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Remaining Useful Life Prediction of IIoT-enabled
Complex Industrial Systems with Hybrid Fusion of

Multiple Information Sources
Pengfei Wen, Student Member, IEEE, Yong Li, Shaowei Chen, Member, IEEE, and Shuai Zhao, Member, IEEE

Abstract—Industrial Internet of Things has significantly
boosted predictive maintenance for complex industrial systems,
where the accurate prediction of remaining useful life with
high-level confidence is challenging. By aggregating multiple
informative sources of system degradation, information fusion
can be applied to improve the prediction accuracy and reduce
the uncertainty. It can be performed on the data-level, feature-
level, and decision-level. To fully exploit the available degradation
information, this paper proposes a hybrid fusion method on
both the data level and decision level to predict the remaining
useful life. On the data level, Genetic Programming is adopted
to integrate physical sensor sources into a composite health
indicator, resulting in an explicit nonlinear data-level fusion
model. Subsequently, the predictions of the remaining useful
life based on each physical sensor and the developed composite
health indicator are synthesized in the framework of belief
functions theory, as the decision-level fusion method. Moreover,
the decision-level method is flexible for incorporating other
statistical data-driven methods with explicit estimations of the
remaining useful life. The proposed method is verified via a case
study on NASA’s C-MAPSS data set. Compared to the single-
level fusion methods, the results confirm the superiority of the
proposed method for higher accuracy and certainty of predicting
the remaining useful life.

Index Terms—Industrial Internet of Things, Information Fu-
sion, Multiple Sources, Prognostics, Remaining Useful Life.

I. INTRODUCTION

CATASTROPHIC failure of critical industrial systems
will bring huge economic losses. In order to prevent

potential risks that may lead to such failure, Condition-Based
Maintenance (CBM) and Predictive Maintenance (PdM) have
been developed to identify or predict latent problems using
Condition Monitoring (CM) information [1]. Industrial Inter-
net of Things (IIoT) provides an information-rich era since
big data can be transmitted in IIoT, also boosting PdM for
industrial systems [2]. Currently, the focuses of PdM in IIoT
are mainly on the development of hardware and software for
tracking the health state of components of monitored systems
[3].
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Accurate Remaining Useful Life (RUL) prediction is one
of the central tasks of PdM, which can effectively help to
reduce economic cost of maintenance. RUL estimation for
complex industrial systems is still challenging due to the
complicated mechanisms. The developed sensing techniques
and IIoT create a premise for these issues, where multiple
sensors are simultaneously employed to collect CM signals,
serving as various degradation features or Health Indicators
(HIs). These signals can be in-situ and on-chip processed in
equipment plane, or be transmitted by the sensor networks to
a cloud or edge computation center in IIoT.

However, for complex deteriorating systems, a single sensor
is incapable of providing sufficient information of the latent
degradation processes. As a result, it is desirable to fuse
information from various sensors, with the expectation of
compensating for the limitations of each other. Information
fusion from various sources can be realized on the data
level, feature level, and decision level [4]. Data produced by
data-level fusion techniques usually possess similar form and
structure to the raw data, so data-level fusion can be readily
integrated with the existing prognostic techniques to further
improve the performance. Besides, data-level fusion can facili-
tate data visualization and enables continuous characterization
of health state [10]. Based on it, practitioners will have an
insight into the latent health state of complex deteriorating
systems. Liu et al. conducted a series of research works
about data-level fusion for RUL prognostics of aero-engines.
They built fusion models by optimizing the fusion result
in terms of several desired properties, such as monotonicity
and variance of failure threshold [5], fitting error using their
proposed degradation model [6], a designed Signal-to-Noise
Ratio (SNR), [7] and the error between the actual RUL and
the predicted one in both linear [8] and the nonlinear ways
[9]. Due to the limited representation capability of the linear
models, it may not handle the multi-source information from
complex systems produced by complicated mechanisms. Song
et al. [10] further combined a proposed property in [7] and
the Kernel Method (KM) to realize nonlinear fusion, in which
eigenvalue decomposition is needed to be implemented for the
kernel matrix produced by training data, consuming a long
time and huge memory space. Furthermore, fusion models
built by using KM are usually implicit due to the implicitly
defined nonlinear transformation by the inner product. Li et
al. [12] chose CM signals from four sensors as the Physical
HIs (PHIs). Then the information was fused as the Euclidean
distance between each multi-dimensional measurement and a
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Table I
LITERATURE REVIEW IN TERMS OF THE LEVEL THAT FUSION IS PERFORMED

Category Methods Advantages Limitations

Data-level

Optimization-based linear
combination [5], [6], [7], [8],
[9]

(1) Introduce less manual intervention;
(2) Facilitate data visualization [10];
(3) Enable continuous characterization of
health state [10];

(1) Performance is closely related to the
quality of data;
(2) Commonly expensive computation
[11];
(3) Raw data are usually in quite
different scales;

Optimization-based KM [10]

Distance-based [12], [13], [14]

CNN [15]∗, [16]

LSTM [15]∗

GPR [17]∗

Feature-level

KPCA [18], [19] (1) Degradation characteristics can be
enhanced by using independent
feature-level analysis techniques;
(2) Massive data are reduced into a
manageable amount and structure [11];

(1) Highly dependent on the quality of
the raw data [5];
(2) Highly related to the used feature
extraction approaches [5];
(3) Features usually have different ranges
[19];

GRU-RNN [20]∗, [19]∗

Bi-directional LSTM [21]∗

Random forest [22]∗

GP [23], [24], [25]

Decision-level

Linear combination [26], [17],
[27]∗, [22]∗

(1) Flexible to aggregate the estimation
from independent prognostic techniques
[5];
(2) Reduce the variance of the estimation
[28];
(3) Enhance the confidence of the
decision [28];

(1) Highly related to the constructed
decisions [5];
(2) Require detailed prior knowledge of
combining decisions [6];
(3) Cannot provide insights on the
correlation between data and health state
[7]

Correlation [29]∗

Dempster’s rule [17]∗

Bayesian network [13]

AdaBoost [30]

Stacking [30]

* : hybrid information fusion on more than a single level

predefined Failure Threshold (FT), i.e., the predicted last value
from a regression model for each CM signal at the End of Life
(EoL) of each degraded unit. This category of distance-based
methods fuses the information in a nonlinear way without
optimizing desired properties for prediction, and the pattern
of fusion is also fixed. Deep Neural Networks (DNN) have
also been one of the most popular nonlinear models since
they are capable to deal with the latent relations between
information sources of complex systems. Yu et al. [31] used
a bi-directional Recurrent Neural Network (RNN) to fuse the
sensing data by minimizing the reconstruction error. However,
the fusion results of DNNs lack interpretability due to their
black-box feature, limiting their applications where the closed-
form estimation of uncertainty is required. Zhao et al. [32]
fused drain-to-source on-state resistance and the gate-to-source
threshold voltage of SiC MOSFETs into a failure precursor
in a nonlinear way by using Genetic Programming (GP), in
which the candidate models are explicit and represented by
tree structures in GP to be optimized.

