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Abstract—Existing methods for transformer fault diagnosis 

either train a classifier to fit the relationship between dissolved 

gas and fault type or find some similar cases with unknown 

samples by calculating the similarity metrics. Their accuracy is 

limited, since they are hard to learn from other algorithms to 

improve their own performance. To improve the accuracy of 

transformer fault diagnosis, a novel method for transformer fault 

diagnosis based on graph convolutional network (GCN) is 

proposed. The proposed method has the advantages of two kinds 

of existing methods. Specifically, the adjacency matrix of GCN is 

utilized to fully represent the similarity metrics between unknown 

samples and labeled samples. Furthermore, the graph 

convolutional layers with strong feature extraction ability are 

used as a classifier to find the complex nonlinear relationship 

between dissolved gas and fault type. The back propagation 

algorithm is used to complete the training process of GCN. The 

simulation results show that the performance of GCN is better 

than that of the existing methods such as convolutional neural 

network, multi-layer perceptron, support vector machine, 

extreme gradient boosting tree, k-nearest neighbors and Siamese 

network in different input features and data volumes, which can 

effectively meet the needs of diagnostic accuracy. 

Index Terms—Power transformer, fault diagnosis, graph 

convolutional network, similarity metrics. 

I. INTRODUCTION

S one of the most important equipment in substation and

power plant, the power transformer has the ability of 

adjusting multiple voltage levels, and plays an important role 

both in the transmission side and distribution side. The 

operational state of the transformer is directly related to the 

safety and power quality of the whole power system [1]. Once 

the transformer fails, it may lead to local power failure or even 

large-scale power failure, which will cause huge economic 

losses to society. Therefore, it is of great significance for the 

power system to diagnose the status of the power transformer 
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accurately. 

At present, most of the large-scale transformers belong to 

oil-immersed transformers. When faults occur, oil-immersed 

transformers will release a large amount of dissolved gas, 

which are important indexes for fault diagnosis by dissolved 

gas analysis (DGA) [2]. The existing methods for transformer 

fault diagnosis based on DGA can be summarized into two 

categories: distance-based methods and model-based methods. 

For the first category, it mainly includes case-based reasoning, 

expert system, k-nearest neighbor (KNN), and Siamese 

network [3-7], which attempt to calculate the similarity metrics 

between the samples to be classified or verified and the 

historical samples. In general, although these distance-based 

methods make full use of historical data and prior knowledge 

through similarity metrics, they are difficult to capture the 

complex nonlinear relationship between dissolved gas and 

corresponding labels, resulting in their limited accuracy for 

transformer fault diagnosis. For the second category, traditional 

model-based algorithms include support vector machine (SVM) 

[8], multi-layer perceptron (MLP) [9], extreme gradient 

boosting tree (XGBoost) [10], and light gradient boosting 

machine (Light GBM) [11]. Generally, although these 

traditional methods are more suitable for smaller data set, their 

limited feature extraction ability is difficult to fully explore the 

potential nature between dissolved gas and corresponding 

labels. 

Deep learning is part of machine learning research. The 

emergence of deep learning promotes the development of 

machine learning and the innovation of artificial intelligence 

[12]. Due to its powerful learning ability, deep learning has 

been applied to various fields of power system, such as fault 

diagnosis [13], optimized scheduling [14], and scenarios 

generation [15]. The new model-based methods of deep 

learning include convolutional neural networks (CNN), deep 

belief network, and capsule neural networks [16]. Although 

these new model-based methods fully exploit the complex 

nonlinear relationship between dissolved gas and fault types, 

they don’t make good use of the similarity metrics between 

historical data and current samples, which makes their 

performance hard to be further improved. 

As a branch of deep learning, the graph neural networks have 

achieved outstanding performance in graph-structured data, 

such as recommendation system, link prediction, node 

classification, and protein structure inference [17], [18], which 

brings a new opportunity for the development of transformer 

fault diagnosis. Especially, the graph convolutional network 
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(GCN) is a kind of feed-forward neural network which uses 

graph convolution to process graph-structured data such as 

social networks, traffic network, knowledge graphs, and 

molecules of materials. Traditional CNN can only deal with 

data in Euclidean domains, which is a special case of 

graph-structured data [19]. For example, the features of each 

node included in social networks are data in Euclidean domains. 

In addition, the social network also has an adjacency matrix to 

represent the connection relationship of each node. If every 

node is independent, the adjacency matrix is empty, and the 

social network (graph-structured data) degenerates into the data 

in Euclidean domains. At present, GCN has shown excellent 

performance in many fields such as power load prediction, drug 

synthesis, few-shot learning, and link prediction [20], [21]. 

