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A B S T R A C T   

Xylanases are industrial enzymes with multiple applications in the food, pharmaceuticals, bio-bleaching, and 
textiles industries. The present study explores a putative novel bacterium Paenibacillus sp. PCH8 shows xyla
nolytic activity from Himalayan glacial soil. Genome sequencing and analysis revealed multiple genes encoding 
xylanases, cellulases, and other lignocellulolytic enzymes. The bacterium utilized oat spelt xylan substrate and 
showed xylanolytic activity in wide pH (4.0 – 12.0) and temperature (4 to 90 ºC). Proteomic analysis revealed 
1,4-β-xylanase, arabinan endo-1,5-α-L-arabinosidase, and 11 hypothetical proteins in partially purified protein 
fraction. Multi-substrate enzymatic activity (IU/mg) was observed for beechwood (21.42), oat spelt xylan (19.8), 
CMC (5.17), avicel (7.7), and starch (1.62) in protein fraction. The hydrolysis of xylan led to the formation of 
xylose, xylobiose, xylotriose, and xylotetraose upon analysis by LC-MS. The xylooligosaccharides (XOS) con
taining hydrolysate enhanced the growth of probiotic microbes, suggesting prebiotic potential. Thus, the study 
provides a new source of xylanases from Paenibacillus sp. PCH8, with potential applications in lignocellulosic 
biomass hydrolysis and XOS production.   

1. Introduction 

Hemicellulose is a heterogeneous matrix of polysaccharides con
sisting of xylan, arabinan, mannan, and galactan (Saha, 2003; Kumar, 
Binod, Sindhu, Gnansounou, & Ahluwalia, 2018). Xylan is the pre
dominant component of hemicelluloses with β,1–4 linkage backbone 
between xylose residues or other substituted residues like arabinose, 
acetyl, glucuronic acid, and 4-O-methylglucuronic acid (Scheller & 
Ulvskov, 2010; Rennie & Scheller, 2014). The polymerization and di
versity of substitution are major hurdles in depolymerizing the xylan. 
Additionally, hydrogen bonding of xylans with a hydrophilic surface on 
the cellulose microfibrils interferes with the action of hydrolytic en
zymes (Simmons, 2016). 

Xylanases, an enzyme group comprised of endo-1,4-β-D-xylanases 
(EC 3.2.1.8), α− 1-arabinofuranosidases (EC 3.2. 1.99), β-D-xylosidases 
(EC 3.2.1.37), and α-glucuronidases (EC 3.2.1.139), perform endohy
drolysis of xylan (Bhardwaj, Kumar, & Verma, 2019). The hydrolytic 
action of xylanases on hemicelluloses produces xylooligosaccharides 
(XOS) of 2–10 units (Cano et al., 2020; Nieto-Domínguez, 2017; Peralta, 
Venkatachalam, Stone, & Pattathil, 2017). The emerging applications of 

XOS as prebiotics in food and pharmaceuticals have attracted re
searchers’ worldwide (Mhetras, Mapre, & Gokhale, 2019; Rashid & 
Sohail, 2021). Prebiotics are indigestible carbohydrate oligomers that 
selectively enhance the growth of beneficial gut bacteria of the host 
(Nieto-Domínguez, 2017) and offer several health benefits (Aachary, 
Gobinath, Srinivasan, & Prapulla, 2015; Singh, Banerjee, & Arora, 2015; 
Yang, 2015). 

