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Abstract—In recent years, the virtual synchronous generator 
(VSG) concept has been widely studied to integrate renewable 
energy sources. However, instability occurs due to the 
implementation of the dc-link voltage controllers under the 
weak grid, and its mechanism remains unclear, which is 
investigated in this paper. At first, the wideband dq-frame 
impedance models of the VSGs with the dc-link voltage 
controllers for two cases are established. Then, the stability 
analyses of the VSGs are compared based on these impedance 
models. It is revealed that the interaction dynamics between the 
dc-link voltage loop and the active loop lead to the negative 
resistor behavior of the q-q channel impedances for both VSGs, 
which induces the emerging oscillations of the system in a weak 
grid. Besides, as a useful design guideline, the parameter design 
of the VSGs is proposed to enhance the system stability. Finally, 
experimental results obtained from a 100kW prototype system 
show good agreement with simulated results, validating the 
impedance models and theoretical analysis. 

 
Index Terms—virtual synchronous generator; dq small-signal 

impedance modeling; stability analyses; dc-link voltage dynamics 

I. INTRODUCTION 

Voltage source converters (VSCs) have been widely utilized 
to integrate renewable energy sources in remote areas into the 
power grid. However, the emerging oscillations easily occur 
due to the interactions between the VSCs and the weak grid, 
resulting from the VSC's multiple-timescale dynamics 
contributed by the dc-link voltage control [1], the reactive 
power control [2], the phase-locked loop (PLL) [3], etc. 
Fortunately, the researchers have continuously improved the 
stability analysis methods and control methods in the literature 
[4]-[27]. 

The virtual synchronous generator [5]-[6], which controls 
the inverter to generate an output voltage via embedding the 
mathematical model of synchronous generators into the 
controller of the inverter, has been generally studied. Due to the 
excellent performances, it has been applied to enhance the 
inertia and damping of the system [7]-[8] and provide the 
seamless transition between off-grid and grid-interfaced modes 
of the inverter [9]. The parameter design of power loops is 
proposed in [10] to ensure the stability and dynamic 
performance of the VSG. Furthermore, the potential advantages 
of the VSG operating under the different grid conditions are 
revealed in recent studies [11]-[12]. Since the VSG can replace 
the DQ-frame PLL with the power balanced synchronization, 
the possible instability issues caused by the PLL can be 
eliminated. The study in [11] reveals that the impedance of the 
VSG without the inner loop and the dc-link voltage loop 
behaves as the inductor that is similar to the impedance of the 
weak grid. To satisfy the demands of voltage and current 
limitation, the VSG cascaded with the voltage and current loop 
is studied in [13]-[14]. Besides, to enhance the stability and 
improve the control flexibility, the virtual impedance is added 
to the VSG in [15]. Its design considerations are provided in [16] 
for the VSG in the weak grid. The above studies do not need to 
consider the dc-link voltage control since the energy storage is 
connected to the dc side to keep the dc-link voltage constant. 
However, when the VSG is used to integrate renewable energy 
sources such as photovoltaic systems and wind power 
generations, the dc-link voltage needs to be regulated. In these 
cases, the VSG instability may occur in the weak grid due to the 
implementation of the dc-link voltage controllers, which needs 
to be further explored.  

Two tools are widely used for small-signal stability analysis: 
the state-space method and the impedance-based method. 
However, the state-space method needs full knowledge of the 
hardware and control design of the converter, which is very 
difficult to obtain and validate. By contrast, the impedance that 
can be measured, validated, and visualized is suitable for the 
stability analysis of the VSG in the weak grid.  

The principle of the impedance-based method is to divide the 
system into two independent subsystems according to the 
source and load parts, and then apply the Nyquist stability 
criterion to the impedance ratio of two subsystems [17]-[20]. At 
present, many small-signal impedance modeling methods are 
proposed in [17]-[32]. Among them, the sequence impedance 
and dq-frame impedance are widely utilized. Besides, It is 
believed that the sequence impedance and the dq impedance are 
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the same after considering the frequency coupling [21]-[22]. 
Thus, dq-frame impedance modeling is used in this paper since 
it is more convenient. 

