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Loop-at-a-Time Stability Analysis for
Grid-Connected Voltage-Source Converters

Hongyang Zhang, Student Member, IEEE, Lennart Harnefors, Fellow, IEEE, Xiongfei Wang, Senior
Member, IEEE, Jean-Philippe Hasler, Stefan Ostlund, Senior Member, IEEE, Christer Danielsson, and
Hong Gong, Student Member, IEEE

Abstract—The instability phenomena caused by converter—grid
interactions can be prevented by designing controllers with ad-
equate stability margins. Yet, the multiple-input multiple-output
(MIMO) dynamics of grid-connected voltage-source converters
(VSCs) complicate the stability analysis for the controller design.
To tackle this challenge, this paper presents a loop-at-a-time
stability analysis for grid-connected VSCs, which not only shows
close correlations with the generalized Nyquist criterion for
MIMO systems, but also enables to quantify the stability margins
of individual closed loops. Moreover, the interactions between
the closed loops can be analyzed. Test cases with numerical
sensitivity analysis, simulations, and field measurements of a
converter validate the theory.

Index Terms—Multiple-input multiple-output (MIMO), loop-
at-a-time (LAAT), generalized Nyquist stability criterion (GNC),
single-input single-output (SISO), grid-connected voltage-source
converters (VSCs).

I. INTRODUCTION

NSTABILITY of a grid-connected voltage-source converter

(VSC) can be caused by a weak-grid connection and/or be
induced by poorly damped resonances in the grid [1]-[4]. The
phenomena, and causes of instability, as well as the solutions
for preventing instability, in the converter—grid interaction have
been researched intensively [S]-[10].

In single-input single-output (SISO) dynamic systems, sta-
bility margins are clearly defined by evaluating the open-
loop transfer function ! (return ratio) [11], giving insights
into the control design. Unfortunately, the closed-loop control
of a grid-connected VSC is multiple-input multiple-output
(MIMO). The stability of a MIMO system is usually checked
by the generalized Nyquist stability criterion (GNC) with the
determinant of I + L (return difference) [12], where L is
generalized to an open-loop transfer matrix!. However, this
GNC-based analysis offers few insights into the control design,
since the stability margins for det(I + L) are not as easily
defined as for the SISO [ [13], [14]. The characteristic loci
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ITo differentiate the return ratio [ for a SISO, the return ratio for a MIMO
is denoted as L.

for the eigenvalues \; of L? partially generalize the SISO
Nyquist to MIMO systems [12], [15], [16]. However, such
generalization is not strict, since stability margins on \; do
not have the same implication as the SISO system.

Another possible approach to converter control design
would be to adopt general MIMO design methods, such as
H; or H,, control [17], where the controllers are synthesized
by solving optimization problems. Alternatively, decentralized
control with independent [18] or sequential loop closure [19]
design could be considered. After the design, robustness anal-
ysis, e.g., p analysis [20], evaluates the resulting controller.
Such methods have been proven useful in process control.

Compared to the MIMO process control which may contain
hundreds of inputs and outputs [21], the control of power
electronic converters has a restricted structure. The open-loop
plant has merely two input and output signals, i.e., the d
and g components of the converter voltage reference and the
converter current. Similar to the control of ac motor drives
[22], the control structure of a grid-connected VSC is based
on the principle of cascade control. The inner control loop
contains current control (CC) function. The outer control
loops include phase-locked loop (PLL), dc-bus voltage control
(DVC), and ac-bus voltage control (AVC) functions. Thus,
there are four nested control loops, but normally only the AVC
has an external references. (All other references are generated
internally within the control system.)

Compared to the MIMO control theory, the SISO method
[21], [23] enables stability analysis for the design of the
individual closed loops. When a time-domain specification
is applied on specific control signals, the SISO method is
convenient to check the design for that associated closed loop.
In [24], SISO open-loop transfer functions are derived to
design the DVC with the desired stability margins for the DVC
loop.

Evaluating stability margins sequentially for MIMO systems
are called loop-at-a-time (LAAT) analysis [21], [25]-[27]. Its
principle is based on breaking each control loop at a time and
make an evaluation for that broken loop. The LAAT analysis
is essentially different from the sequential loop closure design
[19]. With the latter approach, each control loop is closed
sequentially and the controller in that closed loop is designed
accordingly by shaping the closed-loop transfer functions.
When one loop is closed for the design, the controllers in the
other loops are not considered. On the other hand, the LAAT

2Characteristic loci are a variant of the GNC, since det(I+L) = 1+, \i.
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analysis ensures that all controllers are considered when a loop
is broken.

In this paper, a framework for the LAAT stability analysis is
presented for the grid-connected VSC. The control functions
and main circuits are, in Section II, modeled as transfer
matrices to construct a linearized MIMO closed-loop model.
In Section III, a LAAT transfer matrix is derived with the
forward and cross-coupling transfer functions and the LAAT
stability analysis is introduced to evaluate the control design.
Compared to [24], the LAAT stability analysis using this new
model can be more intuitive, allowing two Nyquist curves to
be plotted, for both the DVC and AVC loops, respectively.
Further, In [24], only a SISO open-loop transfer function
is derived by closing the DVC as the outest loop, where
the AVC loop is embedded in the DVC-based SISO open-
loop transfer functions. It is shown that, the LAAT stability
analysis has close correlations with characteristic loci in the
GNC. Moreover, it allows identifying stability margins of
the individual closed loops, i.e., the DVC and AVC loops.
In addition, the non-diagonal elements of the LAAT transfer
matrix can be used for analyzing interactions between the
closed loops. In Section IV, numerical sensitivity analyses,
with various grid strength and control parameters, are shown
to verify the effectiveness of the method. In Section V,
measurement results from a high-power static synchronous
compensator (STATCOM) installation are presented to validate
the theory. In the end, Section VII summarizes the adopted
controller design methods.