The production of XOS can be carried out through physical (auto
hydrolysis), chemical (acid/alkali), and biological (enzymes) methods 
(Brienzo, Siqueira, & Milagres, 2009; Chapla, Pandit, & Shah, 2012; 
Palaniappan, Antony, & Emmambux, 2021; Tan et al., 2008). The 
physical and chemical-based bioprocesses generate undesirable side 
products and require specialized equipment. On the contrary, the xyla
nolytic enzyme-based approaches are product-specific (Chapla et al., 
2012). Besides XOS production, xylanases play a critical role in bio
refinery, textiles, paper, pulp, and food industry (Kuhad and Singh, 
1993; Woldesenbet, Virk, Gupta & Sharma, 2012; Singh et al., 2020; 
Wang, Liang, Li, Tian, & Wei, 2021). Considering the broad applications 
of microbial xylanases across several industries, novel producers of 
robust and multi-substrate-specific xylanases are the need of the hour. 
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Several bacterial genera like Bacillus, Streptomyces, Arthrobacter, 
Microbacterium, Pseudomonas, Anoxybacillus, and Paenibacillus have been 
reported for the production of xylanolytic enzymes (Rättö et al., 1992; 
Kim, Park, Park, Kim, & Lee, 2005; Xu, Bai, Xu, Shi, & Tao, 2005; 
Khandeparkar and Bhosle, 2007; Dheeran, Sachin, Jaiswal, & Adhikari, 
2012; Meryandini, 2007; Yadav et al., 2018; Dutta et al., 2020). The 
members of the genus Paenibacillus were isolated from various envi
ronments like Alaskan tundra, Kafni glacier, selenium mines, and 
rhizosphere (Khan, 2020; Kim, 2009; Kishore, Begum, Pathan, & Shivaji, 
2010; Lee, 2013; Nelson, Glawe, Labeda, Cann, & Mackie, 2009; Yao 
et al., 2014). Paenibacilli are well characterized for the production of 
hydrolytic enzymes, XOS, plant growth-promoting attributes, bio
fertilizers, biopesticides, exopolysaccharide, and antimicrobials (Grady, 
MacDonald, Liu, Richman, & Yuan, 2016; Liu et al., 2018; Liyaskina 
et al., 2021; Lorentz, Ártico, Da Silveira, Einsfeld, & Corção, 2006; 
Priest, 2015; Raza, Yang, & Shen, 2008; Xie et al., 2016). With the help 
of advanced biotechnological techniques such as genome sequencing, 
several attempts have been made to identify potential lignocellulose 
depolymerizing enzymes, including xylanases. The understanding of the 
genomic structure of the microbe and the genes further assists in rapid 
characterizing the mode of action of the xylanases. Realizing the po
tential, a putative novel Himalayan Paenibacillus sp. PCH8 showing 
xylanase activity was explored. The study performed genome 
sequencing and mined genes encoding lignocellulolytic enzymes 
including xylanases. Proteomic and enzymatic characterization was 
carried out for secreted proteins showing xylanase activity. Further, 
concentrated and partially purified protein fraction was employed for 
xylan hydrolysis and XOS production. 

1.1. Hypothesis 

The Himalayan niches provide a plethora of bioresources and bio
molecules such as lignocellulolytic enzymes with unique properties and 
diverse applications. 

2. Materials and methods 

2.1. Materials 

The whole-genome sequencing kits were procured from Pacific 
Biosciences, California, Inc., USA. The media, buffer components, and 
standards were purchased from Himedia Laboratories Limited, Mumbai 
(India). 

2.2. Microorganism 

Bacterial strain PCH8 was isolated from a glacial soil sample of the 
Pangi-Chamba Himalayan (PCH) region and identified as Paenibacillus 
sp. PCH8 by 16S rDNA sequence (NCBI GenBank accession no. 
KY628835) analysis (Thakur, Kumar, Kumar, & Singh, 2018). The strain 
was submitted to Microbial Type Culture Collection (MTCC), 
CSIR-IMTECH, Chandigarh (India). The probiotic strains Lactobacillus 
paracasie PCH265, Saccharomyces cerevisiae PCH359, and Kluyveromyces 
marxianus PCH397 were previously isolated in our laboratory (Nag, 
Kumar, Kumar, & Kumar, 2021). 

2.3. Morphological, physiological, and biochemical characterization of 
bacterial isolate PCH8 

The cell morphology was studied using Transmission Electron Mi
croscopy (JEOL JEM-1010). The physiological parameters affecting 
growth viz. temperature (4–37 ℃), pH (4.0 – 12.0), and salt tolerance (0 
– 5%) were observed in the Antarctic bacterial medium (g/L: peptone 
5.0, yeast extract 2.0). Biochemical characteristics (sugar utilization, 
gram staining, catalase test, and antibiotic sensitivity) were examined 
by various HiMedia Kits (HiMedia, Mumbai, India). Pure culture of the 

bacterium was maintained on a nutrient agar medium (g/L: meat extract 
1.0, peptone 5.0, sodium chloride 5.0, yeast extract 2.0, agar 15.0) at 20 
℃ and stored in glycerol stock at -80 ℃. 

