
frequencies, one can easily extend the DROGI-FLL for
extracting an arbitrary number of components. In this
case, the resulting structure should be called the multiple-
ROGI-FLL.

B. Harmonic Modeling

1) Assumptions: It is assumed that the three-phase input
signal of the DROGI-FLL includes the FFPS component and
an h-order frequency component, as follows:

vabc︷ ︸︸ ︷ va
vb
vc

 =

v+
abc,1︷ ︸︸ ︷ V +

1 cos(θ+
1 )

V +
1 cos(θ+

1 − 2π/3)
V +

1 cos(θ+
1 + 2π/3)



+

vabc,h︷ ︸︸ ︷ Vh cos(θh)
Vh cos(θh − 2π/3)
Vh cos(θh + 2π/3)

 (2)

where V +
1 and θ+

1 (Vh and θh) denote the amplitude and phase
angle of the FFPS (the h-order frequency) component, respec-
tively, and h is a non-zero integer. Notice that, depending on
the sign of h, the h-order component can be of positive or
negative sequence. Notice also that considering or neglecting a
zero-sequence component in (2) does not cause any difference
as the Clarke’s transformation in the input of the DROGI-FLL
blocks it.
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Transferring (2) to the αβ frame gives

vαβ︷ ︸︸ ︷(
vα
vβ

)
=

v+
αβ,1︷ ︸︸ ︷(

V +
1 cos(θ+

1 )
V +

1 sin(θ+
1 )

)
+

vαβ,h︷ ︸︸ ︷(
Vh cos(θh)
Vh sin(θh)

)
. (3)

Considering (3), it can be concluded that the extracted FFPS
and h-order frequency component by the DROGI-FLL should
be of the form(

v̂+
α,1

v̂+
β,1

)
=

(
V̂ +

1 cos(θ̂+
1 )

V̂ +
1 sin(θ̂+

1 )

)
,

(
v̂α,h
v̂β,h

)
=

(
V̂h cos(θ̂h)

V̂h sin(θ̂h)

)
.

(4)
The actual parameters V +

1 , θ+
1 , Vh, and θh in (3) and their

estimations in (4) are defined as a nominal value (indicated by
the subscript n) plus a small perturbation (indicated by ∆), as
follows

V +
1 = V +

n,1 + ∆V +
1 ,

θ+
1 = θ+

n,1 + ∆θ+
1 ,

Vh = Vn,h + ∆Vh,

θh = θn,h + ∆θh,

V̂ +
1 = V +

n,1 + ∆V̂ +
1

θ̂+
1 = θ+

n,1 + ∆θ̂+
1

V̂h = Vn,h + ∆V̂h
θ̂h = θn,h + ∆θ̂h

(5)

where θ+
n,1 = ωnt and θn,h = hωnt+ δh.

The grid fundamental angular frequency and its estimation
are also defined as

ω = ωn + ∆ω
ω̂ = ωn + ∆ω̂

(6)

where ωn = 2π50 rad/s.
Throughout this paper, it is assumed that the actual and

estimated parameters are approximately equal, which implies
that small-signal perturbations are only considered.

2) Harmonic Linearization: From Fig. 1, we have

V̂ +
1 =

√
(v̂+
α,1)

2
+(v̂+

β,1)
2 ⇒ dV̂ +

1

dt
=
v̂+
α,1

dv̂+α,1
dt +v̂+

β,1

dv̂+β,1
dt

V̂ +
1

(7a)

θ̂+
1 = tan−1

(
v̂+
β,1

v̂+
α,1

)
⇒ dθ̂+

1

dt
=
v̂+
α,1

dv̂+β,1
dt − v̂

+
β,1

dv̂+α,1
dt

(V̂ +
1 )

2 (7b)

V̂h=

√
(v̂α,h)

2
+(v̂β,h)

2 ⇒ dV̂h
dt

=
v̂α,h

dv̂α,h
dt +v̂β,h

dv̂β,h
dt

V̂h
(7c)

θ̂h= tan−1

(
v̂β,h
v̂α,h

)
⇒ dθ̂h

dt
=
v̂α,h

dv̂β,h
dt − v̂β,h

dv̂α,h
dt

(V̂h)
2 (7d)

dω̂

dt
= λ

eβ︷ ︸︸ ︷
(vβ − v̂+

β,1 − v̂β,h) v̂+
α,1 −

eα︷ ︸︸ ︷
(vα − v̂+

α,1 − v̂α,h) v̂+
β,1

(V̂ +
1 )

2 (7e)

where

dv̂+
α,1

dt
= k1eα − ω̂v̂+

β,1 (8a)

dv̂+
β,1

dt
= k1eβ + ω̂v̂+

α,1 (8b)

dv̂α,h
dt

= kheα − hω̂v̂β,h (8c)

dv̂β,h
dt

= kheβ + hω̂v̂α,h. (8d)

Substituting (8) into (7) results in

dV̂ +
1

dt
=

k1

V̂ +
1

[
v̂+
α,1eα + v̂+

β,1eβ

]
(9a)

dθ̂+
1

dt
= ω̂ +

k1

(V̂ +
1 )