II. SMALL-SIGNAL MODELING OF THE GRID-CONNECTED
VSC

A. Notation

In the stationary (o) reference frame and the synchronous
(dq) reference frame, the elements are denoted with subscripts
« and [ or d and g respectively for the corresponding axes.
The signals in the o5 frame are denoted with a superscript ‘s’,
signals in the dg frame without a superscript. Note that lower-
case letters are used for both vector and scalar variables. The
latter are denoted with special subscripts, e.g., a, 3, d, g, dc,
acref, dcref. The subscripts with letters ‘c’, ‘r’, t’, ‘p’, and
‘g’ refer to ‘converter’, ‘reactor’, ‘transformer’, ‘primary’3,
and ‘grid’, respectively. For instance, the converter current
vectors in the a8 and dg frame are denoted respectively as
if = [i5,,i55)" and i, = [icg,icq)”, where if and i. are
column vectors, @7, i‘c"’ﬁ, tcd> and i, are their corresponding
scalar variables.

To represent perturbations, a prefix A is used, e.g., Ai.. A
constant representing a steady-state operating point contains
a ‘0’ in the end of its subscript, e.g., icp. As shown in [8],
the dynamic impact of the PLL output can be calculated by
introducing a so-called converter dgq frame. In the converter
dg frame, a superscript ’c¢’ is added for distinction from the
grid dq frame (which is the ordinary dq frame with no PLL
impact), e.g., Ail.

3Primary refers to the bus on the primary side of the power transformer.

For simplicity, the Laplace variable s is omitted, e.g., G
is short for G(s). Transfer matrices and their elements are
denoted as upper-case and lower-case letters, respectively, e.g.,

ol

922
B. System Description

The basic circuit and control block diagrams of a three-
phase grid-connected VSC are shown in Fig. 1. On the right-
hand side of the VSC, the three-phase ac circuit is modeled in
the o frame. Phase reactors and a power transformer (if such
is used) are located in series between the converter terminal
and primary bus. The converter bus is on the right-hand side
of of the phase reactors. The primary bus is connected to an
infinite bus via a grid impedance. The transfer matrices for
the phase reactors, power transformer and grid impedance are
denoted as Z?2, Z;, and Z ;, respectively, e.g.,

R, + sL, 0
R, + sL,

where R, and L, are the resistance and inductance of the
phase reactor, respectively.

On the left-hand side of the VSC, the dc bus is modeled
as a pure capacitor. The measurement and computation delays
in the digital control system, along with the effect from the
pulse-width modulation (PWM), have impacts on the high-
frequency characteristics of the system [6] and they are omitted
in this study. Since the PWM is omitted, an average model*
is used. The model is generic for modeling of a modular
multilevel converter (MMC) as a two-level converter (as shown
in Fig. 1), as long as the MMC output voltage not affected by
its internal dynamics [28] with proper modulation techniques
[29]. The control system operates in the dg frame. The dg-
frame correspondence of Z7, Z7, and Zg are obtained by
substituting s — s + jwi [30], e.g.,

R, + sL,
wlLr

zZ7 =

: 0 )

_WlLr

ZT:Z$+Jw1Lr:{ RSl 3)

where J = {0

1 0 } and w; is the angular grid frequency.

C. Controller Description

The basic control functions of the grid-connected VSC
comprise the CC, PLL, DVC, and AVC (Fig. 1). Explicit
descriptions of input-output relations of these functions in Fig.
1 are presented in Fig. 2.

1) PLL: The synchronous reference frame PLL [31] with
a proportional integral (PI) regulator fpry, is used so that the
PLL output 6 tracks the phase angle of v} (see Fig. 2). A low-
pass filter (LPF) hpry, with the time constant 7py,1, is used to
connect with the output of fpy,, in order to filter out harmonic
contents (mainly for the 2nd harmonic in the dg frame)

kipLL 1
=k 1 h = — 4
frLL = kppLL ( + S ) o e = )

4The relation between the ac and dc side of the converter is based on the
principle of power balancing.
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Fig. 1. Basic circuit and control block diagrams of the grid-connected VSC.

2) CC: Since the CC is implemented in the dq frame, thus
a PI regulator fcc is used. For removal of harmonics and
improvement of stability [8], LPFs h,pr with the time constant
TurF is used to feedforward both u¢,; and ugq into the CC

kicc 1
=k 1 h =—" (5
foc = kpce ( + s )0 e = )
The dg-axes current reference vector iy, is connected through
a transfer matrix Hipp (as a feedforward function), for improv-
ing dynamic performance [32]
—wy

s
Hipp = 1+sTiFF
w1

} L, (6)
1+sTiFF

where Tipp is the time constant for the lead filter, and the
off-diagonal elements of H;pp represent the cross-couplings
between the dq axes.

3) DVC: The harmonic ripples of the dc-bus voltage uqc
are filtered via a LPF hpyc with the time constant Ty, i.e.,
Udef = hpvcuge. The DVC error epyc = Uderef — Udef (Uderet
is the dc-bus voltage reference) is controlled by a PI regulator

fove

kipvc 1
fove = kppve (1 + = , hpve=7——— (1)
S 1+ smve

4) AVC: The d-component of uy is filtered with a LPF
havc which yields upq¢- The AVC regulator favc minimizes
the AVC error eayvc = Uacref — u;df, where Ugeror 1S the
ac-bus voltage reference. Finally, fayc contains only a pure
integrator function

kiavc 1
fave = , have = ——.
S 14+ sTave

®)

D. MIMO Small-Signal Modeling

In this section, a MIMO small-signal modeling procedure is
presented for the grid-connected VSC. The detailed derivation
of the small-signal model can be found in the Section VII.

1) Inner Closed Loop: The inner closed loop is composed
of the transfer matrices of the CC, PLL and its related dy-
namics, and passive circuit elements. PLL is often categorized
as an outer closed loop [6], due to its similar closed-loop
bandwidth to those of the DVC and the AVC loops. In this

3

paper, since the PLL mostly impacts the inner loop, thus the
PLL is categorized as the inner closed loop. The schematic
of the linearized inner closed loop is illustrated in Fig. 3.
(phase reactor admittance Y,.(= Z, '), sum of the grid and
transformer impedance Zg; (= Z, + Z;) are illustrated.) For
the infinite bus, we have Aug, = 0.

The closed-loop transfer matrix T; (from Aif; to Ad.) is
derived as

T = G5' G Y, (Foo + Hipr) ©)

where Gi1 = Iy + Y, Zy — Y. (HurrGprr1 + GpLrz) Zgts
Gig = Iy + G 'Y, Foc(In — GpriaZg) [see (21) to (28) in
Section VII for detailed derivations].

