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Optimization for Microgrid Optimal Energy Scheduling 

 

 Maher G. M. Abdolrasol, Ramizi Mohamed, Member, IEEE, M A Hannan*, Senior Member, IEEE, Ali Q. 
Al-Shetwi, M Mansor, Member, IEEE, F. Blaabjerg, Fellow, IEEE 

 
    Abstract- This paper proposes an enhancement for artificial 

neural network (ANN) using particle swarm optimization (PSO) 

to manage renewable energy resources (RESs) in a virtual power 

plant (VPP) system. This study highlights on the comparison of 

the ANN-BPSO algorithm with the original BPSO algorithm. 

The comparison has been made upon searching the optimal value 

of the number of nodes in hidden layers (N) and the learning rate 

(LR). These parameter values are used in ANN training for 

microgrid optimal energy scheduling. The proposed approach 

has been tested on the VPP system covering microgrids (MGs) 

involving RESs to minimize the power and giving priority to 

sustainable resources to participate instead of buying power from 

the utility grid. This model is tested using real load demand 

recorded for 24 hours in Perlis state, the northern part of 

Malaysia. Besides, real weather condition data are recorded by 

Tenaga Nasional Berhad Research (TNBR) solar energy 

meteorology for a 1-hour average (e.g., solar irradiation, wind 

speed, battery status data, and fuel level). Results show that 

ANN-PSO gives precise decision compared to BPSO algorithm 

which in turn prove that the enhancement for the Neural Net 

reaches the optimum level of energy scheduling.  

Index Terms—ANN, optimization algorithm, microgrid, 

scheduling, energy management.  

 

I.  INTRODUCTION 

In the past, the integration of renewable energy resources 

(RESs) to utility grids, besides their impacts on power system 

operation, was low. However, year by year, the DESs, 

especially renewable energy resources (RESs) start to lead the 

power industry, and many countries invest a high budget in 

this direction [1]. As these power units are small, aggregation 

in the MG system has become a trend.  However, RESs would 

cause problems in operations and distribution systems due to 

the intermittency and uncertainty natures. Thus, to improve 

their operation, energy management (EM) or scheduling is a 

very important feature [2]. 

With the existing scheduling controller advancement, many 

optimization techniques have been used, such as evolutionary 

algorithms, genetic algorithm, and ant colony algorithm as in 

[3-5]. But, in order to get the optimal fitness function, the 

algorithms may struggle by its complexities and coding 

difficulties of their parameters [6]. The gravitational search 

algorithm [7], lightning search algorithm [8], and artificial bee 

colony search algorithm [9] are dealing with EM in MG 

enhancement to resolve significant associated problems. These 

algorithms got complex parameter calculation, limitations, 

coding difficulties, formulation, and extensive computational 

time for the best fitness satisfaction. The PSO is also used for 

MG scheduling as in [10]. 

Moreover, based on the literature, there are still limitations 

related to the fuzzy logic controller and adaptive neuro-fuzzy 

inference system for scheduling controllers [11]. Thus, ANN-

based optimization techniques are a good alternative in the 

simulation tools to generate incomparable solution predictions 

and controller enhancement. Therefore, an improved artificial 

neural network-based binary particle swarm optimization 

(ANN-BPSO) controller is proposed in this study to overcome 

the limitation of the aforementioned algorithms. 

In this study, the proposed algorithm is to develop an ANN-

BPSO schedule controller as an upgrading step for the optimal 

schedule controller by ANN to manage RESs in a virtual 

power plant (VPP) system by binary particle swarm 

optimization (BPSO) algorithm. The proposed approach has 

been tested on the VPP system covering microgrids (MGs) 

involving RESs to minimize the power and giving priority to 

sustainable resources to participate instead of buying power 

from the utility grid refer to [12] whereas,  Fig.1 shows a 

sample of load data hourly active and reactive power load of 

bus 2 represent an industrial load and Fig.2 shows the 
Simulink model. In addition, the real weather conditions data 

recorded by Tenaga Nasional Berhad Research (TNBR) solar 

energy meteorology 1-hour average, for example, solar 

irradiation, wind speed, battery status data, and fuel level refer 

to [12] Table I,  represent controller inputs data. This study 

contributes further improvement of the BPSO algorithm by 

enhancing ANN parameters using PSO optimization and 

training ANN on the optimal schedule as output data and 

controller input similar to the BPSO algorithm.  

 

Fig. 1. The hourly active and reactive power load of bus 2 represent an 

industrial load. 

II. PSO BASED ANN ALGORITHM 

The PSO algorithm is adopted to search for the optimal 

number of neurons in each hidden layer of the ANN to 

enhance its performance. The proposed ANN-based PSO is 

utilizing the BPSO optimal schedule controller refer to [12]. 