The main limitations of data-level fusion include that 1) its
performance is closely related to the quality of raw data; 2) the
computation is expensive for health management in the case
of big data [11]; 3) data produced by different sources are
usually within significantly diverse scales. As a result, data-
level techniques which are sensitive to the numerical scale
need to be combined with normalization or standardization
methods. To handle the issues of the unavailability of raw data,
feature extraction techniques have been developed to discover
advanced features to characterize the latent deterioration. In

most cases, the extracted features also possess a similar form
with raw data, facilitating the practice of the developed data-
level fusion techniques on the feature level. As a result,
information fusion on feature level is expected to be flexible
to aggregate the information from independent feature-level
analysis techniques [5]. With feature-level information fusion,
massive data are reduced to be manageable [11], since another
important application of feature extraction is to reduce the
dimension of raw data. However, the quality of raw data still
poses an inevitable impact on the performance of the fusion,
and intuitively, it will be highly related to the used feature
extraction approaches [5]. Moreover, the problems caused by
the diverse numerical scales still exist in the extracted features.
Generally, most methodologies of data-level fusion can be
implemented on the feature level. Liu et al. [11] extracted
6 features from the degradation data of cutting tools and
then fused them into a 1-dimensional Health Indicator (HI)
by using Principal Component Analysis (PCA), which can
represent tool wear conditions. KM can also be applied to
transform linear fusion models produced by PCA into nonlin-
ear ones, such that Kernel PCA (KPCA) was formed to fuse
the extracted time domain, frequency domain, time-frequency
domain features [19], and cumulative features [18]. Liao [23]
first introduced GP into information fusion, to automatically
discover advanced composite features based on the extracted
ones, and another application to fuse extracted features by
using GP was provided by Qin et al. [24]. While performing
a feature-level fusion, Wang et al. [25] further improved GP
by improving the operator of the crossover in GP, such that
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crossover was only carried out on a specific class of nodes to
preserve several key features.

For the sake of utilizing and aggregating information from
multiple sources in a more flexible way [5], decision-level
fusion has also been introduced into health monitoring. One
of the advantages of decision-level fusion is its capability
to reduce the variance of the estimation and enhance the
confidence of the decision [28]. However, the performance
of decision-level fusion is related to the constructed decisions
[5]. Furthermore, it usually requires detailed prior knowledge
of combining decisions [6] and cannot provide insights into the
correlation between collected monitoring data and the latent
health state [7]. Ensemble learning is a typical practice of
decision-level information fusion. Li et al. [22] used a random-
forest-based regression method to estimate RUL, in which a
group of CART trees is produced. Then the estimation from
each CART tree was aggregated as the global estimation.
Ma et al. [30] extracted several features and on each of
them, a Support-Vector-Regression (SVR) sub-model was built
for prognostics. An ensemble of prediction of all the sub-
models was conducted by using AdaBoost and Stacking.
These ensemble-learning-based decision-level fusion methods
commonly focus on the fusion of point estimators of RUL
for highly accurate point estimation, in which fusion process
the uncertainty management is not investigated. Baraldi et al.
[17] aggregated the RUL independently predicted by using
two disparate models, a similarity-based model and a Gaussian
Process Regression (GPR) model, where the point estimation
and the uncertainty estimation were handled separately. The
point estimations were fused by taking the mean of them,
while the uncertainty estimation was combined under the
Dempster’s rule in the framework of Belief Functions Theory
(BFT), where probability needs to be reassigned as the belief
since BFT is more general than probability theory [33],
challenging the combination of it with many other developed
probability-based methods.

Because information fusion schemes on different levels
possess their advantages and limitations, hybrid fusion on
more than one level is favorable. The benefits expected from
developing the structure of hybrid fusion are based on the
complementary merits of the fusion techniques which can mit-
igate the limitations of fusion on one level by the advantages
of another level, while the systematic research on the structure
of hybrid fusion needs more investigations. Chen et al. [20]
proposed a framework of data-feature-level fusion, in which
raw data were fused into several composite features by using
KPCA, and then the extracted features were fused by a Gated-
Recurrent-Unit Recurrent Neural Network (GRU-RNN) and
mapped to the output RUL. Al-Dulaimi et al. [15] proposed a
Hybrid Deep Neural Network (HDNN) whose former layers
consist of a Convolutional Neural Network (CNN) and a
Long Short-Term Memory Recurrent Neural Network (LSTM-
RNN), and its latter layers form a Multi-Layer Feed Forward
Neural Network (MLFNN). In the proposed HDNN, it can be
regarded that information was fused on data level by using
the CNN and the RNN respectively, in which process abstract
features were output. Then the output features were deeply
combined in the latter full-connection layers, such that a data-

feature-level hybrid fusion was implemented. As a result, the
information fusion techniques on different levels and their
corresponding limitations and advantages are summarized in
Table I.

To provide a new way to fully exploit the multi-source
information in IIoT, a framework of dual-level hybrid infor-
mation fusion for RUL prognostics is built. Considering the
representative ability of nonlinear data-level fusion models,
the preprocessed sensing data are fused into a composite
HI by using GP. Compared with KM-based and DNN-based
data-fusion models, GP-based fusion models consume less
training time and computer memories, and the produced fusion
models are explicit and computationally efficient, significantly
facilitating its deployment to the monitored system in equip-
ment plane or cloud and edge computation centers. Moreover,
advantages and limitations of this GP-based fusion model have
been discussed in [34]. Then the composite HI is regarded
as another information source like the physical sensors, and
the Probability Density Function (PDF) of RUL is provided
independently based on each source, including the fused HI.
The PDF acquired from each source is further aggregated
in the framework of BFT, considering that in the existing
BFT-based decision-level fusion methods, the fusion of point
estimators lacks a quantitative interpretation under a certain
theoretical framework. Besides, in this paper, the derived de-
cision fusion model can also be interpreted based on Bayesian
inference in the framework of probability theory, which also
facilitates the combination of the estimated representation of
uncertainty and other probability-theory-based methods. The
proposed framework is validated on a case study of aircraft
engines, and the contributions of this study are: 1) an easy-
to-deploy nonlinear data-level fusion model is provided to
improve the prognostic performance compared with any single
CM sensor in IIoT environment; 2) a lightweight decision-
level fusion model is applied to improve the prognostic
accuracy and significantly reduce the uncertainty; 3) a dual-
level framework of hybrid information fusion is developed,
providing a practice of information fusion for complex multi-
source information systems. Furthermore, the contributions 1)
and 2) are convenient to be transferred, facilitating the practice
for other practitioners.

