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Towards Query Pricing on Incomplete Data
Xiaoye Miao, Member, IEEE, Yunjun Gao, Member, IEEE, Lu Chen,

Huanhuan Peng, Jianwei Yin, Qing Li, Senior Member, IEEE,

Abstract—Data have significant economic or social value in many application fields including science, business, governance, etc. This
naturally leads to the emergence of many data markets such as GBDEx and YoueData. As a result, the data trade through data
markets has started to receive attentions from both industry and academia. During the data buying and selling, how to price the data is
an indispensable problem. However, pricing incomplete data is more challenging, even though incomplete data exist pervasively in a
vast lot of real-life scenarios. In this paper, we attempt to explore the pricing problem for queries over incomplete data. We propose a
sophisticated pricing mechanism, termed as iDBPricer, which takes a series of essential factors into consideration, including the data
contribution/usage, data completeness, and query quality. We present two novel price functions, namely, the usage, and
completeness-aware price function (UCA price for short) and the quality, usage, and completeness-aware price function (QUCA price
for short). Moreover, we develop efficient algorithms for deriving the query prices. Extensive experiments using both real and
benchmark datasets demonstrate iDBPricer is of excellent performance in terms of effectiveness and scalability, compared with the
state-of-the-art price functions.

Index Terms—Data trade, Data pricing, Incomplete data, Query quality

F

1 INTRODUCTION

With the high-speed development of information technol-
ogy and the growing number of data generation sources,
the data resource plays an increasingly important role
in real life. Data are transforming science, business, and
governance by enabling data-driven applications. The data
usually have significant economic or social value in many
application fields. As a consequence, many data markets are
emerging in the past few years, which have the goals of com-
pletely enabling the data circulation and effectively solving
the data isolation issue, so as to facilitate the openness and
sharing of global data resources [1]. For example, GBDEx [2]
possesses 225 high-quality data sources and more than 4,000
tradable data products, which has made 150PB trade vol-
ume involving more than thirty application fields. GNIP [3]
aggregates and sells social media data from Twitter before
the general data protection regulation (GDPR). Xignite [4]
vends real-time financial data. Here [5] trades tracking and
positioning data for location-based advertising. Factual [6]
enables location data to power innovation in product devel-
opment, mobile marketing, and real world analytics.

As depicted in Figure 1, the data market acts as an inter-
mediator for data trade, where the data owner (i.e., seller)
gets the monetary rewards, and the data consumer (i.e.,
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Fig. 1. Data trade on markets

buyer) obtains an amount of beneficial data. Accordingly,
the financial (resp. data) asset flows efficiently from the data
consumer (resp. owner) to the data owner (resp. consumer).
During data trade, how to price the data is an indispensable
problem, which is closely related to various factors, such as
data valuation, data quality, etc. An incentive pricing mech-
anism benefits the healthy development of data markets.

Incomplete data are ubiquitous due to many reasons
such as data loss, privacy preservation, instable sensor net-
works, etc. As a result, querying incomplete data has been
extensively explored [7], [8], [9], [10], [11], [12]. In fact, many
data sets sold on data markets are of incompleteness more
or less, which makes the pricing problem more challenging.
For instance, YoueData adopts the incompleteness degree as
a factor of rating the sold data. The relatively poor quality
of the data (with missing information) remarkably decreases
the buyer’s utility on the query, and thereby, this query
should be assigned to a lower price. To this end, in this
paper, we take an initial step towards selling and buying
the data sets struggling with incompleteness, via exploring
the pricing problem for queries over incomplete data.

The existing commercial data markets adopt either the
traditional subscription mode to price data (or services),
or coarse-grained pricing methods (e.g., the usage-based
pricing where the price only relies on the number of data
records), or the methods of pricing and selling data in bundle
(a.k.a. the package pricing), or the bargaining pricing mode,
such as GBDEx. These methods do not consider the effect
of data incompleteness on the data price. On the other
hand, some modern pricing models have been proposed in
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TABLE 1
A Dataset of an Online Shopping System

(a) Buyer (B)
Uid User Gender Age Address
u1 Who M 21 ⊥
u2 Smile ⊥ ⊥ Holywell Street
u3 *S** F 28 Market Street
u4 Sky ⊥ ⊥ ⊥

(b) Transaction (T)
Tid Uid Pid Purchased time Delivery time
t1 u1 p1 2019-09-21 2019-09-29
t2 u2 p1 2019-10-22 ⊥
t3 ⊥ p3 2019-10-21 2019-11-01
t4 u2 ⊥ 2019-09-22 ⊥

(c) Product (P)
Pid Size Memory Price
p1 4.7 64 $5988
p2 4.7 256 $7288
p3 5.5 64 $6888
p4 5.5 256 $8188

the literature [13], [14], [15], [16], [17], [18], [19]. However,
these existing pricing approaches are not suitable for pricing
incomplete data, since they do not consider data complete-
ness. To the best of our knowledge, this is the first attempt
to investigate the problem of pricing incomplete data.

Consider an online shopping system data set, it has three
relations Buyer (B), Transaction (T), and Product (P), as illus-
trated in Table 1. In particular, the buyer information shown
in Table 1(a) is incomplete, due to privacy concerns from
buyers. In addition, the missing transaction information,
depicted in Table 1(b), results from the system failure or
invalid data acquisition. The symbol “⊥” denotes the miss-
ing value (throughout the paper). Obviously, in this case,
the assumption that every tuple has the same price is unfair.
Intuitively, the prices of tuples u3 and u4 in Buyer should
be distinguished, as u3 owns more complete/observed at-
tribute values than u4.

Assume that a data analyst, Alice, is going to conduct
an investigation for a new smartphone. For the sake of
economy, Alice is willing to pay several queries over the
dataset, instead of purchasing the whole data set with the
three relations at a pretty price. To begin with, she posts a
query Qσ

1 (i.e., SELECT * FROM T WHERE pid = p1) to
get the transaction information about the product p1 (with
4.7in size and 64G memory). Then, she gets the transac-
tion information of p2 (with 4.7in size and 256G mem-
ory), via posting the query Qσ

2 (i.e., SELECT * FROM T
WHERE pid = p2). Alternatively, she would like to know
the transaction information of p1 and p2 (with 4.7in size)
directly, by posting the query Qσ

3 (w.r.t. SELECT * FROM T
WHERE pid = p1 OR pid = p2). In this scenario, how do
we price the queries effectively and reasonably? What if it
meets missing values?

Therefore, trading incomplete data is faced with a series
of challenges, e.g., how reliable is the decision made over
incomplete data, how does the missing information affect
the final decision, and what exactly influences the probably
unreliable query result. Hence, practical price functions are
desirable to sell incomplete data, and we systematically
study the pricing problem over incomplete data.

In this paper, we propose a sophisticated pricing mech-
anism, termed as iDBPricer, built on top of the data con-
tribution/usage, data completeness, and query quality. First,
iDBPricer assigns a selling price to a query by taking into
account data contribution to the query (via leveraging the
query lineage). The query lineage provides a way to measure
the data contribution for queries in the field of database,
and the lineage tuples can be treated as factors of production
in microeconomics. In particular, the completeness degree
of those lineage tuples is critical to measure the value
of the query, and is considered into iDBPricer. Therefore,
we define an effective usage and completeness-aware price

function (UCA price for short) for selling incomplete data.
Furthermore, iDBPricer takes into account the query quality
(which is measured by the query result uncertainty). Thus,
we present a novel quality, usage, and completeness-aware
price function (QUCA price for short). In a nutshell, our key
contributions are summarized as follows.