Note that to construct the outer closed loops in Fig. 3, Ai,
is selected, instead of Ai¢, as the output of 73, such that the
voltages of the outer loops Awu, can be computed with Ai.
on the same dq frame. In the end, the impact of the PLL
is included to convert Au, to Aug, see Section II-D2. In
addition, the unity feedback closed-loop transfer matrix Tiyp
(from A to Adf) is derived as

Tior = Goup(l2 — GpLiaZe )G Yy (Foc + Hipp)  (10)

where Giaur = I + (Is — Gp11.2Z4) Gy ' Yo Fec.

2) Outer Closed Loop: The outer loops use unity negative
feedbacks and they are closed by the outer-loop controllers,
written as a transfer matrix F), in Fig. 3. A transfer matrix G,
is defined for input Ai. and output Auf

F, = [vac 0 } ’

_ |Go11
0 favc Go = [ an

Go12
Go21 ’

G022

The function of G, is for voltage calculation and filtering for
the feedbacks from the DVC (Augcr) and the AVC (Augdf)
loops. F, is designed to have AuS = [Augcr, Augdf]T track
Alper = [Audcreﬁ Auacref]T

We defined that G, = [Go1,Goa]” [see (29) to (34) in
Section VII for detailed expressions], where G,; and G2
represent the voltage calculation and filtering process for the
DVC and AVC, respectively. An equivalent schematic of Fig. 3
is shown in Fig. 4 (a), where G = G,T; is the open-loop plant
on which F}, is acting. Note that G contains the dynamics of
CC, PLL, and passive components. GG also has the feature that
operating points are embedded. Cascading G and F}, forms the
open-loop transfer matrix L = GF,. In turn, the closed-loop
transfer matrix (from Awu,er to Auf) is obtained as

T=(I,+L)"'L. (12)
The elements of L and T are respectively expressed as
l11 l12 7511 t12
L= , T'= , 13
|:121 lzz} |:t21 tzz} (13)

to be used in the sequel.

IIT. LAAT STABILITY ANALYSIS

In Section III, LAAT stability analysis is introduced for
analyzing the stability of generic MIMO models alike which
is introduced in Section II.
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Fig. 2. Explicit descriptions of input-output relations of control functions in Fig. 1.

A. LAAT Transfer Matrix

An equivalent schematic of the DVC and AVC loops, with
expressions of elements /11, l12, l21, and loo in L is shown
in Fig. 4 (b). Note that both /y; and ls5 can be named as
forward transfer functions [33], without cross couplings for
the DVC and AVC loops, respectively. Correspondingly, ;2
and lp; are denoted as the cross-coupling transfer functions.
Based on this structure, the LAAT stability analysis can be
done by introducing the modified open-loop transfer matrix
LyaaT as

l
Liaar = [ LAAT11 (14)

lLAATI12
lLaaT21 ’

lLaaT22

which can be derived so that I, aaT11, lLaAT12, {LAAT21, and
l.aAT22 are the respective open-loop transfer functions for ¢11,

tig, to1, and too, €.g., t11 = lnaarii/(1 + lnaari)

tin/(1—t11) ti2/(1 —ti2)
tor/(1 —t21) taz/(1 —ta2)

The rationale of the diagonal elements of Lyaar is that
they are the open-loop transfer functions for breaking one
loop while having the other loop closed. For instance, for
a 2 x 2 system, K is defined as the loop transfer matrix
K =diag(ky, k2), where k; (i = 1,2) determines which loops
are closed or broken [see Fig. 4(b)]. Let us define L; which
yields

Liaar = { } . (15)

L= (I, + LK) 'L. (16)

The following results can be concluded:

e K = 02. All loops are broken.
o K = diag(0,1). The first loop is broken and the second
loop is closed.

o K = diag(1,0). The second loop is broken and the first
loop is closed.

Therefore, by breaking one of the two feedback loops, a
SISO open-loop transfer function can always be obtained from
a 2 x 2 MIMO. It can be shown that Ly aar(1,1) = L1(1,1),
with K = diag(0,1) and Lpaar(2,2) = L1(2,2), with
K = diag(1,0). By evaluating the diagonal parts of Lyaar,
the classical SISO stability margins can be obtained for
the corresponding diagonal elements of 7. Furthermore, we
can use the off-diagonal elements in LyaaT to check the
interaction effects between the loops. The same principle of
a 2 X 2 Lyaar matrix can be applied to a n X n matrix for
n x n MIMO in general.

Using (12), the elements in 7" can be represented by the
elements ({11, l12, l21, and l99) in L, which yields

T = # lin + Ll — lizhio lio
det(I + L) 121 122 + llllQQ — 121(1112 ’
7

The explicit form of L aar can also be obtained as

Lianr = [ lin — lialor /(1 +122)  lyo/[det(Io+ L) — 112]} .

lo1/[det(Iz + L) —lo1]  lag — lo1lia/(1 + ll(ll)S)
In (18), each element in Ly s AT is derived so that it contains all
the elements (I11, l12, l21, and l32) in L. This gives an intuitive
sense how L1 s ar can be used for evaluation, since the impacts
from individual forward (I11, l22) and cross-coupling (I12, l21)
transfer functions can be analyzed independently.

B. Evaluation of Stability

Note that in each element of LyaaT in (18), there exists
an internal closed diagonal loop. For instance, the forward
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Fig. 3. Schematic of the linearized MIMO closed-loop control blocks for the inner and outer loops.

transfer function /55 for the AVC loop (Fig. 4) is embedded in
the denominator within Iy, 5o ar11 for the DVC loop. This im-
plies a special condition on evaluating L1 a ot in the frequency
domain’: when evaluating the diagonal elements I,oaT11 OF
lLaaT22, the Nyquist plots of loo or l;; (both are actually
Nyquist arrays) must not encircle —1+4-50. In [24], it is shown
that for the DVC closed loop, in total three Nyquist curves
need to be evaluated for the design and none of them should
encircle —1 + j0. In this paper we generalize and simplify
the method such that there is only one embedded closed loop,
and only two Nyquist curves are checked for each loop. For
instance, for the AVC loop, we evaluate I1,a aT20 and lq7.