However, its application in the transformer fault diagnosis is 

still in its infancy. In theory, GCN can not only use graph 

convolutional layers with strong learning ability to effectively 

mine the complex nonlinear relationship between fault type and 

dissolved gas, but also use an adjacency matrix to represent the 

similarity metrics between unknown samples and labeled 

samples, so as to improve the accuracy for transformer fault 

diagnosis. Specifically, how to design a structure of GCN with 

strong feature extraction ability and high diagnostic accuracy 

according to the characteristics of dissolved gas data of the 

transformer needs further research. 

In this paper, it is aimed to design a GCN to improve the 

accuracy for transformer fault diagnosis. The performance of 

the proposed method is tested by the actual DGA data set. The 

key contributions of this paper are as follows: 

1) Theoretical innovation: the proposed GCN has the double 

advantages of the distance-based methods and model-based 

methods. Specifically, it can not only mine the complex 

nonlinear relationship between fault types and dissolved gas by 

using graph convolutional layer, but also represent the 

similarity metrics between unknown samples and labeled 

samples through an adjacency matrix. 

2) Application innovation: to our best knowledge, this paper 

is the first to design the GCN for transformer fault diagnosis. 

The influence of key parameters of GCN (e.g. the size of k, 

optimizer, and the number of graph convolutional layers) on the 

performance for transformer fault diagnosis is analyzed by 

simulation on real data set, and the constructive suggestions for 

the selection of each parameter are given. 

3) Extensive experiments on real data set collected from the 

state grid corporation of China and previous publications are 

performed to validate the effectiveness of the deep learning 

framework for transformer fault diagnosis. The simulation 

results show that the GCN achieves state-of-art performance 

with superior accuracy in different input features and data 

volumes for transformer fault diagnosis. 

The rest of the paper is organized as follows. Section II 

explains the principle and structure of the GCN. Section III 

introduces the steps of transformer fault diagnosis based on the 

GCN. Section IV discusses the simulations and results. Section 

V discusses the innovation and generality of the GCN. Section 

VI summarizes the conclusions. 

II. GRAPH CONVOLUTIONAL NETWORK 

A. Definitions of the graph convolutional layer 

At present, most graph convolutional layers have a common 

architecture, since filter parameters are usually shared at all 

locations in the graph [22]. For these graph convolutional 

layers, the goal is to learn a function of features on the 

graph-structured data  ,G V E  which takes a feature matrix 

X of dissolved gas content and an adjacency matrix A  of the 

samples as input: 

 Input ,X A                    (1) 

where X  is a n d  feature matrix that consists of the feature 

description ix  for each node i . n  the is number of nodes ( n is 

the number of samples in the transformer fault diagnosis) and d  

is the number of input features. The adjacency matrix represents 

the similarity metrics between historical data and current 

samples in matrix form. 

The output of the graph convolutional layer is a N F  

node-level vector Y , where F  is the number of transformer 

states. Every graph convolutional layer can be written as a 

non-linear function: 

 ( 1) ( ) , , 0,1,i iH f H A i L                 (2) 

where L  is the number of graph convolutional layers. When i

equals 0, 
(0)H  is identical to X . When i  equals L , 

( )LH  is 

identical to Y . The specific graph convolutional layers differ 

only in how activation function f is chosen and parameterized. 

Now, an example is used to show the following simple form of 

a layer-wise propagation principle for graph convolutional 

layers: 

   ( ) ( ) ( ),i i if H A AH W           (3) 

where   is a non-linear activation function such as rectified 

linear unit (ReLU) function and ( )iW  is a weight matrix in the 

i-th graph convolutional layer.  

Although the graph convolutional layer is very powerful, it 

has two limitations that need to be addressed [17]:  

1) Multiplying the adjacency matrix A  means that for each 

node, it totes up the eigenvectors of all adjacent nodes, not the 

node itself (unless there is a self-loop in the graph-structured 

data). This limitation can be fixed by enforcing self-loops in the 

graph-structured data (e.g. the identity matrix is added to the 

adjacency matrix A ): 

'A A I                               (4) 

2) The second limitation is that the adjacency matrix 'A  is not 

normalized, so the multiplication may change the scale of the 

eigenvector, which can be examined by checking the eigenvalues 

of the adjacency matrix 'A . To deal with this problem, the 

adjacency matrix 'A  should be normalized by the following 

formula: 
1 1

2 2'' 'A D A D
 

                                (5) 

where D  is the diagonal node degree matrix of the adjacency 

matrix 'A : 
'

ii ijj
D A                                (6) 