• We identify the pricing problem of queries on incom-
plete data, and we propose a sophisticated pricing
mechanism, i.e., iDBPricer.

• We present two effective query price functions via
considering the data contribution, data completeness,
and query quality, and then, we develop efficient
strategies and algorithms to derive the query prices.

• Extensive experiments using both real and bench-
mark datasets demonstrate the effectiveness and ef-
ficiency of our proposed pricing scheme iDBPricer,
compared to the state-of-the-art pricing methods.

The rest of this paper is organized as follows. We present
some preliminaries in Section 2. The two price functions are
formalized in Section 3 and Section 4, respectively. Section 5
elaborates efficient algorithms for calculating the query
price. Experimental results and our findings are reported in
Section 6. Finally, we overview the related work in Section 7,
and we conclude the paper with some directions for future
work in Section 8.

2 BACKGROUND

In this section, we introduce the query on incomplete data
and the problem studied in this paper. Table 2 summarizes
the symbols used frequently throughout the paper.

An incomplete dataset, denoted as D, consists of a set of
complete datasets {D1, D2, · · · } (called possible worlds). A
possible world is a complete dataset by replacing each miss-
ing value in D with a constant, and the constant originates
from the tuple values in D. A query over an incomplete
dataset retrieves the true answers (a.k.a. certain answers), as
stated in Definition 1.
Definition 1. (Query over incomplete data). Given a query

Q with respect to an incomplete dataset D, the query
result set, denoted by Q(D), is defined as the certain
answers of Q over D, which is formalized by Eq. 1.
Specifically, Q(D) is the result set of Q over the possible
world D of D.

Q(D) =
∩
D∈D

Q(D) (1)

It is necessary to mention that, for a query Q, the objects
in an incomplete dataset can be divided into three sets [20],
[21]. In particular, one object set consists of objects (w.r.t. true
answers) that are always answers to Q over each possible
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TABLE 2
Symbols and Description

Notation Description
D an incomplete dataset
Q a query or an operator
Q(D) the result set of a query Q over a dataset D
ti a tuple belonging to a dataset D
ρ(ti) the price of a tuple ti
ηi the complete rate of a tuple ti
Φ(Q,D) the UCA price of a query Q w.r.t. D
ϵ(ti) the quality of a tuple ti
κ(Q,D) the query quality function of Q w.r.t. D
Φe(Q,D) the QUCA price of a query Q w.r.t. D

world, i.e., Q(D), corresponding to Definition 1. In contrast,
the second object set is composed of objects (w.r.t. unknown
answers) that are answers to Q with respect to some, but not
necessarily every, possible worlds. The unknown answers
result from the data incompleteness. It is closely related to
the query result uncertainty, which will be analyzed later.
Except for the former two sets, the remaining objects are
included in the third object set, which are certainly false
answers (from the dataset) to the query Q.

In this paper, we mainly consider SPJ queries, viz.,
selection, projection, and natural join (without self-joins or
predicates), denoted as σ, π, and ◃▹, respectively. As a result,
the returned (certain) answers according to Definition 1
do not have any missing value over selected/projected
attributes of selection and projection or keys of join queries.
In addition, please note that we use the terms “query” and
“operator” interchangeably throughout the paper.

Example 1. Take the sample dataset in Table 1 as an example.
For the selection query Qσ

1 (defined in Section 1), it
retrieves the tuples t1 and t2, according to the query
definition. This is because, for any possible world, only
t1 and t2 are always true query answers.

Q◃▹
4 : SELECT * FROM T, P WHERE T.pid=P.pid

Qπ
5 : SELECT DISTINCT Size FROM P

For the join query Q◃▹
4 , there are three result tuples, i.e.,

{r1, r2, r3} (as plotted in Table 3), since they are query
answers over all possible worlds. In contrast, as shown
in Table 1(b), the pid of t4 in relation Transaction is
missing. It is worth noting that, only when the pid of
the tuple, i.e., t4.pid, is equal to pi (i = 1, · · · , 4), t4 is
able to join with the tuples from the relation Product. In
addition, the projection query Qπ

5 returns {‘4.7’, ‘5.5’} as
the query result set, according to Definition 1.
In the pricing model of this paper, each tuple t in a

dataset D has a base price, defined by a price function
ρ(t). It is irrespective of the tuple’s completeness. The price
function ρ generates a price per tuple. This is a common way
to price relational data in real data markets [22]. The base
price ρ(t) is determined by the data price manager or the
data owner, and prepared before the real data trade through
the data cost estimation and market investigations. For
example, according to the expectancy-value theory1 in social
psychology, the base price ρ of a tuple t can be estimated
by t’s valuation from the seller and t’s obtained cost, i.e.,
ρ(t) = V(t) · C(t). In particular, the harvesting cost C (resp.

1. https://en.wikipedia.org/wiki/Expectancy-value theory

TABLE 3
The Result Tuples of a Query Q◃▹

4

Rid Uid Pid Size Memory Price Purchased Time Delivery Time
r1 u1 p1 4.7 64 $5988 2019-09-22 2019-12-22
r2 u2 p1 4.7 64 $5988 2019-10-21 ⊥
r3 ⊥ p3 5.5 64 $6888 2019-10-21 2019-12-22

the tuple valuation V) follows some real-life distributions.
Consequently, different base tuples take respective prices.

Therefore, given a query Q with respect to an incomplete
dataset D, the pricing problem for queries over incomplete
data is to assign a price Φ for a query Q over an incomplete
data set D, such that the price is reasonable and practical. It
assumes that, all tuples have the same base price throughout
the paper. Our proposed solution could generalize to the
cases with non-uniform base prices.

3 THE UC-AWARE PRICE FUNCTION

In this section, we formalize an effective data usage and
completeness-aware (UC-aware, i.e., UCA) price function.

First, we evaluate the data contribution/usage via the
concept of data lineage from the perspective of data provenance
in the database field. Specifically, each tuple t occurs in the
output of a query with a set of tuples presented in the input,
called the lineage of t [23]. Intuitively, the lineage of t is
meant to collect all of the input data that “contribute to” t
or help to “produce” t, as stated in Definition 2.

We would like to mention that, this data lineage-based
solution to measure data contribution is different from the
Shapley value based-pricing methods for machine learning
models [17], which are not able to directly support the
pricing problem on incomplete data, due to the different
characteristics of the studied problems.
Definition 2. (Tuple’s lineage set). Given a dataset D with

tables T1, · · · , Tm, and a query Q (i.e., σ, or π, or ◃▹).
Let Q(D) = Q(T1, · · · , Tm) be the result set of the query
Q over tables T1, · · · , Tm. For a tuple t ∈ Q(D), one
t’s lineage set w.r.t. Q in T1, · · · , Tm, denoted as L(t ∈
Q(D),D) (L(t,D) for short), is defined by Eq. 2.