The impedance-based analysis method requires a very high 
precision of the impedance model. At present, the dq-frame 
impedance models of single-phase[27]-[28] or three-phase 
converters considering many factors are gradually developed 
[27], such as the PLL [23]-[25], the dead-time [32], the dc-link 
voltage [26], the AC voltage and current loops, the controllers 
in the static coordinate [29], and LCL filters. Specifically, the 
dq-frame impedance model of the VSG without the dc-link 
voltage controller is established in [31]. Including the dc-link 
voltage controller, the dq-frame impedance model of the PLL-
based VSG used for the rectifier station of the VSC-HVDC 
system is also studied in [12]. However, the PLL dynamics can 
lead to q-q channel negative resistor behavior and easily induce 
the oscillation when it is used for the inverter in the weak grid 
[23]. On the one hand, the VSGs in this paper are used to 
integrate renewable energy resources, which are different from 
those of [12], [31]. On the other hand, the differences between 
the dq-frame models and the abc-frame models of the control 
delay and sampling filters are ignored in [12], [31].  

Thus, this paper focuses on the wideband dq-frame 
impedance modeling and stability analyses of the no PLL-based 
VSGs with different dc-link voltage controllers in the weak grid. 
The contributions are summarized as follows: 

1) Considering the control delay, the sampling filters, and 
the different dc-link voltage controllers, the wideband dq-frame 
impedance models of the VSGs are established and verified by 
the impedance measurement. 

2) The stability analyses of the VSG with the different dc-
link voltage controllers in the weak grid are compared.  

3) The parameter design is proposed for the VSGs to 
enhance the system stability, which can be considered as a 
useful design guideline. 

The rest of the paper is organized as follows: Section II 
presents the control of the VSGs with different dc-link 
controllers. Section III builds and compares the wideband dq-
frame impedance models of the VSGs with different dc voltage 
controllers. Section IV compares the stability analyses of the 
different VSGs in the weak grid. Section V shows the 
experimental results. Section VI draws the conclusions. 

II. THE TOPOLOGY AND CONTROL OF THE VSGS 

The three-phase converter connected to the ac weak grid via 
an L filter is shown in Fig. 1, where Zg is the grid impedance; 
Rf is the parasitic resistance of the filter inductor Lf; Cdc is the 
dc-link regulator capacitor; uga, ugb, and ugc are the three-phase 
grid voltages; ua, ub, and uc are the three-phase voltages at the 
point of common coupling (PCC); ia, ib, and ic are the output 
currents; ea, eb, and ec are the converter voltages; udc is the dc- 
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Fig. 1 The main circuit 
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Fig. 2 The control of the VSGs (a) VSG I; (b) VSG II. 

link voltage. idc is the dc-link current that flows from the 
renewable energy resource to the converter. 

Fig. 2 shows the controls of the VSGs, where variables with 
an asterisk (*) correspond to reference signals; subscript d 
means variables in the d- channel, and subscript q means 
variables in the q- channel. Except for the dc-link voltage 
controllers, the control of the VSG I and VSG II are the same. 

The dc-link voltage controller of the VSG I [8], [35] is 
expressed as follows: 
 *

dc dc pu1 iu1 dc= ( )( / )P u u k k s u     (1) 

where kpu1 and kiu1 are the proportional and integral gains of the 
dc-link voltage proportion-integral (PI) controller of VSG I. 

Besides, the dc-link voltage controller used for the droop 
control-based inverter [1] is introduced into the VSG II. 
Compared with the VSG I, the only difference is the position of 
the dc-link voltage controller. 

 1 dc dc pu2 iu2=( )( + / )u u k k sw    (2) 

where kpu2 and kiu2 are the proportional and integral gains of the 
dc-link voltage PI controller of the VSG II, respectively; w1 is 
the output of the dc-link voltage PI controller of the VSG II. 

The reactive power controller simulates primary voltage 
regulations of synchronous machines, and the active power 
controller of the VSG emulates the inertia and primary 
frequency regulation of synchronous machines [11]. 