After using these two tricks, the new propagation principle for 

graph convolutional layers becomes: 
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   ( ) ( ) ( ), ''i i if H A A H W                  (7) 

B. Structure of the GCN 

Normally, the neural network is designed to diagnose fault 

type Y  for power transformer by inputting dissolved gas content 

X . Specifically, the GCN requires an n n  adjacency matrix 

A  in addition to X . Let n  denotes the number of samples in the 

dataset. The samples in training set and validation set are only 

linked to samples with the same label. For example, if the i-th 

sample and the j-th sample belong to partial discharge, then

( , ) ( , ) 1A i j A j i  . For the samples in the test set (unknown 

samples), the Siamese network is used to extract the low 

dimensional features of input variables, so as to calculate the 

Euclidean distance between samples [7]. Then, the KNN is 

utilized to find the k samples closest to the unknown samples and 

consider them to be connected. For example, if k is equal to 1, the 

Euclidean distance between the i-th unknown sample and the j-th 

sample is the closest, then ( , ) ( , ) 1A i j A j i  . In this case, the 

adjacency matrix A  can represent the similarity metrics between 

historical data and current samples. 

To illustrate the structure of GCN, Fig.1 (a) shows a simple 

GCN model that includes two graph convolutional layers 

followed by two dense layers. Obviously, this architecture is 

different from that of traditional neural networks (e.g. MLP) in 

Fig. 1(b). The input data  ,X A  of the GCN is a graph form 

and the intrinsic topology is utilized to generate intermediate 

features, while MLP only uses the dissolved gas content X  as 

input data and ignores the similarity metrics of samples. 

 
Fig. 1.  Structures of GCN and MLP. 

 

As shown in Fig. 1 (a), the graph-structured data  ,X A  is 

fed to the GCN that outputs  1
H  on the first layer. Specifically, 

a hybrid feature matrix ˆ''A X  is obtained, which combines a 

feature vector of each node with those of adjacent nodes 

linearly by using weights represented by ''A . Next, a new set of 

features 
1 1

ˆ''A XW b  are obtained by multiplying a weight 

matrix 1W  and adding a bias vector 1b . After that, an activation 

function (e.g. ReLU) is selected for the new vector to obtain the 

output data of first layer  1
H : 
   1

1 1
ˆReLU ''H A XW b               (8) 

Similarly, the output data of the second graph convolutional 

layer is: 
    2 1

2 2ReLU ''H A H W b            (9) 

where 2W  and 2b is a weight matrix and a bias vector in the 

second graph convolutional layer, respectively. 

There are two dense layers behind the graph convolutional 

layers. It is necessary to victories the data before inputting  2
H . 

In the third layer, the output data  3
H  can be obtained by a 

weight matrix 3W , a bias vector 3b , and an activation function: 

    3 2

3 3ReLUH H W b             (10) 

The output of the fourth layer by a Softmax function is: 
  3

4 4SoftmaxY H W b             (11) 

where Y  is the fault type of the transformer. 

III. TRANSFORMER FAULT DIAGNOSIS USING GCN 

A. Input Variables of the Model 

In regular operation, the solid organic insulating materials 

and insulating oil of the power transformer will age gradually 

due to the combined action of electric field and thermal field. A 

small amount of dissolved gas (e.g. hydrogen and low 

molecular hydrocarbon gas) will be dissolved in transformer oil 

[23]. If the transformer has a discharge fault or thermal fault, 

the content of the dissolved gas will increase rapidly. If the rate 

of generating dissolved gas is greater than that of transformer 

oil absorbing gas, the excess gas will continue to diffuse and 

enter the relay, thus triggering an alarm. At present, one 

commonly used detection technology that can diagnose the 

fault type of oil-immersed transformer is through analyzing the 

content of dissolved gas [3]. Furthermore, the IEC ratio codes 

method, Dornenburg ratio codes method, and Rogers ratio 

codes method are used to construct a variety of new features, 

which effectively improve the accuracy of fault diagnosis [24]. 

Previous works have shown that CO and CO2 have weak 

correlation with transformer fault type, while H2, C2H6, CH4, 

C2H2, and C2H4 have strong correlation with transformer fault 

type [7], [8]. Therefore, the content of dissolved gas (H2, C2H6, 

CH4, C2H2, and C2H4) are selected as the original features, and 

four new features (CH4/H2, C2H2/C2H4, C2H4/C2H6, and 

ReLU ReLU
Softmax

Graph convolution Graph convolution Dense

Input (X,A)

…

Output Y

ReLU ReLU
Softmax

Dense Dense Dense

Input X

Output Y

…

(a) Graph convolutional network (b) Multi-layer perceptron 
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C2H6/CH4) constructed by Rogers ratio codes method are 

further considered as the input variables of the GCN.  