L(t,D) =
m∪
i=1

T ∗
i (2)

Q−1
⟨T1,··· ,Tm⟩(t) = ⟨T

∗
1 , · · · , T ∗

m⟩ (3)

Eq. 3 is the vector form of a lineage set of t, with
each element T ∗

i having tuples from the table Ti. For
i = 1, · · · ,m, Q−1

Ti
(t) = T ∗

i is t’s lineage in Ti, and each
tuple in T ∗

i does contribute to the result tuple t. Formally,
T ∗
1 , · · · , T ∗

m are subsets of T1, · · · , Tm satisfying
(a) Q(T ∗

1 , · · · , T ∗
m) = {t};

(b) ∀T ∗
i , ∀T

′ ⊆ T ∗
i , Q(T ∗

1 , · · · , T
′
, · · · , T ∗

m) = ∅.

In fact, the condition (a) constrains that, the lineage
tuple sets (i.e., T ∗

i ’s) derive exactly t, and the condition (b)
indicates that, each tuple in the lineage indeed contributes
something to t.
Example 2. For the sample dataset (denoted by D1) in

Table 1, in terms of the projection query Qπ
5 , its result

tuples are {‘4.7’, ‘5.5’}, as shown in Example 1. Accord-
ing to Definition 2, the result tuple ‘4.7’ has two lineage
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sets, i.e., L1(‘4.7’, D1) = {p1} and L2(‘4.7’, D1) = {p2},
both of which can produce the tuple ‘4.7’. Similarly, for
the result tuple ‘5.5’, it has two lineage sets, namely,
L1(‘5.5’, D1) = {p3} and L2(‘5.5’, D1) = {p4}. Conse-
quently, there are four lineage sets for the query Qπ

5 :
namely, M1(Q

π
5 , D1) = {p1, p3}, M2(Q

π
5 , D1) = {p1, p4},

M3(Q
π
5 , D1) = {p2, p3}, and M4(Q

π
5 , D1) = {p2, p4}.

Thus, the lineage set collection of Qπ
5 , i.e.,M(Qπ

5 , D1) =
{{p1, p3}, {p1, p4}, {p2, p3}, {p2, p4}}.
Throughout this paper, we use L(t,D) = {L(t,D)} to

collect all the lineage sets for the result tuple t (to adapt
the case of π). Then, one lineage set of a query result
set Q(D), denoted as M(Q,D), is the union set of one
lineage set L(t,D) from each result tuple t ∈ Q(D), namely,
M(Q,D) =

∪
t∈Q(D) L(t,D). It indicates that, the data usage

of the query Q over D is evaluated by M(Q,D).
It is worth noting that, for selection and join operators

(i.e., σ and ◃▹), each of result tuples only has one lineage set,
i.e., |L(t,D)| = 1. For example, given a selection operator,
for the tuples that do not satisfy the selection condition,
they make no contribution to any result tuple. Hence, these
tuples will not appear in any result tuple’s lineage. As a
result, the lineage set of operators σ and ◃▹ is unique. In
contrast, for a projection operator π, there are probably
several lineage sets for a result tuple t ∈ Q(D), since two or
more tuples are likely to be projected into one result tuple t.
Thus, for a projection operator (i.e., π), there is one or more
lineage set(s) for each result tuple, i.e., |L(t,D)| ≥ 1.

As a consequence, Definition 3 formulates the data usage
and completeness-aware query price function for queries
on incomplete data, by taking into account both the data
contribution and data completeness.
Definition 3. (The UCA price function). Given an incom-

plete dataset D, the data usage and completeness-aware
price (i.e., UCA price) of a query Q, denoted by Φ(Q,D),
is defined as the accumulated weighted prices of the
lineage tuples of Q.

Φ(Q,D) =
∑

ti∈M(Q,D)

ηi · ρ(ti) (4)

In particular, ηi represents the complete rate of the tuple
ti, i.e., the ratio of the number of ti’s observed values to
the total number of ti’s attributes d, ρ(ti) is the base price
of ti, and M(Q,D) denotes a lineage set of the query Q
over the dataset D (w.r.t. the data usage of Q).

The basic idea of the UCA price is to discount the
price depending on tuples’ completeness degree over the
lineage tuples (contributed to query answers). The price
function is reasonable and practical, since it utilizes the data
lineage to measure the data contribution. Meanwhile, the
completeness degree of lineage tuples is critical to measure
the value of the query. The price of ηi · ρ(ti) is a sort of
discount price based on the tuple’s completeness degree. As
an exception, if the result set is empty, the query price could
be determined by the seller, e.g., referring to the current
market situation. For the projection operator, it assigns it
the cheapest price of all possible lineage sets, using Eq.
4. One can also compute other combined prices (e.g., the
highest/average price) of lineage tuples for it. Moreover, the
higher the tuple completeness, the higher the UCA price.

The arbitrage-free property widely explored in relevant
studies [13], [16], [19] is a typical and important property for
price functions. This property is necessary for data pricing
to avoid arbitrage. An arbitrage-free price function means
that, the data buyer cannot purchase a query by buying
a group of other queries at a lower price, and the price
of a given query is unique and same. In particular, the
arbitrage-free property is defined based on a notion of query
determinacy [14]. Informally, a set of data views/queries V
determines some query Q, if one can compute answers of
Q only from answers of views without having access to
the underlying dataset. Put it differently, V determines Q
if V provides enough information to uniquely determine
answers to Q. Specifically, given a dataset D, V determines
Q (denoted as D ⊢ V � Q) if one can answer Q from
answers of V by applying a function f such that Q(D) =
f(V(D)). The impact on pricing is that if the user needs to
answer the query Q, he/she has the option of querying V
and then applying f . If V determines Q, a potential buyer
interested in purchasing Q can buy V instead, and derive
from its answers to Q: arbitrage occurs when the price of V
is lower than that of Q.
Property 1. The query price function Φ defined by Eq. 4 is

arbitrage-free. It is confirmed that, for a set of views V
and a query Q over a dataset D, if V determines Q, the
price of V is not lower than that of Q, namely, Φ(Q,D) ≤
Φ(V,D), if D ⊢ V � Q.

According to the determinacy definition above, there
exists a function f such that Q(D) = f(V(D)). Hence, we can
know that, the lineage of V covers the lineage set of Q. That
is to say, for any lineage set M of Q, there exists certainly
a union set of the lineage set of each view from V that
containing M . Therefore, we can derive Φ(Q,D) ≤ Φ(V,D),
based on Definition 3.
Example 3. The UCA price of Q◃▹

4 is calculated as follows.
For the lineage set {t1, t2, t3, p1, p3} of the query Q◃▹

4 ,
the complete rate of every lineage tuple is firstly derived.
Specifically, the complete rate of t1, i.e., η(t1), is 1, as
its attribute values are all completed. The complete rate
of t2, i.e., η(t2), is 3

4 , since it misses the value on the
attribute “Delivery time”. Similarly, we have η(t3) = 3

4
and η(p1) = η(p3) = 1. Therefore, if we assume that the
base price of each tuple ρ = 10, the UCA price of Q◃▹

4 , i.e.,
Φ(Q◃▹

4 ,D1) = 10× (1 + 3
4 + 3

4 + 1+ 1) = 45, according to
Definition 3.

4 THE QUC-AWARE PRICE FUNCTION

In this section, we present an improved price function,
which considers query quality, data contribution, and data
completeness. Then, we analyze the extendibility of our
pricing mechanism for adapting to various scenarios.

