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Mitigating Concurrent False Data Injection Attacks
in Cooperative DC Microgrids

Jingqiu Zhang, Student Member, IEEE Subham Sahoo, Member, IEEE, Jimmy Chih-Hsien Peng, Member, IEEE
and Frede Blaabjerg, Fellow, IEEE

Abstract—Limited global information in DC microgrids with
distributed cooperative control makes them vulnerable to cyber
attacks, which can lead to their destabilization and shut down.
Here, we discuss a novel false data injection attack (FDIA) model,
termed as the concurrent attack, that can compromise local and
communicated estimated voltages simultaneously. We formalize
that such an attack could be disguised as a conventional FDIA
on the estimated voltages transmitted in communication links
(termed as the communication link attack), thereby masking
the presence of the attack on local estimated voltages and ren-
dering corresponding mitigation attempts ineffective. Secondly,
we present an energy-based detection strategy based on the
intrinsic mode functions obtained using the ensemble empirical
mode decomposition method. Further, a differentiation criterion
using the voltage correction terms generated from the voltage
observer is employed to help distinguish between the concurrent
attack and the communication link attack. An event-driven
mitigation strategy is then used to replace the attacked signal
with a reconstructed signal. Finally, the efficacy of the proposed
resilient control scheme is demonstrated using both simulations
and experimental results.

Index Terms—DC microgrid, distributed control, cyber attack
detection and mitigation.

I. INTRODUCTION

DC microgrids are gaining attention due to the increasing
integration of renewable energy resources, installation

of energy storage devices, and utilization of DC loads [1],
[2]. To date, DC microgrids have been adopted in data
centers, residential households, and shipboard power systems
[3]. Further, distributed control has been implemented to
provide high adaptability and efficiency among DC microgrids
[4]. However, the lack of a centralized controller makes it
difficult to detect as well as mitigate cyber attacks. Specifically,
in a sparse distributed communication graph, the malicious
information resulting from cyber attacks easily propagate to
the rest of the network, which also affect the operation of
other nodes. Several types of cyber attacks recently have been
reported in the literature, including false data injection attacks
(FDIAs) [5], replay attacks [6], denial of service (DoS) attacks
[7] and disinformation attack [8].
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In [9], FDIAs have been reported to compromise current
and voltage sensors of an agent as well as communication links
between neighboring agents. Moreover, the constrained FDIAs
may harass the consensus protocol, while the unconstrained
FDIAs may destabilize the entire DC grid. One way to detect
cyber attacks is to check if the cooperative synchronization law
has been violated [10]. However, stealthy attacks may employ
multiple coordinated attack vectors to intrude into multiple
nodes such that the physical laws are unchanged. Such kind of
attacks may result in possible uneconomical dispatch problem
[11] or instability issues [12]. These attacks can be launched
when an adversary has some information about the system in
advance [12], [13].

Detection of cyber attacks in distributed DC microgrids can
be classified into two categories: model-based and model-free
methods. The former assumes that the network topology and
attack vectors are known/bounded and are devised to iden-
tify these attacks. Model-based detection techniques basically
originate from fault detection and isolation, and they are used
in multi-agent systems [14]–[17]. In the context of distributed
DC microgrids, the only available information to anticipate
the presence of attack is either available locally or communi-
cated by neighboring agents [18]. Leveraging this property, a
cooperative vulnerability factor (CVF) based detection metric
has been proposed to detect stealthy voltage attacks in [10].
However, attack vectors can often be unpredictable in nature,
and developing a robust model-based detection with significant
accuracy can be a challenging task.

In contrast, model-free method does not rely on prior
knowledge of the system and the attack vectors. Detection
is carried out by analyzing the output signals. For distributed
DC microgrids, a signal temporal logic-based (STL) method
has been used to detect FDIAs and DoS [19]. Such approach
targets the unpredictable nature of attack vectors.

As it has been mentioned in [12], coordinated intelligent
attacks can be launched by attackers who have expertise in
the entire system. Such attacks could be a combination of
several types of attacks initiating concurrently by an adversary.
Although such attacks can be determined sequentially by
existing detection methods, there will still be errors and delays
as these methods are originally designed to detect one type of
attack at a time. Such issues can be sufficient to destabilise
the grid due to deferred or inadequate control actions.

Upon detection of FDIAs, mitigation is required to remove
them from the control system to enhance the resiliency of
microgrids. In [20], a trust-based controller is proposed to
mitigate attacks by changing the consensus gains adaptively
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between agents. However, it requires that at least half of
the neighboring converters are trustworthy. Further, replac-
ing the compromised states with pre-attack values stored in
the observers has been implemented in [21]. Alternatively,
attacked agents can be isolated such that FDIAs do not
propagate to the rest of the network [22]. Nevertheless, such
approach results in loss of graph connectivity and disruption
in the consensus protocol. Hence, this mandates a self-healing
resilient methodology such that the entire system can recover
from any cyber attack without any compromise in cyber graph
connectivity.

To address these issues, this paper addresses the presence of
FDIAs in the local and communicated estimated voltage within
distributed DC microgrids. This is a new form of intelligent
attack, and it is referred as concurrent attack. The research
contributions of this paper are summarized below:

1) A concurrent attack is designed to mask itself as a
communication link attack, misleading the operators
from taking appropriate actions. Such an attack can
pose challenges to be promptly resolved by model-based
detection.

2) A novel non-parametric detection based on an ensemble
empirical mode decomposition (EEMD) is therefore
proposed. The presence of FDIAs is identified from
the energy relationship of neighboring agents, which
operates on the decomposed intrinsic mode functions
(IMFs) of the EEMD method.

3) A differentiation criterion is further used to classify the
type of attack after detection, i.e., whether the attack is a
concurrent attack or a communication link attack, based
on the voltage correction terms generated by the voltage
observer in the secondary controllers.

4) Finally, an event-driven mitigation approach is pro-
posed, which reconstructs a trustworthy signal using
the authenticated inputs from the proposed detection
strategy. According to the classification of the attacked
quantity, the reconstructed trustworthy signal replaces
the attacked signal and eliminates all the risks associated
with the attack.

The layout of this paper is as follows. Section II presents
the distributed consensus-based cooperative law, and analyzes
the system responses under the concurrent attack. In Section
III, the proposed detection, attack classification, and mitigation
methods are formulated. Section IV outlines the simulation
results, while the experimental results are shown in Section V.
Finally, conclusions are drawn in Section VI.