2

[
−v̂+

β,1eα +v̂+
α,1eβ

]
(9b)

dV̂h
dt

=
kh

V̂h
[v̂α,heα + v̂β,heβ ] (9c)

dθ̂h
dt

= hω̂ +
kh

(V̂h)
2 [−v̂β,heα +v̂α,heβ ] (9d)

dω̂

dt
=

λ

(V̂ +
1 )

2

[
−v̂+

β,1eα + v̂+
α,1eβ

]
. (9e)

Considering (3) and (4), (9) can be rewritten as

dV̂ +
1

dt
= k1

[
V +

1 cos(θ+
1 − θ̂

+
1 )− V̂ +

1 + Vh cos(θh − θ̂+
1 )

−V̂h cos(θ̂h − θ̂+
1 )
]

(10a)

dθ̂+
1

dt
= ω̂ +

k1

V̂ +
1

[
V +

1 sin(θ+
1 − θ̂

+
1 ) + Vh sin(θh − θ̂+

1 )

−V̂h sin(θ̂h − θ̂+
1 )
]

(10b)

dV̂h
dt

= kh

[
Vh cos(θh − θ̂h)− V̂h + V +

1 cos(θ+
1 − θ̂h)

−V̂ +
1 cos(θ̂+

1 − θ̂h)
]

(10c)

dθ̂h
dt

= hω̂ +
kh

V̂h

[
Vh sin(θh − θ̂h) + V +

1 sin(θ+
1 − θ̂h)

−V̂ +
1 sin(θ̂+

1 − θ̂h)
]

(10d)

dω̂

dt
=

λ

V̂ +
1

[
V +

1 sin(θ+
1 − θ̂

+
1 ) + Vh sin(θh − θ̂+

1 )

−V̂h sin(θ̂h − θ̂+
1 )
]

(10e)

which is the set of governing nonlinear differential equations
of the DROGI-FLL. Considering the definitions made in (5)
and applying trigonometric identities, (10a) can be approx-
imated by (11a) at the bottom of the next page. Following
a similar procedure, it can be shown that (10b)-(10e) can be
approximated by (11b)-(11e), respectively. Details of obtaining
(11b)-(11e) are not presented to save space. Using (11a)-
(11e), the harmonic model (also called the LTP model) of
the DROGI-FLL can be derived as depicted in Fig. 2. Notice
that the harmonic model involves division by V +

n,1 and Vn,h.
Therefore, these nominal values cannot be equal to zero.

C. Investigation

1) Model Verification: To investigate the accuracy of the
derived harmonic model for the DROGI-FLL, a model ver-
ification is conducted. The schematic diagram of the model
verification procedure can be observed in Fig. 3.

Two case studies are considered:
• Case 1: The three-phase input signal contains the FFPS

and FFNS components. It is corresponding to consider
h = −1 in the derived harmonic model. The nominal
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Fig. 2. Harmonic model (LTP model) of the DROGI-FLL.

amplitude of the FFPS and FFNS components are 1 p.u.
and 0.2 p.u., respectively.

• Case 2: The three-phase input signal contains the FFPS
component and the seventh harmonic of the positive
sequence. It is corresponding to consider h = 7 in the
derived harmonic model. The nominal amplitude of the
FFPS component and the harmonic component is 1 p.u.
and 0.2 p.u., respectively.

In each case study, three tests are performed.

• Test A: The magnitude of the FFPS component drops
from 1 to 0.9 p.u. at t = 0.01 s.

• Test B: The grid frequency undergoes a step change from
50 to 50.5 at t = 0.01 s.

• Test C: The magnitude of the disturbance component

(i.e., the FFNS component in Case 1 and the harmonic
of order h = +7 in Case 2) drops from 0.2 to 0.1 p.u. at
t = 0.01 s.

The control parameters of the DROGI-FLL in both cases
are summarized in Table I. The sampling frequency is fixed
at 10 kHz. The method suggested in [34, Fig. 7] is used for
the discretization of the DROGI-FLL.

Figs. 4 and 5 show the model verification results for Case
1 and 2, respectively. In both cases, the harmonic model
demonstrates a good accuracy in predicting the dynamics
of the DROGI-FLL in estimating the FFPS component and
the concerned disturbance component and also the dynamic
coupling between them. The prediction errors of the harmonic
model, which are small, are the result of linearizing nonlinear

d(∆V̂ +
1 )

dt
= k1


≈(∆V +

1 −∆V̂ +
1 )︷ ︸︸ ︷

(V +
n,1 + ∆V +

1 ) cos(∆θ+
1 −∆θ̂+

1 )− (V +
n,1 + ∆V̂ +

1 )

+ cos(θn,h − θ+
n,1)

≈(∆Vh−∆V̂h)︷ ︸︸ ︷{
(Vn,h + ∆Vh) cos(∆θh −∆θ̂+

1 )− (Vn,h + ∆V̂h) cos(∆θ̂h −∆θ̂+
1 )
}

− sin(θn,h − θ+
n,1)