 
*

n v
p n

=
(2 )

P P

Hs D
w w

w





 (3) 
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 * *
q d d( ( ) ) / ( )mE D u u Q Q Ks     (4) 

where ωv and ωn are the output angular frequency of the VSG 
and the rated angular frequency of the grid, respectively; q is 
the phase angle of the inner electric potential of the VSG; H is 
the virtual inertia constant; Dp and Dq are the damping 
coefficient and the voltage-drooping coefficient, respectively; 
K is the inertia coefficient of reactive power loop; ud* is the 
rated PCC voltage in the d-axis. 

The active power P and reactive power Q are given as 

 
d d q q

q d d q

3/2( )

3/2( )

P u i u i

Q u i u i

 
  

  (5) 

The ac voltage controllers adopt the virtual impedance to 
emulate the synchronous machines' electrical part [14], and the 
current controllers adopt PI regulators in the dq frame. Lv and 
Rv are the virtual resistor and inductor, respectively. 

III. WIDEBAND DQ IMPEDANCE MODELING OF THE VSGS 

WITH DIFFERENT DC-LINK VOLTAGE CONTROLLERS 

A. The dq-Frame Small-Signal Model of the Main Circuit  

The average model of the VSC in the dq frame is given as  

 

d
f d dc gd f d

q
f q dc gq f q

d 1
=

2
d 1

=
2

i
L d u u R i

dt
i

L d u u R i
dt

  

  

 (6) 

 dc
dc dc d d q q

d 3
+ = ( )

4

u
C i d i d i

dt
  (7) 

The dq-frame model of the main circuit by adding the dq-
frame small-signal perturbations to (4) and (5) is obtained as: 

 

s s
d d

dc s s
q q

+
i d

u
i d

    
     

       
1 2G G  (8) 

 

s s s
d d d1

dcs s s
q q q

d
( + - )

d

i u
u

i u


       
      

            
L 3 4Z G G  (9) 

where “” denotes the small-signal perturbation of a variable; 
Id0 and Iq0 are steady-state values of the output currents; Udc0 is 
the steady-state value of the dc-link voltage; Dd0 and Dq0 are the 
steady-state values of duty cycles;G1=-3/(4Cdcs)[Dd0 Dq0]; G2=-
3/(4Cdcs)[Id0 Iq0]; G3=[Dd0/2 0; 0 Dq0/2]; G4=[Udc0/2 0; 0 Udc0/2]. 

Since Ud0 can be obtained by measuring the PCC voltage and 
Uq0=0, the other values need to be calculated as  

 

q0 0 d0

* 2 2
d0 f d0 f q0 d0 f

d0 d0 d0 f q0 n f dc0

q0 d0 n f q0 f dc0

/ (1.5 )

2 1 1
= / / /

3 4 2
2( ) /

2( ) /

I Q U

I P R U R I U R

D U I R I L U

D I L I R U

w

w

 

   

   

  

 (10) 

where Q0=Dp (Un-Ud0)+Q* for the VSG; Q0= Q* for the VSI. 

B. The dq Dynamics Related to the Park Transformation 

One remarkable feature of the VSG is that the rotor swing 
equation is used for the synchronization. The phases of the VSG 
and the PCC voltage are not consistent at the steady-state, 

which is different from the PLL-based inverter. The variables 
in the controlled dq frame and the system dq frame for the VSG 
can be interconnected by [19]  

 

c
d d d0

c
q q q0

+
s s

s s

f f f

f f f


      
      

           
1 2T T  (11) 

where =q; (c) represents the control variables; (s) 
represents the control variables. 