II. CONCURRENT ATTACK MODELING IN DC MICROGRIDS

A. Cyber-Physical Preliminaries

Consider the physical network of a DC microgrid compris-
ing of N interconnected DC/DC converters, also known as
agents in the cyber layer, is managed by a cyber-physical
control framework. Referring to Fig. 1, the output voltage
of each converter is regulated by a primary droop control.
By imposing virtual impedance on each converter, the droop
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Fig. 1. Layout of a DC microgrid consisting of N = 4 distributed agents.

control can achieve load sharing. The droop control method
for the kth agent in a DC microgrid is expressed as:

vk = Vref − rkIk (1)

where vk and Vref denote the output voltage and the global
voltage reference of the system, respectively. rk is the droop
coefficient (i.e. the virtual impedance) and Ik is the measured
output current of the converter. The droop coefficient can be
designed using rk = ∆vk/I

max
k , where ∆v is the allowable

voltage deviation and Imax
k is the maximum output current of

kth converter, respectively.
However, the droop control method suffers from the current

sharing accuracy and the DC voltage deviation problem [23].
In order to solve the two limitations resulted from the droop
control, a distributed secondary controller is used to compen-
sate this error for each converter.

Here, a digraph is used to model the interaction among
agents in the cyber layer. The digraph is formulated by a set of
nodes, connecting through a set of edges. The kth node sends
xk = [V̄k, I

pu
k ] and receives information from its connected

neighboring nodes (as depicted in Fig. 2). This is done using
a pre-defined adjacency matrix A = [akj ] ∈ RN×N , such that
average voltage regulation and proportional current sharing
can be achieved. Note that V̄j and Ipuj represent the estimated
voltage and the output current (in per unit) from one of the
neighbors of the kth agent, respectively. The communication
weights akj are designed to represent the transfer of informa-
tion between agents, and they are given by:

akj =

{
> 0, if (xk, xj) ∈ E
0, else

(2)

where E is an edge connecting two nodes. Whereas, xk and
xj are the information from the local and neighboring nodes,
respectively. Applying the consensus-based law, the secondary
control input for the kth agent can be obtained as:

uk =
∑
j∈Nk

akj (xj − xk)︸ ︷︷ ︸
ejk

(3)

where, uk =
[
uVk , u

I
k

]
and ejk =

[
eVjk, e

I
jk

]
corresponds to the

two elements in xk, while Nk is the set of neighbors of the kth

agent. In addition, the in-degree matrix Zin = diag
{
dink
}

is
a diagonal matrix with dink =

∑
j∈Nk

akj . Similarly, the out-
degree matrix can be expressed as Zout = diag {doutk } with
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doutk =
∑

k∈Nj
ajk. Subsequently, the Laplacian matrix of the

graph is defined as L = Zin−A, in which the sum of elements
in each row is zero. Here, the Laplacian matrix determines the
global dynamics, and is balanced if the in-degree matrix equals
to the out-degree matix, i.e., Zin = Zout, as noted in [24].

Meanwhile, a secondary control is employed to reset the
voltage reference for each connected microgrid within the
network. Specifically, the distributed cooperative secondary
controller is considered to work alongside the primary droop
controller. Two voltage correction terms are generated from
the secondary control to manage the local voltage set point in
the kth agent. They can be expressed as:

∆V 1
k = H1(s)

(
Vref − uVk

)
(4)

∆V 2
k = −H2(s)uIk (5)

where H1(s), H2(s) are PI controllers for the outputs of
voltage observer and current regulator, respectively. Therefore,
the local voltage set point for each microgrid can be calculated
by:

vrefk = Vref + ∆V 1
k + ∆V 2

k − rkIk (6)

Using (1)-(6), the global voltage regulation and the propor-
tional current sharing can then be realized.

Remark I: The agents in distributed cooperative DC mi-
crogrids will achieve convergence based on the dynamic-
consensus law using ẋ = −Lx for a balanced Laplacian
matrix L such that limt→∞ xk(t) = c, ∀k ∈ N , where c
is the steady-state value and N is the number of agents.

Accordingly, the estimated voltage for each agent should
converge to:

lim
t→∞

V̄k(t) = Vref (7)

where the estimated voltage of the kth agent (i.e., V̄k(t)) is
updated using:

V̄k(t) = Vk(t) +

∫ t

0

∑
j∈Nk

akj
(
V̄j(τ)− V̄k(τ)

)
dτ (8)

with Vk being the measured output voltage of the kth agent
(as indicated in Fig. 1).

B. Modeling of Concurrent Attack

A concurrent attack is defined as compromising the local
estimated voltages (termed as local control input attacks)
and the estimated voltages received from neighboring agents
(termed as communication link attacks) simultaneously within
the distributed secondary controllers.

The attack on the estimated voltage received from the
neighboring agent can be modeled using:

V̄j,con(t) = V̄j(t) + αCcon (9)

where V̄j(t) is the estimated voltage transmitted from the
neighbor of the kth agent, and Ccon denotes the magnitude
of the false data injection attack on the estimated voltage in
the communication link. The term α indicates a binary variable
with α = 1 representing the presence of the attack or 0,

otherwise. At the same time, a ramp attack can be imposed
on the local estimated voltage in the secondary control in the
kth agent. As a result, the consensus protocol in the voltage
observer of the kth agent will be updated by:

V̄k,con(t) = Vk(t) + α · r · t
+
∫ t

0
[
∑

j∈Nk
akj(

(
V̄j(τ)− V̄k(τ)

)
+ αCcon)]dτ

(10)

where r is the gradient of the ramp attack and V̄k,con(t) is the
estimated voltage of kth agent under a concurrent attack.

Here, the presence of the concurrent attack will cause the
consensus protocol to diverge from the global reference value
Vref , which is described in (7).

C. Masking as a Communication Link Attack

Firstly, suppose an adversary only attacks the estimated
voltage in the communication link.

Under such circumstances, the false data injection attack to
the communication link is defined as:

V̄j,com(t) = V̄j(t) + αCcom (11)

where Ccom denotes the magnitude of false data injection
attack on the communication link. The corresponding consen-
sus protocol in the voltage observer of the kth agent can be
updated as:

V̄k,com(t) = Vk(t)+

∫ t

0

[
∑
j∈Nk

akj((V̄j(τ)−V̄k(τ))+αCcom)]dτ

(12)
where V̄k,com(t) is the estimated voltage of the kth agent under
a communication link attack. This is similar to the expression
in (10), indicating that there are conditions when a concurrent
attack can be masked as an attack on the communication link
only. Note that an FDIA on the local estimated voltage only
will cause the consensus law to converge to a final-state that is
different from the global reference described in (7). Therefore,
it is not possible to mask a concurrent attack as a local control
input attack.