One can observe that, the UCA price in Definition 3
involves the lineage tuples and the missing degree of them.
It estimates the query from the aspect of the missing rate in
lineage tuples, which reflects the degree of values missing
in lineage tuples. However, it neglects the query result
uncertainty, such as the degree of true tuples absent from
answers. In light of this, we attempt to present an enhanced
price function, namely, the quality, usage, and completeness-
aware (QUC-aware, i.e., QUCA) price.
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First, for an incomplete dataset D, we define a critical at-
tribute set, denoted by AQ

C , as the set of constraint attributes
for Q being σ, or projected attributes for Q being π, or foreign
keys for Q being ◃▹. In other words, the critical attribute set
AQ

C is defined to exactly cover all the attributes on which
any missingness might incur “unknown” query results.

Hence, we call tuples with missing values on critical
attributes AQ

C as uncertain lineage tuples. The uncertainty
of the uncertain lineage tuples is that, their contribution to
query results are uncertain, making the query produce un-
known answers. According to Definition 1 and Definition 2,
one can conclude that, the lineage of the query result set
Q(D) excludes the tuples with one or more missing values
on attributes AQ

C . While the uncertain lineage tuples have
the potential to be (or contribute to) unknown answers of the
query Q. In contrast, certain lineage tuples correspond to
those defined in Definition 2.

Second, for a tuple ti ∈ D, we use a parameter xi to
count the number of the missing values in critical attributes
AQ

C . Namely, xi = |{j ∈ AQ
C | ti.[j] is missing}|. Therefore,

the quality of tuple ti, denoted by ϵ(ti), is defined by Eq. 5.

ϵ(ti) = axi (5)

In particular, a (0 < a < 1) indicates the sensitivity degree
of the users to the quality, which can be specified by the data
pricing manager or the data owner.

The parameter a can be dynamically tuned for a data
consumer based on his/her history purchases. It helps to
carry out the market segmentation of selling incomplete
data. To some extent, a measures the changing degree of
tuple quality w.r.t. xi. The smaller the value of a, the quickly
the quality value changes (namely, the more sensitive the
quality is to xi). Obviously, the tuple quality ϵ emphasizes
the critical attributes of a specific query, instead of equally
treating each attribute. Here, the exponential function axi is
chosen because of its perfect property matching the tuple
quality metric. Since we aim at pricing incomplete data,
we mainly pay attentions on the query quality caused by
data incompleteness, and other forms of the tuple quality
functions can be also applied to different real-life scenarios.

Let ⟨T ∗
1 , · · · , T ∗

m⟩ be the vector form of one lineage set
w.r.t. the query Q over tables T1, · · · , Tm from D (w.r.t.
true answers). Namely, T ∗

i =
∪

t∈Q(D) Q
−1
Ti

(t). Let ⟨T a
1 , · · · ,

T a
m⟩ denote the vector form of uncertain lineage tuples that

miss some values on critical attributes AQ
C . As a result, a

quality function to measure the query result uncertainty is
formalized in Definition 4.
Definition 4. (The query quality function). Given an incom-

plete dataset D and a query Q. The quality of the query
Q, denoted by κ(Q,D), is defined in Eq. 6.

κ(Q,D) =

∑m
i=1(

∑
t∈T ∗

i
ϵ(t) +

∑
t∈Ta

i
ϵ(t))∑m

i=1(|T ∗
i |+ |T a

i |)
(6)

The newly presented quality function κ takes into ac-
count the specific operator, which is different from the
simple quality of counting the missing rate on the entire
dataset [24], [25]. It provides a new way to measure the
query quality over incomplete data. Specifically, the quality
function κ is defined as the average quality of (both certain
and uncertain) lineage tuples in terms of a specific operator

Q, where the tuple quality (denoted by ϵ) is based on an
exponential function and treats missing critical attributes
w.r.t. Q more importantly.

Moreover, if the set of uncertain lineage tuples is empty,
the query quality κ(Q,D) is equal to one, meaning that
there is no unknown query result (that are possibly, but
not certainly, query answers) for this operator. Hence, the
more the unknown query answers, the more the tuples with
lower quality, and thus, the lower the query quality κ(Q,D).
Depending on the property of the quality function ϵ(t), one
can conclude that, the value of κ(Q,D) is in the range (0, 1].

Example 4. In terms of the join query Q◃▹
4 (as defined in

Example 1), its result tuples are shown in Table 3. It
is easy to get that, the lineage set of Q◃▹

4 , denoted by
M1(Q

◃▹
4 ,D), is the set of {t1, t2, t3, p1, p3}. Note that, the

tuples in M1(Q
◃▹
4 ,D) come from the relations Transaction

and Product, as illustrated in Table 1. In addition, the
uncertain lineage is the set {t4}, because it misses the
value pid (as depicted in Table 1(b)). Assume that a = 1

2 .
According to the tuple quality defined in Eq. 5, we have
ϵ(t1) = ax1 = 1, since there is no missing information on
the foreign key (i.e., pid) of t1 in the relation Transaction
(i.e., x1 = 0). Similarly, we have ϵ(t2) = ϵ(t3) = ϵ(p1) =
ϵ(p3) = 1 and ϵ(t4) = 1

2 . Therefore, according to Eq. 6, the

query quality κ(Q◃▹
4 ,D1) = 1+1+1+1+1+ 1

2

5+1 = 11
12 .

The UCA price function in Definition 3 to some extent
reveals the output information (e.g., the scale of result set,
and thereby the lineage set). Hence, it might leak some result
information to the data buyers. As a result, in addition to
taking the query quality into consideration, we try to make
the query price insensitive to the result set scale. Thus, the
improved price function is presented in Definition 5.

Definition 5. (The QUCA price function). For a query Q
over an incomplete dataset D, the quality, usage, and
completeness-aware query price (QUCA price for short),
denoted by Φe(Q,D), is written in Eq. 7, where n is the
size of result tuples, i.e., n = |Q(D)|, and ∆ is a price
coefficient used to control the price scale by users.

Φe(Q,D) =
1

n
·∆ · κ(Q,D) · Φ(Q,D) (7)

With considering the size of results tuples, the QUCA
price not only considers the missing state and quality of
lineage tuples, but also prevents it from revealing some
information of the result set and lineage set size. More-
over, the price coefficient ∆ provides an entrance to tune
the amount of price flexibly for adapting the data market
environment. When the data owner has other requirements
for data pricing, he/she can convert the parameter ∆ to
be a function. The parameter ∆ allows to incorporate more
factors to enhance the QUCA price function. In addition, it
is simple to use ∆ to control the whole price range, keeping
the data price in a reasonable range.

Thus, QUCA is more practical than UCA. While the
arbitrage-free property of UCA price function is non-
transitive to the QUCA price function, due to the consid-
eration of normalized query quality in the QUCA price.

Example 5. In terms of the join query Q◃▹
4 , the query result

size is equal to 3, as plotted in Table 3. The UCA price
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is equal to 45, referring to Example 3. The query quality
is 11

12 , as calculated in Example 4. Assume that the price
coefficient ∆ is one. the QUCA query price of Q◃▹

4 , i.e.,
Φe(Q

◃▹
4 ,D1) =

1
3 ·

11
12 · 45 = 55

4 .

The history-aware price case. When Alice has purchased
Qσ

1 and Qσ
2 (described in Section 1), she decides to explore

all information in Transaction via a new query. At that time,
she probably pays for the fraction of the new query that she
has paid in purchasing Qσ

1 or Qσ
2 . When considering the

historical queries (instead of solely considering the current
query), the presented price functions above are useless. One
has to resort to the history-aware price function [15].