Besides, T1 and T2 are defined as follows: 

 0 0

0 0

cos( ) sin( )

sin( ) cos( )

 
 

 
   

1T  (12) 

 0 0

0 0

sin( ) cos( )

cos( ) sin( )

 
 

 
    

2T  (13) 

where 0 is the steady-state phase deviation between the system 
and controlled dq frame of the VSG; 

The dq-frame dynamics related to the Park transformation 
are derived according to (9) as follows: 

 

s c
d d1
s c

m1q q

d d

d d E

q
      

               
1 d1T G  (14) 
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1 i1T G  (15) 

 

c s
d d

c s
m1q q

+
u u

Eu u

q      
              

1 v1T G  (16) 

where Em1 is the intermediate variable used for calculation. 
From (14)-(16), Gd1 models the small-signal perturbation 

path from q to the duty cycle in the system dq frame. Gi1 
models the small-signal perturbation path from q to the 
current in the controlled dq frame. Gv1 models the small-signal 
perturbation path from q to the voltage in the controlled dq 
frame. Gd1, Gi1, and Gv1 are defined as follows:  

 q0

d0

0

0

D

D

 
   

d1G  (17) 

 d0

q0

0

0

I

I

 
  

 
i1 2G T  (18) 

 d0

q0

0

0

U

U

 
  

 
v1 2G T  (19) 

C. Wideband dq-Frame Impedance Model of the VSG I 

The dq-frame model of the control delay based on the 
transformation between abc-frame controllers and dq-frame 
controllers in [29]-[30]and Euler's formula is derived as: 

 del n del n del-

n del n del

cos( )  sin( )
=

-sin( ) cos( )
T s T T

e
T T

w w
w w

 
 
 

delG  (20) 

where Tdel=1.5/fs, and fs is the switching frequency. 
Similarly, the dq-frame model of the first-order low-pass 

filters for voltage or current signals is derived as follows: 

 x n x
2 2

n x xx n x

1 s  1
=

 - 1 s(1 ) ( )
xK

T T

T TT s T

w
ww
 

    
 (21) 

where x indicates current (i) or voltage (v); Tx is the time 
constant of low-pass filters for the voltage or current signals.  
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Fig. 3 The wideband dq-frame small-signal model of the VSG I. 

Besides, the low-pass filters can lead to a phase deviation () 
between the PCC voltage and the sampling voltage, which can 
be ignored if the cut-off frequency is large. T3 is defined as: 

 
cos( ) sin( )

sin( ) cos( )

 
 

 
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 

3T   (22) 

The control delay and sampling filters not only enhance the 
coupling in the dq frame but also lead to the difference 
betweensteady-state values of the system and the controlled dq 
frame. When the switching frequency and the cut-off frequency 
of the low-pass filter is high, the difference can be ignored. 

Gdc1 represents the dc-link voltage controller of the VSG I, 
which is denoted by a two-by-one transfer matrix: 

 
T*

1 pu1 iu1 dc( / s) 0dcG k k u      (23) 

Adding small-signal disturbances to active power controllers 
of the VSG I yields:  
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where FPQ and M are defined as follows: 
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Especially, the derivations of (24) and (35) are shown in 
Appendix A. By doing linearization to (5) and eliminating the 
steady-state values, it yields: 

 

c c
d d

c c
q q

=
i uP

Q i u

     
              

i u
PQ PQF F  (27) 

where FPQ
u and FPQ

i are defined as follows: 

 d0 q0

q0 d0

3

2

I I

I I

 
   

i
PQF  (28) 

 d0 q0

q0 d0

3

2

U U

U U

 
   

u
PQF  (29) 

Besides, F1 used for the matrix transformation is defined as: 

 
0 1

0 0

 
  
 

1F  (30) 

Guc and Gic represent the voltage controller matrix and the 
current controller matrix, respectively, which are expressed as: 

 
1

v v n v

n v v v

L s R L

L L s R

w
w

 
    

ucG   (31) 

 pi ii
i

pi ii

/ 0

0 /

k k s

k k s

 
   

cG   (32) 

According to (8), (9), (14)-(16), (24), (27), the voltage and 
current loops (Guc, Gic), the dc-link voltage loop (Gdc1), the 
control delay (Gdel), sampling filters (T3, Kx) and the 
transformation matrix (F1), the dq-frame small-signal model of 
the VSG I is shown in Fig. 3. From Fig. 3, the dq-frame 
impedance model of the VSG I is derived as: 

  
    

   
  -1=

-1i -1
vsg1 PQ x del 1 ic uc 1 x 1 1 x

u -1
PQ x dc 1 del 1 ic 1 x L 3 1

-1
del d1 1 ic i1 uc v1 uc 1 v1 PQ

dc 2 4 3 2

Z = B - AF K + G T G G T K + F MT K

A F K + G G - G T G T K - B Z - G G

A = G G + T G G + G G + G F MG - I F

B I - AG G G + G G

 








 

(33) 
where I is the 22 unity matrix. 

