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Piezoelectric resonator design and analysis from stochastic car vibration 
using an experimentally validated finite element with viscous-structural 
damping model 

Majid Khazaee , Alireza Rezania *, Lasse Rosendahl 
AAU Energy, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg East, Denmark   
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A B S T R A C T   

Within the Vibration Piezoelectric Energy Harvesting (VPEH) framework, this paper investigates and designs an 
optimal piezoelectric harvester (PH) under stochastic real-time vibrations using a step-by-step guideline from an 
electrical and mechanical perspective. A stochastic-excitation high-order-shear-deformation finite element (FE) 
method, with experimental verifications, analyzed the trapezoid non-uniform piezoelectric resonator under 
random base vibration. The significance of the contact layer and proper viscous-structural combined damping 
model is reported for precise power estimation. Based on modal sensitivity, a fast and effective model-updating 
method for structural modulation is developed. Parametric studies of the optimum load–frequency and natural 
frequency-geometrical parameters relationships are investigated. Modeling results indicate that ignoring the 
contact-layer effect will create inaccuracies in the resonant frequency estimation. Besides, a combined viscous- 
structural damping model is mandatory for proper resonant power estimation. The matched resistance loading is 
slightly different under stochastic vibration than the harmonic analysis. The presented method is applied on a 
real-time stochastic vibration, i.e., car vibration. Electrical power of 1.32 mW with density of 495.92 µW/cm3 are 
produced by installing one PH undergoing random excitation from gravity-direction. This power can be enough 
to power a low-power autonomous wireless vibration sensor demonstrating the VPEH usage in autonomous 
sensors for future intelligent cars.   

Introduction 

Vibration piezoelectric energy harvesting (VPEH) is an exciting 
platform [1] for self-powered sensors due to state-of-the-art electronics’ 
low power consumption and unavoidable everyday experiencing vi-
bration. Piezoelectricity in the VPEH is a mature technology with a 
relatively high power density and easy to implement toward powering 
multi-sensors autonomously, such as wind turbine blade for wireless 
sensor [2], water pump for RF transmitter [3], traffic-induced vibration 
for wireless sensors [4], and pavement roadways [5]. Classical piezo-
electric harvesters (PHs) are cantilevered rectangular beams with 
embedded piezoelectric layers attaching to a vibration source and un-
dergoing linear transverse vibration [6]. Recent VPEH studies investi-
gate four globally categorized areas, namely material development such 
as functionally graded materials [7] and self-excited energy harvesters 
[8], new industrial applications such as journal bearing [9], proposing 
nonlinear designs for performance improvement in specific applications 

such as flexible piezoelectric films [10] and piezoelectric beams with 
stoppers [11], and new modeling techniques such as variable thickness 
finite element modeling [12]. This study focuses on new industrial ap-
plications and modeling and optimization techniques for stochastic- 
excitation VPEH. 

PHs, as the electromechanical Multiphysics structures, have vibra-
tion, electrical, and the coupling between these domains, involving 
structural and electrical PH’s characteristics [13]. Practical kinetic 
sources often induce a complex random signal containing randomness. 
The real-world random signal excitations may influence the effective-
ness and piezoelectric harvester optimization processes, emphasizing 
the analysis of PHs by the random vibration analysis. A random analysis 
is necessary if the excitation bandwidth exceeds the harvester power 
bandwidth, and white noise analysis applies only to substantial band-
width signals [14]. There were studies associated with the PH random 
analysis, such as the electrical circuit propositions under random signal 
[15] and white noise [16], and mechanical modeling, e.g., the single- 
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degree-of-freedom (SDOF) model, under white noise [17], and Gaussian 
colored noise [18]. Renaud et al. [19] studied the piezoelectric rectan-
gular unimorph efficiency and optimal power using a lumped simple 
model under harmonic and random excitations. Yoon et al. [20] 
employed laboratory nonstationary modulated signals and beam-type 
models for the time-varying study of a piezoelectric bimorph without 
tip mass. A bimorph beam with proof mass was studied under real-time 
rail-induced vibration [21]. These studies investigated rectangular sin-
gle or double piezoelectric layers with or without tip mass; therefore, the 
lumped and analytical beam models could be applied. While these 
models provide straightforward outcomes, they are case-dependent, 
suitable for rectangular shapes, and need new modeling efforts by 
changing the boundary conditions or vibration mechanisms. Using 
SDOF [22], single-mode beam distributed model [23], and single elec-
tromechanical element [24] over-simplified the piezoelectric behavior 
and led to inaccuracies; in addition, they are only applicable to simple 
uniform piezoelectric geometries [25]. In addition, damping in these 
studies are pure viscous damping, and the bonding layer effect is often 
eliminated, while the structural damping and the bonding layer have 
considerable effects on the PH power generation [26]. Regarding the 
electromechanical coupling, the excitation frequency can change the 
optimal piezo-harvester layup [27]. 