≈Vn,h(∆θh−∆θ̂h)︷ ︸︸ ︷{
(Vn,h + ∆Vh) sin(∆θh −∆θ̂+

1 )− (Vn,h + ∆V̂h) sin(∆θ̂h −∆θ̂+
1 )
}

≈ k1

[
(∆V +

1 −∆V̂ +
1 ) + (∆Vh −∆V̂h) cos(θn,h − θ+

n,1)− Vn,h(∆θh −∆θ̂h) sin(θn,h − θ+
n,1)
]

(11a)

d(∆θ̂+
1 )

dt
≈ ∆ω̂ + k1

[
(∆θ+

1 −∆θ̂+
1 ) +

∆Vh −∆V̂h

V +
n,1

sin (θn,h − θ+
n,1) +

Vn,h

V +
n,1

(∆θh −∆θ̂h) cos (θn,h − θ+
n,1)

]
(11b)

d(∆V̂h)

dt
≈ kh

[
(∆Vh −∆V̂h) + (∆V +

1 −∆V̂ +
1 ) cos (θn,h − θ+

n,1) + V +
n,1(∆θ+

1 −∆θ̂+
1 ) sin (θn,h − θ+

n,1)
]

(11c)

d(∆θ̂h)

dt
≈ h∆ω̂ + kh

[
(∆θh −∆θ̂h)− ∆V +

1 −∆V̂ +
1

Vn,h
sin (θn,h − θ+

n,1) +
V +
n,1

Vn,h
(∆θ+

1 −∆θ̂+
1 ) cos (θn,h − θ+

n,1)

]
(11d)

d(∆ω̂)

dt
≈ λ

[
(∆θ+

1 −∆θ̂+
1 ) +

∆Vh −∆V̂h

V +
n,1

sin (θn,h − θ+
n,1) +

Vn,h

V +
n,1

(∆θh −∆θ̂h) cos (θn,h − θ+
n,1)

]
(11e)
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0 0.02 0.04
-1

0

1

G
ri

d 
vo

lt
ag

e 
(p

.u
.)

0 0.02 0.04 0.06
0.85

0.9

0.95

1

1.05

V̂
+ 1
(p
.u
.)

 

DROGI!FLL [Fig. 1]
Harmonic Model [Fig. 2]

0 0.02 0.04 0.06
-0.5

0

0.5

1

3
+ 1
!

3̂
+ 1
(d
eg
)

0 0.02 0.04 0.06
0.18

0.2

0.22

V̂
h
(p
.u
.)

0 0.02 0.04 0.06

0

5

10

3
h
!

3̂
h
(d
eg
)

0 0.02 0.04 0.06
49.8

49.9

50

50.1

!̂
(H

z)

Time (s)

0.06

(a)

0 0.02 0.04 0.06
-1

0

1

G
ri

d 
vo

lt
ag

e 
(p

.u
.)

0 0.02 0.04 0.06

0.997
0.998

0.999

1
1.001

V̂
+ 1
(p
.u
.)

0 0.02 0.04 0.06

0

0.5

1

3
+ 1
!

3̂
+ 1
(d
eg
)

0 0.02 0.04 0.06
0.195

0.2

0.205

V̂
h
(p
.u
.)

0 0.02 0.04 0.06
-2

-1

0

1

3
h
!

3̂
h
(d
eg
)

0 0.02 0.04 0.06

50

50.2

50.4

50.6

!̂
(H

z)

Time (s)

DROGI!FLL [Fig. 1]
Harmonic Model [Fig. 2]

(b)

0 0.02 0.04 0.06
-1

0

1

G
ri

d 
vo

lt
ag

e 
(p

.u
.)

0 0.02 0.04 0.06
0.98

1

1.02

V̂
+ 1
(p
.u
.)

 

0 0.02 0.04 0.06
-2

-1

0

1

3
+ 1
!

3̂
+ 1
(d
eg
)

0 0.02 0.04 0.06
-8

-4

0

3
h
!

3̂
h
(d
eg
)

0 0.02 0.04 0.06
49.8

50

50.2

50.4

!̂
(H

z)

Time (s)

 

0 0.02 0.04 0.06
0.1

0.15

0.2
V̂
h
(p
.u
.)

DROGI!FLL [Fig. 1]
Harmonic Model [Fig. 2]

(c)

Fig. 4. DROGI-FLL model verification for Case 1. (a) Test A. (b) Test B. (c) Test C.