PSO picks the optimal value of nodes in each hidden layer as 

well as the learning rate (LR) value. Table I representing 

controller constrains inputs for 24 hours. The implementation 

begins with setting the PSO parameters, namely, maximum 

iterations, number of particles, social rate, and cognitive rate. 
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TABLE I 

WEATHER CONDTIONS, ELECTRCITY PRICE AND BATTERY STAT-
OF-CHARGE FOR 24 HOURS 

Time 

(h) 

Solar Irr 

(W/m2) 

Wind Speed 

(m/s) 

Gird hourly Prices 

(KWh/RM) 

State-of-

Charge (%) 

1 0 1.2 0.218 100% 

2 0 1.4 0.218 100% 

3 0 0.9 0.218 75% 

4 0 0.5 0.218 75% 

5 0 0.6 0.218 70% 

6 0 0.6 0.218 50% 

7 0 0.7 0.218 50% 

8 0 0.6 0.218 25% 

9 128 1.3 0.516 25% 

10 311 1.5 0.516 50% 

11 430 1.6 0.516 50% 

12 486 1.6 0.334 25% 

13 610 1.6 0.334 25% 

14 486 1.5 0.516 50% 

15 345 1.6 0.516 50% 

16 112 1.3 0.516 25% 

17 99 1.4 0.516 25% 

18 65 1.4 0.516 25% 

19 35 1.4 0.334 25% 

20 0 1.6 0.334 50% 

21 0 1.9 0.334 50% 

22 0 2 0.218 50% 

23 0 2.2 0.218 75% 

24 0 1.7 0.218 100% 

 

After the search for the targeted objective function based-

mean absolute error (MEA) can be founded by the sum of all 

error and dividing by a number of samples. Determine the 

minimum value of evaluation (fbest) along with its location 

(best) to find the new value of LR, N1, N2 based on the speed. 

Subsequently, check LR, N1, N2 if it is greater or smaller than 

predefined limits. The objective function is formulated based 

on the mean absolute error (MAE). The optimum values of LR 

and the number of neurons in the hidden layers are utilized in 

the ANN training to minimize the MAE. After updating all the 

values, the procedure is repeated for calculating the objective 

function by computing the error [13]. Finally, finding MEA by 

the sum of all errors and dividing on number of samples to get 

the best value number of the learning rate, number of nodes of 

layer 1, and number of nod of nodes of layer 2. Table II shows 

algorithm limitations and data parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of layer 2. Table II shows algorithm limitations and data 

parameters. 
TABLE II 

ANN-BPSO CONTROLLER DATA AND LIMITATION 

 
Symbol Description 
A

lg
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th
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o
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o
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tr

o
ll

er
 

d
a

ta
 

 

p   controller input data 
t controller output data 
C1 and C2 =1.5 

W=0.5 
problem dimension  

ANNiteration = 100 maximum iterations for ANN 

swarm = 20 swarm-size 

LRLower =0 min value of learning rate 

LRUpper =1 max value of learning rate 

1NLower =1 min value of nodes in hidden layer1 

1NUpper =30 max value of nodes in hidden layer1 

2NLower =1 min value of nodes in hidden layer2 

2NUpper =30 max value of nodes in hidden layer2 

 

A. Initialization 

The initialization stage is to set algorithm limitations, 

swarm-size, and iterations. Creating a matrix of 20x3 as in (1) 

and then determine initializes swarm position in search space. 

( ),3swarm size
swarm zeros

−
=

                    (1)
 

B. Run ANN in PSO optimization iteration 

Applying feed-forward neural network and levenberg-

Marquardt to the initial PSO as in (2) after that the error can 

be obtained from ANN equations as in (3). Moreover, MAE is 

achieved by equation (4).  

( )  , 1, 2, 25 ,

' ',

(

{ } )' ', ' ' , ' '

p
net newff minmax N N

tansig tansig purelin trainlm

=

         (2) 

( )error abs t y= −
                        (3) 

25

1

( ) / (4800 25)
i

MAE Sum errori
=

= 
                 (4) 

C. Internal Loop 

     Every iteration (fbest) is carrying the minimum value of 

evaluation, and (best) is the location of the minimum values of 

evaluation. PSO main equation is developed to calculate the 

best swarm and location in the search space. The finding of 

the new value of LR, N1, N2 based on speed are obtained 

based on (5) and (6), as follows:  
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Fig. 2. Simulink model of  modified 14-Bus IEEE test system  in form of Virtual Power plant involving five MGs  and distributed generators 
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START

END

Feed-forward(newff) levenberg-Marquardt (trainlm)