PH structure and electrical optimization toward better power gen-
eration is always a key VPEH research area and often involves me-
chanical and electrical modulations [28]. Genetic algorithm for 
rectangular unimorph optimization by thickness, width, and resistance 
load tuning. [29], classical plate laminate finite element (FE) for vari-
able thickness beam optimization [12] and evolutionary algorithm for 
the multi-modal unimorph beam optimization [30] are examples of 
numerical mechanical PH optimizations. These optimization studies are 
rational cost-effective numerical methods for lumped or beam piezo-
electric models. Nevertheless, numerical optimization such as genetic 
algorithms will be costly under an accurate high-order FE modeling as a 
comprehensive, widely applicable modeling technique. The optimal 
resistance load (as electrical modulation) and resonant frequency 
matching (as mechanical modulation) are frequency-dependent, 
creating issues in finding the accurate resonant frequency and optimal 
resistance load. This issue under random broadband vibration has not 
received enough attention. 

To sum up, to fill the gap in the literature, this study aims to accu-
rately model a wide range of the initiative PH design under a practical 
random vibration case, explore the effect of the bonding layer and 
structural damping, and propose a fast method for electrical and me-
chanical modulations under random excitation considering electrome-
chanical coupling. A powerful high-order shear element finite element 
(FE) method considering bonding layer and structural damping is 
elaborated under the random vibration input. The presented FE model is 
different from classical plate theory FE [25], where shear stresses are 
ignored, and the presented FE will have higher accuracy and apply to 
various PH configurations. Experimental verification for clarifying the 
structural damping contribution in the FE model is reported as a novel 
modeling improvement. Power generation under wideband random 
signal is investigated for different dominant frequencies and band-
widths. While single- and double-layer piezoelectric harvesters are pri-
marily studied like the previous mechanical modulation studies, the FE 
method can be modified for multi-piezoelectric layers. The trapezoid 
geometry is selected instead of the typical rectangular geometry in the 
literature; moreover, the FE method accommodates any geometries 
provided the mesh section is done. Toward the resonator design and for 
less computational effort in the high-order element FE method, the 
classical global sensitivity method based on the modal parameters is 
applied for the PH optimization. This optimization method is model- 
based, applicable to any design parameter, and is fast convergence 
with low iterations, which can be expected to have better performance 
than the random-based numerical optimization algorithms. To elaborate 
on the natural frequency and optimum resistance sensitivity analysis, 

the natural frequency and optimum resistance sensitivities under 
random signals are analyzed. Our findings might be crucial for devel-
oping, analyzing, and optimizing piezoelectric energy harvesters effec-
tively and straightforwardly. 

As the random signal case study, car vibration is selected because 
there is a high potential for the autonomous onboard in smart cars 
sensors [31], on the other hand, car unavoidably experiences vibration 
[5,32] because of road unevenness, suspension system, engine com-
bustion, and mechanical components’ motion (rotation). This vibration 
energy is often wasted; it can be stored for several self-powered sensors, 
eliminating the wiring or battery exchange. A non-uniform trapezoid 
bimorph with a tip mass, which has a unique capability for frequency 
matching, is proposed for car VPEH. The energy-harvesting box with 
three directional energy-harvesting beams is attached to the car’s body 
at points where an autonomous sensor is required, as shown in Fig. 1. 
The trapezoid substrate’s geometry and added tip mass are considered 
because this configuration will lower the PH’s natural frequency and 
increase the power generation. 

This study is presented as follows. Section 2 presents the methodol-
ogy for simulating and designing a piezoelectric harvester beam under 
stochastic vibration, including the finite element (FE) modeling and the 
optimization (structural and electrical modulations). The mesh sensi-
tivity analysis, experimental verification, and contact layer effect are 
studied in this section. Section 3 presents the results from the investi-
gation and designing the energy harvester from stochastic car vibration 
in an analogous way to the methodology. Finally, section 4 presents the 
piezoelectric harvesters’ power from the real-time stochastic vibration 
data and the effect of stochastic vibration characteristics on the power 
output. Concluding remarks and future works are presented in section 5. 