TABLE I
CONTROL PARAMETERS

Control parameters

DROGI-FLL k1 = kh = 177, λ = 16000
DSOGI-FLL k = k1/(0.5ωn) = 1.13, λ = 16000
Modified UTSP µ1 = µ2 = 177, µ3 = 16000

terms.
2) Harmonic Stability Analysis: Using the harmonic model

in Fig. 2, which is obtained based on (11a)-(11e), the stability
of the DROGI-FLL can be investigated. To this end, the sine

and cosine terms in Fig. 2 can be expressed as

cos(θn,h − θ+
n,1) = ejδhejωpt+e−jδhe−jωpt

2

sin(θn,h − θ+
n,1) = ejδhejωpt−e−jδhe−jωpt

2j

(12)

where ωp = (h−1)ωn. By assuming δh = 03 and substituting
(12) into (11a)-(11e) and defining the amplitude and phase
error terms in these equations as (13), one may obtain (14) by

3This assumption is just for obtaining a more compact open-loop HTF for
the DROGI-FLL. Obtaining the open-loop HTF for the case that δh 6= 0 may
also be carried out easily.
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Fig. 5. DROGI-FLL model verification for Case 2. (a) Test A. (b) Test B. (c) Test C.

taking the Laplace transform of these equations.

∆V +
e,1 = ∆V +

1 −∆V̂ +
1

∆θ+
e,1 = ∆θ+

1 −∆θ̂+
1

∆Ve,h = ∆Vh −∆V̂h
∆θe,h = ∆θh −∆θ̂h

(13)

Notice that R and Γ in (14) are the ratios of control parameters,
i.e., R = kh/k1 and Γ = λ/k1.

The matrix equation (14), which is of infinite dimension, is
the open-loop HTF of the DROGI-FLL. The stability of the
DROGI-FLL can be investigated by using a truncated version
of this HTF. For instance, for determining the stability margin
of the DROGI-FLL, one may obtain the eigenloci of its open-
loop HTF for s belonging to a strip defined by −jωp/2 <
Im(s) < jωp/2 and determine its phase margin (PM) and
gain margin (GM) in a similar manner as single-input-single-
output (SISO) systems [20], [35], [36]. Fig. 6, which shows the
open-loop eigenloci of the DROGI-FLL for the same two cases
considered for the model verification in Section II-C1, makes
this fact more clear. Fig. 6 also demonstrates that the frequency
of the selected disturbance component has a noticeable effect
on the DROGI-FLL stability margin. Recall that the DROGI-
FLL uses the same values of the control parameters in both
cases. Recall also that the disturbance components in both

cases (i.e., the FFNS component in Case 1 and the seventh
harmonic of the positive sequence component in Case 2) have
the same nominal magnitude.

The stability region of the DROGI-FLL and the effect of
control parameters on it may also be determined by applying
the generalized Nyquist stability criterion to its open-loop HTP
[20], [35], [36]. For example, the predicted stability region
for the DROGI-FLL for h = −1 and three different values
of R = kh/k1 (i.e., R = 0.25, R = 0.75, and R = 1.5) can
be observed in Fig. 7. Similar results can be obtained for the
case of h = +7. To save space, they are not presented here.
From Fig. 7, the following observations can be made.

• The stability region of the DROGI-FLL reduces with in-
creasing the ratio R. This result was expected as a higher
value for R is corresponding to a more strong dynamic
interaction between different frequency components in
the DROGI-FLL. This fact may also be deduced from
the open-loop HTF in (14).

• For a given value of R, increasing Γ reduces the max-
imum allowable k1 for ensuring stability. Recall that
Γ = λ/k1.

To support the above observations, the accuracy of the theo-
retically predicted stability border for the DROGI-FLL in Fig.
7(b) is examined numerically. To this end, the actual DROGI-
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FLL (Fig. 1) is digitally implemented in MATLAB/Simulink,
and the maximum allowable value of k1 for ensuring its
stability for different values of Γ is determined. The method
suggested in [34, Fig. 7] is used for the discretization of the
DROGI-FLL. To take into account the effect of the sampling
frequency on these results, the simulation studies are carried
out with different sampling frequencies. Fig. 8 shows the
obtained results. It is observed that there are some rather
small errors between the theoretically predicted (solid line)
and numerically obtained results when the sampling frequency

is 10 kHz. Notice that this difference is mainly because of
the error caused by the discretization of the DROGI-FLL.
By increasing the sampling frequency, as expected, this error
is considerably reduced. At fs = 50 kHz, for example, the
theoretical and simulation results are almost converged.

It is worth mentioning at the end of this section that the
modeling procedure and stability analysis presented for the
case of the DROGI-FLL may be simply extended to the
case of multi-ROGI-FLL. The multi-ROGI-FLL, as mentioned
before, includes several ROGIs centered at the fundamental
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...

∆V +
e,1(s− jωp)

∆θ+
e,1(s− jωp)

∆Ve,h(s− jωp)

∆θe,h(s− jωp)

∆V +
e,1(s)

∆θ+
e,1(s)

∆Ve,h(s)

∆θe,h(s)

∆V +
e,1(s+ jωp)

∆θ+
e,1(s+ jωp)

∆Ve,h(s+ jωp)

∆θe,h(s+ jωp)
...