Intuitively, one should ensure that, Alice does not pay for
the fraction of the new query that she has paid in purchasing
Qσ

1 or Qσ
2 any more. Thus, the pricing mechanism should

prevent the buyer from overpaying when he/she has al-
ready acquired some information from previous/historical
queries. For instance, given an incomplete dataset D and
a new query Q from a customer, if the customer has pur-
chased a series of queries Q1, Q2, · · · , Qx, it indicates that,
the customer has bought the corresponding lineage tuples of
these queries. Namely, the pricing mechanism could claim
that, if there’s no new update in any information of t, he/she
has rights to re-use the lineage tuple t of these queries.

As a result, in the history-aware case, the two price func-
tions, i.e., UCA price and QUCA price, could be derived via
free charge for the active lineage tuples of historical queries
(that the customer has paid). Let T collects all the active
lineage tuples (that he/she has rights to re-use), the history-
aware QUCA price of the query Q, denoted by Φh

e (Q,D, T ),
can be defined as 1

n ·∆ ·κ(Q,D) ·
∑

ti∈M\T ηi · ρ(ti). Hence,
it avoids repeated charge for historical queries.

Discussion. Our price functions not only consider the
intrinsic properties of datasets and economic factors in data
markets, but also offer a generic pricing framework to adapt
to various situations. Specifically, our price functions do
not limit the specific forms of the base tuple price function
ρ(t) and the tuple quality function ϵ(t) (defined in Eq. 5).
Namely, they are free for our price functions, and the forms
of them do not affect the applicability of our pricing mecha-
nism and solutions. Moreover, our proposed pricing mech-
anism can support the considerations on different database
levels (e.g., the attribute, tuple, and table levels). It allows
data markets to incorporate their own pricing preferences
into it, so as to generate a practical price function that
satisfies the pricing demands in various real-life scenarios.

For example, the base price function and the tuple
quality function can incorporate the importance degree of
each table/attribute (as well as the tuple semantic). If one
assigns a weight on each attribute (or table) to indicate the
importance, the base price of a tuple can be defined by
accumulating the attribute (or table) weights of the tuple.
In addition, when one adds a weight on each attribute, the
parameter xi in the tuple quality function can be defined as
the sum of weights on missing critical attributes.

5 PRICE COMPUTATION

In this section, we first explore the lineage set derivation
methods. Then, we propose efficient query price compu-
tation algorithms. For clarity, we illustrate the solution of

Algorithm 1: Baseline

Input: lineage sets of each result tuple from Q(D), a
price coefficient ∆, a query result cardinality n

Output: the QUCA price Φe(Q,D)
1: Φ(Q,D)←− +∞ // Initialize the price
2: get every query lineage set M via selecting exactly

one lineage set from each L(ti) with ti ∈ Q(D)
3: foreach query lineage set M do
4: Φ0 ←−

∑
tj∈M ηj · ρ(tj)

5: Φ(Q,D)←− min(Φ(Q,D),Φ0)

6: compute κ(Q,D) based on Eq. 6
7: Φe(Q,D)←− ∆·κ(Q,D)

n · Φ(Q,D)
8: return Φe(Q,D)

deriving the QUCA price. They are applicable to the UCA
price and the history-aware price.

5.1 Deriving the Lineage Sets
We utilize two strategies, i.e., Active and Lazy, to seek
lineage sets. They are the most appropriate methods for
finding lineage tuples [26]. In particular, the main idea of
Active is to track the procedure of performing the query
Q, and record lineage sets simultaneously. For the selection
operator, it records directly the lineage set L(ti,D) of each
result tuple ti as the set {ti}. For the projection operator,
no matter whether the query Q projects ti into a new result
tuple or not, Active updates the collection L of lineage sets
for each tuple ti by inserting the set {ti} into L. If the join
operator performs successfully for two tuples vi and tj , the
tuples vi and tj are both inserted as one lineage set of the
joined tuple via vi and tj .

Alternatively, Lazy derives lineage sets from a totally
different angle. In Lazy, the task of deriving minimal lineage
sets is translated into a kind of selection query, which
takes the query result set Q(D) as an input. It seems like
some sort of reverse engineering. Specifically, for each result
tuple ti ∈ Q(D), Lazy judges whether the tuple from D
could (partly) produce the result tuple ti via the query Q.
If the answer is yes, the lineage set collection L(ti,D) is
updated by adding this tuple. In this way, all the lineage set
collections Ls of result tuples in Q(D) are obtained.

Since Active performs along with the operator process-
ing, and it does not incur any extra overhead to derive
the lineage set. Thus, Active enjoys the lower complexity. In
contrast, Lazy obtains the lineage set after getting the result
set of the operator, which makes it less efficient. Among SPJ
operators, the join operator has the highest complexity. Let n
be the number of result tuples, and d1 and d2 be cardinalities
of the two relations in join, respectively. The complexity of
Active is O(d1 · d2), and that of Lazy is O(n · d1 · d2).

5.2 Computing the Prices
Baseline method. First, leveraging lineage sets derived from
Active (or Lazy) strategy, we compute the query price based
on the price of the query lineage set, according to Defini-
tion 3. It is a straightforward method (called Baseline).

Algorithm 1 depicts the price computation procedure. It
takes derived lineage sets of each result tuple from Q(D)
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Algorithm 2: AD&C

Input: lineage sets of each result tuple from Q(D), a
price coefficient ∆, a query result cardinality n

Output: the QUCA price Φe(Q,D)
1: Φ(Q,D)←− +∞ // Initialize the price
2: foreach result tuple ti ∈ Q(D) do
3: get the lineage set L⋆

i with the lowest price from
L(ti)

4: M ←−
∪

ti∈Q(D) L
⋆
i

5: Φ(Q,D)←−
∑

tj∈M ηj · ρ(tj)
6: compute κ(Q,D) based on Eq. 6
7: Φe(Q,D)←− ∆·κ(Q,D)

n · Φ(Q,D)
8: return Φe(Q,D)

as inputs, and outputs the query QUCA price Φ(Q,D).
Initially, Baseline sets the price as infinity (line 1). Then,
for every query lineage set M (composed of exactly one
lineage set from L for each result tuple), Baseline computes
the price Φ(Q,D) based on Definition 3 (lines 2-5). Next, it
derives the query result quality based on Eq. 6, and obtains
the enhanced QUCA price Φe(Q,D) (lines 6-7). Finally, the
algorithm terminates after returning Φe(Q,D) (line 8).

AD&C algorithm. We propose an adaptive D&C (AD&C
for short) algorithm, which employs the divide and conquer
strategy to calculate the price efficiently. The pseudo-code
of AD&C is presented in Algorithm 2. It first chooses the
lineage set, denoted as L⋆

i , with the lowest price for each
result tuple ti (lines 2-3). Then, it gets the query price to be
the QUCA price of the union set for all the chosen lineage
sets L⋆

i s of result tuples (using Eq. 4) (lines 4-8).
Let n be the number of result tuples, and m be the aver-

age number of lineage sets for every result set. Algorithm 1
(i.e., Baseline) needs O(mn · s) time to compute the price,
as the number of query lineage sets is at most mn (for the
operator projection π). In contrast, AD&C calculates prices
at most (m ·n+1) times. In addition, Baseline is able to get
the price accurately, while it cannot be done by AD&C. The
approximate ratio AD&C is equal to n, i.e., the number of
result tuples stored in Q(D) [26]. The approximate ratio is
the ratio of the approximate price (derived by AD&C) to the
exact price. Note that, both Baseline and AD&C algorithms
can be directly applied to calculate the history-aware price.

