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Abstract—Virtual Synchronous Machines (VSMs)-based 
high voltage DC (HVDC) systems enhance the inertia of the 
power system. However, the dynamic interactions between 
the VSM-based rectifier station, the inverter station, and the 
grid could induce the system oscillation, which has been 
investigated in this paper. At first, the hybrid AC/DC 
impedance models of the VSMs considering the coupling 
between the AC and DC dynamics are established. Then, 
the relationships between the DC impedance, dq-frame 
impedance, and the hybrid AC/DC impedance are presented. 
It is found that the DC impedance of the VSM-based inverter 
station and the d-d channel impedance of the dq-frame 
impedance of the rectifier station behave as negative 
resistors in the low-frequency range. Moreover, a five-
dimension impedance stability criterion based on the 
hybrid AC/DC impedance and generalized inverse Nyquist 
criterion is proposed to assess the system stability. The 
analysis results show that the low-frequency oscillation 
occurs when the grid SCR of the rectifier station is small. 
Finally, the simulation and experimental results verify the 
impedance models and the stability criterion. 

 
Index Terms—Impedance stability criterion; Virtual 

synchronous machine; VSC-HVDC system; Hybrid AC/DC 
impedance model 

NOMENCLATURE 

Lf (Lf1)  Filter inductor of the HVDC rectifier (inverter) 

Rf (Rf1)  Parasitic resistance of Lf (Lf1) 

Udc (Udc1)  DC-link voltages of HVDC rectifier (inverter) 

Cdc  DC-link capacitor of HVDC rectifier or inverter 

Ldc (Rdc)  DC-link line inductor (resistor)  

uabc  Three-phase voltages at PCC 

u u  The -frame voltage of uabc 

iabc1  Input current of the HVDC rectifier 

iabc  Output current of the HVDC inverter 

eabc  Internal electric potential of VSM 

ic (vc)   Cutoff angular frequency of LPF of current 

sampling (voltage sampling) 

f0 (fs)  Fundamental (switch) frequency 

Td  Control delay of VSM 

J  Virtual inertia of VSM  

Dq(Dp)  Reactive (Active) damping coefficient of VSM 

Ki  Inertia gain of the reactive power loop of VSM 

Lv (Rv)  Virtual inductor (resistor) of VSM 

  Phase angle of the VSM 

kpu (kiu)  Proportional (integral) gain of voltage 

controllers of VSM  

kpi1 (kru)  Proportional (Resonance) gain of current 

controllers of VSM  

ωn  Rated angular frequency of the grid

ωv  Angular frequency of the VSM

r  Cutoff frequency of PR controller 

  Phase difference between the VSM and the PCC 

0  Steady-state value of the  

Dd0 (Dq0)   Steady-state values of duty ratio 

Ud0 (Uq0)  Steady-state values of voltages 

Id0 (Iq0)  Steady-state values of currents 

Udc0  Steady-state value of dc-link voltage of the VSM 

Em  Output voltage magnitude of VSM 

um  Voltage magnitude of the PCC 

SCRi (SCRr) Short circuit ratio at the inverter (rectifier) side  

I. INTRODUCTION 

OLTAGE source converter (VSC)-based high voltage DC 
(HVDC) systems have been generally utilized as 

transmission media to transfer power over a long distance [1]-
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[2]. Due to the lack of inertia, the application of large quantities 
of the VSC-HVDC links changes the characteristics and 
threatens the stable operation of the power grid dominated by 
synchronous generators (SGs). Thus, the virtual synchronous 
machine (VSM)-based HVDC [3]-[6] system, which enables 
the rectifier station and the inverter station to simultaneously 
simulate the dynamic characteristics of synchronous generator, 
has been generally studied to provide the inertia and damping 
for the power system. It can be connected to the power grid 
friendly. However, the interactions between the VSM-based 
rectifier station, the inverter station, and the grid could cause 
the system oscillation, which needs to be further explored.  