It is reasonable to assume that 7T; is stable. Exceptions are
when kicc or Fpry, are designed aggressively [8]°. We also
know that F, contains only casual transfer functions, and G,
is a stable transfer function matrix. Therefore L is stable. It is
worth noting that L is assumed to be internally stable (no right-
half-plane pole-zero cancellations). Then it is straightforward
to check whether /17 and I35 encirle —1 4 j0. The system is
usually treated as a SISO, when designing the current control
loop [8], [30], [34]. For evaluating the stability of the inner
closed loops, the LAAT analysis can also be used to check
the stability margins. The unity feedback closed-loop Tiur can
then be broken at its feedback Ai¢. Therefore, Lyaar for the
inner closed loop can be derived by cascading transfer matrices
from Aif to Ail. Since the primary purpose of this paper is
to introduce the LAAT method with a focus on the stability
analysis of the outer closed loops, using the LAAT stability
analysis for the inner closed-loop is not discussed further. It
is assumed that the inner closed loops are always stable.

5 Alike omitting s for transfer functions, jw is also omitted for frequency
responses.

OThis refers that a large value of kicc, kppLL, or kippL, could lead to the
instability. Also, T; can also be unstable when it contains large time delays

[6].

DOI 10.1109/JESTPE.2020.3024103, IEEE Journal

TABLE I
TEST-SYSTEM DATA AND DEFAULT CONTROLLER PARAMETERS.
Symbol Value Definition
Upase 28.17 kV Base voltage, peak value space-vector scaling
Thase 2.37 kA Base current, peak value space-vector scaling
Zhase 119 Q Base impedance
Cye 1.0 mF DC-bus capacitance
Xr 0.10 p.u. Phase-reactor inductance
Xt 0.10 p.u. Transformer inductance
Xgmin 0.2 p.u. Minimum grid reactance
gmax 0.5 p.u. Maximum grid reactance
w1 1007 rad/s Nominal angular frequency
Uderef 1.4 p.u. DC-bus voltage reference
Uncref 1.1 p.u. AC-bus voltage reference
TrAVC 100 ms AVC step response required rise time
TABLE 11
DEFAULT CONTROLLER PARAMETERS.
Symbol Value Definition
wWs 200007 rad/s Sampling frequency
TyFF 1.0 ms CC voltage feedforward time constant
TiFF 1.0 ms CC lead filter time constant
TPLL 10 ms PLL LPF time constant
TDVC 10 ms DVC LPF time constant
TAVC 5.0 ms AVC LPF time constant

C. Comparison With the GNC

Considering an internal stable L, the evaluation of the
closed-loop stability with either LAAT analysis or character-
istic loci of L should guarantee no encirclement of —1 + j0.
As discussed in Section III-A, the gain and phase margins for
lLAaAT11, lLAAT22 indicate the classical SISO margins for each
individual loops. On the other hand, the stability margins seen
from A1, Ao in GNC are not equivalent to the classical SISO
margins.

Suppose L and T can be decomposed as

L=WA, W1,

T=WArw™! (19)
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Fig. 4. (a) Schematic of the equivalent MIMO system to Fig. 3. (b) Schematic
of the DVC and AVC loops, expressed with l11, l12, l21, and l22 in L.

TABLE III
DESIGNED CONTROLLER PARAMETERS.

Symbol Value Definition

kpcc 1.0 p.u. CC proportional gain
kicc 10.0 rad/s CC integral gain
kppLL | 30.0 rad/s | PLL proportional gain
kiPLL 1.0 rad/s PLL integral gain
kppve 1.2 p.u. DVC proportional gain
kipvc 10.0 rad/s DVC integral gain
kiave 110 rad/s AVC integral gain

where A; = diag{\, 2} and the columns of W are

the right eigenvectors of L, Ay = [T+Ar]7'A; =
diag{A1/[1 + A1], A2/[1 + A2]}. Then L and Ay, are similar as
well for 7" and A, evaluating of A; and A5 for the individual
loops is equivalent to checking L as for SISO if W = I5. In
other words, unless L is a diagonal matrix — for a diagonal L,
checking A1 = [11 and Ay = l95 is equivalent to the classical
SISO margins.
Solving the roots for det(Al — L) yields

Aoy = i1+ log = y/(lin — l22)% + 4112121.
' 2
If l15 and lo; are relatively small (which indicates that the
MIMO is weakly interacted), L is closed to a diagonal matrix.
Checking A; 2 is then almost equivalent to the LAAT margins.
Examples with strong MIMO interactions are listed in the
Appendix VII.

(20)

(a) (b)

1 — 1 —r
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Fig. 5. (a) Nyquist plots for i1, A aT11 and A1. (b) Nyquist plots for i1, A AT22
and A2. (c) Bode magnitude plots of l11, l12, [21, and l22. (d) Bode magnitude
plots of IpaAT11, lLAAT12, lLAAT21, and ILAAT22-

IV. CASE STUDY

This section presents case studies with numerical sensitivity
analysis to illustrate the effectiveness of the LAAT stability
analysis are presented. The control structures as well as the
modeling introduced in Section in II are implemented.

A. Test System

A 100-MVA STATCOM is connected to a 34.5-kV bus in
an inductive grid with short circuit ratio (SCR) = 2 (SCR =
1/X,, where X, = Z,). The basic circuit parameters and
reference values are shown in Table I. The default STATCOM
controller parameters are listed II. In a practical STATCOM
control system, uqcref 1S kept constant during the operation.
The typical requirement for a STATCOM is usually specified
by a step-response on Ucrer [35]. Having the setpoint value of
Ugeref = 1.1 per unit (p.u.) with ugqo = 1.0 p.u., the maximum
capacitive current yields i.q0 = 0.2 p.u., which is the operating
point for the design. We assume that R, = Ry = Ry, =
0.001 p.u. and that the converter is lossless. The controller
parameters are tuned based on the design procedures described
in Appendix VII, and their values are shown in Table IIT".

