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Explaining deep neural networks 
for knowledge discovery 
in electrocardiogram analysis
Steven A. Hicks1,2,7*, Jonas L. Isaksen3,7, Vajira Thambawita1,2, Jonas Ghouse3, 
Gustav Ahlberg3, Allan Linneberg3, Niels Grarup3,4, Inga Strümke1, Christina Ellervik3, 
Morten Salling Olesen3, Torben Hansen3,4, Claus Graff5, Niels‑Henrik Holstein‑Rathlou3, 
Pål Halvorsen1,2, Mary M. Maleckar6, Michael A. Riegler1,7 & Jørgen K. Kanters3,7

Deep learning‑based tools may annotate and interpret medical data more quickly, consistently, and 
accurately than medical doctors. However, as medical doctors are ultimately responsible for clinical 
decision‑making, any deep learning‑based prediction should be accompanied by an explanation that 
a human can understand. We present an approach called electrocardiogram gradient class activation 
map (ECGradCAM), which is used to generate attention maps and explain the reasoning behind deep 
learning‑based decision‑making in ECG analysis. Attention maps may be used in the clinic to aid 
diagnosis, discover new medical knowledge, and identify novel features and characteristics of medical 
tests. In this paper, we showcase how ECGradCAM attention maps can unmask how a novel deep 
learning model measures both amplitudes and intervals in 12‑lead electrocardiograms, and we show 
an example of how attention maps may be used to develop novel ECG features.

Deep learning methods have the potential to become essential tools for diagnosis and analysis in medicine. 
Automatic analysis of electrocardiograms (ECGs) is a field with a long history and many different  approaches1–5, 
but recent years have shown that deep learning works better than traditional  methods6. However, this family of 
machine learning algorithms may also bring much uncertainty and confusion among the medical practitioners 
they aim to help because of lacking understanding of how these algorithms work. Despite the impressive results 
in areas like  radiology7,  dermatology8, and  cardiology9–11, deep neural networks are often criticized for being 
difficult to explain and for providing little to no insight into why they produce a given result (the so-called "black-
box phenomenon")12. Since doctors are accountable for their diagnoses, a black-box approach is  unacceptable13,14.

History has shown that doctors in practice prefer simpler, although inferior algorithms to their neural net-
work-based counterparts, primarily because the simple algorithms are more  interpretable15. Lack of insight has 
in some cases of machine learning led to obvious mistakes, which has been overlooked because the black-box 
decision did not allow for interpretation of the neural network  predictions16,17. A classic example comes from 
deep learning in radiology (X-ray of the thorax), where the neural networks effectively distinguished between 
lung cancer and pneumonia simply by predicting the referring department from various labels in the image and 
not the relevant parts of the X-ray images. When the network is presented with X-rays without similar depart-
ment labels, the network fails to distinguish between lung cancer and  pneumonia7. This study is a good example 
of a mistake rooted in the differences between training and test data distribution. The neural network learned 
data-specific features that did not generalize to data from outside its domain. This simple but grave mistake 
could have easily been discovered with an explanation of the predictions where one could easily have observed 
what the network recognized as the most important feature for its predictions. Hence, it is clear that we need 
to understand the decisions of the neural network. In this respect, recent developments in explainable artificial 
intelligence (AI) have shown progress in shedding light on these black-boxes, which seems imperative if deep 
learning is to be implemented in  clinics18. Generally, explanations are produced for image data and classification. 
In this work, we present a method that can obtain explanations for classification and prediction/regression tasks 
on non-image data. Specifically, we look at ECG where AI has become an emerging topic, where interpretable and 
explainable results of both classification and prediction will be crucial for clinical implementation and research.
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In the field of electrocardiography, a 12-lead ECG is a recording of the electrical activity of the heart using ten 
electrodes placed on the patient’s thorax and limbs. The ECG consists of a set of voltage time-series, with several 
characteristic waves (see Fig. 1), which each carry clinical information about the state of the heart. The timing 
and the amplitude of these waves contain essential information associated with morbidity and  mortality19–22. The 
ECG is one of the cheapest and most commonly used medical procedures, and the availability of large training 
data sets makes the ECG well-suited for neural network analysis. While automated analysis of ECGs has been 
a topic of research since the early  1960s23, recently, we have seen an introduction of machine learning in ECG 
analysis. Deep learning has shown to be successful in using features that may indicate cardiac arrhythmias or 
other  diseases10.