The rest of this paper is organized as follows. In Section II,
the degradation modeling, parameter estimation, and the RUL
prediction methods are introduced, with which methods RUL
can be predicted independently based on a single information
source. Section III describes a GP-based data-level fusion
method, which produces an extra information source. Section
IV derives a rule of combination in the framework of BFT,
which produces the formalism of decision-level fusion. Section
V summarizes the proposed IIoT-enabled framework of hybrid
information fusion for practical RUL prognostics. Section VI
verifies the proposed dual-level hybrid fusion on the data set
of aircraft engines and compares the results with the existing
benchmark methods. Section VII summarizes the paper with
a conclusion.
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II. ESTIMATION OF REMAINING USEFUL LIFE BASED ON
SINGLE INFORMATION SOURCE

Degradation data can be obtained from the CM sensors
over time, containing useful information about the latent
degradation process. In this section, a mixed-effect degradation
path model is adopted to quantify the degradation process
using the collected data from a single sensor. The model
is then combined with a widely-used definition of RUL,
to estimate its conditional Cumulative Distribution Function
(CDF). The prognostic method generally contains two steps:
model development, and RUL estimation.

A. Degradation Modeling

For the step of model development, degradation path models
are built for both the historical run-to-failure systems and the
in-situ ones. The methods of estimating the corresponding
model parameters are distinct, i.e., the Weighted Least Squares
(WLS) method, and a reconstruction method, respectively. In
this way, information included in the run-to-failure systems,
as well as partially available CM data, are integrated into this
framework to predict the RUL of the in-situ operating and
monitored systems.

1) Degradation Path Model with Historical Data: For any
single CM signal, Lu and Meeker [35] proposed a general
degradation path model:

yi,k = yi (tk) ,

= ψ (tk; Φ,θi) + εi,k, (1)
= ψi,k + εi,k, (2)
i = 1, 2, . . . ,M,

k = 1, 2, . . . , Ni,

where yi,k denotes the kth CM measurement of the monitored
system i at time tk; under the same failure mode and operation
condition, Φ is the vector of fixed-effect parameters while
θi is the vector of non-fixed-effect parameters, characterizing
homogeneity and heterogeneity between different monitored
systems, respectively; εi,k is the measurement error; ψi,k

represents the actual degradation path at tk; M is the number
of the monitored systems and Ni is the number of collected
measurements of the monitored system i.

Similar to [34], here the degradation path model is applied
to the logarithm scale of the original CM measurements and
the monitoring time:

yi,k = ln (si,k − φ)

= θ
(0)
i + θ

(1)
i ln tk + εi,k, (3)

where si,k represents the original CM measurement; φ is the
initial degradation level, which is common for all monitored
systems, i.e., the fixed-effect parameter; the degradation path

ψi,k = θ
(0)
i +θ

(1)
i ln tk; θi =

[
θ
(0)
i θ

(1)
i

]T
represents non-

fixed-effect parameters, which are specified for each system;
εi,k ∼ N

(
0, σ2/ci,k

)
with the variance σ2/ci,k and ci,k is

the weight coefficient of the corresponding measurement error,
tuning the impact imposed by the short-term data and long-
term data. Here, ci,k ≥ 0 and

∑Ni

k=1

√
ci,k = 1. The detailed

approaches to set ci,k can be found in [34], [5]. Besides, the
non-random part of (3) is defined as the degradation trajectory:

ηi,k = ηi (tk) = φ+ exp
(
θ
(0)
i + θ

(1)
i ln tk

)
, (4)

and then ηi,k = φ+ exp (ψi,k).
2) Model Parameter Estimation: Eq. (3) is rewritten as the

matrix form:
yi = Xiθi + εi, (5)

where yi =
[
yi,1 yi,2 · · · yi,Ni

]T ∈ RNi×1; εi =[
εi,1 εi,2 · · · εi,Ni

]T ∈ RNi×1; Xi is the design ma-
trix:

Xi =


1 x1
1 x2
...

...
1 xNi

 =


1 ln t1
1 ln t2
...

...
1 ln tNi

 ∈ RNi×2.

Then WLS is adopted here to estimated the degradation non-
fixed-effect parameters of historical monitored systems, by
solving the normal equation [34]:

θ̂i =
(
XT

i CiXi

)−1
XT

i Ciyi, (6)

where Ci = diag (ci,1, ci,2, · · · , ci,Ni).

B. Prediction of Remaining Useful Life for In-situ Monitored
Systems

RUL is defined as the time left before several degradation
features, such as measurements, paths, or trajectories, exceed a
pre-specified Failure Threshold (FT) [36]. In this case, failures
are regarded as soft failures [37]. To take full advantage of
the degradation information provided by the historical run-
to-failure systems, the historical database is also involved
in degradation modeling for the in-situ monitored systems.
Specifically, the degradation path and the FT of an in-situ
system are reconstructed by a weighted sum of those of all the
historical run-to-failure systems, where the weight coefficients
w between the in-situ system and each historical run-to-failure
system is calculated by minimizing the reconstruction error
[38].

1) Data-Driven Parameter Reconstruction: The degrada-
tion path model of an in-situ system can be constructed as:

y∗,k = θ
(0)
∗ + θ

(1)
∗ x∗,k + ε∗,k = ψ∗,k + ε∗,k, (7)

where y∗,k is the collected in-situ measurement at t∗k, and x∗k =
ln t∗k. The model reconstruction is realized by reconstructing
the degradation path:

ψ∗,k =
M∑
i=1

wiψi,k, (8)

where ψ∗,k is the degradation path of the in-situ system at
tk; wi is the reconstruction coefficient between the in-situ
system and the historical run-to-failure system i, and (7) can
be rewritten as:

y∗ = X∗θ∗ + ε∗ = X∗Θw + ε∗, (9)
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where
θ∗ = Θw; (10)

y∗ =
[
y∗,1 y∗,2 · · · y∗,N∗

]T ∈ RN∗×1; N∗ is the
number of collected CM measurements of the in-situ mon-
itored system; w =

[
w1 w2 · · · wM

]T ∈ RM×1;
ε∗ =

[
ε∗,1 ε∗,2 · · · ε∗,N∗

]T ∈ RN∗×1; and

Θ =
[
θ1 θ2 · · · θM

]
=

[
θ
(0)
1 θ

(0)
2 · · · θ

(0)
M

θ
(1)
1 θ

(1)
2 · · · θ

(1)
M

]
.

w can be calculated by minimizing the reconstruction error
[38]. To estimate degradation parameters of historical systems,
logarithmic transformation is applied to the measurements and
the monitoring time in (3), and consequently trend information
of the degradation paths and the specific failure time are
blurred due to the logarithmic transformation. As a result,
for better reconstruction, the reconstruction error is calculated
as the fitting residual between the reconstructed degradation
trajectory η∗,k = φ + exp (ψ∗,k) = φ + exp

(∑M
i=1 wiψi,k

)
,

and the collected measurements s∗,k of the in-situ system,
where k = 1, 2, . . . , N∗. Accordingly, w can be determined
as:

w = arg min

N∗∑
k=1

(s∗,k − η∗,k)
2

= arg min

N∗∑
k=1

[s∗,k − φ (11)

− exp

(
M∑
i=1

wi

(
θ
(0)
i + θ

(1)
i x∗,k

))]2
,

s.t. wi ≥ 0,
M∑
i=1

wi = 1.