"Time is not normalized, leading to certain parameters having the dimension
angular frequency.
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In Section IV-H, case studies for a strong-grid condition are

performed. 1(3) Nyquist plot for I aarii gb) Nyquist plot for IpaaT22
\
B. Stability Evaluations of the Design 05 0o \\ PSRN
Stability of the design is checked by the LAAT analysis. In E o E o v y
Fig. 5 (a) and Fig. 5 (b) , the Nyquist plots of I;AaT11 and / \\\\ _
l.aaT22 are shown for the condition with SCR = 2. Stability -05 05 /) -
margins for the DVC and AVC loops are respectively evaluated /
by laaT11 and Ipaar22. We observe that none of the Nyquist 2 a5 1 05 0 T2 a5 4 05 o
curves encircles —1 + jO and adequate stability margins are Re Re
obtained for individual closed loops. Due to the fact that 1 (¢) Nyquist plot for Iy 1 (d) Nyquist plot for I;;
the DVC bandwidth is designed more aggressively than the
AVC bandwidth (see Appendix VII), less phase margins are 05 05
obtained for Iy A aT22 compared to I aAaT11-
g o E o
C. Interaction Analysis o5 o5
In Section III-A, it is shown that Iy o112 and lpaaT21 In

LiaaT can be used to check the interaction effects between -
the loops. The Bode magnitude plots of 11, l12, l21, and l22, as
well as lpaaT11, lLAAT12, lLAAT21, and 1A AT22 are shown in
Fig. 5 (c) and Fig. 5 (d), respectively. For frequencies higher
than 50 Hz, we find relatively higher magnitude of Iy aaT21,
which indicates strong interactions from Augerer tO Au;dﬂ.
On contrary, the magnitude of IpaaTi2 remains low for all IpaaTee & lao. The Nyquist plots of lpaaTi1 with A7, and
frequencies. lpaaT22 With Ay are almost overlapping.

Fig. 7. Nyquist plots for I, AaT11, lLAAT22, [11, and l22. Black solid curve:
kiavce = 900 rad/s. Red dashed curve: k;avc = 1050 rad/s.

D. Comparison With the GNC E. Sensitivity Analysis With Grid Impedance Variations

To verify the conclusions of Section III-C, Nyquist plots As discussed in Section VII-D2, X could be of any values
of lpaar11 with A1, and Ipaar22 With Ay are shown in Fig.  within [Xgmin, Xgmax]. Therefore, we evaluate I aari1 and
5 (a) and Fig. 5 (b). Due to relatively small l15lo1 V f, see Ipaar2e [see Fig. 6 (a) and Fig. 6 (f)] with SCR = 2 p.u.,
Fig. 5 (c), from (20) we have \; ~ lpaaT11 = 11, and Ay & SCR = 3.5 p.u,, and SCR = 5 p.u. We find that the stability

a b c d
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Fig. 6. Sensitivity and interaction analysis with grid impedance variations SCR = 2 p.u. (black solid curves), SCR = 3.5 p.u. (red dashed curves), and
SCR = 5 p.u. (blue dotted curves). Frequency-domain results: (a) Nyquist plots for 1, o AT11. (b) Bode magnitude plots [p.u.] for ;A aT12. (¢) Bode magnitude
plots [p.u.] for I, o aT21. (f) Nyquist plots for I;, s AT22; Time-domain results: (c) Response for ugcs [p-u.] with Augerer = 0.02 p.u. (d) Response for uqcs
[p.u.] with Auyerer = 0.02 p.u. (g) Response for u;df [p.u.] with Augerer = 0.02 p.u. (h) Response for uf)df [p.u.] with Augerer = 0.02 p.u.
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(a) Response of ugq; [p.u.]
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Fig. 8. Responses to a 0.02-p.u. step change of u,cref. Black solid curve:
kiavce = 900 rad/s. Red dashed curve: k;ayvc = 1050 rad/s.
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Fig. 9. Nyquist plots for I[;, AaT11, lLAAT22. 11, and l22. Black solid curve:
kppvce = 11 p.u. Red dashed curve: k,pvc = 13 p.u.

margins remain almost unchanged for I aari1 for all grid
conditions (which also confirms the DVC design in Appendix
VII-D1). From SCR = 2 p.u. to SCR = 5 p.u., both gain and
phase margins gradually increase for [;sar22, Which shows
robust design for both the DVC and AVC loops. A step-
response test with Auycor = 0.02 p.u. for u;df is shown
in Fig. 6 (h) for all the SCR conditions. A requirement of
Trave = 100 ms is therefore met. In addition, the response of
Uger under Augerer = 0.02 p.u. is shown in Fig. 6 (d). It is
found uq4.¢ limited influenced by a step change on wacrer. This
is verified by Bode magnitude plots for i1, 5 o712 in Fig. 6 (b).
Similarly, Augerer = 0.02 p.u. is applied and the response
from ugcr and u;df are shown in Fig. 6 (c) and Fig. 6 (g),
respectively. It can be seen that the rise time for the DVC is
designed faster than the AVC. Due to relative high interactions
from wuger to ugdf [see Fig. 6 (e)], u;df varies with relative

138k ‘ ‘ ‘ ‘ ‘ ‘ ; oy
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Time [s]

a (b) Response of ufy [p.u]

. . . : : . : : . .

L L L L L L L L L ]
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Time [s]

0.8

Fig. 10. Responses to a 0.02-p.u. step change of ugcref. Black solid curve:
kppvce = 11 p.u. Red dashed curve: kypyvc = 13 p.u.

larger magnitude. Also, the variations are greatly influenced
by different SCR conditions, with stronger grid, the variations
of ug 4 1s to be smaller.

F. Stability Impacts With AVC Parameter Variations

1) Before Losing Stability: We increase kijayc to 900 rad/s
to push the system close to the boundary of losing asymptotic
stability. The Nyquist curves for Ipaari1 and lpaaToe are
found in Fig. 7 (a) and Fig. 7 (b) respectively. The AVC margin
is now greatly reduced and the Nyquist curve of [; o aT22 and
loo [see Fig. 7 (c¢)] are closed to encircle —1 4 50. It may be
read from Fig. 7 (b) that the gain margin (GM)= 1.12 p.u.
at w = 387 rad/s and the phase margin (PM)= 8.82 deg at
w = 351 rad/s. To verify this in the time-domain, a 0.02-p.u.
step in Uacrer 1S applied at Time= 2 s, giving the response
shown in Fig. 8. Converging oscillations can be observed on
upgr and Udcf.