Consider a system consisting of N = 3 agents with a
ring cyber graph. The response of the system with respect
to a communication link attack and a concurrent attack is
illustrated in Fig. 3. Both attacks are launched at t = 1 s,
and resolved at t = 1.5 s. During this period, the system
responses are the same. Although it is clear that an attack
has occurred based on (7), it is impossible to differentiate its
type from the estimated voltage by each agent. Specifically, the
attack on the local estimated voltage at Agent 2 is now hidden.
Given such a situation, the network operator will treat the
concurrent attack as a communication link attack, and proceed
with corrective actions such as disconnecting the link, which is
a simple and straightforward way to eliminate the attack. The
expected response will be to return to a steady state condition,
as illustrated in Fig. 3(a). However, in the case of a concurrent
attack shown in Fig. 3(b), the problem persists and further
disrupts the consensus law of operation.

Furthermore, incorrectly identifying the concurrent attack as
a communication link attack will incur delays, which may be
sufficient to compromise the integrity of the entire network.
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Since the creativity of an adversary can be unbounded, the
resilience of a network is threatened under the presence of
such attacks. This requires the design of a new solution for
detection and mitigation of these attacks.

Problem statement: If there exist Ccon, r, and Ccom satis-
fying the following condition:∑

j∈Nk

akj(|Ccom| − |Ccon|) = |r| (13)

then, the distributed consensus algorithm in (10) and (12)
shall result in the same iterations. In other words, the sys-
tem responses in terms of the estimated voltages under the

concurrent attack can be manipulated to be the same as the
communication link attack. Note that Ccon, r, and Ccom are
all positive or all negative.

Proof: To obtain the same estimated voltages, the RHS
of (10) equals to that of (12) such that:

Vk(t) + αrt+
∫ t

0
[
∑

j∈Nk
akj(

(
V̄j(τ)− V̄k(τ)

)
+ αCcon)]dτ

= Vk(t) +
∫ t

0
[
∑

j∈Nk
akj(

(
V̄j(τ)− V̄k(τ)

)
+ αCcom)]dτ

(14)
Eqn. (14) can simply be reduced into:∫ t

0

∑
j∈Nk

akj(αCcom − αCcon)dτ = αrt (15)

resulting in: ∑
j∈Nk

akj · α(Ccom − Ccon)t = αrt (16)

This proves that the consensus protocol iterations under a
concurrent attack or a communication link attack are the same
as long as these attacks are designed as per (13).

Remark II: It can be concluded that the consensus law in
(7) is violated under a concurrent attack or a communication
link attack. Consequently, the consensus protocol no longer
converges to the global reference value, which can be given
by:

lim
t→∞

V̄k(t) 6= Vref . (17)

Since the system responses of both the concurrent and
communication link attacks are the same, (17) can no longer
serve as an effective criterion to differentiate them. Therefore,
we require a strategy that not only detects the presence of an
attack, but also identifies the type of attack.

III. PROPOSED RESILIENT CONTROL SCHEME

A. EEMD-based Attack Detection

The mitigation strategy begins with a detection stage based
on EEMD proposed in [25], [26]. This approach is model-
free, and meets the need to address the unpredictable nature
of attacks. In this context, EEMD decomposes the estimated
voltage of the agents (V̄k(t)) into a set of intrinsic mode
functions (IMFs), each containing a different mode of dynamic
signature.

A flowchart summarizing the decomposition operation is
shown in Fig. 4. Note that white noise wm(t) is added to
the collected data V̄k(t) to avoid mode-mixing among IMFs.
Therefore, a decomposition signal can be modeled as:

Xk,m(t) = V̄k(t) + wm(t) (18)
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After decomposing the above voltage signal, the features
corresponding to false data injection attacks are extracted and
examined as follows. First, the energy of each individual IMF
can be calculated using:

Em =
n∑

p=1

|Imp|2 (19)

where Im is the obtained IMF and n denotes the size of the
dataset used for the energy summation. The total energy for
the kth agent can then be calculated using:

Ek = ρ
M∑

m=1

Em (20)

where M is the number of obtained IMFs from the average
voltage of kth agent. ρ is a positive scaling factor.
Further, the energy ratio of the kth agent (i.e., Sk) is defined
to describe the relative energy level between the kth agent and
its neighboring agents:

Sk = max(Ek/Ej),∀j ∈ Nk (21)

It is used to identify the abnormal increase of energy in an
agent. Note that the energy ratio S is a set with a size of N .

Definition 1: The authentication of an agent is labelled as
T if the energy of the agent is greater than its neighboring
agents, which can alternatively be written as:

Ψk =

{
T, if ‖Sk‖ ≥ e
F, else (22)

where e is a threshold. The value of e can be found by
selecting the maximum element of the set S under steady-state
operations.

In this context, a detection index Θk using Boolean algebra
is defined to determine whether an agent is attacked by FDIAs
or not, i.e., 1 indicates the presence of attack, and 0, otherwise:

Θk =

{
1, if Ψk ∩Ψj = T & max(Ek/Ej , Ej/Ek) < e
0, else

(23)
Remark III: The detection index can be applied to the

different types of false data injection attacks considered in this
paper, i.e., communication link attack, local control input at-
tack, and concurrent attack. Note that the assessment is based
on the relative relationship of Sk and Sj rather than their
exact values, which vary based on the system configuration.

The proposed detection can be demonstrated using the
system outlined in Fig. 1. Here, the network is subjected to (a)
no attack conditions, (b) a concurrent attack between Agents
2 and 3 with Ccon = 5.5 V and a ramp attack of r = 3 to the
estimated voltage at Agent 2, and (c) a communication link
attack between Agents 2 and 3 with Ccom = 7 V.

In this example, the threshold e is found to be 4 from the
set of S = (2.615, 0.382, 3.997, 0.874). However, the energy
of each agent under the concurrent attack is E1 = 2.939,
E2 = 5467, E2 = 4525, E4 = 3.063, from which the set of S
can be obtained as S = (0.960, 1860, 1477, 1.042). Whereas,
the energy of each agent under the communication link attack
is E1 = 0.504, E2 = 4692, E2 = 5256, E4 = 1.180, which
gives the corresponding S = (0.427, 9309, 4454, 2.341). As it

can be observed, the energy ratios S2 and S3 are significantly
higher than the threshold under FDIAs. Therefore, Agents 2
and 3 are identified to encounter FDIAs according to the rules
from (22) and (23).