Incorporating explainability into medical decision-making has three potential advantages. First, for imple-
menting deep learning in the clinic, where medical decisions may be a matter of life and death, a deep learning 
algorithm that explains how it arrived at a particular decision allows the prevention of rare but potentially fatal 
mistakes. Such mistakes may be the result of shortcomings in the training of the algorithm (such as biased or 
narrow training data) or noisy or faulty input data leading to unexpected and extreme decisions. Explainability 
thus provides a higher level of trust and transparency in the clinical setting because a doctor can understand 
what the algorithm bases its predictions  on24,25. This may pave the way for the implementation of neural networks 
in clinical practice and reduce human error, resulting in fewer fatalities. Second, more explainable models may 
allow for the identification of novel features that may lead to a new understanding of the disease pathophysiology 
and increased diagnostic capability, which in the end may save lives. Suppose a deep learning algorithm success-
fully predicts sudden cardiac death using ECGs from a given population. If the algorithm can explain where the 
information is located in the ECG, we may combine medical knowledge of the ECG with that location making 
it possible to identify novel mechanisms of sudden cardiac death. This would potentially make it possible to 
identify an intervention or possible drug target to prevent untimely death. Third, making the algorithms more 
interpretable may be important from a legal perspective because one would be able to explain why a model made 
an incorrect decision and place responsibility accordingly.

The work presented in this paper has three primary contributions. First, we present the architecture of a 
residual convoluted neural network (CNN) and show that it is able to quantify intervals and amplitudes in the 
ECG more accurately than trained cardiologists are. Second, we present a modified version of the  GradCAM26 
algorithm called electrocardiogram gradient class activation map (ECGradCAM) and show how the resulting 
attention maps can be utilized for ECG analysis to understand, interpret, and learn from neural network predic-
tions. Third, we show how network and attention maps may be combined to identify novel features in the ECG 
by identifying a novel feature to determine the sex of a person based on an ECG.

Results
Automatic ECG analysis and data description. We define two case studies for model evaluation: a 
regression study, measuring standard, clinically relevant intervals and amplitudes from the ECG, and a classifica-
tion study to predict the sex from the ECG. Numerous cardiovascular diseases are diagnosed by measuring key 
intervals and amplitudes present in the  ECG27,28, and we leverage this to predict these intervals directly instead 
of categorizing ECGs into normal and abnormal groups. The predicted intervals and amplitudes include the PR 
interval, QRS duration, heart rate, J-point elevation, QT interval, R-wave amplitude, and T-wave amplitude (see 

Figure 1.  An annotated ECG representative beat and rhythm strip (top-right inset) with intervals (PR, QRS, 
QT) and amplitudes (R peak, STJ, T peak). Amplitudes are measured with respect to the baseline. STJ denotes 
J-point elevation. Heart rate is calculated as HR = 60,000/RR where RR is measured in ms.
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Fig. 1). By predicting these measurements directly, we allow for better interpretation of the results rather than 
limiting it to a predefined set of categories. The second case study looks at differentiating between male and 
female ECGs. This use case is motivated by the difficulty for humans to determine sex based on ECGs alone, 
making it a good candidate for visualization as one may find certain features that correlate to sex that have previ-
ously gone unfound.

All models are trained and evaluated on either raw 10-s 12-lead ECGs or on the 12SL-generated median 
beat from the GESUS  dataset29. The performance of all GESUS generated models is replicated in the Inter99 
 dataset30. The demographics of the study populations are summarized in Table 1. To evaluate the effect of ECG 
abnormalities on the prediction performance of our network, we tested the prediction errors on subgroups 
with bundle branch blocks (QRS ≥ 120 ms) or first-degree AV block (PR > 220 ms). Furthermore, to study the 
performance on ECG with strange, abnormal T waves, we used the existing T-wave Morphology Combination 
 Score31 to divide the ECGs into four different groups ranging from peaked to flattened T-waves. Supplementary 
Table S1 shows that the network performed only slightly worse in subjects with bundle branch block, AV block, 
and flattened T waves, respectively.

CNN results. The performance of our method for predicting ECG intervals and amplitudes is evaluated 
using quantitative regression metrics, as seen in Table 2. The primary metrics used for evaluation are the mean 
absolute error (MAE) as it is easily interpretable, and the root-mean-squared error (RMSE) as it is more sensitive 
to outliers. In Table 2, we see that every model beats the ZeroR-estimate (predicting the mean) by a large margin. 
This shows that the proposed architecture successfully analyzes the ECG, both in the voltage and time domains. 
For interval measurements, the MAEs are close to two samples (4 ms) for both the median beat and rhythm strip 

Table 1.  Characteristics of the participants in both population studies. Values are presented as median [fifth to 
ninety-fifth percentiles] for continuous measures and % (n) for categorical variables.