There are several tools widely used for the small-signal 
stability analysis of the HVDC system: the damping torque 
analysis method [6]-[7], the time-domain state-space method 
[8], and the impedance-based method [9]-[26]. The first and 
second methods need full knowledge of the hardware and 
control design of the converter, which are difficult to obtain due 
to commercial secrecy. By contrast, the impedance that can be 
measured is more suitable for stability analysis. 

The impedance-based analysis methods can be divided into 
three categories: the DC impedance-based method [9]-[14], the 
AC impedance-based method [16]-[10], and the hybrid AC/DC 
impedance-based method [21]-[23]. Their common principle is 
to divide the system into two independent subsystems 
according to the source and load parts, and then apply the 
Nyquist stability criterion to the impedance ratio of the two 
subsystems. The DC impedance-based method is proposed in 
[9] for the first time to investigate the interactions of DC 
systems. Then, it is further utilized in the VSC-HVDC system 
[10]-[13]. Afterward, the detailed DC impedances of the VSC-
HVDC system are developed with considering the control 
modes, and the phase-locked loop (PLL) [12], [14], etc. 
However, to the author's knowledge, the DC impedance 
modeling of the VSM-HVDC system has not been reported. 

Originated from DC impedances, the AC impedance-based 
method has been extensively researched for power electronic 
converters-based systems. They are systematically classified 
based on the different frames, including the sequence 
impedance [15], the dq-frame impedance [16], the frame, 
etc. The dq-frame impedance [17] and the sequence impedance 
[18] are the most widely used for the VSC-HVDC system. They 
are essentially the same after considering the frequency 
coupling. For example, based on sequence impedances, studies 
in [18] show that the VSM without inner loops behaves 
inductive and can run stably in a weak grid. Based on dq-frame 
impedances, the subsynchronous oscillation of the VSM with 
the DC voltage loop and inner loops is studied in [19]. However, 
the DC dynamics effects exerting on AC impedances remain 
unknown when the VSC-HVDC system operates as VSMs. 

The above stability analyses ignore the coupling between the 
AC and DC dynamics, and the stability analysis of the VSC-
HVDC system by using the DC or AC impedance is difficult to 
deal with the right half-plane (RHP) poles. To solve these issues, 
the hybrid AC/DC impedance is first proposed in [21], and the 
promising stability criteria of the VSC-HVDC system based on 
the hybrid AC/DC impedance are proposed in [21]-[24]. A 
stability analysis method of the modular multilevel converter 
(MMC)-HVDC systems for the wind farm integration based on 
the three-by-three ratio matrix is proposed in [22], but the RHP 

poles of the DC impedance of grid-side MMC is still difficult 
to deal with. Thus, a six-dimension stability criterion is 
proposed in [23] to solve the issues of the RHP poles. However, 
the calculation of the six characteristic loci is quite complicated. 
Besides, the hybrid AC/DC impedance model in [23] contains 
no DC-link capacitor filters. If the DC-link capacitor filters are 
considered in the modeling, the stability criterion is unavailable 
because (47) in [23] has no inverse transformation. 

To address the aforementioned issues, this paper investigates 
the stability of the VSM-based HVDC system by using the 
hybrid AC/DC impedances and the proposed five-dimension 
impedance stability criterion. The main contributions are: 

1) The hybrid AC/DC impedance models of the VSM-based 
rectifier station and inverter station are established and verified. 

2) The DC and dq-frame impedance models of VSMs are 
established based on the hybrid AC/DC impedance models, and 
their impedance characteristics are compared. 

3) The five-dimension impedance stability criterion based on 
the hybrid AC/DC impedance models and the generalized 
inverse Nyquist criterion (GINC) is proposed to analyze the 
stability of the VSM-based HVDC systems, and the low-
frequency oscillation of the system is revealed. 

The rest of the paper is organized as follows: Section II 
presents the description of the HVDC system based on VSMs. 
Section III establishes the hybrid AC/DC impedance models of 
the VSMs. Section IV presents the transformation between the 
hybrid AC/DC impedance, dq-frame impedance, and DC 
impedance. Section V contains the proposed five-dimension 
impedance stability criterion, the stability analysis, and the 
experimental results. Section VI presents the brief conclusions. 