︸ ︷︷ ︸

E

(14)
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Fig. 6. Open-loop LTP Nyquist plots of the DROGI-FLL. (a) Case 1 (h = −1). (b) Case 2 (h = +7). In both cases, the DROGI-FLL has the same set of
control parameters as summarized in Table I, i.e., k1 = kh = 177 and λ = 16000. The nominal amplitudes are V +

n,1 = 1 p.u. and Vn,h = 0.2 p.u. The
initial phase δh = 0 is assumed.
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Fig. 7. Stability region of the DROGI-FLL for h = −1 and different values of R. (a) R = 0.25. (b) R = 0.75. (c) R = 1.5. The nominal amplitudes are
V +
n,1 = 1 p.u. and V −

n,1 = 0.2 p.u. The initial phase δh = 0 is assumed.
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Fig. 8. Comparison of the theoretically predicted stability border for the
DROGI-FLL in Fig. 7(b) with the numerically determined ones. The condition
of obtaining the results is the same as Fig. 7(b). fs is the sampling frequency
in the simulation studies.

positive and negative frequencies and one or more harmonic
frequencies.

III. DSOGI-FLL

A. Overview

The DSOGI-FLL [37], which is shown in Fig. 9, is the
second case study in this paper.4 It is one of the most popular
time-domain signal decomposition algorithms for unbalanced
grid scenarios, which can be easily extended to take into
account the presence of harmonics [19].5 In what follows, the
operating principle of the DSOGI-FLL is explained.

Let us neglect the presence of harmonics in the DSOGI-
FLL input and consider vabc as a set of unbalanced signals as
follows

vabc = v+
abc,1 + v−

abc,1 + vzabc,1. (15)

In the above equation, v+
abc,1, v−

abc,1, and vzabc,1 are the fun-
damental positive, negative, and zero sequence components,

4This representation of the DSOGI-FLL has a small difference compared
to the original one, which is shown in [37, Fig. 10]. In the original structure,
the input signal of the integrator of the FLL is multiplied by the estimated
frequency ω̂. This multiplication is neglected in this paper.

5Taking into account a single harmonic requires two additional SOGIs
(tuned to the concerned harmonic frequency) in parallel with the main SOGIs.
In this case, it should be called the multi-SOGI-FLL.
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Fig. 9. DSOGI-FLL. k and λ are the control parameters. v̂α and v̂β are estimations of the fundamental component of vα and vβ , respectively. qv̂α and
qv̂β are 90◦ phase-lagged versions of v̂α and v̂β , respectively. v̂+α,1 and v̂+β,1 (v̂−α,1 and v̂−β,1) are estimations of the FFPS (FFNS) components of the grid
voltage in the αβ frame. θ̂+1 and V̂ +

1 (θ̂−1 and V̂ −
1 ) are the estimation of the phase angle and amplitude of the FFPS (FFNS) component of the grid voltage.

ω̂ is an estimation of the fundamental angular frequency of the grid voltage.

which can be determined by applying the Lyon’s transforma-
tion T+, T−, and T z to vabc, respectively [37]. Applying the
Clarke’s transformation Tαβ to (15) results in

v
αβ︷ ︸︸ ︷

Tαβvabc =

v+
αβ,1︷ ︸︸ ︷

Tαβv
+
abc,1 +

v−
αβ,1︷ ︸︸ ︷

Tαβv
−
abc,1 +

0︷ ︸︸ ︷
Tαβv

z
abc,1 (16)

where

v+
αβ,1 = Tαβv

+
abc,1 = TαβT

+vabc = TαβT
+pinv(Tαβ)vαβ

=
1

2

(
1 −q
q 1

)
vαβ (17a)

v−
αβ,1 = Tαβv

−
abc,1 = TαβT

−vabc = TαβT
−pinv(Tαβ)vαβ

=
1

2

(
1 q
−q 1

)
vαβ . (17b)

In (17), pinv(·) denotes the pseudo-inverse, and q = e−jπ/2

which means that the −90◦ phase-shifted version of the signals
vα and vβ are required for extracting the FFPS and FFNS
components of the grid voltage in the αβ frame [37]. The
DSOGI-FLL, as shown in Fig. 9, uses two SOGIs6 in unity
feedback loops for this purpose. Such configuration provides
the filtered versions of the αβ-axis grid voltage signals and
their −90◦ phase-shifted version. The center frequency of
SOGIs is adapted to frequency changes using an FLL. The
governing differential equations of this FLL can be obtained
using the gradient descent method.

B. Harmonic Modeling

The harmonic modeling of the DSOGI-FLL can be carried
out by following a similar mathematical procedure as that
presented for the case of the DROGI-FLL. However, to save
space here, a mixed intuitive/mathematical procedure is pre-
sented. The intuitive part of this procedure is based on finding
a relationship between the DSOGI-FLL and DROGI-FLL.

6A SOGI is a resonant controller with two complex conjugate poles at the
concerned frequency (here, the fundamental frequency).