Variable GESUS (training) Inter99 (replication)

Number of samples (n) 8939 6667

Age (years) 56.6 [35.1; 78.4] 45.3 [34.5; 60.0]

Female sex 54.3% (4852) 51.2% (3412)

BMI (kg/m2) 26.1 [20.4; 35.3] 25.7 [20.2; 34.8]

Heart rate (bpm) 64 [48; 85] 66 [51; 86]

QT interval (ms) 408 [364; 460] 402 [362; 450]

PR interval (ms) 158 [126; 204] 156 [124; 196]

QRS duration (ms) 92 [76; 118] 90 [76; 110]

J-point elevation V5 (µV) − 5 [− 54; 48] 4 [− 35; 58]

R-peak amplitude V5 (µV) 1376 [698; 2,426] 1171 [600; 2,044]

T-wave amplitude V5 (µV) 346 [122; 698] 327 [122; 649]

Bundle branch block (QRS ≥ 120 ms) 4.4% (390) 1.6% (107)

1° AV block (PR > 220 ms) 2.0% (174) 0.9% (61)

Table 2.  Training and validation error in  GESUS25 and replication error in  Inter992.

Type Variables

Validation on GESUS 
(fivefold) Replication on Inter99

Zero R on 
Inter99

MAE RMSE MAE RMSE MAE RMSE

Median

QT Interval (ms) 3.26 ± 0.80 5.08 ± 0.40 3.13 ± 0.19 4.89 ± 0.19 21.7 27.4

PR Interval (ms) 2.82 ± 0.15 4.52 ± 0.49 2.73 ± 0.06 4.70 ± 0.23 17.6 22.8

QRS duration (ms) 2.98 ± 0.15 4.10 ± 0.22 2.58 ± 0.07 3.43 ± 0.07 9.0 11.6

Heart Rate (beats per min) 1.54 ± 0.07 2.44 ± 0.09 1.57 ± 0.06 2.33 ± 0.07 8.6 11.1

J-point elevation (µV) 8.16 ± 0.40 11.20 ± 0.69 5.77 ± 0.10 8.09 ± 0.12 22.2 29.0

T-wave amplitude (µV) 5.63 ± 1.31 15.2 ± 6.83 5.80 ± 1.13 16.10 ± 0.53 129.0 167.0

R-peak amplitude (µV) 8.60 ± 1.05 16.00 ± 4.13 8.30 ± 0.98 21.70 ± 0.71 413.0 501.0

Rhythm

QT Interval (ms) 3.97 ± 0.03 6.05 ± 0.39 3.62 ± 0.03 5.82 ± 0.20 21.7 27.4

PR Interval (ms) 3.67 ± 0.21 5.60 ± 0.60 3.58 ± 0.60 5.80 ± 0.31 17.6 22.8

QRS duration (ms) 3.08 ± 0.12 4.33 ± 0.17 3.39 ± 0.06 4.49 ± 0.07 9.0 11.6

Heart Rate (beats per min) 0.31 ± 0.01 0.40 ± 0.02 0.18 ± 0.01 0.6 ± 0.1 8.6 11.1

J-point elevation (µV) 10.50 ± 0.31 14.10 ± 0.50 7.90 ± 0.19 10.70 ± 0.24 22.2 29.0

T-wave amplitude (µV) 11.50 ± 0.43 25.00 ± 5.55 9.40 ± 0.41 19.40 ± 1.79 129.0 167.0

R-peak amplitude (µV) 20.10 ± 0.70 33.00 ± 4.54 17.4 ± 0.55 51.00 ± 13.21 413.0 501.0
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(10 s) measurements. Amplitude measurements varied similarly (the least significant bit is 4.88 µV), indicating 
that the network performed equally well with voltage and time-domain measurements.

Attention maps. To create meaningful and detailed visualizations, we modified the GradCAM approach so 
that visualizations are generated for each lead of the ECG, where the final attention maps are produced by aver-
aging the importance values across all leads. We call this method ECGradCAM since it can give a more accurate 
representation of what regions of the ECG are most important for the model. We focus our interpretation on 
the last layer of the last residual module of the neural network (as shown in Fig. 2). This corresponds to the final 
layer before prediction, meaning the visualizations show what areas of the ECG are deemed most important at 
the moment of prediction. It can also be useful to interpret the intermediate layers of a  network32 as these layers 
may offer insight into how the network’s perception changes and how it narrows down the analysis to the final 
result (see Supplementary Figure S1). Here, we note that the initial residual block recognizes several features 
in the ECG, which becomes more and more focused on the relevant wave as the ECG progresses through the 
residual layers.