Methodology 

Finite element model of piezoelectric devices 

Cantilevered piezoelectric beams are among the most popular har-
vesters. These beams can have one piezoelectric layer (unimorph) or two 
layers (bimorph). Bimorph harvesters are more popular because they 
provide one extra piezoelectric layer without design difficulties. The 
harvester beam can have an added tip mass to reduce the beam’s natural 
frequency and increase output voltage by creating extra mechanical 
strain. A bimorph beam is investigated in this research, as shown in 
Fig. 2; nevertheless, the FE model can be applied on single or higher 
number piezoelectric layers. An adhesive contact layer attaches the 
piezoelectric layer and substrate shim. This work uses the finite element 
(FE) method, as it has been demonstrated that the FE model is the most 
accurate and comprehensive for all designs [25]. In the FE method, the 
beam domain is divided into finite (small) elements, and the plate- 
theory equations of motions are derived for each element. The general 
FE method, previously derived by authors [19], will be employed in this 
study. The plate theory of Carrera’s advanced plate theory with First 
Shear Deformation Theory (FSDT) is considered because, according to 
Ref. [19], ignoring shear stresses leads to inaccurate natural frequency 
estimation. 

Fig. 2 shows one piezoelectric harvester (PH), a trapezoid substrate 
shim, and two rectangular piezoelectric patches. The rectangular shape 
of piezoelectric patches will ease the use of available commercial 
piezoelectric layers, while the trapezoid substrate shim will provide the 
opportunity for easy resonant-frequency matching. The elements in the 
FE method, as shown in Fig. 2, are 4-node elements, and each element 
has 24 Degrees of Freedom (DOFs). The PH’s base excitation is a random 
signal indicated by äB(t) with the power spectral density (PSD) ΦBB(ω). 
The transfer function H(ω) relates the input acceleration to the output 
voltage. Vp(t) denotes the output voltage with the PSD ΦVV(ω). The FE 
model aims to obtain the average voltage and power in connection with 
resistance load R under the random vibration input. 

According to the extended Hamilton’s principle, the variation of 
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total energy from 0 to t0 along all feasible paths is zero, Eq. (1.a) [25]. 
An integral-based equation over the volume is obtained by inserting the 
definitions of kinetic and potential energy for non-piezoelectric and 
piezoelectric domains and external mechanical forces, as expressed by 
Eq. (1.b), 

δ
∫t0

0

[(K.E. − P.E.+ Wel) + WE ]dt = 0 (1a) 

K.E. = kineticenergy, P.E. = potential energy, Wel = electric energy, 
WE = external mechanical. 

δ
∫t0

0

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∫∫∫

ρδṙt ṙdV
⏞̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅⏞

K.E.

−

∫∫∫

ρδεtσdV+

∫∫∫

δεtetEdVp

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
P.E.

+

∫∫∫

δEteεdVp+

∫∫∫

δEtDdVp

⏞̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅⏞
Wel

+δr.f E

⏞̅⏟⏟̅⏞
WE

dt

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=0 (1b) 

ρ: density r: mechanical displacement field ε: strain σ: stress f E: 
external force. 

e: piezoelectric factor E: electric field D: electric displacement field. 
A matrix-form set of differential equations is required for each 

element in the mesh in Fig. 2. A high order shear element (TSDT) is 
assumed in this FE method, as shown in Fig. 3. The overall equation, Eq. 
(1.b), can be converted to element-wise equations for each discretized 
element. The element differential equations for a piezoelectric beam 
connected to a resistance load R are given by: 

[me]{χ̈e
} +

[
ce

a

]
{χ̇e

} +
([

ke
qq

]
+ j

[
ce

s

] )
{χe} −

[
ke

qϕ

]
ve = f E

[
ke

qϕ

]t
{χ̇e

} +
v̇e

R
+ ke

ϕϕv̇e = 0
(2) 

wherein {χe} ∈ R6×1 is the mechanical degrees of freedom for each 
element, ve ∈ R is the voltage difference between electrodes at each 

element, [me] ∈ R6×6 is the element mass matrix, 
[
ke

qq

]
∈ R6×6 is the 

element stiffness matrix, 
[
ke

qϕ

]
∈ R6×1 is the element electromechanical 

coupling matrix, 
[
ce

a
]
∈ R6×6 is the element viscous-damping matrix, and 

[
ce

s
]
∈ R6×6 is the element structural-damping matrix. The definitions for 

these element matrixes can be found in Ref. [25]. 
After the element derivations of matrices, by assembling the element 

matrices, the global FE differential equations can be obtained, as given 

Fig. 1. A moving car and the energy-harvesting box comprising three directional non-uniform trapezoid piezoelectric harvesters.  