First, let us neglect the dynamics of the FLL in Fig. 9, and
consider the center frequency of the SOGIs constant. In this
case, the characteristic transfer functions of the DSOGI-FLL
can be obtained as

v̂+
α,1(s) + jv̂+

β,1(s)

vα(s) + jvβ(s)
=

0.5kω̂(s+ jω̂)

s2 + kω̂s+ ω̂2
(18a)

v̂−α,1(s) + jv̂−β,1(s)

vα(s) + jvβ(s)
=

0.5kω̂(s− jω̂)

s2 + kω̂s+ ω̂2
. (18b)

Considering the same assumption in the DROGI-FLL (Fig. 1)
gives

v̂+
α,1(s) + jv̂+

β,1(s)

vα(s) + jvβ(s)

=
k1(s− jhω̂)

(s− jω̂)(s− jhω̂ + kh) + k1(s− jhω̂)
(19a)

v̂α,h(s) + jv̂β,h(s)

vα(s) + jvβ(s)

=
kh(s− jω̂)

(s− jhω̂)(s− jω̂ + k1) + kh(s− jω̂)
. (19b)

It can be shown that (18a) and (19a) are the same transfer
functions if h = −1 and k1 = kh = 0.5kω̂.7 The same goes
for the case of (18b) and (19b). It implies that the lineariized
equations (11a)-(11d), which were obtained for the DROGI-
FLL, are also valid for the case of the DSOGI-FLL. We just
need to consider h = −1 and k1 = kh = 0.5kωn in these
equations.

The FLL of the DSOGI-FLL, however, is a bit different
from that of DROGI-FLL. Therefore, we need to perform the
linearization process for it again.

From Fig. 9, the time derivative of the estimated frequency

7As k1 and kh are constants and ω̂ is a variable in practice, k1 = kh =
0.5kωn needs to be considered in practice.
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Fig. 10. Harmonic model (LTP model) of the DSOGI-FLL.

in the DSOGI-FLL can be expressed as

dω̂

dt
= − λ

(V̂ +
1 )

2 [(vα − v̂α)qv̂α + (vβ − v̂β)qv̂β ]

=
λ

(V̂ +
1 )

2

[
(vβ − v̂+

β,1 − v̂
−
β,1)(v̂+

α,1 − v̂
−
α,1)

−(vα − v̂+
α,1 − v̂

−
α,1)(v̂+

β,1 − v̂
−
β,1)
]

(20)

where (
vα
vβ

)
=

(
V +

1 cos(θ+
1 )

V +
1 sin(θ+

1 )

)
+

(
V −

1 cos(θ−1 )
V −

1 sin(θ−1 )

)
(21a)(

v̂+
α,1

v̂+
β,1

)
=

(
V̂ +

1 cos(θ̂+
1 )

V̂ +
1 sin(θ̂+

1 )

)
(21b)(

v̂−α,1
v̂−β,1

)
=

(
V̂ −

1 cos(θ̂−1 )

V̂ −
1 sin(θ̂−1 )

)
(21c)

and

V +
1 = V +

n,1 + ∆V +
1 ,

θ+
1 = θ+

n,1 + ∆θ+
1 ,

V −
1 = V −

n,1 + ∆V −
1 ,

θ−1 = θ−n,1 + ∆θ−1 ,
ω = ωn + ∆ω,

V̂ +
1 = V +

n,1 + ∆V̂ +
1

θ̂+
1 = θ+

n,1 + ∆θ̂+
1

V̂ −
1 = V −

n,1 + ∆V̂ −
1

θ̂−1 = θ−n,1 + ∆θ̂−1
ω̂ = ωn + ∆ω̂.

(22)

By substituting (21) into (20), applying trigonometric iden-
tities, considering definitions made in (22), and following
a similar linearization procedure as in (11), (20) can be
linearized as (23). Considering this equation and the previous

discussions about the relationship of the DSOGI-FLL and
DROGI-FLL, the harmonic model of the DSOGI-FLL may
be obtained as depicted in Fig. 10. Notice that this model has
a difference (an additional loop, which is highlighted with red
color) compared to that of the DROGI-FLL. This additional
loop, however, does not mean that the DSOGI-FLL has very
different transient behavior compared to the DROGI-FLL, at
least from the small-signal point of view. The reason is that
the gain

(
V −
n,1/V

+
n,1

)2
in the highlighted loop in Fig. 10 is a

small value in most practical cases.

C. Model Verification
To evaluate the accuracy of the obtained harmonic model

for the DSOGI-FLL, the same conditions and tests as in Fig.
4 are considered. The control parameters of the DSOGI-FLL
can be found in Table I. Fig. 11 shows the results of the
evaluation. It is observed that the LTP model offers high
accuracy in predicting the DSOGI-FLL dynamics in estimating
the fundamental positive- and negative-sequence parameters
of the grid voltage and the dynamic interaction between their
estimation loops.

In a similar manner as in Section II-C2, the open-loop HTF
of the DSOGI-FLL can be obtained and its stability can be
investigated. Here, to save space, this analysis is not presented.