The attention maps often highlight the areas we expect when predicting a specific interval or amplitude. 
Figure 3 presents a median ECG visualized for six of the predicted variables. For instance, the QRS complex is 
highlighted when we predict QRS duration, and the end of the T-wave is delineated along with the beginning of 
the QRS complex for QT interval measurement. For amplitude measurements, the corresponding wave top is 
correctly pinpointed by the attention maps. One should note that for amplitude measurements, other parts of the 
ECG are given minor importance, likely for the network to learn about the ECG voltage baseline. For intervals, 
secondary activations are also observed, such as the T-wave being highlighted when measuring the PR-interval. 
We hypothesize that these secondary activations may be happening because the network needs to appreciate the 
whole ECG in order to narrow its search down and perform the actual measurements. This is further supported 
by the PR interval attention maps generated for the intermediate layers (see Supplementary Figure S1), where 
the network highlights the QT in the former layers but less so at the moment of prediction.

Sex prediction. For a cardiologist, the task of determining a subject’s sex from the ECG is nearly impos-
sible. However, our network is able to correctly identify the sex with an accuracy of 89% (Table 3). Here, we can 
see the potential of attention maps, as the accuracy output from the network does not give any clue or insight 
into how the network made its decision on sex classification. The attention maps (see Fig. 4) clearly show that 
the ECG sex classification is mainly based on the QRS complex and more specifically on the downslope of the 
R-wave, offering new insight into electrophysiology. Using findings from the attention maps, we did a post-hoc 
analysis with logistic regression predicting sex using QRS duration, R- and S-amplitudes, and the timing of the 
R- and S-waves. It revealed an accuracy of 73% (our CNN: 89% QRS duration alone: 69%) and an AUC of 0.80 
(our CNN 0.96 QRS duration alone: 0.72). The wave blocking experiments (Table 3) verified this observation, 
since removing the P-wave has almost no influence on the accuracy of the sex prediction, removing the T-wave 
had only minor influence, whereas removing the QRS complex resulted in a drastic reduction in performance. 
This shows that one can obtain new knowledge by using our ECGradCam method combined with the deep 
neural network.

Human cardiologist vs neural network evaluation. To assess how the neural network compares to 
standard clinical decision making, we further evaluate the performance of our model by comparing its predic-
tions to predictions made by cardiologists who have manually annotated a set of twenty randomly selected ECGs 

Figure 2.  The convolutional neural network-based architecture used for all experiments. Each red block 
corresponds to a convolutional layer, the blue blocks represent a batch normalization layer, the yellow blocks are 
ReLU activations, and the green block represents average pooling. Besides these base building blocks, the model 
consists of eight residual modules (purple blocks) composed of two sequential blocks of convolution, batch 
normalization, and ReLU activation.
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from the Inter99 replication dataset. As seen in Table 4, the trained networks prove substantially more precise 
and consistent than human expert assessments. Human bias-corrected MAE and RMSE are around 15–20 ms, 
i.e., a factor 4 to 5× higher than the neural network. Errors in heart rate measurements are below one beat per 
minute (BPM) for the network but about 3 BPM for the human operators with multiple errors above 10 BPM. 
Amplitude measurements are much more difficult for humans, given the resolution of the digital ECG and the 

Figure 3.  Visualization of the attention maps generated for the interval and amplitude prediction models. As 
we can see from the plots, the model learns to inspect the waves and intervals that are related to the predicted 
variable. Red color indicates high importance and blue color low importance of the ECG for the decision of the 
neural network.

Table 3.  Mean absolute error (MAE) and accuracy (ACC) ± standard deviation measured on the replication 
dataset when blanking specific waves of a median heartbeat. Prediction errors increased dramatically when the 
feature in question is blanked out. Prediction errors also often increased slightly when other parts of the ECG 
are blanked. In the metric column, the arrow signifies whether higher or lower values are better, i.e., an arrow 
pointing downwards means that lower values are preferable.