Due to the large difference in the numerical values of the 

nine features, the performance of the model will be adversely 

affected if they are directly used as input variables, and even the 

loss function is difficult to converge. Therefore, before being 

fed into GCN, the nine features should be mapped to the 

interval [0,1] by the min-max normalization method: 

,min'

,max ,min

, 1,2, 9
i i

i

i i

x x
x i

x x


 


               (12) 

where ix  and 
'

ix  represent the i-th feature before and after 

normalization, respectively. ,minix  and ,maxix  represent the 

minimum and maximum values of the i-th feature, respectively. 

B. Output Variables of the Model 

Transformer faults can be divided into thermal fault and 

discharge fault. Specifically, the thermal fault includes the 

thermal fault of low temperature (LT), thermal fault of medium 

temperature (MT), and thermal fault of high temperature (HT). 

The discharge fault includes partial discharge (PD), discharge 

of low energy (LD), and discharge of high energy (HD) [2]. In 

order to effectively calculate the cross-entropy loss function in 

the training process of GCN, the one hot code method is used to 

preprocess various state types of the transformer, as shown in 

Table I. 
TABLE I 

THE ONE HOT CODE FOR TRANSFORMER STATE 

Status of transformer Codes 

Normal 1000000 

Thermal fault of low temperature 0100000 

Thermal fault of medium temperature 0010000 

Thermal fault of high temperature 0001000 

Partial discharge 0000100 

Discharge of low energy 0000010 

Discharge of high energy 0000001 

C. Process of Fault Diagnosis 

The process of transformer fault diagnosis based on GCN is 

shown in Fig. 2, and the specific steps are as follows: 

1) Data import and normalization 

The contents of dissolved gas C2H2, CH4, C2H4, C2H6, and H2 

are regarded as original features and four new features are 

constructed by the Rogers ratio codes method. The above nine 

features are used as input variables of GCN. To obtain 

adjacency matrix A, the Siamese network is used to extract the 

low dimensional features of input variables, so as to calculate 

the Euclidean distance between samples. Then, the KNN are 

utilized to find the k samples closest to the unknown samples 

and consider them to be connected. Furthermore, the min-max 

normalization method is used to transfer the input data into 

values that range from 0 to 1 [25]. 

2) Reconstitution and division of data 

The adjacency matrix is reshaped into a sparse matrix in 

coordinate format, since it includes a lot of 0 elements, which 

leads to a waste of space. In the data set, 75% of the samples are 

used to train the GCN, and the remaining samples are used to 

evaluate the performance of the model.  

3) Initializing the structure and parameters of GCN 

In order to improve the accuracy of the transformer fault 

diagnosis, it is necessary to explore the best structure and 

parameters before training GCN. The structure and parameters 

of GCN mainly include the number of graph convolutional 

layers, the number of iterations, the size of k for adjacency 

matrix A, and the selection of optimizer. A simple structure of 

GCN is shown in Table II. The size of convolutional filters is 8 

and 16 respectively. All activation functions of graph 

convolutional layers are ReLU. To alleviate over-fitting, the 

graph convolutional layer is followed by a dropout layer with a 

probability of 0.25. Both the size of convolutional filters and 

the probability of dropout layer are the optimal values found by 

many experiments in Case study (detailed discussion in Section 

B). Finally, the dense layer outputs a 1×7 vector to represent the 

state of the unknown sample. 

4) Training GCN 

The back-propagation algorithm is used to complete the 

training process of the GCN, which mainly includes two steps: 

forward incentive propagation and backward weight update. 

For the forward incentive propagation, the input variables are 

processed by multiple graph convolutional layers and then 

transferred to the dense layer, and the labels of samples are 

output by the dense layer. The diagnostic results and real results 

are used to calculate the loss function (error). For backward 

weight update, the error is transferred from the output layer to 

the middle layer by using the chain rule. Then, the weights of 

each layer are updated by the gradient descent method. When 

the set number of iterations is reached, the test set is used to 

evaluate the performance of GCN. In addition, the ensemble 

technology is used to improve the accuracy of the proposed 

models in the training process [26]. 