When the dc-link voltage controller is ignored, the 
impedance model (Zvsg) is obtained from (33) by setting Gdc, G3, 
G2, and G1 to be zero.  

    
  

-1
= - -

        

i -1
vsg 4 PQ x del 1 ic uc 1 1 1 x

u -1
4 PQ 4 del 1 ic 1 x L

Z G AF K G T G G T - F MT K I

-G AF +G G T G T K + Z



(34) 

D. Wideband dq-Frame Impedance Model of the VSG II 

Adding the small-signals disturbance to the active and 
reactive power controllers of the VSG II yields: 

 

c
d

2 dcc
m q

uP
u

E Q u

q      
               

PQ dcF M G  (35) 

where Gdc2 is defined as 

 pu2 iu2
2

( / ) /

0

k k s s  
  
 

dcG   (36) 

Expect for (35), the small-signal models of the VSG II are 
the same as that of the VSG I. According to (8), (9), (14)-(16), 
(27), (35), the AC voltage and current loops (Guc, Gic), the dc-
link voltage loop (Gdc2), the control delay (Gdel), sampling 
filters (T3, Kx) and the transformation matrix (F1), the dq-frame 
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Fig. 4 The wideband dq-frame small-signal model of the VSG II. 
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small-signal model of the VSG II is shown in Fig. 4. From Fig. 
4, the dq-frame impedance model of the VSG II is derived as: 

  
    
  

-1-1

-1 -1

-1

= - + +

+ - - -

=

i
vsg2 PQ x del 1 ic uc 1 x 1 1 x

u
PQ x PQ dc 1 del 1 ic 1 x L 3 1

-1
PQ dc 2 4 3 2

Z C AF K G T G G T K F MT K

A F K F G G G T G T K C Z G G

C I - AF G G G + G G

 






 

(37) 

E. Verification and Comparative Analysis of dq-Frame 
Impedances of the VSGs and VSI. 

TABLE I 

SYSTEM PARAMETERS OF THE VSG I AND VSG II 

Symbol Value Symbol Value 
Udc 700 V Lv 3mH 
Vg 220 V Rv 0.25 
Lf 3mH Dq 321 
Rf 0.0012 K 7.1 
wn 100 Dp 4.14 
wic 4000(rad/s) H 0.01 kg.m2 
wvc 4000(rad/s) kpu1 0.4052 
Cdc 5 mF kiu1 2.93 
f0 50Hz kpu2 0.08 

P* 10kW kiu2 1 
Q* 0 kii2 0.0395 
fs 20kHz kpi2 0.158 

In Table I, the parameter design of the VSG I refers to [35]. 
Expect for the dc-link voltage controller parameters, the system 
parameters of the VSG II is the same as the VSG I. Besides, 
both the bandwidths of the DC-link voltage loop of the VSG I 
and VSG II are set as 10 Hz. To verify the impedance models 
of the VSGs, the impedance measurements are carried out on 
the MATLAB/SIMULINK. The impact caused by the 
measured PLL needs to be considered when the impedance 
measurement is implemented [33]-[34]. Fig. 5(a)-(c) shows that 
the theoretical models and measured results are consistent. For 
comparative analysis, Fig. 5(d) shows the dq-frame impedance 
of the VSI (Zvsi), considering the symmetric PLL [3], the dc-
link voltage controller, etc. The control method and the 
theoretical model of the VSI are given in Appendix B. The 
comparisons between the VSGs and the VSI are shown below.  