II. SYSTEM DESCRIPTION 

Figure 1(a) illustrates the VSMs-based VSC-HVDC systems, 
where variables with an asterisk (*) correspond to reference 
signals. The system parameters of the rectifier station and 
inverter station are the same, as shown in Table I of section IV. 
Since this paper focuses on the control method effects exerting 
on the system stability, a two-level VSC-HVDC system is 
investigated. One key feature of VSMs is that the rotor swing 
equation is used for the synchronization and inertia emulation 
so that the converter can share similar dynamics to SGs [6]. The 
reactive power controller simulates primary voltage regulations 
of synchronous machines, and the active power controller 
emulates the inertia and primary frequency regulation of 
synchronous machines: 

 
*

n v
p n

=
( )

P P

Js D
 







 (1) 

 
* *

m q d d( ( ) ) / ( )E D u u Q Q Ks     (2) 

The ac voltage controllers of the VSM adopt the virtual 
impedance to emulate the electrical part of synchronous 
machines [27], and Lv and Rv are the virtual resistor and 
inductor, respectively. Besides, the current controllers adopt PR 
regulators in the  frame. 

The only difference between the VSM rectifier and inverter 
is the dc-link voltage controller: 

 
*

dc dc dc pu iu= ( ) ( + / )P u u u k k s    (3) 

The output voltage magnitude (um), the active power (P), and  
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(b) 

Fig. 1 VSC-HVDC systems based on the VSMs. (a) Typical circuit diagram and control; (b) Equivalent circuit model. 
the reactive power (Q) of the VSM are expressed as follows: 

 

2 2
m α β

α α β β

α β β α

3
( )

2
3

( )
2

u u u

P u i u i

Q u i u i


 


  



 

 (4) 

Figure 1(b) illustrates the equivalent circuit model of the 
VSC-HVDC system, where DC impedances of the rectifier and 
inverter (Zdcrec, Zdcinv), dq-frame impedances of the rectifier and 
inverter (Zdqrec, Zdqinv), and the hybrid AC/DC impedances of 
the rectifier and inverter (Zvsm_rec, Zvsm_inv) will be used later. 

III. HYBRID AC/DC IMPEDANCE MODELING OF THE VSMS 

A. Small-Signal Model of Main Circuit  

The main circuit of the converter as shown in Fig. 1(a) can 
be modeled as follows: 

 

d
f n f q d f d dc d

q
f n f d q f q dc q

dc
dc d d q q dc

/ 2

/ 2

3
( )

4

di
L L i i R d u u

dt
di

L L i i R d u u
dt
du

C d i d i i
dt





    



   



   


 (5) 

The small-signal model of (5) can be expressed as follows: 

 d0 d d ddc dc0

q0 q q q2 2

D d u iu U
D d u i

D D D       D
         D D D       

lZ  (6) 

d d dc
dc d0 q0 d0 q0

q qdc dc

3
[  ] [  ]

4

i d i
u D D I I

i dC s C s

 D D    D
D         D D    

 (7) 

where “D” denotes the small-signal perturbation of a variable. 

The small-signal model of the main circuit by embedding (7) 
into (6) can be re-written as follows: 

 d d d
dc

q q q
1 2 3

u i d
i

u i d

D D D     
    D     D D D     

G G G  (8) 

where G1, G2, and G3 can be represented as follows: 
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
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G Z

G

G

 (9) 

Finally, the small-signal model of the main circuit according 
to (7) and (8) is expressed as follows: 

 
d dd

1
q qq
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=

0
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i ud
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
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F F  (10) 

where F1 and F2 are represented as follows: 

 
q0d0

dc dc dc

                  

33 1

4 4
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 q0d0

dc dc

                      

33
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II
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 
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G
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B. Hybrid AC/DC Impedance Modeling of the VSM 