( )  , 1, 2,25( { } ), ' ',' ',' ' ,' 'net newff minmax p N N tansig tansig purelin trainlm=

 25

1

( ) / (4800 25)
i

MAE Sum errori
=

= 

i ≤  iteration

 Global minimum

( )( ) ( )( ) ( )( ),1 ,2 ,3
1 2best best besty y y

LR fix Pbest N fix Pbest N fix Pbest= = =

Objective =min(Evaluation)

( )k
Evaluation MAE=

Determine Evaluation

 
( )k

MAE Evaluation

( ) ( )k k
Pbest swarm=

( )k
Evaluation MAE=

  ( ) ( )k k
new pos swarm v− = +

( ) ( ) ( ) ( )( ) ( )( )* 1* * 2* *
k k k k k

v w v C rand Pbest swarm C rand gbest swarm= + − + −

i=i+1

Initialization ANN-PSO parameters  
Swarm=rand (upper-lower)

 includes initial value of N1, N2, and LR

initializes swarm position in search space

Input data and Limitations
P= controller input normalized data

t= controller output normalized data

Hidden nodes and LR limitations

Concluding output of ANN

( ), ,
1

net p t
net train=

 
Fig. 3. ANN-BPSO algorithm Flow chart. 

     

( ) ( ) ( ) ( )( )

( )( )

* 1* *

2* *

k k k k

k

v w v C rand Pbest swarm

C rand gbest swarm

= + −

+ −
(5)

 

( ) ( )k k
new pos swarm v− = +

            (6)
 

The obtained values of N1, N2, and LR are expected on 

Feedforward neural network (newff) and levenberg-Marquardt 

(tainlm) again, then evaluate the MAE as in ANN stage last is 

evaluation the minimum target values of ANN parameters as in 

(7)(8)(9). 

( )k
Evaluation MAE=

                    (7)
 

(i)
 objective =min(Evaluation)

                    (8) 

  ( ),x y min Evaluation=
           (9)

 

Finally, from the above equations, the best value number of 

the learning rate, the number of nodes of layer1, and the 

number of nodes of layer2 can be obtained. The ANN-based 

PSO is achieved fully and illustrated in the flow chart as 

shown in Fig.3. the objective function considered in the 

optimization is minimizing the MAE. So, in every iteration, it 

will be compared with the minimal error held, and at the end 

of optimization, the minimalist MAE error swarm includes the 

best values for (N1, N2, and LR). 

III. ANN ALGORITHM TRAINING 

Sigmoid function has been adopted for the proposed ANN 

as an activation function [14]. However, in this study, the 

ANN structure established consists of an input layer, two 

hidden layers, and an output layer. The input layer has six 

inputs, and the output layer has twenty-five outputs. The two 

hidden layers are used the number of neurons in the first 

hidden layer and the second hidden layer as well. Explains the 

strategy of ANN training based on the optimal schedule 

controller. Execute ANN training using the optimal 

parameters obtained from Hybrid ANN-PSO. The training 

process includes 100% of the data of the VPP system inputs 

and output on the same loading conditions obtained as in [12]. 

The final intelligent masterpiece is created according to (10). 

It is an ANN net for BPO, which can consider as an intelligent 

controller without any human interruption. The proposed 

ANN training based on optimal schedule controller steps is 

illustrated Pseudo-code in Table III. Using the Feed-forward 

neural network, which biologically inspired classification 

algorithm involves multilayer to train neural networks with the 

two layers selected and the Levenberg- Marquardt algorithm is 

specifically designed to minimize the sum of square error 

functions. 
si ( 1, 1)gen m Net −                       (10)

 

TABLE III 
PSEUDO-CODE OF THE PROPOSED ANN TRAINING BASED 

OPTIMUM SCHEDULE CONTROLLER 

Input:  (controller input optimum schedule), t (controller output based optimum schedule).  

Output: ANN-Net 

 N1=26 
N2= 29 

LR= 0.1021 

// ANN 

 Applying Feed-forward neural network ( newff  ) and levenberg-Marquardt 

( trainlm  ) 

( )  , 1, 2,25 , ' ',( { } )' ', ' ' , ' '
p

net newff minmax N N tansig tansig purelin trainlm=  

  * *  4000net trainParam epochs =    

* *net trainParam lr LR=  

* *   0net trainParam goal =      

( ), ,
1

net p t
net train=   

sin( 1, 1)gen Net −   

Output is a ANN-Net with 6 signals input data  and 25 signals outputs 

 

IV. ANN BASED BPSO RESULTS 

By using the ANN training data, the PSO searches the 

optimal values of learning rate and the number of nodes in 

each hidden layer to enhance the ANN performance in 

predicting the optimal ON/OFF status of each DG. Several 

populations are executed to permit the PSO to select the 

population size that can give minimum error and consumption 

time. Therefore, the minimum objective function value can be 

achieved by selecting the best number of population sizes to 

improve the ANN's performance during training and testing. 