1) Comparing Fig. 5(b) (c) with Fig. 5(a), it is found that the 
impedance of the VSG without the dc-link voltage controller 
(Zvsg) behaves as an inductor in the middle and high-frequency 
range. Besides, there is no negative resistor behavior in the low-
frequency range. However, both q-q channel impedances of the 
VSG I and VSG II behave as negative resistors with a V-type 
magnitude in the low-frequency range, caused by the dc-link 
voltage controllers. Besides, both q-d channel impedances of 
VSG I and VSG II are larger than that of the VSG. It means that 
the dc-link voltage controllers enhance the d-q channel 
coupling of both VSGs.  

2) Comparing Fig. 5(b) (c) with Fig. 5(d), the main 
difference between impedances of the VSGs and the VSI is that 
in the middle- and high- frequency range, the VSGs behave as 
the inductors, while Zvsi has resonance peaks. The resonance 
peak is caused by the voltage feedforward and dc-link voltage 
controller, which might lead to high-frequency oscillations. 
Fortunately, the VSGs can completely avoid the high-frequency 
oscillations in the weak grid. 

IV. COMPARISON BETWEEN STABILITY ANALYSES OF THE 

VSGS WITH DIFFERENT DC-LINK VOLTAGE CONTROLLERS  

The weakness of the grid is distinguished by the short circuit 
ratio (SCR), which is defined as follows: 

 SC

N
SCR

S

S
  (38) 

where SSC is the short-circuit capacity at the point of common 
coupling (PCC), and SN is the rated capacity of the grid-
connected equipment. 

The grid inductance will affect the SCR. Generally, a grid is 
considered strong for SCR above 20–25, weak for SCR below 
6–10, and ultraweak for SCR below 2 [37]-[38]. 

The generalized Nyquist criterion (GNC) is applied to the 
ratio between the grid impedance and the impedance of the 
VSG to analyze the system stability, which is given by 
 1( )=L s 

g vsgZ Z   (39) 

The GNC shows the system is stable if and only if the net 
sum of anticlockwise encirclement of the critical point (-1, j0) 
by the set of characteristic loci of L(s) equals to the total number 
of right-half plane poles of Zg and Zvsg

-1. The admittance of the 
VSG does not have the right half-plane poles. Thus, the system 
is stable when the Nyquist curve of each characteristic root does 
not encircle (-1, j0). The eigenvalues are given as 

 2
1 2 dd qq dd qq qd dq(s) ( ) 4 ) / 2(L L L L L L    ，  (40) 

The frequency where 1(s) or 2(s) intersects the unit circle is 
the predictive oscillation frequency of the system in the dq 
frame. The position where 1(s) or 2(s) intersects the unit circle 
determines the phase margin of the system. 

Case I: The proportional gain, integral gain, and H are 
changed when SCR=5.8. Comparing Fig. 6 (a) with Fig. 6 (c), 
the phase margins of both VSGs are maximized when the PI 
gains and the virtual inertia (H) are selected to be the minimum 
values. The main difference is that the virtual inertia seriously 
narrows the selected range of PI gains of the VSG I. In contrast, 
the virtual inertia has less impact on the selected range of PI 
gains of the VSG II. With a small dc capacitor, the VSGs are 
difficult to keep stable unless the virtual inertia is very small. 
Thus, it would again compromise the capability to provide 
virtual inertia for the ac system [36]. Besides, the large inertia 
leads to a slow response of the power loop. Since the dc-link 
voltage controller of the VSG I is cascaded with the power loop, 
the bandwidth of the dc voltage controller of the VSG I has to 
be significantly lower than the bandwidth of the power loop. 
Thus, the PI gains of the VSG I should be decreasing while the 
virtual inertia is increasing. However, since the dc-link voltage 
controller of the VSG II is not cascaded with the power loop, 
the virtual inertia does not obviously limit the bandwidth of the 
dc-link voltage controller. 