The controllers, the control delay, and voltage and current 
sampling filters, which are all in static coordinates, need to be 
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transformed to the synchronous frame. Assuming that the 
transfer function in static coordinates is H1(s), the expression 
converted to a dq frame is given as follows [29]:  

 

1 n 1 n

( )1

( )2

( )  ( )

dq

A B j A B

j A B A B

A H s j B H s j 

    
     

    

H
 (13) 

The three by three matrix of the control delay based on (13) 
and the Euler formula is obtained as follows: 

 d

n d n d

n d n d

cos( ) sin( ) 0
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Similarly, the first-order low-pass filters for voltage or 
current signals are expressed as follows:  
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Besides, the current controller can be expressed as follows: 
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In addition, the equivalent three-by-three matrix of the 
voltage controller is derived as follows:  
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Z
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where Zlv is the dq impedance of the virtual inductor. 
As shown in Fig. 2, Gdc representing the dc-link voltage 

controller is denoted by a three-by-three transfer matrix: 
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Add the dq-frame small-signal disturbances to active and  

reactive power controllers: 
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uE Q
Ks
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 
 

   DD  D                DD   D       
 

  (19) 

Then, FPQ and M are defined as follows: 
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 
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  

M  (21) 

Adding the dq-frame small-signal disturbances to the 
instantaneous active and reactive power calculation, Fi and Fu 
are defined as follows: 
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The dq-frame command voltage is expressed as follows: 
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  (24) 

Add the dq-frame small-signal disturbances to (24) and 
eliminate the steady-state value and the secondary disturbance: 

 
d m 0 0 m

q m 0 0

sin( ) cos( )

cos( ) sin( )
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 (25) 

Then, T1 is defined as follows: 
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The relationship between the input voltage and the output 
current can be expressed as follows: 
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Fig. 2 The wideband dq-frame small-signal model of the VSM. 
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Solving the equations represented by Fig. 2, the hybrid 
AC/DC impedance of the VSM rectifier is derived as follows: 

    
  

1

vsm_rec

-

2 del ic uc 1 PQ u dc x

1 2 del ic uc 1 PQ i x

    

Z =

F G G G I T M F F G K I

F + F G G I + G T F F K

    (28) 

The hybrid AC/DC impedance model of the VSM-based 
inverter by removing Gdc of (28) is derived as follows: 

   
  

1-

vsm_vsi 2 del ic uc 1 PQ u x

1 2 del ic uc 1 PQ i x

   Z = F G G G I T M F F K I

F + F G G I +G T F F K
 (29) 

IV. IMPEDANCE COMPARATIVE ANALYSIS OF VSM-BASED 

RECTIFIER STATION AND VSM-BASED INVERTER STATION 

A. Verification and Characteristics Analysis of Hybrid 
AC/DC Impedance Model of VSMs 

The impedance measurement is the most direct way to verify 
the impedance models. The simulation measurement results are 
obtained by MATLAB/Simulink, and the experimental results 
are obtained by RT_LAB. The measurement method is given in 
Appendix. When the impedance measurements are carried out 
by RT_LAB, the serious disturbance voltages adopt ideal 
voltage sources, and only the controllers of the HVDC system 
are real. The parameter design of VSMs refers to [4], as shown 
in Table I. The bandwidth of the current loop, the dc voltage 
loop, and the synchronization loop are set as 230 Hz, 8Hz, and 
16 Hz, respectively. The simulation and experimental 
measurement results verify the impedance models (Fig. 3 and 
Fig. 4). Besides, the impedance characteristics of the VSM-
based rectifier and inverter are compared as follows: 

1) There exists AC/DC coupling in both Zvsm_rec and Zvsm_inv 

especially when the dc-link capacitor is small, and the AC/DC  
TABLE I 

SYSTEM PARAMETERS OF THE INVERTER STATION 

Symbol Description Value 

Udc DC-link voltage 100 kV 
Ug Grid voltage 90 kV 
Lg1 Grid-side inductor of the rectifier station 5 mH 
Lg2 Grid-side inductor of the inverter station 5 mH 
Sn Rated capacity 200 MVA 