IV. MODIFIED UTSP
A. Overview

The UTSP is the parallel connection of three PLLs, which
work in a collaborative manner and extract the magnitude,

d(∆ω̂)

dt
≈ λ

[
(∆θ+

1 −∆θ̂+
1 ) +

∆V −
1 −∆V̂ −

1

V +
n,1

sin(θ−n,1 − θ
+
n,1) +

V −
n,1

V +
n,1

(∆θ−1 −∆θ̂−1 ) cos(θ−n,1 − θ
+
n,1)

]

− λ

(
V −
n,1

V +
n,1

)2 [
(∆θ−1 −∆θ̂−1 )− ∆V +

1 −∆V̂ +
1

V −
n,1

sin(θ−n,1 − θ
+
n,1) +

V +
n,1

V −
n,1

(∆θ+
1 −∆θ̂+

1 ) cos(θ−n,1 − θ
+
n,1)

]
(23)
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Fig. 11. Model verification of the DSOGI-FLL. (a) Test A. (b) Test B. (c) Test C.

phase angle, and frequency of the fundamental-frequency
positive-, negative-, and zero-sequence components and their
sinusoidal waveforms (see [17, Fig. 1]). In [25], removing
the zero-sequence estimation loop of the UTSP is proposed.
In this way, the estimation loops can be implemented in the
two-phase format, which results in a noticeable reduction
in the implementation complexity and computational burden.
Simplifying the frequency estimation logic and introducing
amplitude normalization are other contributions in [25]. Fig.
12 shows the final product, which is referred to as the modified
UTSP.

The modified UTSP includes two SRF-PLLs, which work
collaboratively. Notice that only the upper SRF-PLL (i.e.,
the SRF-PLL responsible for extracting the FFPS component)
estimates the grid angular frequency, and the lower one only
uses this signal. Notice also that the modified UTSP can
be easily extended to take into account the presence of
harmonic components by adding additional SRF-PLLs tuned
to harmonic frequencies.

B. Harmonic Modeling

The harmonic modeling of the modified UTSP can be
carried out by following a similar procedure as in Section II-B.
However, to save space here, an intuitive way is presented here.

In Fig. 12, the signals e+
d , e+

q , e−d , and e−q can be expressed
as [

e+
d

e+
q

]
=

[
cos(θ̂+

1 ) sin(θ̂+
1 )

− sin(θ̂+
1 ) cos(θ̂+

1 )

] [
eα
eβ

]
=

1

V̂ +
1

[
v̂+
α,1 v̂+

β,1

−v̂+
β,1 v̂+

α,1

] [
eα
eβ

]
(24a)[

e−d
e−q

]
=

[
cos(θ̂−1 ) sin(θ̂−1 )

− sin(θ̂−1 ) cos(θ̂−1 )

] [
eα
eβ

]
=

1

V̂ −
1

[
v̂−α,1 v̂−β,1
−v̂−β,1 v̂−α,1

] [
eα
eβ

]
(24b)

where eα = vα − v̂+
α,1 − v̂

−
α,1 and eβ = vβ − v̂+

β,1 − v̂
−
β,1.

Using (24) and Fig. 12, the governing nonlinear differential
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Fig. 12. Modified UTSP. µ1, µ2, and µ3 are the control parameters.

equations of the modified UTSP can be obtained as

dV̂ +
1

dt
= µ1e

+
d =

µ1

V̂ +
1

[
v̂+
α,1eα + v̂+

β,1eβ

]
(25a)

dθ̂+
1

dt
= ω̂ +

µ1

V̂ +
1

e+
q = ω̂ +

µ1

(V̂ +
1 )

2

[
−v̂+

β,1eα + v̂+
α,1eβ

]
(25b)

dV̂ −
1

dt
= µ2e

−
d =

µ2

V̂ −
1

[
v̂−α,1eα + v̂−β,1eβ

]
(25c)

dθ̂−1
dt

= −ω̂ +
µ2

V̂ −
1

e−q

= −ω̂ +
µ2

(V̂ −
1 )

2

[
−v̂−β,1eα + v̂−α,1eβ

]
(25d)

dω̂

dt
=

µ3

V̂ +
1

e+
q =

µ3

(V̂ +
1 )

2

[
−v̂+

β,1eα + v̂+
α,1eβ

]
. (25e)

It can be observed that these equations are the same as the
governing nonlinear differential equations of the DROGI-FLL
[see (9)] if h = −1, k1 = µ1, kh = µ2, and λ = µ3 are
considered. Based on this fact, it can be concluded that the
DROGI-FLL (for the case of h = −1) and the modified UTSP
are mathematically equivalent and, therefore, have the same
harmonic model (see Fig. 2). It can also be concluded that the
harmonic stability analysis performed on the DROGI-FLL is
valid for the modified UTSP.

V. COMPARISON AND DISCUSSION

In previous sections, some small-signal tests for evaluating
the accuracy of the obtained harmonic models were performed.
In this section, the objective is performing some large-signal
tests for comparing the performance of the DROGI-FLL
(h = −1), DSOGI-FLL, and modified UTSP to each other.
Both simulation and experimental results are presented. The
simulation studies are carried out using Matlab/Simulink, and

experimental ones are conducted using a dSPACE platform
(dSPACE 1006) and a grid simulator (Chroma 61845). In both
simulation and experimental studies, the sampling frequency
is 10 kHz. The control parameters can be found in Table I.