Fig. 6(b) shows that kpu1 has the greatest impact on the cut-
off frequency (COF) from 3 Hz to 9Hz, which indicates that the 
VSG I may induce oscillations of 3Hz-9Hz in the dq frame and 
the oscillations of 41-47Hz and 53-59Hz in the abc frame. Fig. 
6(d) shows that kpu2 has the greatest impact on the cut-off 
frequency (COF) from 2 Hz to 14Hz, which indicates that the 
VSG II may induce oscillations of 2-14Hz in the dq frame and 
the oscillations of 36Hz-48Hz and 52-64 Hz in the abc frame. 
Moreover, Fig. 6 shows that the H has little impact on the VSG 
II, while the H has significant effects on the PM of the VSG I. 
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Fig. 6 Phase margin and the cut-off frequency of Zg/Zvsg in case I (a) PM of 
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Fig. 7 Phase margin and the cut-off frequency of Zg/Zvsg in case II. (a) PM of 
Zg/Zvsg1; (b) COF of Zg/Zvsg1; (c) PM of Zg/Zvsg2; (d) COF of Zg/Zvsg2. 

Case II: The SCR and Lv are changed when the other 
parameters are fixed. Comparing Fig. 7 (a) with Fig. 7 (c), 
both PMs of the VSGs in two cases decrease with the SCR 
decreasing. Interestingly, a smaller Lv leads to a larger PM of 
both VSGs in two cases, thereby indicating that a smaller Lv 
needs to be designed to make the VSG more stable in the weak 
grid. Comparing Fig. 7 (b) with Fig. 7 (d), both COFs of VSGs 
are rising with increasing the SCR and decreasing the Lv. It is 
noticed that the COF of the VSG II ranges from 2 Hz to 7 Hz, 
while the COF of the VSG I ranges from 4Hz to 9 Hz. 

Fig. 8 shows the simulation current (Id) corresponding to Fig. 
7. The VSG I is stable when the SCR=3 and Lv=1mH. The 
oscillation occurs at 5.5Hz in the dq frame of the VSG I when  
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Fig. 8 Simulation current Id of the VSGs in case II. 

SCR=3 and Lv=6mH. It verifies the stability analyses of Fig. 7 
(a) (b). The VSG II is stable when the SCR=3 and Lv=1mH. 
The oscillation occurs at 3.3Hz in the dq frame of the VSG II 
when the SCR=3 and Lv=6mH. The simulations in Fig. 8 
verify the stability analyses in Fig. 7. 

V. EXPERIMENTAL RESULTS 

To verify the dq-frame impedance models, the VSG is 
measured on the experimental platform as Fig. 9. The control 
system of the VSG is implemented in the DSP+FPGA. 
Specifically, the DSP TMS320F2812 is used to realize the 
control algorithm, and the FPGA EP2C8Q208CN is used to 
acquire current and voltage signals and transmit data to the DSP. 
Meanwhile, the high-speed A/D chip ADS8556 is used for 
sampling current and voltage signals. Besides, the experimental 
platform is composed of the impedance measurement 
equipment, the current source, the VSG, and the utility grid. 
The impedance measurement equipment is mainly composed of 
the perturbance injection unit, signals sampling units, and 
industrial personal computer (IPC). Firstly, the IPC is used to 
control the signals of the voltage amplitude, the phase, and the 
frequency of the perturbance injection unit. Then the series 
voltage disturbances are added to the VSG I. Afterwards, the 
sampling units obtain the voltage and current signals and send 
them to the IPC. Finally, the IPC calculates the impedances. 

Fig. 10 shows the experimental results of the impedance 
measurement of the VSG I. The measured results are in good 
agreement with the theoretical model of the VSG I, which 
verifies the wideband impedance model of the VSG I. 

380V/100kVA Wideband 
impedance measurement 

equipment

Grid-tie VSG

Current source
 

Fig. 9 Experimental platform. 
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Fig. 10 Experimental results of the VSG I. 