Variable Metric Median ECG Blanking P-wave Blanking QRS complex Blanking T-wave

QT interval (ms) MAE ↓ 3.13 ± 0.21 3.20 ± 0.22 31.76 ± 6.34 47.35 ± 12.38

PR interval (ms) MAE ↓ 2.73 ± 0.06 32.95 ± 10.31 40.55 ± 5.88 3.84 ± 0.71

QRS duration (ms) MAE ↓ 2.58 ± 0.08 3.99 ± 0.48 40.55 ± 5.88 3.50 ± 0.10

Heart Rate (bpm) MAE ↓ 1.57 ± 0.07 2.92 ± 0.19 3.62 ± 1.89 4.79 ± 1.10

J-point elevation (µV) MAE ↓ 5.77 ± 0.18 6.43 ± 0.56 23.07 ± 3.29 8.62 ± 0.42

T-wave amplitude (µV) MAE ↓ 5.80 ± 1.29 6.13 ± 1.45 8.70 ± 1.49 339.04 ± 8.0

R-wave amplitude (µV) MAE ↓ 8.35 ± 1.12 8.64 ± 1.11 927.38 ± 16.0 10.48 ± 3.56

Sex classification (%) ACC ↑ 88.80 ± 0.7 87.50 ± 1.0 62.40 ± 6.6 79.80 ± 2.5
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accuracy of the human eye. For the R-peak amplitude, the network operates at an MAE of twice the least signifi-
cant bit at 4.8 µV. In contrast, the human reviewer operates with an MAE in the magnitude of half a millimeter 
(corresponding to 50 µV or 10 the times least significant bit).

Discussion
This paper identified three novel findings. First, we presented a residual CNN that reliably analyzes both ECG 
intervals (time dimension) and amplitudes (voltage dimension) independent of whether the ECG presented is 
a 10-s 12-lead ECG or a 1.2-s median representative beat. The architecture proved accurate for a variety of dif-
ferent ECG tasks. In all cases, CNN prediction outperformed the cardiologists by a large margin. Furthermore, 
with repeated blinded measurements, the cardiologists had a large intra-observer variation, whereas the neural 
network was very consistent in its predictions between folds. The MAE was between 3 and 4 ms correspond-
ing to two samples which is close to the physical obtainable lower limit (since the interval uncertainty consists 
of two cumulative uncertainties of 2 ms at each the end of the interval). In general, measurements were more 
accurate when using 1.2-s median beats compared to 10-s rhythm strips, except for heart rate. The generation of 
the median beat reduces noise by averaging all beats during the 10-s ECG, stretching each complex to minimize 
the influence of variations, making measurements more accurate. The exception of heart rate is not surprising 
since several ECG complexes are needed to properly estimate heart rate, and these are only found in the rhythm 
strip. More surprising is the finding that the neural network uses other features than the RR-interval to calculate 
heart rate and obtains a relatively good estimate from the single ECG complex of the median beat. In fact, the 
heart rate estimate from the median was only slightly worse than that based on the rhythm strip (see Table 2). 
Similar to human overreaders, the network performed slightly worse in subjects with conduction blocks. How-
ever, the increase in prediction error was small compared to the human overreader error, showing a satisfactory 
accuracy for clinical use. The QT interval is an important feature in the ECG because the interval is related to 

Figure 4.  Visualizations of the attention maps from the sex classification model for eight different ECGs. 
The plots suggest that the QRS-complex and especially the downslope of the R-wave is most important when 
distinguishing between a male and female ECG. Red color indicates high importance and blue color low 
importance of the ECG for the decision of the neural network.

Table 4.  Evaluation of twenty randomly selected ECGs by two experienced cardiologists. Bias is the average 
difference between the ground truth and the doctor/network. Mean absolute error (MAE*) is the bias-
subtracted mean absolute error, to account for the fact that there is no universal correct measurement for 
an ECG, ensuring that any personal bias does not contribute to the error (e.g., some doctors measure QT 
consistently shorter or longer than others). R: Pearson’s correlation coefficient between the doctor’s two 
measurements/the neural networks five folds. SD Standard deviation.

Variables Test set, mean ± SD

Neural network Doctor A Doctor B

Bias MAE* R Bias MAE* R Bias MAE* R

Heart rate (bpm) 71 ± 8 0.04 0.20 0.99 0.98 3.20 0.68 − 0.52 1,38 0.99

QT interval (ms) 392 ± 21 0.50 3.70 0.98 − 8.50 15.8 0.49 − 17.8 9.2 0.89

QRS duration (ms) 91 ± 10 − 3.30 3.00 0.98 − 7.80 11.9 0.39 − 7.6 8.22 0.55

PR interval (ms) 161 ± 16 − 2.50 4.70 0.99 5.90 8.00 0.87 6.45 9.01 0.82

R-peak amplitude (mm) 12 ± 4 0.02 0.16 0.99 0.57 0.42 0.98 0.06 0.50 0.95

J-point elevation (mm) − 0.04 ± 0.28 0.02 0.09 0.98 0.12 0.19 − 0.01 − 0.01 0.17 0.86

T-wave amplitude (mm) 3.00 ± 1.50 0.03 0.10 0.99 − 0.13 0.32 0.89 0.20 0.56 0.80
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sudden  death33. It is well known that abnormal T waves are difficult to measure correctly, which is important 
because these abnormal T waves are associated with increased  mortality34. As seen in the supplementary (Sup-
plementary Table S1), the network accurately measured even the most flattened T waves only marginally worse 
than the “easy-to-measure” peaked T waves with a sharp, well-defined end.