Although the proposed EEMD-based detection is able to
identify the presence of FDIAs, it cannot distinguish between
concurrent attacks and communication link attacks. To differ-
entiate these attacks, voltage correction terms from (4) will be
used, as explained in the following section.

B. Differentiating Concurrent Attacks and Communication
Link Attacks

For a concurrent attack, the estimated voltage of the attacked
kth agent can be denoted by (10). Subsequently, the estimated
voltage of the attacked neighboring agent can be updated by:

V̄j,con(t) = Vj(t)

+
∫ t

0
[
∑

k∈Nj
ajk(

(
V̄k(τ)− V̄j(τ)

)
+ αCcon)]dτ

(24)

The corresponding voltage correction terms of these two
agents can be calculated from (4). The difference between
them can be used as a differentiation criterion and its value is
given by:

DoV C = |H1(s) (α · r · t) | (25)

Theoretically, the value of the proposed differentiation cri-
terion DoV C in (25) is not zero as long as there exists a
concurrent attack, i.e., α 6= 0. Moreover, its value depends
on the magnitude of the local control input attack (i.e., the
gradient of the ramp attack on the kth agent) and time.

However, in the case of a communication link attack, the
estimated voltage of the attacked neighboring agent can be
obtained as:

V̄j,com(t) = Vj(t)

+
∫ t

0
[
∑

k∈Nj
ajk(

(
V̄k(τ)− V̄j(τ)

)
+ αCcom)]dτ

(26)

Substituting (12) and (26) into (4), the value of DoV C is
ideally zero as the injected false data exists in both the local
agent and its neighboring agent. Note that DoV C will also be
zero when there is no attack on the system.

To sum up, the value of DoV C can be used as a criterion
to differentiate the two kinds of FDIAs, i.e.,

DoV C =

{
< ε , communication link attack
> ε , concurrent attack (27)

where ε is a threshold. It can be determined by analyzing the
data when the system is operating under steady-state condi-
tions. Note that DoV C of a concurrent attack is significantly
larger than DoV C of a communication link attack.

Returning to the case study in Section III-A, the EEMD-
based detection identifies FDIAs existing in Agent 2 and 3
but it is unable to differentiate the type of attack. This can
now be resolved by integrating the proposed DoV C criterion
with EEMD-based detection. Here, the value of DoV C under
steady-state operations for the considered system is found to
be in the range of 0.5× 10−4 to 1.5× 10−4. Hence, ε is set
to the latter value. For the attack performed in Section-III-A
(b), the value of DoV C is 1.5× 10−3, which is greater than
threshold ε. Therefore, it is identified as a concurrent attack.

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on February 18,2021 at 07:41:14 UTC from IEEE Xplore.  Restrictions apply. 



0885-8993 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2021.3055215, IEEE
Transactions on Power Electronics

IEEE TRANSACTIONS ON POWER ELECTRONICS 6

Algorithm 1: Detection and classification method of
FDIAs
Input: Average voltages of agents in the DC microgrid
Output: Attack type
Run EEMD algorithm to get the decomposition results;
Calculate the energy of each agent using (19) and (20);
Get the energy ratio of each agent using (21);
while |Sk| ≥ e do

check (23);
if Θ = 1 then

if DoV C > ε then
The attack is a concurrent attack;

else
The attack is a communication link attack;

end
else

check (23);
end

end
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Fig. 5. Output voltages of the agents when subjected to load changes and
attacks. (a) concurrent attack, and (b) communication link attack.

On the other hand, the value of DoV C is 0.5× 10−4 for the
attack performed in Section-III-A (c). Using (27), the attack
in Section-III-A (c) is determined as a communication link
attack.

The proposed detection method to determine concurrent
attacks is summarized in Algorithm 1.

C. Event-Driven Mitigation Strategy

After the detection stage, the mitigation strategy is imple-
mented to recover from FDIAs. The compromised signal is
replaced with an event-driven reconstructed signal using:

∆eVjk(t) = (1−Θk)eVjk(t) + Θke
V
jk (tk) , (28)

where tk is the triggering instant with Θk in (23) denoting
the authentication signal generated using the proposed attack
detection strategy. It requires a trustworthy neighbor to be used
as an input to the signal reconstruction stage. Basically, the

TABLE I 

CALCULATED ENERGY WHEN SUBJECTED TO FDIAS 

Load 

Change(Ω) 

Concurrent Attack Communication Link Attack 

E1 E2 E3 E4 E1 E2 E3 E4 

10 0.086 8553 9659 0.798 0.032 21116 25034 0.694 

25 13 10217 9584 9.448 14 25168 27548 30 

40 11 11895 6883 12 8.308 27450 25298 26 

55 30 22164 11013 303 18 25334 23795 16 

70 8.394 12938 4337 0.372 25 27249 21231 7.418 

95 96 19191 5749 269 23 26915 11969 5.628 

 

 

 

 

 

TABLE II 

CALCULATED ENERGY WHEN SUBJECTED TO FAULTS 

Fault 

Position 

E1 

(×106) 

E2 

(×106) 

E3 

(×106) 

E4 

(×106) 

Agent 1 193.4 1.841 1.913 1.757 

Agent 2 2.877 156.8 2.545 4.355 

Agent 3 3.254 4.683 172.5 3.652 

Agent 4 2.087 2.263 2.188 158.8 

 

 
Fig. 6. Comparative analysis of the proposed mitigation strategy for different
values of β in (29).

philosophy of reconstructing a triggered signal is to hold the
input signal in the absence of a trigger. It is worth notifying
that a trigger is generated for the kth agent when:

DoV C > (ε+ β), (29)

where β is a small positive value introduced to provide
resiliency against noise in the measurements. Further if (29)
is satisfied, the current set-point of the input signal is updated
in the output using a Sample and Hold block. The input
signal is eVjk(t), which is communicated from a trustworthy
agent. The reconstructed signal obtained in (28) is then sub-
stituted in (3) to attain resiliency against both the defined
attacks. As soon as the objectives in (7) are met again, the
authentication label is traversed back to trustworthy for the
attacked agent. Prior to this step, the reconstructed signal
is communicated to the neighboring agents. As a result, the
proposed mitigation strategy eliminates the elementary step of
disabling compromised communicated link(s). It is also worth
notifying that regardless of any type of attack, the mitigation
strategy can operate to restore the system immediately. For the
purpose of brevity, further details on event-driven strategy can
be referred from [27].