Two tests, as described below, are considered here.
• Test 1: The grid voltage undergoes a severe asymmetrical

voltage sag. To avoid numerical issues, there is 0.01-p.u.
FFNS component in the grid voltage before the voltage
dip moment.

• Test 2: The grid voltage, in addition to the FFPS (1 p.u.)
and FFNS (0.1 p.u.) components, contains harmonics of
order −2, +4, −5, +7, −11, and +13. The magnitude of
these harmonics is 0.01, 0.01, 0.05, 0.05, 0.03, and 0.03
p.u., respectively. Suddenly, an exaggeratedly large jump
(+10 Hz jump) in the grid frequency happens.

The results of these tests are shown in Fig. 13 and 14. To save
space, only the experimental results of Test 1 are presented.
As shown, the DROGI-FLL, DSOGI-FLL, and modified UTSP
have almost the same transient response and the same level of
harmonic filtering capability. These results were expected as
we have already proved that the DROGI-FLL and modified
UTSP are mathematically equivalent, and demonstrated that
the DROGI-FLL and DSOGI-FLL have a close relationship.

An issue that may be interesting to briefly discuss here is
the operation of the DROGI-FLL (h = −1), DSOGI-FLL, and
modified UTSP under a perfectly symmetrical grid scenario
(i.e., when the FFNS component of the grid voltage is zero).
In such a condition, the signals v̂−α,1 and v̂−β,1 (which are the
αβ-axis estimation of the grid voltage FFNS component) in
the output of the DROGI-FLL and DSOGI-FLL will be equal
to zero. Therefore, the DROGI-FLL and DSOGI-FLL have
no problem to correctly calculate the amplitude of the FFNS

component, i.e., V̂ −
1 =

√
(v̂−α,1)

2
+ (v̂−β,1)

2
= 0. However,

in this condition, they cannot determine its phase angle, i.e.,
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Fig. 13. A comparison between the DROGI-FLL, DSOGI-FLL, and modified UTSP in response to Test 1. (a) Simulation results. (b) Experimental results.

θ̂−1 = tan−1(v̂−β,1/v̂
−
α,1), as the signals v̂−α,1 and v̂−β,1 are both

equal to zero.

For the case of the modified UTSP, the situation is a bit more
involved as the order of operations in this algorithm is different
from the DROGI-FLL (h = −1) and DSOGI-FLL. Notice that
the DROGI-FLL and DSOGI-FLL first extract the grid voltage
FFPS and FFNS components in the αβ frame. These signals
are then used for calculating their phase and amplitude. In the
modified UTSP, however, the phase and amplitude of the FFPS
and FFNS are directly extracted (see Fig. 12). As this process
involves regulating the error signals e+

q and e−q to zero, and
there is no FFNS component in the input, the estimation of the
FFNS component and its parameters will be lost [38]. That is
the reason why in Test 1 (Fig. 13), a small degree of the grid
voltage imbalance was considered before the voltage sag.

It is worth mentioning here that the above limitation is not
a serious issue in practice as the supply voltage has almost
always some small degrees of imbalance.

VI. CONCLUSIONS

Harmonic modeling and investigation of three-phase time-
domain signal decomposition algorithms were the objective
of this paper. To this end, three case studies were consid-
ered. The DROGI-FLL was the first case study. Through a
detailed mathematical procedure, which involved obtaining
governing nonlinear differential equations of the DROGI-
FLL and their harmonic linearization, the harmonic (LTP)
model of the DROGI-FLL was obtained and its high accuracy
was demonstrated. Using the obtained model, the open-loop
HTF of the DROGI-FLL was also obtained and its harmonic
stability was investigated. The DSOGI-FLL was the second
case study. Through a mixed intuitive/mathematical procedure,
the harmonic model of the DSOGI-FLL was obtained, which
found to be very similar to that of the DROGI-FLL when
h = −1 is considered. As the third case study, the modified
UTSP was considered. It was demonstrated that the modified
UTSP is mathematically equivalent to the DROGI-FLL when
h = −1 is considered. Based on this fact, it was concluded
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Fig. 14. A comparison between the DROGI-FLL, DSOGI-FLL, and modified
UTSP in response to Test 2.

that they have the same harmonic (LTP) models.

In summary, demonstrating the harmonic modeling and
stability assessment of time-domain signal decomposition al-
gorithms, and showing the close mathematical relationship
among some state-of-the-art methods in the field are two
main contributions of this paper. Here, it is worth mentioning
that designing really new time-domain signal-decomposition
algorithms is very hard, if not impossible. Therefore, re-
searchers should pay careful attention to make sure their
final design product is not just an alternative mathematically-
equivalent representation of available algorithms. Admittedly,
even mathematically-equivalent systems (depending on their
discretization method) may demonstrate different properties
in some specific cases (e.g., at low sampling frequencies or
in fixed-point implementations with a limited number of bits).
These different properties, if any, need to be highlighted by
designers.
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