 
Fig. 2.  Process of fault diagnosis based on GCN. 
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TABLE II 

A SIMPLE STRUCTURE OF GCN 

Layer Structure and parameters Shape 

1-st H0=Input(shape=(X.shape[1],)) 1×9 

2-rd H1=GraphConv(filter=16,ReLU)([H0]+Graph) 1×16 

3-th H2=Dropout(rate=0.25)(H1) 1×16 

4-th H3=GraphConv(filter=8,ReLU)([H2]+Graph) 1×8 

5-th H4=Dropout(rate=0.25)(H3) 1×8 

6-th Y=Dense(unit=7, Softmax)(H4) 1×7 

5) Evaluating the performance of GCN 

For the binary classification problem, the results are either 

positive class or negative class. The accuracy and recall rate can 

be used to evaluate the performance of the model, but these 

indexes are not suitable for multi-classification problems such 

as transformer fault diagnosis. Normally, the k classification 

problem can be transformed into k binary classification 

problems. Besides the accuracy, the Macro F1 and geometric 

mean of recall (G-mean) are used to evaluate the performance 

of the model [27]. Macro F1 and G-mean are both positive 

indicators. In other words, the bigger the indicators, the better 

the performance. 

IV. CASE STUDY 

A. Data Description and Simulation Tools 

In order to test the performance of GCN for transformer fault 

diagnosis, the actual data set collected from the state grid 

corporation of China and previous publications is used for 

simulation and analysis [28], [29]. The voltage level of these 

samples is 220 kV. After data cleaning, there are 718 samples 

left in the data set, which includes 7 state types: normal, thermal 

fault of low temperature, thermal fault of medium temperature, 

thermal fault of high temperature, partial discharge, discharge 

of low energy, and discharge of high energy. The number of 

training samples accounts for 75%. The remaining data is used 

as test samples to evaluate the performance of the models. The 

size of each state type is shown in Table III. 
TABLE III 

A SAMPLE DISTRIBUTION OF DATA SET 

Status All samples Training samples Testing samples 

Normal 52 39 13 

LT 99 74 25 

MT 73 55 18 

HT 168 126 42 

PD 105 79 26 

LD 42 31 11 

HD 179 134 45 

The proposed methods are all run on the Spyder platform 

from Anaconda software. The framework of deep learning is 

Tensorflow 1.12.0 and Keras 2.2.4. Computer hardware 

configuration: Intel Core i3-3110M CPU @ 2.4GHz dual-core 

CPU, 6GB memory. 

B. Performance evaluation of GCN 

In order to clearly observe the training process of GCN, Fig. 

3 shows the changing trend of the loss function with the 

increase of iterations. 

 
Fig. 3.  The training process of the GCN. 

 

In the early stage of the training process, the loss function of 

the training set decreases rapidly with the increase of iteration. 

When the number of iterations is greater than 400, the loss 

function tends to a constant and does not continue to decline, 

which indicates that GCN has converged. Generally speaking, 

the training process of GCN is relatively stable and has fast 

convergence speed. To ensure the convergence of GCN, the 

GCN is used to diagnose unknown samples after 800 iterations. 

In order to analyze the influence of the number of graph 

convolutional layers on the performance of GCN, the number 

of graph convolutional layers is gradually increased, and the 

indexes of the test set under different layers are counted, as 

shown in Table IV. 
TABLE IV 

THE INDEXES OF TEST SET UNDER DIFFERENT LAYERS 

layers Accuracy Macro F1 G-mean Time/s 
Number of 

parameters 

1 0.714  0.689  0.709  35.27431 80 

2 0.793  0.772  0.791  65.98592 152 

3 0.780  0.753  0.769  96.35367 224 

4 0.699  0.672  0.688  126.7464 296 

5 0.683  0.655  0.673  157.6507 368 

The following conclusions can be drawn from Table IV: 1) 

In the early stage, the indexes of the test set increase as the 

number of graph convolutional layers increases, which 

indicates that the performance of GCN is gradually becoming 

stronger. When the number of graph convolutional layers is 2, 

the accuracy, Macro F1, and G-mean of GCN are the largest, 

and the performance of fault diagnosis is the best. This 

phenomenon shows that it is difficult to mine the complex 

nonlinear relationship between dissolved gas and transformer 

state by a small amount of graph convolutional layers. 