Ldc Inductance of the DC Line 7.9 mH 
Rdc Resistance of the DC line 0.6950  
ic Cut-off frequency of sampling filter 10 kHz 
vc Cut-off frequency of voltage sampling 10 kHz 
Cdc DC-link capacitor of the VSM 5 mF 
f0 Grid frequency 50 Hz 
fs Switch frequency 2 kHz 
Jr Virtual moment of inertia of rectifier 1089.8 kg.m2 

Dpr Active damping coefficient of rectifier 326930 
Lv Virtual inductance 5 mH 
Rv Virtual resistance 0. 2  
K Integral coefficient 14286 
Ji Virtual moment of inertia of the rectifier 5000 kg.m2 

Dpi Active damping gain of the rectifier 254650 
Dq Reactive damping gain 325 
kpu Proportional gain of voltage controller 91.5 
kiu Integrator gain of voltage controller 288 
kp Proportional gain of current controller 4.6250e-05 
r Cutoff frequency of PR controller 6p 
kr Resonance gain of current controller 0.001 
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Fig. 3 Hybrid AC/DC impedance of the VSM-based rectifier. 
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Fig. 4 Hybrid AC/DC impedance of the VSM-based inverter. 
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coupling of Zvsm_rec is stronger than that of Zvsm_inv in the low-
frequency range. It implies that dc-link voltage controllers 
enhance the AC/DC coupling of the VSMs. Besides, increasing 
the dc-link capacitor can weaken the coupling. 

2) Zdd of the VSM-based rectifier station behaves as a 
negative resistor, and its impedance magnitude is V-shaped in 
the low-frequency range. Besides, Zqq of the VSM-based 
inverter also behaves as a negative resistor below 2Hz.  

B. The Relationship between the Hybrid AC/DC 
Impedance, DQ-Frame Impedance, and DC Impedance  

Both the DC impedance and dq-frame impedance can be 
obtained from the hybrid AC/DC impedance. The hybrid 
AC/DC impedance of the converter is given by: 

 
d dd dq ddc d

q qd qq qdc q

dc dcd dcq dc dc

u Z Z Z i

u Z Z Z i

u Z Z Z i

 D D   
    D  D    
    D D    

 (30) 

The grid-side small-signal dynamics are expressed as 

 d d

q q
g

u i

u i

D D   
    D D   

Z  (31) 

Embedding (30) and (31), the relationship between the DC 
impedance and the hybrid AC/DC impedance is 

 dd dq ddc1
dcn dcd dcq g dc

qd qq qdc

(Z )
Z Z Z

Z Z Z Z
Z Z Z

   
        

   
 (32) 

The DC-side small-signal dynamic in the latter stage is 
 dc dcn1 dcZu iD   D  (33) 

where Zdcn1 is the DC impedance of the later-stage converter. 
Based on (30) and (33), the relationship between the dq-

frame impedance and the hybrid AC/DC impedance is  

 
dd dq ddc dcd ddc dcq

qd qq qdc dcd qdc dcqdc dcn1

1
DQ

Z Z Z Z Z Z

Z Z Z Z Z ZZ Z

   
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      
Z  (34) 

C. Comparative Analysis of DQ-Frame Impedances  

The dq-frame impedance of the VSM-based rectifier station 
according to (28) and (34) is expressed as follows: 

ddr dqr ddcr dcdr ddcr dcqr

qdr qqr qdcr dcdr qdcr dcqrdcr ldcinv i

Z1
= -

+
Z

Z Z Z Z Z

Z Z Z Z ZZ Z ZZ

   
   

      
dqrec

(35) 
The dq-frame impedance of the VSM-based inverter station 

according to (29) and (34) is expressed as follows: 

ddi dqi ddci dcdi ddci dcqi

qdi qqi qdci dcdi qdci dcqidci lidcrec

1
= -

+dqinv

Z Z Z Z Z Z

Z Z Z ZZ Z ZZ Z

   
   