IV. SIMULATION RESULTS

Numerical studies have been conducted using the same
network with N = 4 converters as depicted in Fig. 1. Each
converter is treated as an agent, and is managed by a two-
layer control framework to achieve the global reference voltage
Vref = 315 V at their respective buses. The control parameters
of the test system are provided in Appendix. In this Section,
the proposed resilient scheme is examined in the presence
of concurrent attacks and communication link attacks, which
cannot be differentiated by the distributed voltage observers.
Scenarios such as load changes, faults, converter outages, and
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E1 
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communication failures have also been simulated to assess the
robustness of the proposed method.

A. Scenario I: Load Changes

The proposed method is examined in the presence of load
changes and false data injection attacks (FDIAs). The initial
load conditions are 96 Ω at Agent 1, 50 Ω at Agent 2, 52 Ω
at Agent 3, and 56 Ω at Agent 4. A step change is triggered
at Agent 1 at t = 0.5 s while the loads at other agents (i.e.
Agent 2, 3 and 4) remain unchanged. The size of the step
change ranges from 5 Ω to 95 Ω. Furthermore, the FDIAs are
launched at Agents 2 and 3 at t = 1.5 s as shown in Fig. 5.

The settings of the concurrent attack are Ccon = 10 and
r = 10, while the communication link attack is Ccom = 15.

The calculated E under different load conditions and attack
scenarios are listed in Table I. In all scenarios, Agents 2 and 3
have a significantly larger E than those of the healthy agents,
i.e. Agents 1 and 4. Let’s consider the example when the
system is subjected to a step change of 55 Ω and a concurrent
attack. According to the definition in (22), Agents 2, 3 and 4
are labelled as T. Furthermore, the proposed detection index
Θk identifies Agents 2 and 3 as compromised agents based
on (23). The type of attack can then be ascertained using
the DoV C differentiation criterion. In this case, DoV C is
found to be 3.8 × 10−3, which is larger than the threshold ε
(i.e., 1.5× 10−4). Using (27), such an FDIA is identified as a
concurrent attack.

Moreover, the event-driven mitigation strategy defined in
(28) has been initiated at t = 1.55 s. As a result, the output
voltages are able to converge to the new steady-state values
due to the load change as shown in Fig. 5.

In Fig. 6, the performance of the proposed event-driven
mitigation strategy is tested for different values of β. It can be
seen that with the increasing value of β, the resolution of the
reconstructed signal becomes poorer. However, the dynamic
performance is improved with an almost equal settling time
but with varying troughs, as indicated in Fig. 6. However, a
very low value of β will also be an important issue in a system
with variable noise. Hence, the design of β needs to consider
factors such as accuracy and dynamic response.

B. Scenario II: Faults

Next, the proposed method is evaluated when the system
is subjected to a short-circuit fault at different agents. The
purpose of this analysis is to evaluate the ability of the resilient
control strategy in distinguishing a physical fault from a data
attack. The loads connected to each agent are the same as those
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Fig. 7. Average voltages of the agents when Agent 4 is disconnected. The
average voltage of Agent 4 (i.e., V̄4) drops to zero immediately after this
outage.

in Subsection IV-A. Its corresponding energy E at various
fault locations are summarized in Table II. Overall, E of a
short-circuited agent is significantly higher than that of other
agents in the network. This can be regarded as the feature of
a physical fault. Subsequently, the authentication in (22) will
only label T for an agent which is subjected to faults.

However, the corresponding detection index Θk in (23) is
zero, indicating there are no attacks.

Note that a short-circuit fault at one agent will physically
disrupt the power flow in the microgrid. Such disruption will
be felt among all agents.

C. Scenario III: Converter Outage and Communication Fail-
ure

The performance of the proposed method is examined when
the considered system suffers from a converter outage. In this
scenario, converter 4 (or Agent 4) is disconnected at t = 0.5
s. The estimated voltages of the agents are shown as Fig. 7.
The energy of the remaining agents (i.e., Agents 1, 2, and
3) are found to be E1 = 614, E2 = 2.436, and E3 = 150.
Referring to Definition 1, the authentication of the remaining
agents are T, F, and T, respectively. Applying the detection
index in (23), the resilient control strategy identifies that there
are no attacks considering that none of the neighboring agents
both have T. On the other hand, the current sent by the agent
of the converter outage will be zero. This enables the proposed
method to distinguish the converter outage from cyber attacks.

Next, the cyber link between Agents 2 and 3 is disconnected
to simulate a communication failure. As a result, the number
of neighboring agents communicating with Agent 2 and Agent
3 has decreased. Note that the consensus protocol will still
operate based on the remaining cyber graphs to achieve the
global reference value of 315 V. On the other hand, the energy
values of each agent under this communication outage are:
E1 = 34.301 × 104, E2 = 9.812 × 104, E3 = 15.023 × 104,
E4 = 8.6149 × 104. Subsequently, all agents are labelled as
F, indicating that there are no attacks within the microgrid.

V. DISCUSSIONS

In the EEMD method, the noise amplitude α and the
ensemble number Num are the two parameters that need to be
stipulated. We have also carried out analysis on the effects of
the two parameters on the proposed attack detection method.
The simulation results are listed in Table III and Table IV. The
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TABLE IV  

CALCULATED ENERGY WHEN 𝛼 = 0.3 

Parameter 

Settings 

Concurrent Attack Communication Link Attack 

E1 E2 E3 E4 E1 E2 E3 E4 

en=1%, Num=950 28 2716 1822 25 2.690 3489 4061 3.416 

en=2%, Num =240 28 2599 2015 29 4.286 3623 3175 3.842 

en=3%, Num =106 28 2432 2221 29 3.455 3629 3117 4.704 

 

 

TABLE III  

CALCULATED ENERGY WHEN 𝛼 = 0.19 

Parameter 

Settings 

Concurrent Attack Communication Link Attack 

E1 E2 E3 E4 E1 E2 E3 E4 

en=1%, Num =400 19 4945 4255 8.562 12 5632 5698 13 

en=2%, Num =100 21 5599 4273 6.681 10 4960 7859 11 

en=3%, Num =45 19 7779 4441 7.423 8.006 7991 4330 28 
1 en is the difference of the targeted data and the summation of IMFs. 