Increasing the number of graph convolutional layers can 

improve the feature learning ability of GCN, thus enhancing the 

accuracy of fault diagnosis. 2) Furthermore, it is found that the 

number of parameters to be trained increases linearly with the 

increase of graph convolutional layers. When the number of 

graph convolutional layers is greater than 2, the performance of 

GCN will be worse and worse, if more convolution layers are 

added to GCN. This is because the number of samples in the 

dataset is limited. Too many graph convolutional layers will not 

only increase the parameters of GCN to be trained, but also 

consume a lot of training time, and it is easy to over-fitting and 

reduces the accuracy of diagnosis. 3) In general, the number of 

graph convolutional layers should be determined according to 

the size of the data set. If the number of samples is small, the 

GCN can get better performance by setting the graph 

convolutional layer to 2 layers. 

The size of k determines the number of samples from training 

set connected with each unknown sample, which will directly 
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affect the adjacency matrix A. In order to explore the influence 

of the size of k on the performance of GCN, k is set from 1 to 20, 

and the performance of GCN on the test set is counted, as 

shown in Fig. 4 

 
Fig. 4.  The indexes of the test set in different sizes of k. 

When the size of k is very small, the unknown samples are 

only connected with the nearest sample, which makes it 

difficult to make full use of the similarity metrics between 

samples, resulting in limited accuracy. By contrast, if the size of 

k is very large, the unknown samples are connected with many 

samples, which may cause the unknown samples to connect 

with different types of samples, resulting in noise and limited 

the performance of GCN. Therefore, with the increase of k 

value, the accuracy, Macro F1, and G-mean first increased and 

then decreased. When the k value is 10, the accuracy, Macro F1, 

and G-mean of the test set are the maximum, and the 

performance of GCN in fault diagnosis is the optimized. 

After initializing the structure and parameters of GCN, a 

gradient descent method is needed to optimize the neural 

network. The popular methods for gradient descent include 

SGD, RMSprop, Adagrad, Adadelta, Adam, Adamax, and 

Nadam. At present, the mainstream deep learning libraries (e.g. 

Keras, Tensorflow, and Pytorch) include implementations of 

these methods to reduce loss function. Normally, these methods 

are often used as black boxes, because their principles are too 

complex to be explained in practical engineering. In order to 

find the optimizer suitable for GCN in transformer fault 

detection, these popular optimizers are set up and simulated, 

and the indexes of test set are counted, as shown in Table V. 
TABLE V 

THE INDEXES OF TEST SET UNDER DIFFERENT OPTIMIZER 

Optimizers Accuracy Macro F1 G-mean 

SGD 0.652 0.625 0.644 

RMSprop 0.782 0.760 0.779 

Adagrad 0.653 0.628 0.651 

Adadelta 0.613 0.586 0.606 

Adam 0.793 0.772 0.791 

Adamax 0.781 0.761 0.780 

Nadam 0.774 0.750 0.768 

Table V shows that GCN has good performance when 

RMSprop, Adagrad, Adamax, Nadam, and Adam algorithms 

are used as optimizers. Specifically, the accuracy, Macro F1, 

and G-mean of Adam algorithm are slightly higher than those 

of the first four optimizers, which indicate that Adam algorithm 

is the most suitable optimizer for GCN in transformer fault 

detection. Furthermore, the corresponding accuracies of 

Adagrad, Adadelta, and SGD algorithms are all lower than 0.7, 

which shows that they are not suitable for transformer fault 

diagnosis based on GCN. 

C. Comparison under different input features 

In order to illustrate the effectiveness of GCN, the common 

distance-based methods (e.g. KNN and Siamese network) and 

model-based methods (e.g. CNN, MLP, XGBoost, and SVM) 

are used as the baselines. The indexes of the test set are 

compared under different input characteristics. After many 

experiments, the optimal parameters and structures of various 

algorithms are found as follows: 

1) For the KNN, the size of k is 7. 2) For the Siamese 

network, it includes two CNNs with the same weights, which 

are utilized to calculate the Euclidean distance of input data (the 

input data of the Siamese network is a pair of samples). 

Specifically, the filters of the two convolutional layers are 16 

and 36, and the size of the convolutional kernels is 2×2. The 

size of the maximum pooling layer is 2×2. A dropout layer is 

inserted behind the two convolutional layers to alleviate 

over-fitting. The probability of the dropout layer is set to 0.25. 

The numbers of neurons in the dense layers are 8 and 1. The 

activation function of all layers is the ReLU function. 3) For 

CNN, it includes two convolutional layers, two max-pooling 

layers, two dropout layers, and two dense layers. The 

probabilities of dropout layers are 0.25. The size of the kernel in 

the convolutional layers is 3. The size of the pool in 

max-pooling layers is 2×2. The activation functions of 

convolutional layers are the ReLU function. The numbers of 

neurons in the dense layers are 14 and 7, respectively. 4) For 

MLP, the number of neurons in the input layer is 9, and the 

number of neurons in the middle layer is 9 and 7, respectively. 