6 EXPERIMENTAL EVALUATION

In this section, we present a comprehensive experimental
evaluation on the pricing mechanism iDBPricer. All algo-
rithms were implemented in C++, and all experiments were
conducted on an Intel Core i7 Duo 3.60GHz PC with 24GB
RAM, running Microsoft Windows 7 Professional Edition.

In our experiments, we use two public real-life datasets
world [27], DBLP [28], and two benchmark datasets TPC-
H [29], SSB [30], as described in Table 4. Specifically, world
has three relations: Country, City, and CountryLanguage.
DBLP is a co-authorship network. Two authors in DBLP are
connected if they have a publication together. TPC-H is a
performance metric benchmark for systems operating at a
scale. SSB is a benchmark for measuring the performance of
data warehouse style workloads. The database size of the

TABLE 4
Used Datasets in the Experiments

Dataset # Relations # Tuples # Attributes
world 3 5,302 24
DBLP 1 1,049,866 2
TPC-H 8 SF = 1 61
SSB 5 SF = 1 58
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benchmark datasets TPC-H and SSB is publicly measured
by the scale factor, i.e., SF. For instance, SF = 1 on TPC-H
means that, the corresponding dataset approximately occu-
pies 1GB memory, and the rows of tables in TPC-H increase
in proportion to SF. Following existing studies [31], [7], [10],
we simulate incomplete datasets via randomly discarding
some values at a certain missing rate.

In the experiments, following the related work [16], we
use 40 queries over four datasets to conduct performance
evaluation. All of the queries are described in Table 5,
including 16 queries (w.r.t. Qw

1 , · · · , Qw
16) on world, 6 queries

(w.r.t. Qd
1, · · · , Qd

6) on DBLP, 10 queries (w.r.t. Qt
1, · · · , Qt

10)
over TPC-H, and 8 queries (w.r.t. Qs

1, · · · , Qs
8) over SSB,

respectively. These queries are randomly generated, and the
number of queries makes no difference to the experimental
results, since we report the average result value of the
queries over the corresponding dataset. In the experiments,
we study the effect of several factors on our algorithm
performance, e.g., the missing rate and the data scale of the
benchmark datasets SF (which are set by default to 0.2 and 1,
respectively). In particular, the missing rate is the ratio of the
number of missing values to the number of all values in the
data set. The base price ρ of each tuple is set to 1 for each set
of experiments. The price coefficient ∆ is set as 100 and 5,000
on the real datasets and benchmark datasets, respectively.
The derived query prices and the execution time are the
main metrics in the experiments. In each set of experiments,
unless mentioned otherwise, only one parameter varies and
others are set to default values.

We evaluate our proposed UCA and QUCA prices, com-
pared with two baseline price functions, i.e., the uniform
price (UP for short) and the uniform completeness-based price
(UCP for short). Note that, existing pricing methods for
complete data are incomparable to our pricing methods for
incomplete data. In particular, UP assigns a fixed price
amount (e.g., 1 in the experiments) to each query answer. Its
idea comes from [19], which is common to treat all data in a
unified manner in practice [32]. In other words, the uniform
price UP is equal to the accumulated prices of all query
answers. Furthermore, UCP is defined as the multiplication
of UP and the dataset complete rate (i.e., one minus the
missing rate), which is more reasonable as it considers the
data completeness. We generalize existing methods [26] to
implement Active and Lazy strategies, as they are the latest
strategies to derive the query lineage set.
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TABLE 5
Evaluated Queries in the Experiments

ID Query
Qw

1 SELECT Name FROM Country WHERE Continent = ‘Asia’
Qw

2 SELECT Continent FROM Country
Qw

3 SELECT Language FROM CountryLanguage
Qw

4 SELECT Name FROM Country WHERE Region = ‘Caribbean’
Qw

5 SELECT Name FROM Country WHERE Population between 10000000 and 20000000
Qw

6 SELECT * FROM Country
Qw

7 SELECT * FROM Country WHERE Continent = ‘Europe’, Population > 3000000
Qw

8 SELECT * FROM Country WHERE SurfaceArea > 1000000
Qw

9 SELECT * FROM City T, Country C WHERE T.Code = C.Code, T.Name = ‘NewCastle’
Qw

10 SELECT GovernmentForm FROM Country
Qw

11 SELECT * FROM City WHERE Population > 1000000, CountryCode = ‘USA’
Qw

12 SELECT * FROM CountryLanguage WHERE IsOfficial = ‘T’
Qw

13 SELECT * FROM CountryLanguage WHERE CountryCode = ‘USA’
Qw

14 SELECT * FROM City WHERE CountryCode = ‘GRC’
Qw

15 SELECT * FROM CountryLanguage L, Country C WHERE L.Code = C.Code, L.Language = ‘English’, L.Percentage > 50
Qw

16 SELECT * FROM CountryLanguage L, Country C WHERE L.Code = C.Code, L.Language = ‘Spanish’
Qd

1 SELECT * FROM DBLP WHERE FromNodeId < 150
Qd

2 SELECT ToNodeId FROM DBLP WHERE FromNodeId = 148255
Qd

3 SELECT * FROM DBLP WHERE ToNodeId = 38868
Qd

4 SELECT * FROM DBLP WHERE FromNodeId < 10000, ToNodeId = 38868
Qd

5 SELECT * FROM DBLP WHERE FromNodeId < 10000, ToNodeId = 38828
Qd

6 SELECT * FROM DBLP WHERE ToNodeId = 425000
Qt

1 SELECT RegionKey FROM Nation N
Qt

2 SELECT * FROM Customer C, Nation N WHERE C.RegionKey = N.RegionKey
Qt

3 SELECT * FROM Supplier S, PartSupp PS WHERE S.SuppKey = PS.SuppKey, 500 < SuppKey < 1000
Qt

4 SELECT * FROM LineItem L WHERE Quantity = 10, Discount > 0.08
Qt

5 SELECT * FROM Orders O WHERE TotalPrice > 300000, OrderPriority = ‘1-Urgent’
Qt

6 SELECT * FROM Part P WHERE Brand = ‘Brand#13’
Qt

7 SELECT * FROM Customer C WHERE CustKey > 145000, NationKey = 13
Qt

8 SELECT * FROM Orders O, Customer C WHERE O.CustKey = C.CustKey, CustKey < 5000, TotalPrice > 200000
Qt

9 SELECT NationKey FROM Supplier S
Qt

10 SELECT * FROM LineItem L WHERE 8000 < PartKey < 10000, Tax > 0.04
Qs

1 SELECT Nation FROM Supplier S
Qs

2 SELECT * FROM LineOrder LO, Customer C WHERE LO.CustKey = C.CustKey, 5000 < CustKey < 5100
Qs

3 SELECT * FROM LineOrder LO, Supplier S WHERE LO.SuppKey = S.SuppKey, SuppKey < 100, Tax > 7
Qs

4 SELECT * FROM Part P WHERE PartKey < 10000, Size > 10
Qs

5 SELECT * FROM Date D WHERE Year = 1995
Qs

6 SELECT * FROM LineOrder LO WHERE Revenue > 7000000, SupplyCost < 100000
Qs

7 SELECT * FROM Customer C WHERE CustKey > 24000, Region = ‘Europe’
Qs

8 SELECT * FROM Supplier S WHERE SuppKey < 30000, Nation = ‘Brazil’

6.1 Effect of Mechanism Parameter

The first set of experiments explores the effect of the param-
eter a (in the tuple quality function) on the query quality κ
defined in Definition 4, on the real datasets world and DBLP.