2.4. Genome sequencing and phylogenomic positioning of Paenibacillus 
sp. PCH8 

The genomic DNA isolation, genome sequencing using PacBio RSII, 
assembly, and annotation were carried out as described earlier (Kumar 
et al., 2020a; Thakur, Kumar, Kumar, & Singh, 2021). The draft genome 
assembly was deposited to NCBI WGS database under Bioproject 
PRJNA427453 and RefSeq NZ_PKQK00000000.1. Phylogeny of the 
bacterium was studied by analysing the 16S rRNA gene sequence in the 
EzBioCloud server (https://www.ezbiocloud.net/?bannerId=6). 
Average nucleotide identity (ANI) and digital DNA-DNA hybridization 
(dDDH) were performed with available genomes of 10 closest matches 
for studying genomic relatedness. A phylogenetic tree was constructed 
using the 16S rDNA sequence (EzTaxon) and with the whole-genome 
sequence in Type Strain Genome Server (TYGS) (Meier-kolthoff & 
Göker, 2019). As described earlier, functional genome annotation was 
performed through different web servers (Thakur et al., 2021). The 
presence of signal peptides in the protein sequences was predicted 
through SignalP 5.0 server (https://services.healthtech.dtu.dk/service. 
php?SignalP-5.0). 

2.5. Qualitative and quantitative estimation of xylanase activity of 
Paenibacillus sp. PCH8 

The bacterium was screened for xylanase production through qual
itative plate assay on the medium containing (g/L) yeast extract 5.0, 
MgSO4⋅7H2O 10.0, KCl 2.0, NaNO3 5.0, oat spelts xylan 5.0, and agar 
20.0. The bacterial culture was spotted on the solid medium and grown 
for 48 h at 28 ºC. The plate was flooded with 0.1% Congo red solution 
and washed with 1 M NaCl after 30 min (Samanta, Kolte, Senani, Srid
har, & Jayapal, 2011). The zone of clearance around the colony repre
sents the xylanase activity. The strain PCH8 was grown in the above 
medium, excluding agar (xylanase production medium) for 84 h at 28 ℃ 
and 160 rpm. After that, culture was harvested every 12 h and centri
fuged at 10,000 g for 15 min. The supernatant was used as a crude 
enzyme for the xylanase activity assay. The xylanase assay was per
formed using 1% oat spelts xylan as substrate in 25 mM potassium 
phosphate buffer (pH 7.0) at 50 ℃ for 40 min. Quantitative estimation 
of reducing sugars was carried out using the DNSA method (Miller, 
1959). In control, the supernatant was added to the reaction mixture 
after incubation. All the reactions were performed in triple biological 
repeats. One unit of enzyme activity is defined as μmoles of reducing 
sugar produced per minute by one mg of the enzyme under standard 
assay conditions. 

2.6. Proteomic analysis of protein fraction showing xylanolytic activity 
produced by Paenibacillus sp. PCH8 

Paenibacillus sp. PCH8 was grown in a 500 mL xylanase production 
medium at 28 ℃ and 160 rpm for 60 h. The supernatant was dialyzed 
with 25 mM potassium phosphate buffer (pH 7.0) and concentrated to 
200 mL in AKTA flux (GE Healthcare, Chicago, Illinois, United States) 
using a 3 kDa hollow fiber membrane at a feed rate of 1.5 L/min and 9 
psi pressure. The concentrated fraction was lyophilized and re- 
suspended in a 20 mL phosphate buffer. The partially purified protein 
fraction was resolved on 10% SDS-PAGE, and clear bands were visual
ized after Coomassie blue staining. The xylanase activity was re- 
confirmed by zymogram analysis of native protein fraction as 
described elsewhere (Jiang et al., 2004). Briefly, the protein fraction was 
resolved on a polyacrylamide gel copolymerized with 1% oat spelts 
xylan under native conditions. The gel was then incubated in 25 mM 
potassium phosphate buffer (pH 7.0) at 50 ºC for 1 h. After incubation, 
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the gel is washed three times with distilled water and stained using 0.1% 
Congo red for 0.5 h, followed by de-staining with 1 M NaCl (Geib, Tien, 
& Hoover, 2010). The complete proteome analysis of the enzymatic 
fraction showing xylanase activity was performed in 6550 Q-TOF 
IMS-LC-MS instruments as described elsewhere (Kumar et al., 2020b). 
The detection was performed with three replicates. The spectrum mill 
software was used for peptide identification using SwissProt and UniProt 
databases as search parameters. 