2) Unstable: We further increase kjayc to 1050 rad/s (1.17
times of 900 rad/s, which is higher than the GM= 1.12 p.u. of
the previous condition kjayc = 900 rad/s) to push the system
to be unstable. The red dashed Nyquist curves are found in
Fig. 7. When system becomes unstable, both I} 4 aT22 and oo
[Fig. 7 (c)] encircle —1+ ;0. It is found that Iy, o o711 changes
dramatically from the condition at kijavc = 900 rad/s, when
loo encircles —1 + j0. The time-domain simulation shows an
unstable closed-loop system, see Fig. 8.

G. Stability Impacts With DVC Parameter Variations

1) Before Losing Stability: We increase kypyc to 11 p.u.
to push the system close to the boundary of losing asymptotic
stability. The black solid Nyquist curves are in Fig. 9. The
DVC margin is now small and the Nyquist curve of I saT11
and [y; [see Fig. 9 (d)] are closed to encircle —1 + 0. Seen
from Fig. 9 (a) that the GM= 1.13 p.u. and the phase margin
(PM)= 3.4 deg. To verify this in the time-domain, a 0.02-p.u.
step in ugcrer 1S applied at Time= 2 s, giving the response
shown in Fig. 10. Converging oscillations can be observed on
Uger and u;df.
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Fig. 11. Sensitivity and interaction analysis with grid impedance SCR = 90 p.u. for icqo0 = 0.2 p.u. (black solid curves) and icq0 = —0.2 p.u. (red

dashed curves). Frequency-domain results: (a) Nyquist plots for i1, AaT11. (b) Bode magnitude plots [p.u.] for I}, oaT12. (€) Bode magnitude plots [p.u.] for
lnaaT21- () Nyquist plots for i1, A aT22; Time-domain results: (c) Response for ugcs [p.u.] with Augerer = 0.02 p.u. (d) Response for ugcs [p.u.] with

AtUgerer = 0.02 p.u. (g) Response for u;df [p.u.] with Augerer = 0.02 p.u.

2) Unstable: We increase kppvc to 13 p.u. (1.18 times
of 11 p.u., which is higher than the GM= 1.13 p.u. of the
previous condition kppyc = 11 p.u.) to make the system
unstable. The red dashed Nyquist curves are found in Fig. 9.
Both I;,aaT11 and ly1 [Fig. 7 (¢)] encircle —1 4 50. Similar to
the findings in Section IV-F2, ;o aT22 changes dramatically
from the condition at kypyc = 11 p.u., when [ly; encircles
—1 + 40. This verifies the theory in Section III-B. The time-
domain simulation verifies the instability of the closed-loop
system, see Fig. 10.

H. Sensitivity Analysis With a Strong-Grid Condition

In this section, we analyze a strong-grid condition with
SCR = 90 p.u. In the AVC, a voltage control slope equal
to 0.03 p.u. is implemented [35], therefore L is derived with
an alternative transfer matrix, see Section VII-E. (To satisty
a fast rise-time requirement, kijsvc is chosen as kjayc = 500
rad/s.) We also assume upqo = 1.1 p.u. for both conditions.
The rest of the control settings are the same as for Section
IV-B. The frequency domain and the corresponding time-
domain plots® are shown in Fig. 11 for the operating point
tcqo = 0.2 p.u. (black solid curves) and icq0 = —0.2 p.u.
(red dashed curves) respectively. We can see from Fig. 11
(f) that AVC is designed with adequate margins while the
DVC is designed more aggressively, see Fig. 11 (a). From
[lLaaT12| in Fig. 11 (b), we find a resonance peak around 10
Hz for both operating conditions. This can be related to the

8With a droop function, the voltage variation after the Atuycrer = 0.02 p.u
step is actually lower than 0.02 p.u.
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(h) Response for ugdf [p.u.] with Avuyeper = 0.02 p.u.

excited time-domain response in Fig. 11 (d) when a step of
Augeref = 0.02 p.u. is applied. Similarly, the resonance on
Fig. 11 (e) can be correlated with the time-domain response
in Fig. 11 (g). With such a strong grid (compared to Section
IV-E), the same step change on ugcref causes much smaller
variations on ug g, indicating the grid impedance has strong
impacts on the interactions from ugcrer tO u;df. On the other
hand, variations on ug.f with the same change on w,cpef are
almost invariant with the grid impedance. In the end, little
differences are found in the results between i.qo = 0.2 p.u.
and igq0 = —0.2 p.u.

V. EXPERIMENTAL VERIFICATIONS

In this section, field measurements from a commissioning
test of a commercial STATCOM are carried out. The SCR
of the grid is approximately 90 p.u. and %o is around —0.2
p-u. during the test. Only the step responses are measured to
validate a case with the same operating conditions as presented
in Section IV-H. Tests are performed with step changes on
Ugceref AN Ugeref, respectively denoted as Test 1 and Test 2.

The plots for Test 1 to a Auycrer = 0.02 p.u. step are shown
in Fig. 12 (a) - Fig. 12 (d)° with the steady-state condition
tcqo = —0.248 p.u. The time-domain comparisons between the
LM and the test measurements show good accuracy on the LM
for the closed-loop dynamics on ugdf and uqc, verifying too
and t15. The Nyquist plots are shown in Fig. 14 (a) based
on the conditions of Test 1. It can be seen from IpaaTi1
and lpaaT22 that the DVC and AVC have fairly high gain

9For a MMC based STATCOM, ugq.. is computed as the average value of
the sum of the capacitor voltages in the three phases.
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Fig. 12. Responses to a step change of Augcper = 0.02 p.u. for the Test
1. Time-domain comparisons between the test (black solid lines) and the LM
(red dashed lines). (a) Response of u; 4¢- (b) Response of uqc. (¢) Response
of i¢4. (d) Response of igq.
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Fig. 13. Responses to a step change of Augcrer = 0.02 p.u. for the Test
2. Time-domain comparisons between the test (black solid lines) and the LM
(red dashed lines). (a) Response of u;df' (b) Response of uqc. (c) Response
of i¢4. (d) Response of i¢y.