The objective function is formulated in terms of MAE of ANN 

population sizes are obtained, as shown in Fig 4. Neural 

Network Training in MATLAB is shown in Fig 5. In this 

study, the actual measured data were allocated such that 100% 
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of the data were used for training and testing of ANN as 

compare to the original BPSO algorithm in [12]. Fig. 6 shows 

the regression (R) of the hybrid ANN-BPSO using the training 

and testing data. Moreover, the performance of the hybrid 

ANN-BPSO training is shown in Fig. 6. The regression 

coefficient (R) is a good indicator for evaluating the prediction 

performance of the hybrid ANN-BPSO. From Fig. 7, the 

epochs 4000 iterations were done in a good time frame which 

was 8h:57min:12sec. The best training performance of mean 

squre error (MSE) reached 7.33e-7 to satisfy the hybrid ANN-

BPSO performance's optimal prediction. Overall, the 

regression coefficient results are perfectly and successfully 

reach unity; hence validate the accuracy of the algorithm.  

The results of the hybrid ANN-BPSO for predicting the 

optimal ON/OFF status of the energy management 

components is shown in Fig. 8. The best schedule is obtained 

by the hybrid ANN-BPSO optimization in order to explain the 

performance of every DG inside the MGs. It can be seen that 

there is a unique behavior for each source which in turn tested 

in the IEEE 14-bus system with MGs by selecting to represent 

the performance in MG1 at bus5 in the VPP system compare 

to the original BPSO. Similarly, Fig. 9 shows the load 

management of MG5 at bus13 using optimization algorithms.  
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Fig. 4. MAE of the hybrid ANN-BPSO objective. 

 
Fig. 5. Neural Network training in MATLAB. 
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Fig. 6.  Neural Network training Regression;  
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Fig. 7. Neural Network training Performance. 
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Fig. 8. DGs and MG real and predicted power for MG1 at bus 5 using the 
hybrid ANN-BPSO. 
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In Fig. 10, a comparative study has been conducted to show the 

effectiveness of the developed ANN-BPSO algorithm in which 

the main grid power at bus 1 is compared with no grid 

connection, random schedule, and BPSO optimized schedule, 

respectively. It is seen that the power drawing from the main grid 

is extremely reduced when optimized algorithms are used, which 

in turn is an energy-saving concern. Table IV compares the 

proposed technique with other techniques of enhancing neural 

networks. The excellent results obtained compares to the other 

techniques considering the enormous number of inputs and output 

and the performance time, which required more complexity in the 

ANN Net. Generally, all the techniques used in this table enhance 

the ANN by optimizing its parameters. It helps save the wasted 

time on trial and error and focus on training and testing with 

confidence on chosen parameters. 
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Fig. 9. DGs and MG real and predicted power for MG5 at bus 13 
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Fig. 10. MG with Random Schedule controller, BPSO schedule controller, 

and Neural Net obtained by ANN-BPSO and original main power. 

TABLE IV 

COMPARISON OF THE PROPOSED TECHNIQUE TO WITH OTHER 

TECHNIQUES OF ENHANCING NEURAL NETWORKS   

Ref. MAE N1 N2 LR No. of 

input & 

output 

R MSE 

hybrid LSA-

ANN [15] 

9.128 e-9 6 4 0.6175 5 and 4  1 - 

PSO-DNN 
[16] 

- 20 60 0.1 12 and 
6 

- - 

Hybrid ANN-

PSO [17] 

0.1742 18 16 0.071 3 and 1 0.99991 - 

BPNN-

PSO [18] 

0.1911 

e-02, 0.20 
e-02 

14,

9 

9,1

1 

0.7373, 

0.6481 

7 and 1 0.99993,

0.99999 

4.3 

e-05 

ANN-PSO 

Proposed 
0.0144 26 29 0.1021 6 and 

25 

1 7.32

e-07 

V. CONCLUSION AND FUTURE WORK 

The results of the ANN-based BPSO for predicting the optimal 

ON/OFF status of the energy management components is 

considered as a new technique for improving the ANN 

performance by selecting the optimum learning rate and the 

optimum number of neurons in the hidden layers and then get a 

more accurate prediction. The performance of MAE reduced to a 

significant amount which shows the perfectly of optimizing ANN 

parameters. This may open the door for optimizing other 

parameters such as the number of hiding layers or using the 

optimal schedule data to other deep learning techniques such as 

the support vector machine. 
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