2.7. Biochemical characterization of xylanolytic activity 

The xylanolytic activity was assayed with 0.5% oat spelts xylan as 
substrate at 50 ºC for 10 min. The effect of pH and temperature on the 
xylanase activity of the enzymatic fraction was assessed using a one- 
factor at time (OFAT) approach. Five buffer systems (25 mM with 
different pH) namely citrate (4.0 – 6.0), potassium phosphate (6.0 – 8.0), 

Tris–HCl (7.0 – 9.0), carbonate-bicarbonate (9.0 - 10.0) and disodium 
hydrogen phosphate-sodium hydroxide (11.0 – 12.0) were tested. The 
effect of temperature was studied from 4 to 90 ℃. 

2.8. Substrate specificity of protein fraction with xylanolytic activity 

Substrate specificity of the partially purified fraction with xylano
lytic activity was assessed using 0.5% of different substrates i.e., oat 
spelts xylan, beechwood xylan, carboxymethyl cellulose (CMC), avicel, 
and starch. The enzymatic reactions were carried out at 50 ℃ in 25 mM 
Tris–HCl buffer (pH 7.0) for 10 min. Individual reaction controls and 
three biological replicates were taken for each reaction. 

Table 1 
The in silico average nucleotide identity (ANI) and digital DNA hybridization (dDDH) analysis of whole-genome sequence of Paenibacillus sp. PCH8 with the closest 
neighbours.  

S. No. Organism NCBI RefSeq Genome size (Mb) GC (%) 16S sequence similarity (%) ANI (%) DDH (%) 

1. PCH8 NZ_PKQK00000000.1 6.75 46.0 – – – 
2. Paenibacillus amylolyticus NBRC 15957(T) NZ_BIMJ00000000.1 7.11 45.6 97.05 87.24 33.30 
3. Paenibacillus xylanexedens DSM 21292 NZ_JAGIKV000000000.1 6.99 46.0 96.76 87.38 33.30 
4. Paenibacillus tundra A10b(T) NA – – 96.76 – – 
5. Paenibacillus xylanivorans A59(T) NZ_LITU00000000.1 7.08 46.1 95.73 81.62 25.20 
6. Paenibacillus cucumis AP-115(T) NA – – 95.72 – – 
7. Paenibacillus polysaccharolyticus BL9(T) NZ_FMVM00000000.1 6.49 45.6 95.58 78.70 22.60 
8. Paenibacillus pabuli NBRC 13638(T) NZ_BCNM00000000.1 7.32 46.5 95.50 81.40 24.90 
9. Paenibacillus intestini LAH16(T) NA – – 95.50 – – 
10. Paenibacillus taichungensis BCRC 17757(T) NZ_JABMCC000000000.1 7.23 45.7 95.43 81.52 25.10 
11. Paenibacillus silvae DB13031(T) NZ_BMFU00000000.1 6.85 46.9 95.05 78.61 22.90  

Fig. 1. Taxonomical representation of a novel Paenibacillus sp. PCH8, (a) 16S rRNA gene based phylogenetic tree, (b) Type (strain) genome server (TYGS) based 
phylogenetic tree. 
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Table 2 
Glycosyl hydrolase gene families present in the genome of Paenibacillus sp. PCH8 
annotated through dbCAN2 meta server.  