2) Estimation of Remaining Useful Life: Let D denote the
FT. In the historical database, since each monitored system is
run-to-failure, their corresponding FT is assumed to follow a
Gaussian distribution with the same variance:

Di ∼ N
(
ηi,Ni

, δ2
)
,

where ηi,Ni is the value of degradation trajectory of the
historical run-to-failure system i at its EoL, i.e., the last value
of the trajectory; δ2 is estimated as:

δ̂2 =
1

M

M∑
i=1

1

Ni − 2

Ni∑
k=1

(si,k − ηi,k)
2
. (12)

In addition to reconstructing the degradation trajectory of
the in-situ monitored system, the reconstruction coefficients
{wi|i = 1, 2, · · · ,M} can also be used to reconstruct its FT
[38]. Based on the run-to-failure systems in the historical
database, FT D∗ of the in-situ monitored system is assumed
to follow such a Gaussian distribution:

D∗ ∼ N
(
wTηthd, δ2wTw

)
,

where ηthd =
[
η1,N1

η2,N2
· · · ηM,NM

]T ∈ RM×1.
Since in degradation modeling, logarithmic transformation

is also applied to the CM time, i.e., x = ln t, to obtain the

precise time when several degradation feature(s) exceed the
FT, RUL is estimated as the time left before the degradation
trajectory η∗ of the in-situ system exceed D∗, i.e.,

T ∗ = inf (t : η∗ (tN∗ + t) ≥ D∗) ,

where tN∗ is the current CM time. Conditioning that the RUL
of the in-situ system is greater or equal to 0 at the current
monitoring time, the conditional CDF of the RUL can be
derived as [34]:

F∗|RUL≥0 (t) =
Φ (g (η∗ (tN∗ + t)))− Φ (g (η∗ (tN∗)))

1− Φ (g (η∗ (tN∗)))
,

(13)

where Φ (·) is the CDF of standard normal distribution and

g (·) =
· −wTηthd

δ
√
wTw

. (14)

Based on F∗|RUL≥0 (t), different statistics can be used as
the estimators of RUL, such as mean, mode, median and
other quantiles. Besides, the Confidence Interval (CI) of the
estimated RUL can be obtained by truncating the conditional
CDF F∗|RUL≥0 (t). More details of the model formulation and
derivations of RUL can be found in [34].

III. DATA-LEVEL FUSION

In the integrated framework of dual-level information fu-
sion, GP is applied to fuse information on the data level, which
is one of heuristic search techniques. It usually starts from
a random initial population containing unfit individuals (or
called programs), fitting for a predefined optimization task, in
which the objective serves as the fitness function, by applying
operators analogous to natural genetic processes, including:

1) Selection: a series of individuals are selected with a
certain probability from the current generation to serve as
parents for the next generation, such that individuals with
higher fitness are more likely to be selected.

2) Crossover: random parts of the selected parents are
swapped to produce new and different offspring, becoming
individuals of the next generation.

3) Mutation: random parts of several individuals are modi-
fied and they consequently change into new ones.

Typically, individuals in a new generation are statistically
better than those in a previous generation, and the evolution
is terminated when several individuals fit the task at a pre-
specified level, or when the iteration reaches a pre-specified
number. Individuals are traditionally represented by tree struc-
tures, as shown in Fig. 1. Each intermediate node corresponds
to a mathematical operator and each terminal node stores an
operand, making objective (fitness) functions easy to evolve
and evaluate. Accordingly, in the GP-based data-level fusion
model, the tree structure in Fig. 1 represents

hi,k = F (si,·,k) ,

= ln |(si,1,k + si,2,k) cos (si,3,k · si,4,k)| ,

where F (·) is a row-wise fusion operator fusing each multi-
dimensional CM measurement into the composite HI; hi,k
represents the HI at time tk of the monitored system i, and
s·,j,· denotes the data from the information source j. More
details of GP can be found in [32].

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on February 18,2021 at 07:43:00 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3055977, IEEE Internet of
Things Journal

6

f∗,∩(1:J) ([x, y]) = (f∗,1 ⊕ f∗,2 ⊕ · · · ⊕ f∗,J) ([x, y])

=

{
1

1−K
∫ ∫

x1,y1
· · ·
∫ ∫

xJ ,yJ

∏J
j=1 f∗,j ([xj , yj ]) dx1dy1 · · · dxJdxJ , [x, y] =

⋂J
j=1 [xj , yj ] ,

0, otherwise,

=


(

1√
2

)J ∏J
j=1 P∗,j|RUL≥0( x+y

2 )
1−K , x = y,

0, otherwise,
(15)

1
s

2
s

3
s

4
s

ln

cos

Figure 1. A data fusion function represented as a tree structure.

IV. DECISION-LEVEL FUSION

Left Bound

Right Bound

Point corresponding 

to interval [a,b]
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contained in [a,b]

Region corresponding 

to the intervals wholly 

containing [a,b]

Infinitesimal intervals

a

a

b

b

I

I

I

I

ds (dl)

Figure 2. The continuous frame of discernment.

The combination of the predicted RUL obtained from differ-
ent sources is the central idea in decision-level fusion, and dif-
ferent rules of combination have been proposed and applied by
taking the mean [22], the median [27], the trimmed mean [27],
or more flexible schemes such as the AdaBoost and Stacking
[30]. A framework of combining both point estimation and
uncertainty estimation is expected to significantly improve the
uncertainty management.

A. Belief Functions Theory

In the framework of Belief Functions Theory (BFT), when
an unknown variable is estimated based on independent
sources, its subjective probabilities represent the degrees of

belief in terms of the sources, and Dempster’s rule can be used
to combine the probabilities and provide a global estimation.

To generalize the frame of discernment of BFT to real-
number cases, it is assumed that masses can only be given
to a series of intervals along the number line. In the gener-
alized frame, the belief functions are defined on an infinite
frame of discernment, and the focal elements are the closed
intervals [a, b] in R [39]. Then Basic Belief Assignment
(BBA) m ([a, b]) is generalized as Basic Belief Density (BBD)
f ([a, b]) for a ≤ b and f ([a, b]) = 0 when a > b, and the
sum operator in the finite and discrete frame of discernment
are consequently converted into integrals. Another constraint
was introduced in [40] that the frame of discernment only
contains contiguous intervals, i.e., only a collection of intervals
distributing end to end on the number line can constitute a
union. As a result, any focal element [a, b] ⊆

[
I, I
]

can be
represented by the location of a point in a triangular area in
Cartesian coordinates as shown in Fig. 2, where the x-axis
represents the lower bound while the y-axis specifies the upper
bound of the intervals. Accordingly, the area in the lower right
side of the point (a, b) represents the set consisting of the
intervals contained in [a, b], while the area in the upper left side
of the point (a, b) represents the set consisting of the intervals
containing [a, b]. Besides, the real numbers, which can also be
regarded as infinitesimal intervals along the number line, are
represented by the points on the hypotenuse of the triangle.

B. Decision Fusion for Estimating Remaining Useful Life

For an in-situ operating monitored system, based on the
signal from source j, CDF of its RUL can be independently de-
rived as F∗,j|RUL≥0 (t) according to (13), and the Probability
Density Function (PDF) can be obtained as P∗,j|RUL≥0 (t) =
dF∗,j|RUL≥0 (t) /dt, and consequently, they can be combined
in the frame of BFT.