      
Z

(36) 
Zdqrec1 denotes the dq-frame impedance of the VSM-based 

rectifier regarding the dc side as a constant resistor. Zdqinv1 
denotes the dq-frame impedance of the VSM-based inverter 
regarding the dc side as a constant value. The sweep results 
verify the accuracy of the theoretical Zdqrec and Zdqinv (Fig. 5 
and Fig. 6). Figure 5 shows that the dc-link dynamics of the 
inverter station have great impacts on the dq-frame impedance 
of the rectifier station in the low-frequency range. Figure 6 
shows that the dc-link dynamics of the rectifier also have 
impacts on the dq-frame impedance of the inverter especially 
when the dc-link capacitor is small. 
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Fig. 5 The dq-frame impedance of the VSM-based rectifier station. 
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Fig. 6 The dq-frame impedance of the VSM-based inverter station. 

D. Comparative Analysis of DC Impedances 
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Fig. 7 DC impedance of the VSM-based rectifier station and inverter station.
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TABLE II 
IMPEDANCE COMPARISON OF THE VSM RECTIFIER AND VSM INVERTER: DC IMPEDANCE, DQ IMPEDANCE, AND HYBRID AC/DC IMPEDANCE 

 
DC impedance  

VSM Rectifier          VSM Inverter 
DQ impedance 

VSM Rectifier           VSM Inverter 
Hybrid AC/DC impedance  

VSM Inverter         VSM Inverter 

Dimension 1 1 2 2 3 3 
Behave negative resistors in 

the low-frequency range 
Yes No Zdd  Zqq Zddr Zqqi and Zdci 

If influenced by the AC grid Yes Yes Yes Yes No No 
If influenced by the other 

converter 
Yes Yes Yes Yes No No 

If possibly contain RHP poles Yes Yes Yes Yes No No 

Zdcrec that denotes the DC impedance of the VSM-based 
rectifier station is obtained according to (28) and (34). Zdcinv that 
denotes the DC impedance of the VSM-based inverter station is 
obtained according to (29) and (34). The measurement results 
are consistent with the theoretical models, which verifies the 
accuracy of the models (Fig. 7). 

Zdcinv shows negative resistance characteristics and is easy to 
intersect with Zdcrec in the low-frequency range. It means that 
the low-frequency oscillation could occur due to the DC-side 
interaction between the VSM-based rectifier station and the 
inverter station. As compared in Table II, the DC impedance of 
the converter contains the information of the grid, and the dq-
frame impedance contains the information of the converter in 
the later stage. By comparison, the hybrid AC/DC impedance 
only includes the information of the converter. Thus, the 
stability analysis based on the DC or dq-frame impedances 
needs to calculate RHP poles or zeros that cannot be obtained 
in the actual system, which makes the analysis results incorrect. 

V. SYSTEM STABILITY ANALYSIS BASED ON THE FIVE-
DIMENSION IMPEDANCE STABILITY CRITERION 

A. Five-Dimension Impedance Stability Criterion 

The five dimension stability criterion based on the hybrid 
AC/DC impedances is derived below. 

The equivalent model of the HVDC system is shown in Fig. 
1(b), and two AC grid-side circuits are described as follows: 

 gd1d1 d11

q1 q1gq1
g 1

ui u

i uu

 D D D   
       D DD      

Z  (37) 

 gd2d2 d21

q2 q2gq2
g 2

ui u

i uu

 D D D   
       D DD      

Z  (38) 

where Zg1 and Zg2 represent the grid impedance of the rectifier 
station and inverter station in the dq frame, respectively. 