The number of neurons in the output layer is equal to the 

number of categories. To alleviate over-fitting, a dropout layer 

is inserted between each dense layer. 5) For XGBoost, The max 

depth is 5, and the gamma value is 0.2. The subsample rate is 

0.6 and the min child weight is 3. 6) For SVM, the fitcecoc 

function from MATLAB2018a is used to classify fault type of 

transformer. 

The above algorithms are trained under different input 

features, and the simulation results of the test set are shown in 

Table VI and Table VII. 
TABLE VI 

RESULTS OF GCN TRAINED BY FIVE ORIGINAL FEATURES 

Method Accuracy Macro F1 G-mean 
GCN 0.781 0.758 0.776 

CNN 0.74 0.717 0.734 

MLP 0.633 0.602 0.62 

XGBoost 0.634 0.606 0.626 

SVM 0.642 0.616 0.635 

KNN 0.669 0.644 0.664 

Siamese Network 0.751 0.725 0.741 

 
TABLE VII 

RESULTS OF GCN TRAINED BY NINE ORIGINAL FEATURES 

Method Accuracy Macro F1 G-mean 
GCN 0.793  0.772  0.791  

CNN 0.756  0.732  0.748  

MLP 0.672  0.649  0.669  

XGBoost 0.641  0.613  0.631  

SVM 0.688  0.662  0.683  

KNN 0.700  0.677  0.695  

Siamese Network 0.771  0.745  0.763  

The following conclusions can be drawn from the Tables: 1) 

Accuracy represents the probability that the model can 

correctly identify the positive and negative classes. If the data 
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set has the unbalanced problem, the accuracy will be greatly 

affected by unbalanced classes. Therefore, Macro F1 and 

G-mean are selected to evaluate the performance of the model. 

It can be seen from Tables that the values of the accuracy, 

Macro F1 and G-mean are similar, which indicates that the 

probability of correct diagnosis of various fault types by the 

model is very close. In addition, the values of G-mean are all 

greater than 0, indicating that there is no missing detection for 

each fault type in the model. 2) The accuracy, Macro F1, and 

G-mean of each algorithm in Table VII are larger than those in 

Table VI, which shows that the four features constructed by 

Rogers ratio method can improve the performance of each 

algorithm in transformer fault diagnosis to a certain extent. 3) 

GCN has a higher diagnostic performance than the other 

algorithms in the case of two different input features. Table VII 

is illustrated as an example. The accuracy, Macro F1 and 

G-mean of GCN are 79.3%, 77.2%, and 79.1%, respectively. 

Compared with CNN, MLP, XGBoost, SVM, KNN, and 

Siamese networks, the accuracy of GCN increased by 3.7%, 

12.1%, 15.2%, 10.5%, 9.3%, and 2.2%, respectively; Macro F1 

of GCN increased by 4.0%, 12.3%, 15.9%, 11.0%, 9.5%, and 

2.7%, respectively; G-mean of GCN increased by 4.3%, 12.2%, 

16.0%, 10.8%, 9.6%, and 2.8%, respectively. 4) Last but not 

least, both CNN and GCN use convolutional layers to extract 

the features of input data. The difference is that the latter also 

takes into account the similarity metrics between unknown 

samples and labeled samples through an adjacency matrix. The 

performance of GCN is better than that of CNN, which shows 

that CNN ignores the similarity metrics between samples, 

which limits the accuracy of fault diagnosis. GCN can not only 

use the graph convolutional layer to explore the relationship 

between features and fault types, but also take into account the 

similarity metrics between samples, resulting in a more 

accurate diagnose of the fault type in transformer. 

D. Comparison under different data volumes 

In order to further illustrate the effectiveness of GCN, the 

number of samples in the training set is expanded to 2 ~ 4 times 

of the original number by using the generative adversarial 

network [30], and the performance of each algorithm under 

different data volume is compared. The statistical results of the 

test set are shown in Table VIII. 