Second, we presented ECGradCAM attention maps for 12-lead ECG-analysis to explain how the network 
made its decisions. In medical practice, explainability is crucial because medical doctors are concerned that 
algorithms may produce erroneous results, either due to bias or trying to predict outcomes not appropriately 
represented in the training data. For example, measurement of the PR interval in a case of ventricular tachy-
cardia would be unreliable if the training set only consisted of ECGs taken in sinus rhythm. Interpretation and 
transparency should be at the forefront when developing new algorithms intended for medical use. Although the 
results suggest that deep learning could be an essential tool for cardiologists for doing analysis and interpretation 
of the ECG, it is doubtful that the neural network models without explanations of an estimate of uncertainty 
would be accepted by doctors.

The attention maps showed nicely that all amplitude measurements focused on the proper ECG wave, and in 
cases of interval measurements, both the beginning and the end of the specific interval are most often highlighted 
by the algorithm. The obscurity tests confirmed the attention map results. When we removed ECG waves used 
for the specific interval or amplitude measurement, the MAE increased dramatically, confirming the message 
from the attention maps that our CNN focused on the same features as human cardiologists, just more accurately 
and reliably. One may also notice that the network tries to extract information about the baseline from the ECG. 
Since we use batch normalization (a standard feature in neural networks to avoid exploding gradients), the net-
work had to get an idea of the magnitude of normalization to restore the absolute values needed for amplitude 
prediction. This may be why the network also focuses on more steady, constant parts of the ECG. By providing 
these explanations with a predicted variable, we allow the users to interpret the results with confidence that 
model had some notion of the traits that make up the variable in question.

Third, sex prediction is an excellent example of how neural networks combined with an explanation method 
can be used to discover novel medical knowledge. It is well known that there are sex differences in the ECG. 
Female ECGs, on average, have a longer QT interval, faster heart rate, and shorter QRS  duration35. However, 
if one were to ask a cardiologist to determine the sex based on an ECG alone, they would not be able to make 
a confident prediction. Recent studies using deep learning have shown that neural networks can differentiate 
between the sexes from the ECG  alone36, but the underlying reasoning is not provided. The attention maps 
indicate that the physiological background seems to be differences in the R-wave downslope, which may provide 
important mechanistic insight into the observed sex differences. We confirmed the findings by our neural net-
work that simple logistic regression with QRS duration, wave amplitudes, and timing (slopes can be inferred by 
wave amplitudes and timings) significantly improved sex prediction compared to QRS duration alone. Although 
adding the R-wave downslope to the QRS duration significantly increased sex prediction, the neural network still 
performed better than the logistic regression, most likely because the R-wave downslope is not the sole source 
of information. However, it is also possible that the R-wave downslope contains nonlinear information or that 
only part of the downslope is relevant. This study constitutes a scholarly example that the use of attention maps 
can assist scientists in discovering novel insights and identify hitherto unknown features for classification, which 
may lead to important physiological understanding. Classifying an appropriate outcome in a suitable popula-
tion, one may identify novel prognostic markers in the ECG for that outcome, which may lead to a suggestion 
for possible treatments.

Conclusions
This paper presented a study on interpreting deep learning models used for ECG analysis. We propose a neu-
ral network architecture that predicts multiple attributes of a standard median or 10-s rhythm ECG with low 
error. The model was compared against real-world cardiologists, and our model outperformed the cardiologists 
by a large margin. The predictions were interpreted using attention maps (ECGradCAM), which show how 
the network operates and confirmed that the neural network analyzes ECGs similarly to trained cardiologists. 
Furthermore, we show that the neural network can differentiate between male and female ECGs with over 90% 
accuracy. Using the ECGradCAM attention maps, we find that the down-slope of the R wave is a crucial feature 
of an ECG when determining sex. This emphasizes the need for more interpretable machine learning methods 
as they can be used to find new insights in rather mature medical fields such as ECG analysis. We believe that 
open and transparent systems are paramount for their adoption and use in medicine. Making high-risk decisions 
based on the output of a black-box algorithm is irresponsible and could potentially have fatal consequences that 
could easily be avoided. We hope this paper motivates a more thorough evaluation and interpretation of deep 
learning-based models applied to all of medicine and not only to ECGs.