2 Num is the number of ensemble trials in the EEMD method.  

 

 

 

 

TABLE V 

LATENCY IN DIFFERENT COMMUNICATION MEDIUMS 

Transmission Medium Max. Latency (s) Bit Error Rate (%) 

WLAN (IEEE 802-11 b/g) 0.029 0.01 

Wired (narrowband DS0) 0.327 0.02 

 

TABLE IV  

CALCULATED ENERGY WHEN 𝛼 = 0.3 

Parameter 

Settings 

Concurrent Attack Communication Link Attack 

E1 E2 E3 E4 E1 E2 E3 E4 

en=1%, Num=950 28 2716 1822 25 2.690 3489 4061 3.416 

en=2%, Num =240 28 2599 2015 29 4.286 3623 3175 3.842 

en=3%, Num =106 28 2432 2221 29 3.455 3629 3117 4.704 
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Parameter 

Settings 

Concurrent Attack Communication Link Attack 

E1 E2 E3 E4 E1 E2 E3 E4 

en=1%, Num =400 19 4945 4255 8.562 12 5632 5698 13 

en=2%, Num =100 21 5599 4273 6.681 10 4960 7859 11 

en=3%, Num =45 19 7779 4441 7.423 8.006 7991 4330 28 
1 en is the difference of the targeted data and the summation of IMFs. 

2 Num is the number of ensemble trials in the EEMD method.  

 

 

 

 

TABLE V 

LATENCY IN DIFFERENT COMMUNICATION MEDIUMS 

Transmission Medium Max. Latency (s) Bit Error Rate (%) 

WLAN (IEEE 802-11 b/g) 0.029 0.01 

Wired (narrowband DS0) 0.327 0.02 

 

FDIAs are launched at t = 1.5 s at Agents 2 and 3. The settings
for the concurrent attack are Ccon = 10 and r = 10, while
the communication link attack is Ccom = 15. In all scenarios
from Table III and Table IV, it can be observed that the energy
of Agents 2 and 3 are much higher than Agents 1 and 4. This
facilitates the successful attack detection using the proposed
detection index Θk.

Therefore, we can conclude that the noise amplitude and
the number of ensembles will not affect the effectiveness of
the proposed attack detection method.

VI. EXPERIMENTAL RESULTS

In the previous section, we have demonstrated the effective-
ness of the proposed resilient control scheme using simulation
examples. In this section, we demonstrate that the proposed
method could be implemented experimentally as well. For
this, we consider a DC microgrid consisting of N = 2
converters. Each converter is connected with a programmable
load as shown in Fig. 8. The global voltage reference of
the DC microgrid is 48 V. The converters are controlled
by dSPACE MicroLabBox DS1202 (target), while control
commands are sent from a computing workstation (host). The
communication network in experimental setup is realized using
SimEvents elements (modeled inside the dSPACE platform)
to emulate the cyber network characteristics in detail. This
model requires inputs: event priority time, sequence, latency
and number of servers corresponding to any communication
medium, which can be acquired by OPNET Riverbed Modeler
[28]. OPNET Modeler is used to design, model and analyze
communication networks and their redundancies. More details
on the SimEvents based communication network model can be
referred from [29]. The parameters of the experimental setup
are provided in Appendix.

In Fig. 9, a concurrent attack is launched in the system
shown in Fig. 8. Regardless of the classification technique, the
mitigation strategy is activated as long as the detection strategy
suggests that false data injection attacks are present in the
control system. After the detection index Θk is triggered, the
proposed event-driven signal reconstruction process is carried
out to replace the attacked signal with the reconstructed signal.
As a result, it can be seen in Fig. 9 that the voltages of both
converters follow a steady-state response even in the presence
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Fig. 8. Experimental setup of a DC microgrid consisting of N = 2 agents.
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Fig. 9. Output voltages for the agents when subjected to load changes and a
concurrent attack. (a) converter 1, and (b) converter 2.

of an attack. Furthermore, the mitigation strategy is robust
to the disturbance such as a load change at t = 4.1 s. A
similar case study is carried out in Fig. 10 for a communication
link attack on the link directed from agent 1 to 2. It can be
seen that as soon as the detection strategy is activated to send
the authentication labels, the mitigation strategy operates to
achieve system recovery immediately. In this way, the system
resiliency against the defined cyber attacks has been enhanced.

Next, we examined the robustness of proposed resilient con-
trol strategy under communication delays. As studied in [30],
distributed control is resilient to a limited maximum commu-
nication delay. This value varies for different communication
mediums. As this paper employs a ring based cyber topology,
two communication mediums, namely WLAN (IEEE 802-11
b/g) and wired (narrowband DS0) have been considered here to
analyze the performance of the proposed attack identification
strategy. Basically, the time delay performance is marginalized
by the convergence properties of the Laplacian matrix, which
could easily go into the RHP when the delay is more than the
theoretical value of maximum delay τd, where eigenvalues are
placed in the origin. Using the time-delay stability analysis
(already carried out in [30]) for N = 2 converters in the
experimental setup, it is established that the system remains
stable even under a maximum communication delay of τd =
336 ms.

These communication mediums (with a ring based cyber
graph) are simulated in the OPNET Riverbed Modeler to get
the maximum latency and bit error rate, as outlined in Table
V.

Based on the obtained results from OPNET (for wired
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Fig. 10. Output voltages for the agents when subjected to load changes and
a communication link attack. (a) converter 1, and (b) converter 2.

medium) and the time delay analysis, the maximum communi-
cation delay obtained under both conditions are almost same.
Finally, the real-time performance in the presence of attacks
has been tested in Fig. 11 under the latency values obtained
in Table V. It can be seen in Fig. 11 that the proposed attack
identification and mitigation strategy provides good resilience
behavior to achieve the secondary control objectives of DC
microgrids under a communication delay of 0.029 s and 0.327
s in the presence of concurrent attack. Note that any value
above the theoretical margin of τd = 336 ms will anyway
result in oscillatory instability in the microgrid regardless of
the presence or absence of cyber-attacks. Hence, the proposed
controller is limited to provide resiliency against cyber-attacks
only within the time-delay stability margin of the defined
system.