The DC-side passive network can be expressed as follows: 

 
 

dc1 dc2
dc1 dc2

dc dc

=
2

u u
i i

L s R

D  D
D  D  


 (39) 

Based on (37)-(39), the variables of the AC grids and DC 
parts can be modeled together by 
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Y  (40) 

where Yacdcnet is defined as follows: 
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 (41) 

Meantime, according to (30) and (39), the small-signal 
voltages and currents of the AC/DC ports of the HVDC rectifier 
and inverter station can be expressed as follows: 
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Z  (42) 

where Zvsmacdc is defined as follows: 
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The DC and AC-side currents of the VSC-HVDC system are 
derived according to (40) and (42) as follows: 
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gd1d1

q1 gq1
1

dc1

d2 gd2

q2 gq2

+    0acdcnet vsmacdc acdcnet
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i u
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I Y Z Y  (44) 

The system minor loop gain based on (44) is defined as 
follows: 
 = acdcnet vsmacdc( )L s Y Z  (45) 

Based on GINC, the system stability depends on the Nyquist 
diagram and the number of the RHP zeros [25]. Since both 
converters are designed to be stable when they operate 
standalone, Zvsmacdc and Yacdcnet contain no RHP zeros. Thus, the 
stability of the HVDC system is assessed by judging whether 
the inverse characteristic loci of L(s) encircles (-1, 0) point or 
not. Besides, the frequency where the inverse characteristic loci 
intersect the unit circle is the predictive oscillation frequency of 
the system in the dq frame. The advantages of the proposed 
criterion are that RHP poles or zeros of the system impedance
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Fig. 8 Inverse characteristic loci of L(s), SCRi=4. (a) SCRr=3, kui=288, Dp=326929, Cdc=5 mF; (b) SCRr=2, kui=288, Dp=326929, Cdc=5 mF; (c) SCR=2, kui=144, 
Dp=326929, Cdc=5 mF; (d) SCRr=3, kui=288, Dp=490390, Cdc=5 mF; (e) SCRr=3, kui=288, Dp=490390, Cdc=0.5 mF; (f) SCRr=3, kui=288, Dp=523090, Cdc=5 mF.
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(c) SCRr=2, kui=288, Dp= 326929, Cdc=5 mF                                            (f) SCRr=3, kui=288, Dp=523090, Cdc=5 mF. 

Fig. 9 Experimental results based on the RT-LAB corresponding to the stability analyses in Fig. 8, SCRi=4.
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Fig. 10 Experimental system based on RT_LAB. 

ratio don’t need to be calculated, and it has a relatively small 
computation and a wider range of applications. The 
shortcoming is that the instability mechanism cannot be directly 
observed by the impedance bode plot, due to the strong 
coupling among the d, q, and dc frames. 

B. Stability Analysis and Experimental Results 

To further verify the correctness of the theoretical analysis, 
experiments have been carried out on the hardware-in-the-loop 
experimental platform, as shown in Fig. 10. The experimental 
parameters are the same as those of the previous simulation. 
The VSM-based rectifier station and inverter station are 
controlled by TI DSP TMS320F28335 through the I/O interface 
of the RT_LAB. The other parts of the HVDC system such as 
the main circuit of the rectifier station and the inverter station 
are simulated in FPGA and the program is implemented in CPU. 

All characteristic loci of L(s) are obtained by MATLAB, and 
the reciprocals of characteristic loci are plotted in Fig. 8 after 
the implementation of the sort program. Each Nyquist diagram 
shown in Fig. 8 is supposed to have five curves. 

As shown in Fig.8 (a), all inverse characteristic loci do not 
encircle (-1, 0) when SCR=3, meaning that the HVDC system 
is stable. It is verified by the experimental results in Fig. 9 (a). 
Compared with Fig. 8(a), Fig. 8 (b) shows that one inverse 
characteristic locus encircles (-1, 0) when SCR=2, and it 
intersects with the unit cycle at 0.96 Hz. It means that the 
oscillation with 0.96 Hz will occur in the dq frame, 
corresponding to 50 Hz0.96 Hz in the abc frame. It is verified 
by experimental results in Fig. 9 (b), where the DFT analysis of 
ia_rec shows two main resonant components at 501 Hz. 
Compared with Fig. 8 (b), Fig. 8(c) shows that all inverse 
characteristic loci do not encircle (-1, 0) only when the integral 
coefficient (kip) of the VSM rectifier decreases from 288 to 144, 
meaning that decreasing the kip enhances the stability of HVDC 
system. It is verified by the experimental results in Fig. 9 (c). 