S. 
No. 

Ligno-cellulolytic 
enzymes 

Glycosyl hydrolases (GH) families 

1. Xylanase (EC 3.2. 1.8) GH1, GH2, GH3, GH5, GH8, GH10, GH11, GH16, 
GH30, GH31, GH43,GH51, GH52, GH67, GH74 

2. Arabinosidase (EC 
3.2.1.185) 

GH2, GH5, GH42, GH43, GH51, GH146 

3. Mannosidase (EC 
3.2.1.25) 

GH1, GH2, GH5, GH31, GH38, GH130, GH125 

4. Cellulase (EC 3.2.1.4) GH1, GH3, GH4, GH5, GH6, GH8, GH10, GH13, 
GH16, GH30, GH48, GH51, GH74 

5. Amylase (EC 3.2.1.1) GH13, GH126 
6. β-Galactosidase (EC 

3.2.1.23) 
GH1, GH2, GH16, GH35, GH42 

7. α-Galactosidase (EC 
3.2.1.22) 

GH27, GH31, GH36 

8. Laccase (EC 1.10.3.2) AA1 
9. Chitinase (EC 3.2.1.14) GH5, GH8, GH16, GH18, GH48  

Fig. 2. The estimation of the xylanolytic potential of Paenibacillus sp. PCH8, (a) Qualitative estimation of xylanase activity, (b) Quantitative estimation of xyla
nase activity. 

Fig. 3. Optimization of reaction parameters for partially purified xylanolytic enzyme fraction, (a) Buffer pH, (b) Temperature range.  

Fig. 4. The multi-substrate activity of partially purified enzyme fraction on 
diverse polysaccharides. 
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Fig. 5. The hydrolyzed products of beechwood xylan identified as xylose and xylooligosaccharides (XOS) by LC-MS analysis.  
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2.9. Xylan hydrolysis and xylooligosaccharides production and validation 
of their prebiotic potential 

The protein fraction having xylanase activity was used for hydrolysis 
of 1% beechwood xylan. The enzyme-substrate mixture was incubated 
for 1 h at 50 ℃. The amount of reducing sugars formed was estimated by 
using DNSA method (Miller, 1959). The samples were subjected to 
LC-MS analysis to investigate the xylan hydrolysis and formation of XOS. 
The prebiotic potential of XOS was studied using probiotic strains 
Lactobacillus paracasie PCH265, Saccharomyces cerevisiae PCH359, and 
Kluyveromyces marxianus PCH397 isolated in our laboratory (Nag, 
Kumar, Kumar, & Kumar, 2021). The MRS media with following 
composition was prepared: (g/L) peptone-10.0, yeast extract-5.0, so
dium acetate-10.0, K2HPO4–2.0, MgSO4⋅7H2O-0.2, and tween 80–0.1%. 
Probiotic strains were grown in MRS medium, MRS medium supple
mented with 0.25% glucose, and MRS medium supplemented with 
0.25% XOS. 

2.10. Statistical analysis 

All the experiments were performed in triplicates. The results were 
expressed as mean of three replications with standard deviation. The 
standard deviation (SD) was applied to all the calculated enzyme ac
tivities and SD of ±2 was accepted as significant. 

3. Results and discussions 

3.1. Isolation, identification, and biochemical characterization of strain 
PCH8 

The strain PCH8 was isolated on Antarctic bacterial medium at 10 ◦C 
from a glacial soil sample of the PCH region (Thakur et al., 2018). The 
bacterium grows in a temperature range of 4 – 37 ◦C and pH of 5.0 – 9.0. 
The optimum growth temperature and pH were 28 ◦C and pH 7.0, 
respectively. The bacterial culture tolerated 3% NaCl and utilized 
lactose, xylose, fructose, dextrose, galactose, trehalose, melibiose, su
crose, and L-arabinose as carbon sources (Table S1). As visualized by 
TEM, the bacterial cells were rod-shaped, 0.8–1.2 µm wide, and 3–4 µm 
long (Fig. S1). The biochemical analysis showed the strain as 
Gram-positive, catalase-positive, sensitive to erythromycin, ciprofloxa
cin, gentamycin, azithromycin, vancomycin, penicillin G, kanamycin, 
tetracycline, rifampicin, and resistant to streptomycin. The 16S rDNA 
phylogeny of the bacterium showed 97.5% sequence similarity with 
closest match type strain Paenibacillus amylolyticus NRRL NRS-290(T). 