The following conclusions can be drawn from Table VIII: 1) 

When the number of samples in the dataset is 718, the accuracy, 

Macro F1, and G-mean of GCN are not high, and the error of 

fault diagnosis is large. When the number of samples is 

extended to 2332, the performance of GCN is significantly 

improved. At this time, the accuracy is improved from 79.3% to 

89.7%. The corresponding Macro F1 is improved from 77.2% 

to 88.5%, and the G-mean is improved from 79.1% to 89.6%. 2) 

In addition to GCN, the performance of the remaining six 

methods is improved with the increase of data volume. This 

phenomenon shows that with the increase of the number of 

samples in the training set, the information learned by various 

methods from the training samples is richer, thus strengthening 

the fault diagnosis ability of the models. 3) By comparing the 

accuracy, Macro F1, and G-mean under different data volumes, 

it is found that GCN performs better than other methods in 

different data volumes, which shows that GCN is not only 

suitable for the small data set, but also has light advantages over 

other algorithms in the case of large data volumes. 
TABLE VIII 

THE RESULT OF EACH METHOD WITH DATA VOLUMES 

Method 
Number of 

samples 
Accuracy Macro F1 G-mean 

GCN 

718 0.793 0.772 0.791 

1256 0.839 0.821 0.837 

1794 0.870 0.853 0.866 

2332 0.897 0.885 0.896 

CNN 

718 0.756 0.732 0.748 

1256 0.814 0.795 0.809 

1794 0.831 0.815 0.830 

2332 0.871 0.855 0.870 

MLP 

718 0.672 0.649 0.669 

1256 0.723 0.699 0.719 

1794 0.768 0.746 0.764 

2332 0.800 0.778 0.797 

XGBoost 

718 0.641 0.613 0.631 

1256 0.743 0.717 0.734 

1794 0.747 0.720 0.737 

2332 0.782 0.763 0.783 

SVM 

718 0.688 0.662 0.683 

1256 0.727 0.702 0.722 

1794 0.761 0.740 0.757 

2332 0.790 0.767 0.786 

KNN 

718 0.700 0.677 0.695 

1256 0.757 0.736 0.756 

1794 0.770 0.748 0.766 

2332 0.791 0.770 0.789 

Siamese 

network 

718 0.771 0.745 0.763 

1256 0.824 0.804 0.823 

1794 0.841 0.822 0.835 

2332 0.872 0.854 0.865 

V. DISCUSSION 

The objective of this paper is to propose a new method based 

on the GCN to diagnosis the transformer fault. In this paper, the 

effectiveness of the proposed GCN has been tested on the 

actual data set collected from the state grid corporation of 

China and previous publications. The simulation results show 

that the GCN achieves state-of-art performance with superior 

accuracy in different input features and data volumes for 

transformer fault diagnosis. However, the GCN needs to be 

retrained if the number of samples changes, because the size of 

the adjacency matrix A depends on the number of samples. In 

addition, there is a possible solution to avoid retraining GCN: 

for a new sample, an old sample which is the closest to this new 

sample is found. Then, the old sample is replaced with the new 

sample. In other words, it considers that the new sample and the 

old sample have the same connection relationship with others. 

In this case, GCN can diagnose new samples without repeated 

training. 

GCN has shown superior performance over convolutional 

neural networks in some graph-structured data. The use of 

GCN is not limited to classification. For example, GCN may 

also be suitable for solving the reactive power optimization 

model of active distribution networks, because the input data of 

power flow calculation belongs to the graph-structured data. In 

addition, the GCN can be used to capture spatial correlations 

among multiple adjacent wind farms to improve the accuracy of 

short-term prediction. 
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VI. CONCLUSION  

In order to improve the accuracy of the transformer fault 

diagnosis, this paper proposes a transformer fault diagnosis 

method based on GCN. Through the simulation analysis on real 

data, the following conclusions are obtained: 

1) The size of k, optimizer, the number of iteration and graph 

convolutional layers, and the structure of GCN have a great 

influence on the performance of transformer fault diagnosis. In 

short, it is necessary to determine the number of graph 

convolutional layers according to the size of the data set. Using 

Adam algorithm as the optimizer GCN achieves the highest 

performance. If the size of k is too large or too small, the result 

of GCN will be worse. When the size of k is set to 10, GCN can 

get better performance. 

2) Compared with CNN, MLP, XGBoost, SVM, KNN, and 

Siamese network, GCN has the highest diagnostic accuracy 

under different input features. CNN ignores the similarity 

metrics between samples, which limits the accuracy of fault 

diagnosis. GCN can not only use the graph convolutional layer 

to explore the relationship between features and fault types, but 

also take into account the similarity metrics between samples, 

so as to diagnose the fault type of the transformer more 

accurately. 

3) In both small and large data volumes, the performance of 

GCN is better than that of CNN, MLP, XGBoost, SVM, KNN, 

and Siamese network. 
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