Compared with Fig.8 (d), Fig.8 (e) shows that one inverse 
characteristic locus encircles (-1, 0) with decreasing the dc-link 
capacitor (Cdc) of the VSM, and it intersects with the unit cycle 
at 3.3Hz, meaning that decreasing Cdc destabilizes the system. 
It is verified by experimental results in Fig. 9 (d) and Fig. 9 (e), 
where the system becomes unstable after only changing Cdc 
from 5mH to 0.5mH. Besides, Fig. 9 (e) shows that the DFT 
analysis of ia_rec shows two main resonant components at 
503Hz, which is approximately consistent with the predictive 
value (503.3Hz). 

Compared with Fig. 8(d), Fig. 8(f) shows that one inverse 
characteristic locus gradually encircles (-1, 0) with increasing 
the damping coefficient (Dpr) of the VSM-based rectifier, 
meaning that increasing Dpr destabilizes the system. It is 
verified by the experimental results in Fig. 9(d) and Fig. 9(e), 
where the system becomes unstable after only increasing Dpr. 
Besides, the DFT analysis of ia_rec shows two main resonant 
components at 501Hz, which is consistent with the predictive 
value (501.03 Hz). The experimental results in Fig. 9 further 
verify the effectiveness of the stability criterion. Besides, It is 
found that increasing the integral gain of the dc-link voltage 
controller and the damping coefficient or decreasing the dc-link 
capacitor of the VSM rectifier destabilizes the system. 

VI. CONCLUSIONS 

This paper aims to assess the stability of the VSM-based 
HVDC systems, and the establised hybrid AC/DC impedance 
models of the VSMs and the five-dimension impedance 
stability criterion has been verified by experimental results. 
Some conclusions were drawn: 

1) The accurate hybrid AC/DC impedance models of the 
VSM-based rectifier station and inverter station have been 
established and verified by the improved measurement method. 

2) The DC impedance of the VSM-based inverter station 
behaves as the negative resistor in the low-frequency range. 

3) A five-dimension impedance stability criterion based on 
the GINC and the hybrid AC/DC impedance has been proposed 
to accurately analyze the point-to-point VSC-HVDC system. 

4) The d-d channel negative resistor behavior of the VSM-
based rectifier station could induce low-frequency oscillations 
when the grid SCR is small. Decreasing the integral coefficient 
of the dc-link voltage controller and the damping coefficient, 
and increasing the dc-link capacitor of the VSM rectifier can 
enhance the system stability. 

APPENDIX 

The hybrid AC/DC impedance, dc impedance, and dq-frame 
impedance of the three-phase converter can be measured 
together, as shown in Fig. 11. At first, three linear independent 
series voltages are injected. Then, the dq-frame and dc-link 
voltages and currents are collected. Appling FFT to the sample 
signals, the hybrid AC/DC impedance is calculated as follows: 

 

1

d1 d2 d3 d1 d2 d3

q1 q2 q3 q1 q2 q3

dc1 dc2 dc3 dc1 dc2 dc3
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   

    
   
   

Z  (46) 

The PLL used for the impedance measurement has great 
impacts on the hybrid AC/DC impedance measurement, 
especially during the PLL bandwidth. Thus, after mitigating the 
PLL dynamics, the actual impedance Zacdc is  

1

q0 pll q0 pll

1
d0 pll d0 pll

1 0 0 0

0 1 0 0 0

0 0 1 0 0 0

acdc ad
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Z Z  (47) 

Gpll is expressed as follows: 
 pll ppll ipll d0 ppll ipll=(  + / )/( + (  + /s))G k k s s U k k  (48) 

where kppll and kipll are PI gains of the PLL, respectively. 
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Fig. 11 Impedance measurement method. (a) The measurement circuit; (b) The 
measurement method. 

Likewise, the dq-frame impedance is calculated as [28]: 
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