and phase margins for each individual loops under the test
conditions. Alike the case shown in Section IV-H, the DVC is
designed faster than the AVC [see the rise-time comparison
between Fig. 12 (a) and Fig. 13 (a) for the Test 2], the
individual closed-loop stability margin for the AVC is higher
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Fig. 14. Test 1. (a) Nyquist plots for I;,aaT11 and lpaaT22. (b) Bode
magnitude plots for Iy, AaT12 and I AAT21-
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Fig. 15. Test 2. (a) Nyquist plots for Iy, aaT11 and IpaaT22. (b) Bode
magnitude plots for I;,aaT12 and IpAaT21-

than for the DVC, see Fig. 14 (a) (the relative margins between
the DVC and AVC are alike the case shown in Section IV-H).
In Fig. 14 (b), |lLaaT12]| is higher than |I;aaT21| for almost
the whole frequency range, indicating that a perturbation on
Ugcrof Would cause a larger deviation for the ug. response
than the same perturbation on uqcef for the response of u;df.
For instance, a resonance peak around 5 Hz is observed on
[lLaaT12|- The excitation of its dynamics can be found in Fig.
12 (b) on the responses of ug. by a step change on wcref-

Similarly, Test 2 and the corresponding model validation
are shown in Fig. 13, where the plots represent responses to
a Augerer = 0.02 p.u. step with icqo = —0.213 p.u. steady-
state condition. The LM shows good accuracy to represent the
dynamics of ug4c, as well as the interactions impacts for the
ugdf, having t11 and 9y verified. Therefore, T is verified by
Test 1 and Test 2. The Nyquist and Bode plots for Test 2 are
shown in Fig. 15. We can see that due to a similar steady-state
condition between the two tests, plots in Fig. 15 are closed to
the ones in Fig. 14. Unlike the response shown in Fig. 12 (b),
a step on uqgcrer makes little variations on u;df [Fig. 13 (b)],
this can be explained by a relatively small value of |l AaT21]
in Fig. 15 (b). This also verifies the findings in Section IV-H
for weaker interactions from ugcres to u; q¢ under stronger-grid
conditions. Similarly, a resonance peak around 18 Hz is found
in |l aaT21] in Fig. 15 (b), which can be observed in the time
domain [see Fig. 13 (b)].

VI. CONCLUSIONS

In this paper, a LAAT stability analysis for grid-connected
VSCs is presented. To illustrate the theory, a linearized MIMO
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Fig. 16. Schematic of the 3 x 3 MIMO system structure where PLL is treated
as one of the outer-most loops.

model is derived by the cascaded transfer matrices for the
stability analysis of the converter—grid interaction. Eventually,
the LAAT transfer matrix Ly aaT is derived with forward and
cross-coupling transfer functions. The design of the outer-loop
controllers can thus be evaluated with Lpaar. It is shown
that, the LAAT stability analysis has close correlations with
characteristic loci in the GNC. Moreover, the LAAT analysis
allows identifying the stability margins of the DVC and AVC
loops individually. Also, the non-diagonal elements of L aaT
can be used to analyze the interactions between the closed
loops. Sensitivity analyses with numerical examples verify
the effectiveness of the LAAT analysis. Further, the LAAT
method is applicable to study n x n MIMO system in general,
regardless of the specific control structure implemented. The
PLL dynamics in this paper is embedded inside the plant G.
Future research could consider the PLL as one of the three
outer closed loops (i.e., DVC, AVC, and PLL) for modeling
and analysis. The implementation is illustrated in Fig. 16,
where the reference (Ar), input (Aw), and output (feedback)
(Ay) are denoted as the general symbols in a control system.
Ar = [Audcrefa Aue:lcrefaAePLLrefL Au = [AifefdvAifefquw]s
and Ay = [Auger, Aupar, AY], F, = diag(fove, fave, frin).
The modeled system is a 3 x 3 MIMO. By such implemen-
tation, the stability margins for the PLL loops, as well as the
interactions between the PLL closed loop and the AVC/DVC
loops can be studied. The utilization of the LAAT method
for control design of a highly-interacted MIMO is seen as
a future research topic. Simulation and measurement results
from a converter validate the method.

VII. APPENDIX

A. Small-Signal Modeling

1) Small-Signal Modeling of the Inner Closed loop: Due to
the PLL impact, the change of vector variables from the grid
dq frame to the converter dq frame [8] yields the following
relations [24]:

Aul = Aue — jucAb, (21)
Augy = Auy — jupoAd, (22)
A€ = Ai, — jicoA6. (23)

11

The closed-loop transfer function gprr is formed (from
Aucq to Af) with Af fed back as an input to (21) for Au

Af— hpLLfrLL
1+ vcaohpLL frLL

Atteg. (24)

9gPLL

To represent PLL dynamics by MIMO formats, substituting
(24) into (21) and (24) into (23), respectively, yields

Aug = GprL1Aue, Aig = Ai. + GpriaAu, (25)
1 0
where Gprri = Is + Gprig, I o 1’ GprLo =
0 gpPLLUcq0 0 gPLLIcqo
,and G = A
[0 —gPLLUcdo P20 —gprricdo

Likewise, the voltage reference vector Aug; is transformed
to the grid dq frame as Auor [24]

Atyer = AUlys + JreinA6. (26)
Substituting (24) into (26) yields
Auref = Aufef + GPLLSAU‘C (27)

—gPLLUrefq0

0 gpLLUrefdo
For the CC, we construct the following transfer matrices:

fece 0
Fee = [ 0 feo
Note that Foc and Hipr (6) form a two degrees-of-freedom
control structure [21], see Fig. 3.
2) Small-Signal Modeling of the Outer Closed loop: Using
the power balancing rules between the ac and dc side of the
converter, Aug. can be computed as

where GPLL3 =

_ huFF 0
} ,  Hupr = [ 0 huFF] . (28)

uchAicd + uchAicq + Z.chAucd + ichAucq

Aud =
¢ sKCacudco

(29)
where K = 2/3 is the space-vector scaling constant.
With Aug = 0, the following relation is obtained (Fig. 3)

Aue = —Zg Aie. (30)
Merging (29), (30), and hyqclp yields
Auger = Go1Ai, (€29)
where Go1 = hudelp (uly — i Zgt) / (sCactiaeo K).
Substituting (24) into (22) yields
Aug = Aup + GprraAu, (32)

where Gpria = [0 gPLLUpq0 } indicates a PLL-related
0 —gpLLUpdo
dynamics in G,.