Based on the PDF of the estimated RUL, different BBD can
be induced accordingly. Here the BBD is induced as:

f∗ ([x, y]) =

{
1
K1
P∗|RUL≥0

(
x+y
2

)
, x = y, x, y ≥ 0,

0, otherwise,

where K1 is a normalization constant that ensures

1

K1

∫
L

f∗ ([x, y]) ds = 1; (16)

L : x = y, x, y ≥ 0 is on the hypotenuse in Fig. 2, which is
equal to L : x = l, y = l, l ≥ 0; ds represents an elementary

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on February 18,2021 at 07:43:00 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3055977, IEEE Internet of
Things Journal

7

arc length along L, and thus ds =
√

2dl. It can be seen that
BBD is taken as the PDF multiplied by a constant factor:

1

K1

∫ ∫
x,y

f∗ ([x, y]) dxdy =
1

K1

∫
L

P∗|RUL≥0

(
x+ y

2

)
ds

=

√
2

K1

∫ +∞

0

P∗|RUL≥0 (l) dl

=

√
2

K1
. (17)

As a result, K1 =
√

2 due to the property of normalization of
BBD. According to Dempster’s rule of combination, the focal
elements of the combined BBD are the intersections of those
of each source, which are also a series of infinitesimal intervals
along the number line, and accordingly, J BBDs acquired
from J sources can be combined as (15), where ⊕ represents
the combination operator; (1−K) is also a normalization
constant that ensures

∫
L
f∗,∩(1:J) ([x, y]) ds/ (1−K) = 1,

and:

K = 1−
∫
L

(
1√
2

)J J∏
j=1

P∗,j|RUL≥0

(
x+ y

2

)
ds,

= 1−
∫ +∞

0

(
1√
2

)J−1 J∏
j=1

P∗,j|RUL≥0 (l) dl; (18)

Then the combined PDF P∗,∩(1:J)|RUL≥0 (t) can be derived
according to the corresponding BBD f∗,∩(1:J) ([t, t]) multi-
plied by the normalization factor:

P∗,∩(1:J)|RUL≥0 (t) = K1f∗,∩(1:J) ([x, y]) |x=y=t,t≥0,

=

(
1√
2

)J−1 ∏J
j=1 P∗,j|RUL≥0 (t)

1−K
,

=

∏J
j=1 P∗,j|RUL≥0 (t)∫ +∞

0

∏J
j=1 P∗,j|RUL≥0 (l) dl

. (19)

Eq. (19) is identical to that derived by using Bayesian infer-
ence in the frame of probability theory since probability theory
is one of the particular forms of BFT [33]. Fused CDF of RUL
can also be accordingly acquired as F∗,∩(1:J)|RUL≥0 (t) =∫ t

0
P∗,∩(1:J)|RUL≥0 (τ) dτ , and different statistics can be used

to estimate the RUL based on the combined CDF, which is
the same as that with any single information source.

V. PROPOSED FRAMEWORK OF HYBRID INFORMATION
FUSION FOR PREDICTIVE MAINTENANCE IN AN

INDUSTRIAL INTERNET OF THINGS ENVIRONMENT

A typical implementation of the proposed framework em-
bedded in IIoT is shown in Fig. 3, which can be generally
divided in to three planes, i.e., cloud plane, edge plane,
and equipment plane [2]. By using multiple sensors, several
channels of CM information are simultaneously collected, and
then the data-level fusion can be achieved on an embedded
processor in equipment plane by using a preset or a trained
GP-based fusion model to provide a composite HI. CM signals
as well as HI are transmitted through a sensor network.
With CM data and HI, 1) GP-based fusion model and the
parameter reconstruction model can be trained and updated on

the cloud computation center; 2) RUL can be predicted on the
edge computation devices by using the constructed parameter
reconstruction prognostics model, where the reconstruction
coefficients are provided by the cloud center. Finally, the
decision-level fusion can be implemented on the edge devices
for man-in-loop decision or on the in-situ embedded processor
for real-time adaptive health management.
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Figure 3. The proposed framework of the hybrid information fusion in an
IIoT environment to predict RUL of industrial systems.

The information flow of the proposed framework is shown
in Fig. 4. As can be seen, sensing data from J sensors are
aggregated on data level to form a composite HI, and the
estimated RULs based on all the (J + 1) sources (J sensors
and the composite HI) are further combined on decision level.

VI. CASE STUDY

The proposed integrated framework of the dual-level in-
formation fusion method for RUL prediction is verified on
the C-MAPSS data set, which is acquired from a commercial
simulation software simulating the degradation process of
aircraft engines. The prognostic results are then compared
with those provided by using different information fusion
schemes to verify its superiority of enhancing the prediction
certainty. The integrated framework is also compared with
several published works, to confirm its performance under the
premise of providing explicit information fusion models.

A. Data Set Introduction

C-MAPSS data set contains four subsets, and the subset
involving a single failure threshold and a single operation
condition (FD001) is adopted here. This subset consists of
a training set and a test set, where the former contains
100 run-to-failure training units and a total of 20,631 CM
measurements, forming the historical database, and the latter
contains 100 test units and 13,096 measurements. It should be
mentioned that only partial measurements of the test units were
acquired, based on which the users can estimate their RUL by
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Figure 4. Information flow in the proposed framework of dual-level information fusion for RUL prediction.

using the knowledge learned from the training set. There are
21 monitoring sensors, i.e., information sources, from which
21 columns of CM signals are acquired simultaneously at
every monitoring and details of all sensors can be accessed
by referring to [5]. Besides, the actual RUL of each test unit
is provided for users to evaluate their prediction.

B. Data Preprocessing

Data preprocessing mainly contains the selection of useful
information sources and standardization. Since GP-based data-
level fusion is a heuristic optimization method, the prediction
result is expected to be greatly enhanced and the computa-
tional burden can be significantly reduced after discarding the
irrelevant information sources. With the empirical engineering
criteria that i) signals show clear increasing or decreasing
trend, and ii) signals from the identical source for different
training units possess the similar trend, and according to [5],
11 sensors including T24, T50, P30, Nf, Ps30, phi, NRf,
BPR, htBleed, W31, and W32 are identified as the information
sources to conduct data-level fusion.

Since the selected sensors measure diverse features of the
engines, e.g., temperature, pressure, and fan speed, etc, the
numerical scales of the provided information are consequently
different. The data from each sensor are standardized for both
training and test units by using z-score standardization, and
the used mean and standard deviation are calculated as:

Mean (s) =

∑M
i=1

∑Ni

k=1 si,k∑M
i=1Ni

, (20)

Std (s) =

√√√√∑M
i=1

∑Ni

k=1 (si,k −Mean (s))
2∑M

i=1Ni − 1
, (21)

where M = 100, denoting the number of training units.