VII. CONCLUSION

This paper presents a novel false data injection attack,
known as a concurrent attack, targeting both local estimated
voltages and communication links simultaneously in DC mi-
crogrids governed by distributed cooperative control. The
impact of this attack is investigated using the consensus theory.
Since the system response to the concurrent attack can be
manipulated to be identical to that of a communication link
attack, the grid operator may incorrectly identify the type of
attack. This may cause inadequate mitigation of the attacks.
Therefore, a resilient control scheme is proposed. The scheme
can detect the presences of false data injection attacks. Addi-
tionally, a classification criterion is proposed to differentiate
between concurrent attacks and communication link attacks.
Subsequently, an event-driven reconstructed signal replaces
the attacked signal and mitigates the attack impact. The
performance of the proposed resilient control scheme has been
validated under load changes, faults, converter outages, and
communication failures.

APPENDIX

Simulation Parameters

The simulated cooperative DC microgrid consists of four
equal-rated source for 3 kW. The line resistance Rij denotes

TABLE IV  

CALCULATED ENERGY WHEN 𝛼 = 0.3 

Parameter 

Settings 

Concurrent Attack Communication Link Attack 

E1 E2 E3 E4 E1 E2 E3 E4 

en=1%, Num=950 28 2716 1822 25 2.690 3489 4061 3.416 

en=2%, Num =240 28 2599 2015 29 4.286 3623 3175 3.842 

en=3%, Num =106 28 2432 2221 29 3.455 3629 3117 4.704 
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Settings 

Concurrent Attack Communication Link Attack 

E1 E2 E3 E4 E1 E2 E3 E4 

en=1%, Num =400 19 4945 4255 8.562 12 5632 5698 13 

en=2%, Num =100 21 5599 4273 6.681 10 4960 7859 11 

en=3%, Num =45 19 7779 4441 7.423 8.006 7991 4330 28 
1 en is the difference of the targeted data and the summation of IMFs. 

2 Num is the number of ensemble trials in the EEMD method.  

 

 

 

 

TABLE V 

LATENCY IN DIFFERENT COMMUNICATION MEDIUMS 

Transmission Medium Max. Latency (s) Bit Error Rate (%) 

WLAN (IEEE 802-11 b/g) 0.029 0.01 

Wired (narrowband DS0) 0.327 0.02 
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Fig. 11. Experimental results on performances of the proposed resilient
control strategy under different communication delays: (a) with 0.029 s
communication delay, and (b) with 0.327 s communication delay

the resistance from ith agent to jth agent. In addition, the
gains for the controller in each agent are consistent.

Plant: R12 = 1.3Ω, R13 = 1.8Ω, R23 = 1.2Ω, R43 =
1.5Ω, Li = 3mH, Cdci = 250µF

Controller: Vref = 315V, Iref = 0, KH1

P = 3, KH1

I =
0.01, KH2

P = 4.5, KH2

I = 0.32, GV P = 2.8, GV I = 12.8,
GCP = 0.56, GCI = 21.8, aij = 1, ρ = 1.0× 104

Experimental Testbed Parameters

The considered system consists of two sources with the
converters rated equally for 600 W. It should be noted that
the controller gains are consistent for each converter.
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Plant: Lsei= 3 mH, Cdci= 100 µF, R1 = 0.8 Ω, R2 = 1.4
Ω

Controller: Vdcref = 48 V, Idcref = 0, KH1

P = 1.92, KH1

I =
15, KH2

P = 4.5, KH2

I = 0.08, h = 1.8, f = 2.4, β = 0.025.
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cyber-attack detection strategy for DC microgrids,” IEEE Trans. Power
Electron., vol. 34, no. 8, pp. 8162–8174, Aug. 2019.

[11] C. Zhao, J. He, P. Cheng, and J. Chen, “Analysis of consensus-based
distributed economic dispatch under stealthy attacks,” IEEE Trans. Ind.
Electron., vol. 64, no. 6, pp. 5107–5117, Jun. 2017.

[12] S. Sridhar, M. Govindarasu, and C.-C. Liu, “Risk analysis of coordinated
cyber attacks on power grid,” in Control and Optimization Methods for
Electric Smart Grids. Springer, 2012, pp. 275–294.

[13] H.-M. Chung, W.-T. Li, C. Yuen, W.-H. Chung, Y. Zhang, and C.-K.
Wen, “Local cyber-physical attack for masking line outage and topology
attack in smart grid,” IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 4577–
4588, Jul. 2019.

[14] A. Teixeira, H. Sandberg, and K. H. Johansson, “Networked control
systems under cyber attacks with applications to power networks,” in
Proceedings of the 2010 American Control Conference. IEEE, Jun.
2010, pp. 3690–3696.

[15] I. Shames, A. M. Teixeira, H. Sandberg, and K. H. Johansson, “Dis-
tributed fault detection for interconnected second-order systems,” Auto-
matica, vol. 47, no. 12, pp. 2757–2764, Dec. 2011.

[16] F. Pasqualetti, F. Dörfler, and F. Bullo, “A divide-and-conquer approach
to distributed attack identification,” in 2015 54th IEEE Conference on
Decision and Control (CDC). IEEE, Dec. 2015, pp. 5801–5807.

[17] M. Davoodi, N. Meskin, and K. Khorasani, “Simultaneous fault detec-
tion and consensus control design for a network of multi-agent systems,”
Automatica, vol. 66, pp. 185–194, Apr. 2016.

[18] A. J. Gallo, M. S. Turan, P. Nahata, F. Boem, T. Parisini, and G. Ferrari-
Trecate, “Distributed cyber-attack detection in the secondary control of
DC microgrids,” in 2018 European Control Conference (ECC). IEEE,
2018, pp. 344–349.

[19] O. A. Beg, L. V. Nguyen, T. T. Johnson, and A. Davoudi, “Signal
temporal logic-based attack detection in DC microgrids,” IEEE Trans.
Smart Grid, vol. 10, no. 4, pp. 3585–3595, Jul. 2019.

[20] S. Abhinav, H. Modares, F. L. Lewis, and A. Davoudi, “Resilient
cooperative control of DC microgrids,” IEEE Trans. Smart Grid, vol. 10,
no. 1, pp. 1083–1085, Jan. 2019.

[21] K. Manandhar, X. Cao, F. Hu, and Y. Liu, “Detection of faults and
attacks including false data injection attack in smart grid using Kalman
filter,” IEEE Trans. Control Netw. Syst., vol. 1, no. 4, pp. 370–379, Dec.
2014.

[22] S. Sundaram and C. N. Hadjicostis, “Distributed function calculation
via linear iterative strategies in the presence of malicious agents,” IEEE
Trans. Automatic Control, vol. 56, no. 7, pp. 1495–1508, Jul. 2011.