Methods
Data populations. We use digital ECGs from two population studies. (1) The Danish General Suburban 
Population Study (GESUS)29 consisting of 8939 free-living subjects (age 56.5 ± 13.5, 54% females) at least 18 
years old from the Naestved municipality, 90 km south of Copenhagen, the Capital of Denmark, randomly cho-
sen. The study was approved by the local ethics committee (SJ-113, SJ-114, SJ-147, SJ-278). (2) The Inter99 study 
(CT00289237, ClinicalTrials.gov) consists of 6,667 free-living subjects (age 46.1 ± 7.9, 51% females) randomly 
drawn from the Glostrup municipality with an age of 30–65  years30. This yields a collection of ECGs from people 
with and without cardiac disease and an equal representation of men and women. Both studies are conducted in 
accordance with the Declaration of Helsinki.
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Electrocardiography. All ECGs are digitally recorded as 10-s ECGs with 12 leads. All ECGs are transferred 
to a MUSE Cardiology Information system (GE Healthcare, Wauwatosa, WI, USA) and ground truths are cal-
culated with version 21 of the Marquette 12 SL algorithm (GE Healthcare, Wauwatosa, WI, USA). The ECGs are 
recorded with a sample rate of 500 Hz and a resolution of 4.88 µV per least significant bit.

Prediction model. Architecture. A digital electronic ECG can be represented as a two-dimensional matrix 
of integers representing the voltage at a specific point in time. To analyze these measurements, we use a standard 
convolutional neural network (CNN) consisting of eight residual modules (as introduced by He et al.37) to cap-
ture the complex features and relationships present in a standard ECG. The neural network architecture consists 
of 1,652,993 parameters and is built to handle two different types of input, a single representative median heart-
beat of 1.2-s duration and a 10-s rhythm ECG. Both input types contain data from 12-lead ECGs. A detailed 
view of the neural network architecture can be seen in Fig. 2. From the input layer, the ECG is passed through 
two convolutional layers before being average pooled. The two convolutional layers generate 64 and 32 feature 
maps with a kernel size of 8 and 3. After this initial convolution block, the output is sent through eight residual 
blocks, each consisting of two convolutions. Each convolutional layer in the residual blocks generates 64 and 32 
feature maps, respectively, and both layers use a kernel size of 50. We use a large kernel size to extend the recep-
tive field to include multiple parts of a typical ECG. This could, for example, capture both the P wave and the 
QRS complex in a single convolution. We add batch normalization after each convolution and dropout after the 
final convolution with a drop rate of 50%. After the eight residual blocks, the output is globally average pooled 
before making the final prediction. The prediction layer consists of a single neuron with a linear activation that 
predicts a single variable of the ECG.

Training. All models are trained for a maximum of 1000 epochs on a computer consisting of two Intel Xeon 
Silver 4116 CPUs running at 2.1 GHz, four Nvidia RTX 2080Ti graphics cards, and 96 gigabytes of RAM. The 
models are implemented using Keras version 2.1.0 with a TensorFlow backend on Ubuntu 18.04.2. Processing 
one ECG takes about 0.06 s using the aforementioned hardware and Python libraries. To optimize the weights, 
we used the gradient descent-based optimizer  Nadam38 with a learning rate of 0.0005. The learning rate is 
selected based on manual testing and prior experience from our previous  works32. Otherwise, we used the Keras 
defaults for all optimizer parameters. In total, we performed 14 different experiments, seven using the median 
for prediction and seven using the rhythm. The variables predicted with regression parameters (include the 
QT interval, PR interval, QRS duration, heart rate, ST-segment deviation from baseline at the junction (STJ), 
T-wave amplitude, and R-peak amplitude). The three amplitudes are lead specific and lead V5 is used. Some of 
these variables cater more to rhythm analyses (such as heart rate), while others are more appropriate for median 
complexes (such as the R-peak). One problem with training on the median complexes is that they are all cen-
tered in a manufacturer-specific way, whereby each wave appears in nearly the same place in each of the ECG. 
Thereby, the network can learn to predict a particular vicinity and guarantee a relatively low error. To circumvent 
this problem, we time-shifted all median complexes by a random amount (− 40 to +40 ms) so that the network 
learns to find the individual waves. This increases the likelihood that the model can be used on ECGs from other 
manufactures with different temporal alignment. No alignment is performed for the rhythm ECGs; the start of 
the recording is random with respect to the ECG. Furthermore, to test the network’s ability to classify in binary 
outcomes, we classified the ECG for sex (male/female).