C. Data-Level Fusion and Prognostics Based on a Single
Information Source

For signals of different units generated from a single source,
a hybrid metric to improve the prediction accuracy was pro-
posed as [34]:

Hyb (s1:M,1:Ni
) = r · Con (s1:M,1:Ni

) (22)
+ (1− r) ·Ran (s1:M,1:Ni

) ,

which consists of two desired properties for improving the
prognostics, i.e., 1) the consistency among training units
under the same failure mode and operation condition, denoted
by Con (·); 2) range information, denoted by Ran (·). The
detailed definition of the two properties can be found in [34].
r is the tuning parameter to balance the two properties. By
maximizing the hybrid metric, a composite HI was constructed
via a nonlinear data-level fusion model produced by using GP
[34]:

HI = cos [sin (sin W32)] + T50 + Ps30, (23)

where W32 represents the low-pressure turbine (LPT) coolant
bleed; T50 represents the total temperature at the LPT out-
let; Ps30 represents the static pressure at the high-pressure
compressor (HPC) outlet. The data-level fused HI can also
be regarded as an extra information source similar to the 11
selected sensors. Based on the selected information source and
the composite HI, the prognostics can be conducted, and the
results have been presented in [34].

D. Relevant Information Source Identification

Since several sources may provide less-informative contri-
butions for prognostics-orientated decision-level fusion, dis-
carding the outcomes from several sources can enhance the
accuracy and robustness of the decision level fusion [27].
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Figure 5. Graphic representation of the performance of the 11 selected sources
and HI measured by the three engineering metrics.

Here three metrics proposed based on the engineering
knowledge about RUL prognostics are applied to measure the
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Table II
PERFORMANCE OF 11 SELECTED SOURCES AND HI MEASURED BY THREE ENGINEERING METRICS

T24 T50 P30 Nf Ps30 phi NRf BPR htBleed W31 W32 HI

Hybrid metric 0.7704 0.7969 0.7885 0.7584 0.7971 0.7891 0.7646 0.7786 0.7951 0.7871 0.7857 0.8588

Standard deviation 0.5724 0.4344 0.5231 1.1275 0.4448 0.5007 1.1240 0.4782 0.6710 0.5531 0.6031 0.6179

Trendability 0.3563 0.5963 0.5419 0.0699 0.6778 0.5958 0.0141 0.4941 0.2887 0.4650 0.4642 0.7601

( )*, *,k ks y( ), ,i k i ks y

( )*, *,k ks y( ), ,i k i ks y

*,kh
,i kh

( ), ,
ii i Nδ η tθ

( ), ,
ii i Nδ η tθ
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Figure 6. Framework of dual-level information fusion for RUL prediction.

performance of the 11 primarily selected sources as well as
the composite HI, including 1) hybrid metric (22); 2) standard
deviation of the last measurements of training units [6]; and
3) trendability [41]. The smaller the standard deviation of
metric 2), the better the prediction results are expected to. The
hybrid metric and the trendability quantify the performance of
the sources into the interval [0, 1], and the higher the values
in terms of them, the better the information sources are for
prognostics [41]. Performance of the sources measured by the
three metrics is detailed in Table II and graphically presented
in Fig. 5. In Table II, it can be seen that, compared with
the primarily selected sensors, the composite HI has been
improved by 7.74%∼13.24% in terms of the hybrid metric:

0.8588− 0.7971

0.7971
× 100% = 7.74%,

0.8588− 0.7584

0.7584
× 100% = 13.24%,

and by 12.15%∼5291.97% in terms of the trendability:
0.7601− 0.6778

0.6778
× 100% = 12.15%,

0.7601− 0.0141

0.0141
× 100% = 5291.97%.

Metric 2) is closely related to the range of the data, such that
the performance of HI is not largely improved in terms of that
metric since its range information has also been significantly
improved [34]. In Fig. 5, it can be seen that Nf and NRf
perform significantly inferior to other information sources. As
a result, the decision-level fusion is conducted on the other 10
sources (T24, T50, P30, Ps30, phi, BPR, htBleed, W31, W32,
and HI). The processes of the verification in this case study
are summarized in Fig. 6.

E. Results
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Figure 7. RUL prediction based on data-level fusion and the proposed hybrid
fusion for test unit #35.
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Figure 8. RUL prediction based on data-level fusion and the proposed hybrid
fusion for test unit #36.

Given the significance level α = 0.05, the widths of CIs
can be used to evaluate the uncertainty of estimation [6]. Two
test units, #35 and #36, are randomly selected to illustrate the
in-situ monitoring and prognostics, as shown in Fig. 7 and Fig.
8, where RULTrue represents the actual RUL; ˆRULData and
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ˆRULHybrid represent the estimated RUL respectively by using
GP-based data-level fusion and the proposed hybrid dual-level
fusion; ĈIData and ĈIHybrid represent the corresponding
95% CI respectively. It can be seen that compared with the
data-level fusion, the prognostic accuracy (i.e., the prediction
error) and uncertainty (i.e., the widths of the 95% CIs) are
all improved by using the the proposed data-decision-level
hybrid information fusion. Also, since more CM data can be
collected along with the monitored systems, and parameter
reconstruction can be performed in the cloud plane at each
monitoring time, the accuracy of degradation modeling is
increasing. As a result, the predicted RUL of these systems is
becoming more accurate to the ground truth. The comparison
at the five monitoring time for test unit #35 is further detailed
in Table III. For example, at t = 180 cycles, the actual RUL
is 29 cycles, and that estimated by using data-level fusion
and hybrid fusion are 22 cycles and 28 cycles, respectively.
The 95% CIs are estimated as [2, 45] cycles and [15, 41]
cycles respectively, showing a significant reduction by 39.5%
([(41−15)−(45−2)]/(45−2)×100%=−39.5%) of uncertainty
based on hybrid fusion.
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Figure 9. Widths of CIs of all the test units based on different combinations
of information sources.

1) Comparisons of Remaining Useful Life Prediction Re-
sults: 95% CI widths of all the test units estimated based on
each single sensor, data-level fused HI, decision-level fusion,
and data-decision-level fusion are shown in Fig. 9. The deci-
sion level fusion is conducted on the PDF of RUL estimated
by using the 9 further selected sensors (detailed in Subsection
VI-D). When HI is not involved in the fusion, the hybrid
fusion will be a decision-level fusion. Compared with widths
of CIs estimated by using each single sensor, those estimated
by using fusion techniques are reduced. The mean CI width
is further detailed in Table IV. As can be seen in Fig. 9 and
Table IV, after removing the irrelevant information sources,
the uncertainty shows a decreasing trend as the number of
the actually involved information sources increases. Compared
with the narrowest mean 95% CI width of RUL estimated
based on the best single source (sensor Ps30), that estimated

based on the fusion of 3 sources (according to eq. (23))
is reduced by 19.6% ((30.0−37.3)/37.3×100%=−19.6%);
compared with the result based on the fusion of 3 sources,
that estimated based on the fusion of 9 sources is reduced by
48.7% ((15.4−30.0)/30.0×100%=−48.7%); since the fused
HI can be regarded as an extra information source, compared
with the result based on the fusion of 9 sources, that estimated
based on the fusion of 10 sources is further reduced by
7.1% ((14.3−15.4)/15.4×100%=−7.1%), showing a signif-
icant improvement by using information fusion in reducing
the prognostic uncertainty.