Figure 2 depicts the change trend of the average query
quality with the parameter of a varying from 0.1 to 0.9. As
expected, the higher the value of a, the higher the quality.
The reason why the query quality on the world dataset is
consistently better than that on the DBLP dataset is, the ratio
of the number of tuples missing the critical attribute values
(w.r.t. the uncertain lineage) to the total number of lineage
tuples on DBLP dataset is relatively larger than that on world
dataset. Without loss of generality, the value of a is set as 0.5
in the rest of the experiments.

6.2 Active Strategy vs. Lazy Strategy

In this set of experiments, we study the performance of
Active and Lazy (as described in Section 5.1). Figure 3 plots
the average execution time of the two strategies for deriving
lineage sets on the real datasets world and DBLP.

One can observe that, even in logarithmic scale, Active
performs better than Lazy remarkably. The reason behind
is that, for Active strategy, it suffices to derive lineage sets
along with the query via a single dataset read. In contrast,
Lazy strategy has to visit the whole dataset to find result
tuples’ lineage sets after getting the result tuple set. During
the access to the dataset, for each tuple in the dataset, it

needs to check whether it is a lineage tuple for each of the
result tuples, and thus incurring more overhead. Moreover,
it is sensitive to the size of result tuples. The larger the
result tuple set, the larger the cost of Lazy, as analyzed in
Section 5.1. We employ Active strategy to derive the lineage
sets in the experiments.

6.3 Evaluation on Price Functions

Effect of missing rate. First, we inspect the influence of the
missing rate on the price (computation). Figure 4 depicts
the corresponding experimental results over real datasets.

As plotted in Figure 4(a) and Figure 4(b), respectively,
the reported price on every dataset is the average price of
all the queries over the corresponding datasets (as listed in
Table 5). One can observe that, with the increasing miss-
ing rate, the amount of each price on world and DBLP is
dropping. It is due to the shrinking query result set. The
amount of UP is particularly equal to the average number
of query answers as shown in Table 6. It is important to
point out that, the amount of QUCA price is incomparable
to others, since the price coefficient ∆ of the QUCA price
function could be tuned by users (e.g., referring to the
data market environment). While one can conclude that,
the QUCA price is more stable than other prices with the
growth of the missing rate. As the definition of QUCA price
is insensitive to the query result size, QUCA price is able
to avoid leaking information of result set (e.g., the scale of
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TABLE 6
The Average Number of Result Tuples Under Different Missing Rates

Dataset 0 0.1 0.2 0.3 0.4 0.5
world 76 72 68 66 61 59
DBLP 372 335 297 259 225 188

result set), which makes it more practical. Compared to UCP
and UCA prices, the uniform price, i.e., UP, is the highest
one in each case, as it does not consider any factor of data
contribution, data completeness, or query quality.

In addition, as stated in Definition 5, the QUCA price
closely relies on the query quality, even though it considers
the data contribution and data completeness. Therefore,
it confirms the analysis in Section 4 that, the UCA price
function (as well as UP and UCP) probably reveals the
output information (e.g., the scale of result set). While the
QUCA price is mostly likely to be unrelated to the result set
scale. It is worthwhile to mention that, these price functions,
including UP, UCP, UCA, and QUCA, are also applicable to
complete datasets (w.r.t. that cases of the missing rate being
zero in diagrams).

Table 7 shows the average query quality over two real
datasets. One can observe that, when the missing rate is
zero, i.e., the data is complete, the quality is equal to the
value of one (i.e., the highest value). Then, when the missing
rate grows, the quality is decreasing. This is because, there
are more and more tuples with the missing critical attributes
for the growth of the missing rate, which makes the query
results struggle with more noise. It is worth noting that, the
QUCA price function heavily depends on the query quality,
as they have the same decreasing trend with the growth of
missing rate. Moreover, the query with the lower quality is
impossible to be assigned a relatively higher QUCA price
by our pricing scheme. As a consequence, we can conclude
that, in addition to the data contribution, both the degree
of missing values in tuples (i.e., the missing rate) and the
degree of missing result tuples (i.e., the query quality) are
critical to distinguish the datasets for sale.

On the other hand, the average time cost of the algo-
rithms is depicted in Figure 4(c) and Figure 4(d), respec-

TABLE 7
The Average Query Qualities Under Different Missing Rates

Dataset 0 0.1 0.2 0.3 0.4 0.5
world 1.000 0.741 0.687 0.669 0.648 0.637
DBLP 1.000 0.502 0.501 0.500 0.500 0.500

tively. Observed from the diagrams, Baseline algorithm
needs the most time to derive the query UCA/QUCA price.
In contrast, AD&C algorithm spends less time on getting
the query UCA/QUCA price. In the figures, the CPU time
of Active corresponds to the cost of deriving lineage sets
(which is executed before the price computation step). In
order to derive the query price, Baseline algorithm needs to
evaluate all the possible query lineage sets via merging the
lineage set of each result tuple. The superiority of AD&C lies
that, it first chooses a lineage set (with the lowest price) for
each result tuple, and then, it merges those lineage sets into
a unique query lineage set, based on which, the query price
is finally derived.

Moreover, for both algorithms, the time cost cuts down
with the growth of the missing rate. This is because, the
query result tuple set is becoming smaller, as true answers
become less for the increasing missing rate, according to
Definition 1. In particular, the average size of the result
tuple set under each missing rate is reported in Table 6. We
can also find that, the time cost of Active strategy closely
depends on the dataset, since visiting the dataset is the
dominant cost for Active strategy. In addition, the query
price derived from AD&C and Baseline is identical for each
dataset. This is partly because the query lineage set is unique
in almost all cases for selection and join operators. For the
projection operator, one tuple can only be projected to one
result tuple, and thus, finding the lowest-price lineage set
for each result tuple (by AD&C) is equivalent to finding the
query lineage set with the lowest-price (i.e., the query price)
(by Baseline). Hence, AD&C has a pretty high accuracy on
price computation, even with the approximate ratio being
one. It is much tighter than the theoretical approximate ratio
analyzed in Section 5.2. We adopt AD&C algorithm to derive
the query price in the rest of experiments.
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TABLE 8
The Average Number of Result Tuples Under Different Scale Factors

Dataset 0.1 0.5 1 2
TPC-H 5,143 6,129 8,203 10,592
SSB 3,422 7,872 11,425 18,754

TABLE 9
The Average Query Qualities Under Different Scale Factors

Dataset 0.1 0.5 1 2
TPC-H 0.653 0.610 0.607 0.597
SSB 0.551 0.549 0.547 0.549

Effect of data cardinality. We evaluate the impact of data
set size on the price (computation) via changing the scale
factor (SF) from 0.1 to 2.0 over the two benchmarks TPC-
H and SSB. Figure 5(a) and Figure 5(b) depict the average
amount of each price function over queries on TPC-H and
SSB benchmarks, respectively. It is obvious that, UP, UCP,
and UCA price become increasingly higher with the growth
of SF. This is because, the query result set as well as the
lineage set turns bigger when the data scale changes larger,
which could be conformed via Table 8. In particular, UP is
still the highest price in each case.