Attention maps. To obtain physiological insights from the neural network’s decisions, it is necessary to under-
stand how and why a decision is achieved. In this study, we used attention maps to visualize which parts of the 
ECG have importance for each interval/amplitude prediction. To explain the predictions of our model, we use 
gradient-based activation maps (attention maps) to visualize which parts of the ECG are the most important 
when predicting a given variable or class. The technique used is a modified version of  GradCAM26, commonly 
used to interpret image classification models. As we show in our study, this approach works just as well for 
regression tasks of quantitative measurements in the data. Visualizations are generated based on a given network 
layer and output neuron, which produces a heat map that marks the most important areas as hot (red color) and 
less important regions as cold (blue color). In this context, importance signifies how much weight a specific area 
contributes to the overall prediction. We are not the first to use attention maps to interpret deep neural networks 
applied to  ECGs39,40. Most other works use these visualizations to confirm that their model does not deviate 
from the expectations of the medical  doctors41. Our work goes one step further and expands the method of 
explanations to find new insights into the unique properties of ECGs through a case study on sex classification. 
Furthermore, even though the attention maps are generated on a per-lead basis, we average the explanations for 
each lead to produce a visualization that contains more fine-grained details and thus is able to more accurately 
represent what regions of the ECG are most important for the model when making a specific prediction.

Evaluation. To ensure a fair and robust evaluation, we trained each model with five-fold cross-validation for 
1000 epochs on the GESUS  dataset29, resulting in 7152 samples being used for training and 1787 for validation. 
After training and internal cross-validation, the results of GESUS models are replicated in the Inter99  dataset30 
to examine whether the models are generalizable or not. As seen in Table 1, GESUS and Inter99 datasets are 
comparable regarding ECG measurements, although participants in the GESUS study are on average older than 
participants in the Inter99 study. The neural network performance is evaluated by the MAEs (|predicted – actual 
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(
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relative to the ground truth. To give an idea of the magnitude of uncertainty, we calculated the ZeroR-estimate, 
defined as constantly guessing the population mean of the desired variable. If a model’s performance is not better 
than ZeroR, the model has not learned anything except the population mean. Conversely, if the model perfor-
mance is better than the ZeroR, it follows that the model has succeeded in extracting and processing features 
from the ECGs.

Furthermore, ECGs were evaluated manually by two skilled cardiologists. Whereas the neural network by 
definition has a bias (i.e., average error) of zero (ignoring an eventual bias in the ground truth from the 12SL 
algorithm), the human overreaders may exhibit substantial bias relative to the ground truth (i.e., the measure 
consistently shorter or longer intervals), which originates from their own training and personal preference. Since 
this bias is not an error, the human bias is subtracted from the errors before calculating human MAE and RMSE.

Wave blocking. To verify that the neural network model is focusing on relevant waves of the ECG, and as an 
alternative to the attention maps, we remove specific parts of the ECG (either the P- QRS- or T-wave) from the 
median ECGs of the replication set. Using the MUSE 12SL fiducial points, we blank out a wave by replacing it 
from the start to the end with a lead-specific linear interpolation. This analysis represents an alternative measure 
of explainability for representative beats of an ECG by analyzing the decrease in performance when different 
waves of the ECG are blanked. Thus, we can test how dependent our model is on different parts of the ECG and 
verify which waves the model is focusing on when making a prediction. The results in Table 3 show that the 
model performance drop when the wave involved with a particular feature is removed. However, we also find 
that removing non-involved waves typically decreases performance slightly, suggesting that the neural network 
also includes other parts of the ECG to stabilize the model to ensure that it is analyzing the correct part of the 
ECG.

Ethics. We confirm that all experiments were performed in accordance with Helsinki guidelines and regu-
lations of the Danish Regional Committees for Medical and Health Research Ethics. The data studies were 
approved by the ethical committee of Region Zealand (SJ-113, SJ-114, SJ-191), ethical committee of Copenhagen 
Amt (KA 98 155). Written informed consent was obtained from all study participants.

Data availability
The data is not available to the public.

Code availability
The code used to conduct the experiments and generated the related attention maps is available on GitHub at 
https:// github. com/ steve nah/ ecg- atten tion- maps.
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