Similarly, with Augs = 0, the following relation is obtained:

Au, = —ZyAi. (33)
Combining (30), (32), (33), and hypp yields
A’u’gdf = huplpG02Aic (34)

where G2 = [Goave(1, 1), Goave(1,2)], Gooave = —Z4 —
GprL4Zgt.
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B. Comparison With the GNC

In this section, an illustrative example in [12] is used for
a comparison between the Nyquist curves respectively plotted
by the LAAT and the GNC. The example is described as

G 1 s—1 s
C1.25(s+1)(s+2) | -6 s—2

and L = GK.

First of all, £ = 1. The Nyquist and Bode magnitude plots
are illustrated in Fig. 17 and Fig. 18. The closed loop is stable
(none of the Nyquist curves encircles —1 + j0). From Fig. 18,
it can be seen the strong interaction effects in the MIMO by
l12 and l3;. An unstable closed loop is created by k = 2. Its
Nyquist and Bode magnitude plots are illustrated in Fig. 19
and Fig. 20. It can be seen that both I} s o722 and Ao encircles
-1+ 0.

:| ) K= kIQu (35)

C. Controller Design of Inner Closed Loop

Since this section, we present how to select the parameters
for fco, feLL, fpvo, and fayc using SISO modeling with
reduced-order transfer functions. The grid is considered to be
purely inductive.

1) CC Design: Considering the CC has much higher band-
width acc than the PLL apry, [8], we assume gprp, = 0
for designing the CC. This allows us to design fcc based
on the simplified scalar transfer functions tc¢ for closed-loop
dynamics from Aig.gy t0 Aicq or from Aifg to Aicq (with
grLr, = 0, we have Ai. = AS). Considering that kicc mainly
acts on correcting of the steady-state control error, we can
further assume that kicc = 0 when designing kpcc [34]. This
yields the following:

too = —C (36)
S+ acc

where acc = wikpco/Xr, kpoc is in pau. and X, is the
converter phase reactor reactance in p.u. In general, acc
should be high to maintain certain bandwidth separations with
other relatively slower closed loops (PLL, DVC and AVC). A
typical recommendation is that acc < 0.1ws [6], where wy
is the angular sampling frequency. We select ccc = 0.05ws

rad/s. k;oc = 10 rad/s.
2) PLL Design: Considering that hprp, has relative high
bandwidth to aprr,, we allow an assumption with 7pr, = 0.

laaT1L
N

0.5 0.5

Im

Im

12

Similar to CC, we thus further assume k;p1,;, = 0 to facilitate
the design. Overall, gpr1, is simplified as

k
ﬁ’ (37)
5 4+ UcdokpPLL
aprL, = kpprr when ucqgo =~ 1. kpprr thus has rad/s as

its unit. Typically aprr, < 0.lacc [8]. We choose a more
conservative design, i.e., aprr, ~ 0.0lacc. It is always set
for kiprr, = 1 rad/s.

D. Controller Design of Outer Closed Loop

Time-domain specifications for step changes on Au,et usu-
ally include requirements on the rise time of Au¢. To correlate
such requirement, it is desirable to design the outer-loop con-
trollers using alike closed-loop transfer functions in Section
VII-C. However, G is a high-order system which makes it
impractical to derive explicit forms of transfer functions for the
design. Therefore, a proper order reduction of G is required.
Considering that 7;; has high bandwidth relative to fpyc and
fave, we can assume T; ~ 1, giving that g;; = go11 and
g22 = go22. Also, we assume that gpry, ~ 0 for the design.

1) DVC Design: The bandwidth of the DVC closed loop
apyc is obtained via tpye = l11/(1 + l11), a simplified €11
from Augerer to Auger, Where 111 = g11 fpve. The explicit
form of tpyc yields a third-order system as follows:

Wdceqkppve (s + kipve)

Toves® + 82 + Waceqkppves + Waceqkppvekipve
(38)

tpve =

where Wdceq = (uch - Wngich)/(CdcudCOK)-

If we omit the effect of the integral part, i.e., kipyvc =
0, also considering that hpyc has high bandwidth relative to
apve, (38) can be further simplified (7pyc = 0) to its first-
order form as

lpvg = ————— (39)

where apyc = Wdceqkppve. kppve could be selected such
that apyc < 0.1acc [8]. Also, the design should ensure that,

Magnitude

lLaaT11
lLAATI2
e lLaaT21

05 X 05

Fig. 17. Nyquist plots for the GNC and LAAT, with k = 1.
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18. Bode magnitude plots for the GNC and LAAT, with k = 1.
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during dynamical conditions, e.g., change of operating points,

13

loop T3 is formed [Fig. 21 (a)]. Consequently, . = G,T; [Fig.

ac fault, a quick regulation can be achieved for Augesr = 0. 21 (b)].
Such requirement can be well correlated with the closed- 1
loop dynamics in (39) — we could specify a step response Th = (I + T FoGiopeGrrrs) ~ TiFo 43)
requirement for the regulation of Augc;. Since 0 0
where G = |:0 k810pe:| and GPLL5 = IQ - GPLLQth.

g—l{@} =1 — e ovet, (40)
an approximate DVC rise time correlation would be 7,pyc =~
2.2/apyc. We set opyc = 20 ms. The integral part is kept
slow, i.e., kipve = 10 rad/s. Furthermore, we notice that
for different Ly, wiLgicqo [N Tqceq Of (39)] remains almost
unchanged for maximum loading points under various L.
This means that apyc should be almost invariant of L.

2) AVC Design: Likewise, the AVC bandwidth aayc can
be approximated via tayvc = laa/(1 + la2), a simplified too
from Augerer tO Au;df, where loo = goo fave. Substituting
fave by kiave/s, the explicit form of ¢ayc yields a second-
order system

w1 Lgkiavc
Taves? 4 s+ wi Lgkiave

tave = (41)

Considering relative high bandwidth of hayc to aavc, (41)
can be simplified with Toyc = 0 as
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