Furthermore, the experimental prototype of VSGs in two 
cases is built in the weak grid to verify the stability analyses 
presented in the previous sections. The weak grid is emulated 
by the utility grid in series with the line inductance. Fig. 11 (a) 
and (b) show that the VSG I becomes unstable when kiu1 

increases from 0.5 to 2.2 or H increases from 0.01 to 0.03. Fig. 
11 (d) shows that the VSG II becomes unstable when kiu2 
increases from 0.5 to 2. Fig. 11 (e) shows that the VSG II is still 

stable when H increases from 0.01 to 0.03. The results in Fig. 
11 (a), (b), (d), and (e) verify the stability analyses of Fig. 6.  

Comparing Fig. 11 (c) with (a), the VSG I becomes stable 
when only the Lv changes from 3mH to 1mH. Comparing Fig. 
11 (f) with (d), the VSG II also becomes stable when only the 
Lv changes from 3mH to 1mH. Comparing Fig. 11 (g) (h) with 
(a) (d), both the VSGs in two cases become stable when only 
the SCR changes from 5.8 to 12. The results in Fig. 11 also 
verify the stability analyses in Fig. 7. 

VI. CONCLUSION 

Based on the GNC, the stability analyses of the VSGs with 
different dc-link voltage controllers were studied and compared, 
and the three conclusions were drawn as follows:  

1) The wideband dq-frame impedance models of the VSGs 
were built by considering the two different dc-link voltage 
controllers. Both proposed models were very accurate, as 
verified by the experimental results.  

2) Both q-q channel impedances of the VSG I and VSG II 
behave as negative resistors with a V-type magnitude in the 
low-frequency range, caused by the dc-link voltage controllers. 
Thus, it induces subsynchronous oscillations of the system in 
the weak grid. Both VSGs are most stable in the weak grid when 
the PI gains and the virtual inertia are selected to be the 
minimum values. Besides, the decrease of the virtual stator 
inductor can enhance the system stability for both VSGs when 
the SCR is small. 

3) The main difference is that the virtual inertia seriously 
narrows the selected range of PI gains of the VSG I. In contrast, 
the virtual inertia has fewer impacts on the selected range of PI 
gains of the VSG II. 
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Fig. 11 Experimental waveforms of VSGs (a) VSGI, SCR=5.8, kpu1=0.1, H=0.01, Lv=3mH (b) VSGI, SCR=5.8, kpu1=0.4052, kiu1=2.93, Lv=3mH (c) VSGI, SCR=5.8, 
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APPENDIX  

A. Derivations of (24) and (35) 

To order to make Fig.3 and Fig. 4 easy to understand, the 
small-signal derivation of (24) and (35) are given below. 

Based on (2), the small-signal model can be expressed as: 

 
c

q d
m =

D u Q
E

Ks

   
  (41) 

From Fig. 2 (a), the active power loop of the VSG I is given 
as follows: 

 
*

n
p n

1
= ( )

s (2 )

P P

Hs D
q w

w





 (42) 

According to (41), the small-signal model can be derived as: 
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According to (40) and (42), [q Em]T can be obtained as: 
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(44) 
According to the definition of FPQ and M, (24) equals (44). 
From Fig. 2 (b), the active power loop of VSG II is given as: 
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According to (45), the small-signal model can be derived as 
follows: 
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According to (41) and (46), [q Em] can be obtained as: 
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 (47) 

Based on the definition of FPQ, M, and Gdc2, (35) equals (47). 

B. the dq-Frame Impedance Model of the VSI 

Fig. 12 shows that the control of the VSI has the symmetric 
PLL [3], the current loop, the dc-link voltage controller, and the 
voltage feedforward with the low-pass filters [24], where V1 is 
the steady-state PCC voltage aligned to the d-axis. 

TABLE II 
SYSTEM PARAMETERS OF THE VSI 

Symbol Description Value 

kp1 Proportional gain of VSI current controller 0.046 
ki1 Integrator gain of VSI current controller 0.1842 

kpu1 Proportional gain of VSI voltage controller 1.8 
kiu1 Integrator gain of VSI voltage controller  210 
kppll Proportional gain of PLL 0.2529 
kipll Integrator gain of PLL 10.9988 
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Fig. 12 The control of the VSI. 

Based on the small-signal model of the control parts and the 
main circuits, the dq-frame impedance of the VSI is derived as: 
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