Mean Absolute Percentage Error (MAPE) is adopted to
evaluate the proposed hybrid fusion method for RUL prog-
nostics, which is defined as [5]:

MAPE =
100%

P

P∑
i=1

∣∣∣T̂i − T r
i

∣∣∣
tNi

+ T r
i

(24)

where T r
i is the actual RUL of the test unit i; T̂i is the

estimated RUL of the test unit i; (tNi + T r
i ) denotes the whole

life of the test unit i; and P represents the total number of
test units.

To investigate the performance of the proposed method
for in-situ operating systems, MAPE and the mean width
of 95% CI by using data-level fusion, decision-level fusion
and the proposed hybrid fusion schemes are investigated in
terms of the actual RUL level of the test units, as shown
in Fig. 10 and Fig. 11 respectively, where label all under
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Figure 10. MAPE by using the three different fusion schemes.

the x-axes represents the corresponding metrics for all the
100 test units, and label 80 represents those metrics only
for the test units whose actual RUL is not more than 80
cycles. Compared with data-level fusion, prognostics by using
decision-level and the hybrid fusion achieves significant lower
MAPE and narrower CI width, indicating the effectiveness of
incorporating more informative sources (3 sources for data-
level fusion, 9 sources for decision-level fusion, and 10 sources
for the hybrid fusion) for improving the prognostic accuracy
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Table III
MEAN WIDTH OF 95% CI OF THE TEST UNIT #35 ESTIMATED BY USING DIFFERENT SENSORS AND FUSION SCHEMES (UNIT: CYCLE)

Monitoring time True RUL RUL Estimation 95% CI Estimation

ˆRULData
ˆRULHybrid ĈIData ĈIHybrid

t =165 44 31 40 [6, 56] [26, 53]
t =170 39 27 36 [4, 51] [22, 49]
t =175 34 25 32 [3, 48] [19, 45]
t =180 29 22 28 [2, 45] [15, 41]
t =185 24 19 24 [2, 41] [10, 37]
t =190 19 16 19 [1, 37] [6, 32]

Table IV
MEAN WIDTH OF 95% CI OF TEST UNITS ESTIMATED USING DIFFERENT SENSORS AND FUSION SCHEMES (UNIT: CYCLE)

Source T24 T50 P30 Nf Ps30 phi NRf

Mean CI width 80.5 38.4 49.7 68.1 37.3 43.7 97.3

Source BPR htBleed W31 W32 Data-level fusion Decision-level fusion Hybrid fusion

Mean CI width 46.2 165.9 65.2 87.1 30.0 15.4 14.3

and reducing the uncertainty. Compared with decision-level fu-
sion, the widths of CIs can be further narrowed by introducing
the composite HI while a comparable prognostic accuracy is
kept. Also, as can be seen, when these systems run closer
to their EoL, the predicted RUL is becoming more accurate
referring to the ground truth, and the prognostic uncertainty is
reduced statistically in terms of the mean width of CI, which
consequently improves the prognostic precision. Moreover,
the proposed integration method of degradation modeling and
parameter reconstruction to predict RUL can be categorized as
the degradation-based method [17]. RUL prediction can also
be regarded as an estimation task, and for degradation-based
methods, prognostic accuracy is related to both the model
assumptions and the applied methods. As a result, compared
with accuracy, the prognostic precision is improved by using
multi-source information fusion.
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Figure 11. Mean width of the 95% CI by using the three different fusion
schemes.

2) Prognostic Accuracy: The proposed method is compared
with the following 6 representative benchmark methods in
terms of MAPE:
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Figure 12. Comparison with the existing methods in terms of MAPE.

(1) Linear data-level fusion with optimizing two desired
properties designed according to domain knowledge [5] (leg-
end Liu et al. 2013);

(2) Linear data-level fusion with optimizing two desired
properties designed integrating both domain knowledge and
degradation modeling [6] (legend Liu et al. 2016);

(3) Linear data-level fusion with optimizing a designed
signal-to-noise ratio (SNR) integrating both domain knowl-
edge and degradation modeling [7] (legend Liu et al. 2017);

(4) Nonlinear data-level fusion based on KM with optimiz-
ing the designed signal-to-noise ratio (SNR) [10] (legend Song
et al. 2018);

(5) Linear data-level fusion with directly optimizing the
prognostic error [9] (legend Kim et al. 2019);
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Table V
COMPARISON WITH THE EXISTING METHODS IN TERMS OF MAPE (UNIT: %)

Level of
actual
RUL

Number of
test units

Proposed
hybrid
fusion

GP-based
data-level

fusion [34]

Liu et al. 2013
[5]

(RE ≤0.05)

Liu et al. 2016
[6]

(RE ≤0.05)

Liu et al. 2017
[7]

(RE ≤0.01)

Song et al.
2018 [10]

(RE ≤0.02)

Kim et al.
2019 [9]

(RE ≤0.02)

All 100 8.20 10.82 9.59 8.47 8.51 8.69 8.33
6100 67 5.59 7.69 7.88 6.51 6.40 6.06 5.51
680 45 3.67 4.82 6.48 5.24 5.18 4.42 4.15
660 39 3.04 3.70 5.87 4.54 4.45 3.56 3.41
640 28 2.21 2.84 3.87 3.04 2.98 2.29 2.25
620 16 1.99 1.85 2.86 2.34 2.23 2.05 2.12

(6) Nonlinear data-level fusion based on GP with optimizing
two desired properties designed according to domain knowl-
edge [34] (legend Data fusion).

The results are shown in Fig. 12 and detailed in Table V,
in terms of the actual RUL level of all the test units. In Table
V, note that the results of Liu et al., Song et al., and Kim et
al. are obtained from the figures in [5], [6], [7], [10], [9] by
using Getdata Graph Digitizer, which is professional software
that can help to read data from figures, and thus a rough
upper limit of the absolute value of Reading Error (RE) is
provided as well. As can be seen in Fig. 12 and Table V,
the proposed hybrid fusion method outperforms linear data-
level fusion [5], [6], [7], KM-based nonlinear data-level fusion
[10], and GP-based nonlinear data-level fusion [34] in terms
of the MAPE, or in terms of the uncertainty at a close MAPE.
For instance, for the 16 test units with actual RUL ≤ 20
cycles, the mean width of 95% CIs is 9.5 cycles by using the
hybrid fusion method, and 18.3 cycles by using the GP-based
data-level fusion, showing that uncertainty can be significantly
reduced by using the proposed method when the performance
of prediction is closed. For data-level fusion, generally, when
the optimization objectives belong to the same category, i.e.,
the degradation-based properties or the direct prognostic error,
nonlinear models can provide better prognostics than linear
ones due to their more powerful representation capability.
When the fusion models belong to the same category, such as
linear combination, fusing information by directly optimizing
the prognostic error can improve the performance. However,
fusing information by optimizing degradation-based properties
can provide a better insight into the entire degradation pattern
that the monitored systems will follow, consequently providing
more informative and transparent outcomes. This can be useful
because it allows checking the prediction consistency consid-
ering experts’ domain knowledge and the information on-line
acquired during the degradation [17]. To be more specific,
according to the results in Table V, fusing information by
optimizing the prognostic error [9] has a significant advantage
of the prediction accuracy, despite fusion models with more
powerful representation capability can be provided by GP [34]
and KM [10] with optimizing degradation-based properties. By
fusing information from more useful sources, the accuracy of
degradation-based methods can be improved to a close level
to those optimizing prognostic error, and the interpretability
about the degradation process can be retained as well. The
proposed RUL prediction method with data-level information

fusion outperforms the other involved methods when the
monitored systems run close to their EoL, but performs inferior
in the early stage when they are a long time away from the
EoL. One possible reason is that the monitored systems usually
have not shown any obvious degradation trend in the early
stage of their operation, and the acquired CM information is
little, posing negative impacts on parameter reconstruction. As
a result, if more information sources are introduced for fusion,
it is expected that a small amount of information from multiple
sources can compensate for each other, providing relatively
global better prognostic results as shown in Table V.