The sequence similarity is well below the threshold mark (≤98.6%) 
for the demarcation of a novel species (Kim, Oh, Park, & Chun, 2014). 
This insinuated Paenibacillus sp. PCH8 is a putative novel species in the 
genus Paenibacillus 

3.2. Whole-genome sequencing and phylogenomic analysis of 
Paenibacillus sp. PCH8 

The genome assembly of Paenibacillus sp. PCH8 consists of 12 contigs 
summing up to 6,751,460 bases with average reference coverage of 
180.7X. In-silico ANI and digital DDH score of the genome with available 
ten closest genomes were in the range of 78.61 – 87.38% and 22.60 – 
33.30%, respectively (Table 1). The phylogenetic analysis of 16S rDNA 
sequence of Paenibacillus sp. PCH8 showed a separate clade with 
P. amylolyticus and P. xylanexedens (Fig. 1a). The genome-based phylo
genetic tree constructed through the TYGS server further validated the 
strain PCH8 as a novel bacterial species in the genus Paenibacillus 
(Fig. 1b). The bacterial strain having 16S rDNA sequence identity 
<98.6%, ANI <94%, and DDH score <70% is considered to be a novel 
species (Kim et al., 2014). The Paenibacilli are well documented for their 
potential for hydrolytic enzymes production. Hence, a novel Paeniba
cillus species from the Himalayas opens new horizons for unearthing 
potentially industrial important enzymes. 

The functional genome analysis using Rapid Annotation and Sub
system Technology (RAST) server indicated 46% GC content, a total of 
6114 coding sequences, 147 RNA’s, 6 CRISPR arrays under 442 sub
systems (Fig. S2a). Interestingly, the highest subsystem feature count of 
724 genes was observed for the carbohydrate metabolism category, 
including 11 genes for polysaccharides, 211 genes for oligosaccharides, 
216 genes for monosaccharide utilization, and 43 genes for fermenta
tion. The presence of genes encoding for carbohydrate-active proteins 
further reconfirmed by Prokaryotic Genome Annotation Pipeline 
(PGAP) and dbCAN meta server (Fig. S2b). The dbCAN server revealed 
199 genes encoding for CAZymes, which includes various lignocellulo
lytic enzymes like xylanase, arabinosidase, mannosidase, cellulase, 
amylase, β-galactosidase, α-galactosidase, laccase, and chitinase activ
ities (Table 2). The xylanase showed the highest number of glycosyl 
hydrolase families, which intrigued further investigation. A total of 9 
genes encoding for xylanolytic enzymes were identified through PGAP 
annotation. Among these, 5 xylanolytic genes had signal peptides 
responsible for extracellular expression (Table S2). 

3.3. Production of extracellular enzyme fraction and its proteomic 
analysis 

Paenibacillus sp. PCH8 showed xylanase activity with a zone of 
clearance (zone ratio = 4.5) after Congo red staining (Fig. 2a). The 
bacterium showed the highest xylanase activity of 2.79 ± 0.18 IU/mg 
after 60 h of growth in the xylanase production medium (Fig. 2b). The 
partially purified enzyme fraction after 60 h grown culture showed 16.4 
± 0.5 IU/mg activity and 5.87-fold purification. It is comparatively 
higher than the specific activity reported previously for Paenibacilli 
(0.06 IU/mg, Park and Cho, 2010; 4.25 IU/mg, KURRATAA & Mer
yandini, 2015). Earlier, crude xylanases from Anoxybacillus kamchat
kensis (Yadav et al., 2018) and Thermomyces dupontii (Seemakram, 
Boonrung, Aimi, & Ekprasert, 2020) showed xylanase activity of 3.01 
and 2.01 IU/mg, respectively, which is lesser as compared to the present 
study. 