Furthermore, one can observe that, the QUCA price is
not very sensitive to the data scale, and thereby avoids
leaking output information. The query quality is almost
unrelated to the data scale, as reported in Table 9. The
reason is that, the data scale has no direct relationship to the
query quality, which makes sense in practice. We also report
the average execution time of AD&C algorithm and Active
strategy in Figure 5. Clearly, the execution time increases
significantly with the growth of SF, since the query result
tuple set (as reported in Table 8) and the corresponding
lineage sets are becoming larger. In addition, Active con-
sumes the relatively less time to derive lineage sets of each
result tuple on benchmarks. Overall, the phenomenon that
appeared in the benchmark datasets is similar to that over
the real datasets. Our presented AD&C algorithm is capable
of deriving the query price over large-scale datasets.

6.4 Evaluation on History-Aware Price Functions

First, we investigate the history-aware price on the bech-
mark SSB. In the experiments, we generate 8 query in-
stances for the query Qs

6 (SELECT * FROM LineOrder LO
WHERE Revenue > 7000000, SupplyCost < 100000) on the
SSB benchmark, with varying parameter values of Revenue
and SupplyCost within their domains randomly, where we
avoid the query instances with the empty result set.

Figure 6(a) shows the history-aware QUCA price with
the consecutive process of the eight query instances as
well as the (history-oblivious) QUCA price, where there
is no tuple expired during the execution of these 8 query
instances. Initially, at the initial phase, the history-aware
QUCA price is equal to the (history-oblivious) QUCA price,
since there is no overlap on the query lineage sets among
the initial several query instances. Then, the gap between
the history-aware QUCA price and the (history-oblivious)
QUCA price appears at the sixth query instance and then
becomes bigger and bigger. Even though only looking at
the first eight instances, it suffices to understand that, the
price gap will continue becoming increasingly bigger for
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Fig. 6. Evaluation on the history-aware price

more query instances. This is because, when processing
more query instances, more tuples in the data set will be
free. Thus, the price gap between QUCA and history-aware
QUCA becomes larger.

Second, we study the effect of the data expired/update
rate on the history-aware QUCA price. In the experiments,
we generate a state label for each tuple in the datasets at
a certain time stamp, and those state labels are updated
at a certain update rate for each following time stamp. It
means that, the corresponding tuples with updated lables
are unavailable for the customers. That is to say, those tuples
are not free for the customers that have ever paid for them.
The update rate is equal to the ratio of the number of expired
tuples to the total dataset size.

When the update rate changes from 0 (w.r.t. no update)
to 1.0 (w.r.t. complete update), Figure 6(b) plots the history-
aware QUCA price for those 8 instances of the query Qs

6

on SSB benchmark. One can observe that, the history-aware
QUCA price is consistently growing and approaching the
(history-oblivious) QUCA price. Note that, when the update
rate is zero, it indicates that there is no updated on the
collected lineage tuples, and thereby all these lineage tuples
are active, and can be re-used (in free of charge). Hence,
at this time, the history-aware QUCA price is the lowest.
With the ascending update rate, more and more tuples in the
collected lineage set are expired, and thus cannot be re-used.
If the update rate is equal to one, all tuples in the collected
lineage set are expired. Thus, when new query instances
are arriving, the purchased information of historical queries
cannot be re-used. At this extreme case, the history-aware
pricing is meaningless, and the history-aware QUCA price
is identical to the (history-oblivious) QUCA price.

In summary, compared with the uniform (completeness-
based) prices UP and UCP, the UCA price is well refined
and more reasonable. The data contribution has a significant
effect on the UCA price, so that this price is a bit sensitive to
the query output size. Hence, although it is arbitrage-free,
the UCA price might leak some output information, which
is a defect in many real-life scenarios. In contrast, the QUCA
price is closely related to the query result uncertainty, i.e.,
the query quality. Moreover, it is basically insensitive to the
output scale. Meanwhile, a good query quality does deserve
a higher QUCA price. One can conclude that, in addition to
the data contribution, both the data completeness and the
query quality can further value the data sets for sale. On
the other hand, the history-aware price is cost-effective, in
contrast to the history-oblivious price. In addition, Active
strategy is more effective than Lazy strategy to derive the
lineage sets. AD&C algorithm has good scalability for price
computation on large datasets.
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7 RELATED WORK

In this section, we overview query processing over incom-
plete data and the data pricing mechanisms, respectively.

Querying incomplete data. The foundational research of
incomplete data from the 1980s, first by Imielinski and Lip-
ski [33] and then by Abiteboul, Kanellakis, and Grahne [34]
provide models of incompleteness appropriate for handling
queries in different relational languages, and establish the
computational costs of the key tasks associated with those
models. A series of index structures has been developed to
organize incomplete data, such as the bit string-augmented
R-tree (BR-tree) and the MOSAIC structure [35], bitmaps
and quantization [36], for improving the query efficiency
in high-dimensional incomplete databases. Also, several
spatial queries over incomplete data have been investigated,
such as skyline queries [7], [10], [11], [12], [37], ranking or
top-k queries [8], [38], [39], similarity queries [9], [31], and
comprehensive incomplete data studies [40], [41].

Data pricing schemes. First, the query-based pricing
model is a typical pricing solution in database community,
in which the structural granularity of pricing is a query. The
seller sets the price of a specific set of base queries (also
called view), and then, the algorithm has to derive the price
of any other query that could be made to the database.
This group consists of pricing generalized chain queries
(i.e., a special type of join conjunctive query when the base
queries are only selection queries) [14], [42] and pricing
SQL queries [13], [16]. There are some efforts on revenue
maximizing arbitrage-free pricing [19], [43], [44], the pricing
problem for trading time series data and personal data
[45], [46], [47], [48], pricing queries while protecting the
seller’s privacy [49], [50] or in cloud environments [51].
In contrast, another kind of pricing scheme considers the
tuples of relations as the structural granularity of the pricing
function [15], [26], [52], [53]. It is usually based on the data
lineage, i.e., the set of the tuples contributing to the result
tuples of a query. Our proposed pricing scheme iDBPricer
belongs to the category. QIRANA [16], [54], standing the
viewpoint of the data buyer, employs the possible world
semantic to price relational queries.

In addition, there is a series of studies on pricing machine
learning tasks [17], [18], [55], pricing-related problems in
both advertising markets and labor markets [56], etc. In the
data acquisition problem [57] for correlation analysis, the
quality, join informativeness, and price issues of data acqui-
sition are considered. Overall, the study of pricing problem
in data markets is an active research line. Note that, since
the aforementioned existing studies do not consider data
completeness, the prices derived by them do not change
with varying missing rates. Thus, they are incomparable to
our pricing methods for incomplete data. We believe that,
more mature and robust pricing models for incomplete data
will appear soon inspired by our pricing mechanism.

8 CONCLUSIONS

In this paper, for the first time, we propose a practical
pricing mechanism iDBPricer for querying incomplete data.
We present two novel query price functions, i.e., the UCA
price and QUCA price, via considering the data contribu-
tion, data completeness, and query quality. We extend the

price functions to tackle the history-aware pricing problem.
Efficient algorithms are developed to calculate the query
prices. Compared with the state-of-the-art price methods,
extensive experiments with both real and benchmark data
sets demonstrate the superioty of iDBPricer. The UCA price
and QUCA price are more reasonable and practical. In the
future, we intend to explore the pricing problems over
probabilistic data and unstructured data.
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