Root Mean Squared Error (RMSE) is also adopted to
evaluate prognostic performance, which is defined as:

RMSE =

√√√√ 1

P

P∑
i=1

(
T̂i − T r

i

)2
, (25)

and the proposed method is compared with several benchmark
methods according to RMSE as well, i.e.:

(1) Wavelet feature extraction combined with ’haar’ features
(WFE-haar, RMSE = 42.98) [42];

(2) Multi-Layer Perceptron (MLP, RMSE = 37.56) [43];
(3) Support Vector Machine (SVM, RMSE = 33.53) [44];
(4) Linear Regression (LR, RMSE = 31.21) [45];
(5) Nonlinear data-level fusion based on GP with optimizing

two desired properties designed according to domain knowl-
edge (RMSE = 30.95) [34].

The proposed hybrid-fusion-based approaches can provide a
prediction in terms of that RMSE = 24.31, outperforming the
above approaches. Compared with several machine learning
approaches such as SVM [44] and MLP [46], the proposed
method can provide both closed-form estimated RUL and CI,
which is favorable for decision-making. Also, the proposed
method outperforms these two representative data-driven ma-
chine learning methods regarding the prognostic accuracy.
One possible reason can be that a mixed-effect degradation
model is constructed in the proposed method to characterize
the latent degradation process, in which the degradation trend
is modeled as a power-functional form, and specific FTs are
estimated on run-to-failure units. This implementation is a
key factor for improving the performance of RUL prediction,
since it is based on important domain knowledge which is
commonly not utilized in many pure data-driven methods,
such as neural networks and KM for RUL prognostics on the
basis of regression. On the other hand, from the perspective
of information fusion, this domain knowledge can be regarded
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as another information from sources like experts, historical
cases, etc., although it is not explicitly presented in structured
data. This information can serve as constraints when predicting
the RUL, while it needs to be discovered from input data for
those pure data-driven methods. Moreover, most of the listed
approaches lack of analyses in terms of the uncertainty of the
estimated RUL, which are challenging for both uncertainty
management and decision making in practice.

3) Time Costs: All the approaches are performed on a
regular laptop (Intel Core i7-8550U, 1.8 GHz, 16 GB RAM)
with MATLAB 2015b. Time costs for parameter estimation,
reconstruction, and GP-based data-level fusion model training
have been investigated on the identical laptop in detail [34].
The average time cost of GP to produce the data-level fusion
models is not more than 225 s. Parameter estimation and re-
construction for the degradation model consume less than 2 ms
and 0.5 s respectively, indicating that the cloud computation
center needs not to be extremely powerful. Here the time costs
of data-level fusion and decision-level fusion are investigated.
Data-level fusion model represented by (23) and decision-level
fusion model represented by (19) was performed on all of the
100 testing units. The mean time cost is 10.12 μs with a 8.25
μs standard deviation for data-level fusion, and 65.90 μs with a
10.24 μs standard deviation for decision-level fusion, showing
the computational-efficiency and considerable potentials to be
deployed into IIoT.

F. Discussion

One of the challenges of applying the proposed data-
decision-level hybrid information fusion method for PdM in
IIoT is the heuristic feature of GP. Due to the fact that
GP is essentially a heuristic search technique that explores
an optimal or at a least suitable solution from available
alternatives, it may converge to a local optimum. Multiple
runs of GP can mitigate this problem to some extent. Also,
selecting several sub-optimal individuals in addition to the best
one in the final generation as candidate solutions is another
effective approach to address this challenge. Another challenge
is that the produced models are not easy to be interpreted with
their physical implications [23]. Since elementary function
operators can be introduced into GP in addition to the four
fundamental operators of arithmetic, it can be a potential
research field to discover physically interpretable information
fusion models by using GP. Besides, the mechanism that
GP can adaptively select a subset of the input information
sources has not been fully explored and utilized, benefiting
an integration of source selection and information fusion.
This can also reduce manual intervention to the automatic
IIoT applications. In addition to fusing information, GP has
also been used for data-driven RUL prediction [47], where it
can further simplify the relations between the CM data and
predicted RUL as an explicit and end-to-end formula, greatly
facilitating the embedded real-time monitoring in IIoT.

Since a probability distribution is much more informative
than a BBD [17], more than one BBD can be induced from a
PDF, and it may be challenging to select a suitable BBD to be
induced. Different BBD induced from the same PDF can be

ordered according to the strength of the beliefs they represent
[39], and further, they can be ordered according to different
specific ordering criteria, such as pl-ordering, q-ordering, and
s-ordering. It can be practical to induce a BBD according to
q-ordering and the principle of minimal commitment, i.e., the
q-Least-Committed (q-LC) BBD, which means selecting the
least committed belief function in a set of equally justified
belief functions [39].

VII. CONCLUSION

In this paper, a data-decision-level hybrid information fusion
method for PdM in IIoT is proposed to estimate RUL of
complex industrial systems. On data level, sensing data are
fused into a composite HI by using GP, in which a nonlinear
explicit fusion model is constructed. The composite HI is
added as an extra information source, from which as well
as other sources, the PDF of RUL is derived independently
and respectively. After discarding the irrelevant sources con-
sidering the three widely-used criteria to evaluate the quality
of the sources, the PDF of RUL deduced by using each
source is further combined in the framework of BFT. The
experimental results show that compared with sole data-level
and decision-level fusion methods, the prognostic uncertainty
is reduced by 52.3% ((14.3−30.0)/30.0×100%) and 7.1%
((14.3−15.4)/15.4×100%), respectively, by using the proposed
dual-level information fusion in terms of the mean width of CI.
Also, there is an improvement of the prediction accuracy by
24.2% ((8.20%−10.82%)/10.82%×100%) in terms of MAPE,
compared to the constructed GP-based data-level fusion. With
this approach, the selection of the relevant sources to construct
the composite HI can be mitigated since it can be conducted
automatically. The proposed decision-level fusion method also
provides a convenient way to aggregate estimations acquired
by using multiple sub-models. Integrated with the proposed
approach, IIoT is expected to reach the objective that support
decision making to optimally act on physical systems.
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