The partially purified enzyme fraction showed clear bands from 30 to 
75 kDa on 10% SDS-PAGE stained with Coomassie blue (Fig. S3a). The 
zymogram of the native protein fraction showed a clear band against a 
red background. This re-confirmed the xylanase activity in-gel assay 
(Fig. S3b). The partially purified fraction revealed 66 protein hits in LC- 
MS-based total proteome analysis (Fig. S4). Amongst, two proteins 
showed similarity with 1,4-β-xylanase and arabinan endo-1,5-α-L-ara
binosidase in the BLAST analysis. Further, 11 hypothetical proteins hits 

Fig. 6. The investigation of prebiotic potential of xylooligosaccharides (XOS) in 
the growth of probiotic microbes such as Lactobacillus paracasie (L. paracasie), 
Saccharomyces cerevisiae (S. cerevisiae), and Kluyveromyces marx
ianus (K. marxianus). 
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were also found in this analysis (Table S3). Previously, the extracellular 
proteome of Aspergillus oryzae showed 73 protein hits, including endo- 
1,4-β-xylanase (Bhardwaj, Verma, Chaturvedi, & Verma, 2018). The 
extracellular proteome studies of bacterial xylanolytic cocktails are 
limited in literature to a few microorganisms (Ghio et al., 2018; Osiro, 
2017). Thus, the present results validated the genome-based identifi
cation of carbohydrate-active proteins for extracellular expression, 
including xylanases in Paenibacillus sp. PCH8. 

3.4. Biochemical characterization of xylanolytic activity 

The partially purified enzyme fraction from Paenibacillus sp. PCH8 
showed xylanase activity across a broad pH (4.0 – 12.0) and temperature 
(4 – 90 ◦C). The highest xylanase activity (20.25 ± 0.45 IU/mg) was 
observed at 50 ◦C and pH 7.0 in 25 mM Tris–HCl buffer (Fig. 3a, 3b). 
Surprisingly, the pH and temperature optima of the xylanolytic activity 
were higher than optimum growth conditions of the bacterium (at 28 
◦C). The optimum buffer system, pH, and temperature provide an 
ambient environment for the enzyme to work efficiently. Earlier, 
partially purified xylanases from Bacillus altitudinis (Adhyaru, Bhatt, & 
Modi, 2014) and Cladosporium oxysporum (Guan et al., 2016) showed 
wide pH (3.0 – 10.0) and temperature activity (25 – 75 ◦C). Purified 
xylanase of Anoxybacillus kamchatkensis was active at wide pH (4.0 – 
11.0) and temperature (30 – 80 ◦C) (Yadav et al., 2018). Paenibacillus 
montaniterrae produced xylanase with a pH range of 4.0 – 11.0 and a 
temperature range of 20 – 100 ◦C (Arora, Krishna, Malik, & Reddy, 
2014). Though several strains reported broad pH active xylanases, the 
activity drops significantly for them at pHs other than pH optima. 
However, the xylanolytic enzyme fraction from PCH8 exhibited a stable 
activity profile at pH extremes. The enzyme fraction showed 65% ac
tivity on acidic (pH 4.0) and alkaline (pH 12.0) pH in comparison to 
optimum pH of 7.0 (Fig. 3a). All mentioned strains are either mesophilic 
or thermophilic, whiles PCH8 is a psychrotolerant bacterium with 
thermophilic enzyme properties. 

The broad pH and temperature-active xylanases have applications in 
varied industries. Acidic xylanases are utilized in the food industry, 
whereas alkaline xylanases have application in bio-bleaching (Beg, 
Kapoor, Mahajan, & Hoondal, 2001; Goluguri et al., 2012; Luo et al., 
2009). Low-temperature active xylanases are favoured in the food in
dustry, whereas biobleaching and bioconversion-based industries 
require high-temperature active xylanases (Dornez, Verjans, Arnaut, 
Delcour, & Courtin, 2011; Wang et al., 2014). The enzyme fraction of 
Paenibacillus sp. PCH8 showed xylanolytic activity with desirable attri
butes i.e. broad pH and temperature activity. This makes PCH8 a po
tential bioresource for diverse industrial processes. 