[23] X. Lu, J. M. Guerrero, K. Sun, and J. C. Vasquez, “An improved
droop control method for DC microgrids based on low bandwidth
communication with DC bus voltage restoration and enhanced current
sharing accuracy,” IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1800–
1812, April. 2014.

[24] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Trans. Automatic
Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.

[25] N. Huang, Z. Shen, S. Long, M. Wu, E. Shih, Q. Zheng, C. Tung,
and H. Liu, “The empirical mode decomposition method and the
hilbert spectrum for nonlinear and non-stationary time series analysis,”
Proceedings of the Royal Society of London, Series A. v454, pp. 903–
995, 1998.

[26] Z. Wu and N. E. Huang, “Ensemble empirical mode decomposition:
a noise-assisted data analysis method,” Advances in Adaptive Data
Analysis, vol. 1, no. 01, pp. 1–41, Jan. 2009.

[27] S. Sahoo, T. Dragicevic, and F. Blaabjerg, “An event-driven resilient
control strategy for DC microgrids,” IEEE Trans. Power Electron., 2020,
DOI 10.1109/TPEL.2020.2995584.

[28] “Opnet modeler [online],” https://support.riverbed.com/content/support/
software/opnet-model/modeler.html.

[29] R. Rana, S. Sahoo, S. Mishra, and J. C. Peng, “Performance validation
of cooperative controllers in autonomous AC microgrids under commu-
nication delay,” in 2019 IEEE Power Energy Society General Meeting
(PESGM), 2019, pp. 1–5.

[30] S. Sahoo, S. Mishra, S. Jha, and B. Singh, “A cooperative adaptive droop
based energy management and optimal voltage regulation scheme for DC
microgrids,” IEEE Trans. Ind. Electron., vol. 67, no. 4, pp. 2894–2904,
April. 2020.

Jingqiu Zhang (Student Member, IEEE) received
the B.S. and M.S. degree in electrical engineering
from Tianjin University, Tianjin, China in 2016 and
2019, respectively. He is currently working towards
his Ph.D. degree in electrical and computer engi-
neering at the National University of Singapore,
Singapore. His current research interests include
cyber security of power grids, distributed control and
optimization in microgrids.

  

 

Subham Sahoo (Member, IEEE) received the
B.Tech. & Ph.D. degree in Electrical and Electronics
Engineering from VSS University of Technology,
Burla, India and Electrical Engineering at Indian
Institute of Technology, Delhi, New Delhi, India
in 2014 & 2018, respectively. He has worked as a
Visiting Student with the Department of Electrical
and Electronics Engineering in Cardiff University,
UK in 2017. Prior to completion of his PhD, he
worked as a Research Fellow in the Department
of Electrical and Computer Engineering in National

University of Singapore. He is currently working as a postdoctoral researcher
in the Department of Energy Technology, Aalborg University, Denmark. He is
a recipient of the Indian National Academy of Engineering (INAE) Innovative
Students Project Award for his PhD thesis across all the institutes in India
for the year 2019. He has also won the IRD Student Start-up Award in the
year 2017 to incorporate a company named SILOV SOLUTIONS PVT. LTD.
commercialized and based on his contributions during his doctoral studies.
He was also one of the outstanding reviewers for IEEE Transactions on
Smart Grid in the year 2020. He currently serves as a secretary of IEEE
Young Professionals Affinity Group, Denmark and Joint IAS/IES/PELS in
Denmark section. His research interests are control and stability of microgrids,
renewable energy integration, cyber-physical power electronic systems and
cyber security in power electronic systems.

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on February 18,2021 at 07:41:14 UTC from IEEE Xplore.  Restrictions apply. 



0885-8993 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2021.3055215, IEEE
Transactions on Power Electronics

IEEE TRANSACTIONS ON POWER ELECTRONICS 11

Jimmy Chih-Hsien Peng (Member, IEEE) received
the B.E. and Ph.D. degrees in electrical and com-
puter engineering from the University of Auckland,
Auckland, New Zealand, in 2008 and 2012, respec-
tively. He is currently an Assistant Professor in Elec-
trical and Computer Engineering with the National
University of Singapore, Singapore. Previously, he
was with the Masdar Institute (now part of the Khal-
ifa University), Abu Dhabi, United Arab Emirates. In
2013, he was appointed a Visiting Scientist with the
Research Laboratory of Electronics, Massachusetts

Institute of Technology, Cambridge, MA, USA, where he became a Visiting
Assistant Professor in 2014. He is currently a member of the Electrical and
Electronic Standards Committee, under the Singapore Standards Council.
His research interests include power system stability, grid resilience, cyber
security, microgrids, and high-performance computing.

  

 

Frede Blaabjerg (Fellow, IEEE) was with ABB-
Scandia, Randers, Denmark, from 1987 to 1988.
From 1988 to 1992, he got a Ph.D. degree in Elec-
trical Engineering at Aalborg University in 1995.
He became an Assistant Professor in 1992, an As-
sociate Professor in 1996, and a Full Professor of
power electronics and drives in 1998. From 2017
he became a Villum Investigator. He is honoris
causa at University Politehnica Timisoara (UPT),
Romania, and Tallinn Technical University (TTU)
in Estonia. His current research interests include

power electronics and its applications, such as in wind turbines, PV systems,
reliability, harmonics, and adjustable speed drives. He has published more than
600 journal papers in the fields of power electronics and its applications. He is
the co-author of four monographs and editor of ten books in power electronics
and its applications. He has received 32 IEEE Prize Paper Awards, the IEEE
PELS Distinguished Service Award in 2009, the EPE-PEMC Council Award
in 2010, the IEEE William E. Newell Power Electronics Award 2014, the
Villum Kann Rasmussen Research Award 2014, the Global Energy uPrize in
2019 and the 2020 IEEE Edison Medal. He was the Editor-in-Chief of the
IEEE TRANSACTIONS ON POWER ELECTRONICS from 2006 to 2012.
He has been a Distinguished Lecturer for the IEEE Power Electronics Society
from 2005 to 2007 and for the IEEE Industry Applications Society from 2010
to 2011 as well as 2017 to 2018. In 2019-2020 he served a President of the
IEEE Power Electronics Society. He is Vice-President of the Danish Academy
of Technical Sciences too. He is nominated in 2014-2019 by Thomson Reuters
to be between the most 250 cited researchers in Engineering in the world.

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on February 18,2021 at 07:41:14 UTC from IEEE Xplore.  Restrictions apply. 