3.5. Hydrolysis of hemicellulosic and cellulosic substrates 

The partially purified enzyme fraction showed hydrolytic activity for 
polysaccharides like oat spelt xylan, beechwood xylan, CMC, avicel, and 
starch (Fig. 4). The enzyme activities on oat spelt (19.8 ± 0.28 IU/mg) 
and beechwood xylan (21.42 ± 0.46 IU/mg) confirm hemicellulolytic 
activities. Additionally, the enzyme fraction hydrolyses CMC (5.17 ±
0.80 IU/mg), avicel (7.7 ± 0.60 IU/mg), and starch (1.65 ± 0.40 IU/ 
mg), thus, validating the cellulolytic and amylolytic activity. The 
capability of partially purified enzyme fraction in the hydrolysis of 
diverse polysaccharides is intriguing. This revelation makes strain PCH8 
a suitable bioresource for the lignocellulose depolymerization and bio
ethanol industry. 

3.6. Xylooligosaccharides production and validation of their prebiotic 
potential 

The enzymatic fraction having xylanase activity hydrolysed beech
wood xylan to form XOS. The hydrolysis carried out under optimized 
conditions resulted in the generation of 5.4 g/L reducing sugars. The LC- 

MS analysis of hydrolysed products revealed that XOS contains xylo
biose, xylotriose, and xylotetraose (Fig. 5). The reaction showed 
~25.5% conversion of beechwood xylan into products including xylose 
and XOS in 1 h. Earlier studies also reported the production of XOS from 
various xylan substrates. For example, xylanase from fungi i.e., Asper
gillus foetidus, Talaromyces amestolkiae, and Aureobasidium pullulans 
yielded 6.75 g/L, 5.95 g/L, and 7.7 g/L XOS from corncob xylan (Chapla 
et al., 2012), birchwood xylan (Nieto-Domínguez, 2017), and beech
wood xylan (Gautério et al., 2021). Although the enzyme fraction is 
partially purified in the present study, still, it resulted in 25% conversion 
efficiency, which shows its potential hydrolysis capacity. 

The XOS is the favourable substrate for the growth of probiotic 
strains. In our experimental conditions, the xylan hydrolysed product, 
including XOS, enhanced the growth of probiotic strains when supple
mented in MRS medium (Fig. 6). The Saccharomyces cerevisiae PCH359 
showed the highest increase in growth (~80%) in XOS enriched MRS 
medium compared to MRS medium containing glucose only. Prebiotics 
are well known for stimulating the growth of probiotic microflora in the 
human gut. Several studies have demonstrated the positive effects of 
xylose enriched XOS on glucose regulation and total cholesterol reduc
tion (Kim et al., 2016; Lim, 2016; Sheu, Lee, Chen, & Chan, 2008). The 
findings insinuate that the xylanolytic enzyme fraction of Paenibacillus 
sp. PCH8 can be employed for the production of prebiotic XOS with 
applications in the food industry. 

4. Conclusions 

The harsh and hostile environmental conditions in the Himalayas 
challenge all life forms, including microbes. Microbes adapt to these 
conditions through various unique enzymes that perform specialized 
biological functions and are of commercial applications. In this study, a 
putative novel Himalayan bacterium Paenibacillus sp. PCH8 possessing 
many lignocellulolytic enzymes, including xylanases, has been identi
fied and characterized. Enzymatic characterization confirmed the 
extracellular xylanase activity at a broad pH and temperature. Inter
estingly, it showed activity for various xylans and cellulose substrates, 
suggesting its applicability in hemicellulosic and cellulosic hydrolysis. 
The enzyme fraction also depolymerizes beechwood xylan to produce 
XOS, which enhances the growth of probiotic bacteria and yeast. The 
current findings have supported our hypothesis that the Himalayan 
niches are a goldmine of bioresources that produces biomolecules with 
unique properties for diverse applications. Further, the findings also 
implied that Paenibacillus sp. PCH8 has xylanolytic activity with po
tential applications for cellulose/hemicellulose hydrolysis and XOS- 
based food and pharmaceutical industries. 
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