Fig. 2. Piezoelectric bimorph as vibrating energy harvester subjected to a random vibration.  
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by: 

[M]χ̈(t) + [Ca]χ̇(t) +
( [

Kqq
]
+ j[Cs]

)
χ(t) −

[
K̃qϕ

]
Vp(t) = F(t)

[
K̃qϕ

]t χ̇(t) + Vp(t)
/

R + KϕϕV̇p(t) = 0
(3) 

In this FE formulation, the viscous and structural damping mecha-
nisms are separately considered by [Ca] and [Cs] matrices, respectively. 
The viscous damping matrix [Ca] is proportional damping and repre-
sented by β[M]. The structural damping matrix is also proportional and is 
represented by [Cs] = γ

[
Kqq

]
. If one obtains the structural (ηn) and 

viscous (ζn) damping coefficients from the experiments, β, and γ can be 
calculated by [34]: 

β = 2ζnωn
γ = ηn

(4) 

If there is a base vibration of äB(t) = ÄB(ω)ejωt, then the input exci-
tation force is due to the inertial load, which F (t) = meffaBω2ejωt{T }

expresses. In this case, the voltage output is Vp(t) = Vp,ωejωt, which is 
related to the base vibration by Vp,ω = H(ω)ÄB(ω) (H is the transfer 
function). The transfer function of voltage to the input vibration H(ω) is 
obtained from Eq. (3) and can be expressed by:   

{T } is the vector containing the applying force degrees of freedom. 
The resonant frequency ωr of the transfer function H(ω) is a function 

of natural frequency, damping coefficients, and the electromechanically 
piezoelectric coupling coefficients [13], e.g., ωr =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ω2
n + f

([

K̃qϕ

√ ]

,Kϕϕ,ω,R, β, γ
)

, where the coupling function f is 

nonlinear. The resonant frequency dependency function f has been 
previously investigated by analytical model for single-mode viscous 
damping in Ref. [13]; while using the matrix formulation, this de-
pendency shall be investigated numerically. 

For the harmonic excitation case, the power output normalized per 

square acceleration can be obtained by P(ω) = 1
R

(
Vp,ω

ÄB(ω)

)2
=

(H(ω) )2
R . 

Therefore, the optimum resistance load is frequency-dependent and 
depends on the material properties and geometries. 

For the stochastic vibration case, the harvester base excitation, 
äB(ω), is a stationary random vibration, and its power spectral density is 
ΦBB(ω). The voltage PSD then can be obtained by. 

ΦVV (ω) = |H(ω) |
2ΦBB(ω) (6) 

In the random vibration, then it is possible to calculate the average 
harvested power by: 

E[P(t) ] =
E
[
V2

p (t)
]

R
=

1
R

⎛

⎝
∫∞

− ∞

|H(ω) |2ΦBB(ω)

⎞

⎠ (7) 

wherein E[⋯] is the average. The above integration shall be calcu-
lated numerically. 

Mesh sensitivity analysis 
The number of elements or divisions in the FE mesh affects the FE 

results. Thus, mesh analysis is essential prior to further investigations by 
this FE method. The FE numerically models a bimorph sample for mesh 
sensitivity analysis. The bimorph sample consists of two oppositely 
poled PZT-5H layers embracing a brass substrate, representing a series 

Fig. 3. Discrete quad element using Third-order Shear Deformation Theory and its degrees of freedom.  

Table 1 
Material properties of bimorph piezoelectric energy harvester (Q220-H4BR- 
2513YB) [35].  

Properties Values 

Piezoelectric stiffness at the constant field, cE
11, GPa 66.7 

Piezoelectric density, ρp, kg/m3 7870 
Electromechanical coupling coefficient, e31, C/m2 − 35.5 
Piezoelectric layer thickness (each), t, mm 0.19 
Piezoelectric permittivity constant, ε33, F/m 3800×ε0 

Substrate Young’s modulus, Ys, GPa 100 
Substrate thickness, h, mm 0.13 
Substrate density, kg/m3 8300 
Piezoelectric beam length, l, mm 57.2 
Piezoelectric beam width, b, mm 31.8 
Bonding layer thickness, mm 0.02  

H(ω) =
Vp,ω

ÄB(ω)
= meff

jω
(
1
/

R + jωKϕϕ
)− 1

[

K̃qϕ

]t

{T }

(

( − ω2 + jωβ)[M] + (1 + jγ)
[
Kqq

]
+ jω

(
1
/

R + jωKϕϕ
)− 1

[

K̃qϕ

][

K̃qϕ

]t

)

(5)   
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connection between the piezoelectric elements. The geometric and 
material properties of these samples are presented in Table 1. 

Mesh size is characterized by the division number in length Nl and 
width Nw. The natural frequency is investigated in mesh size from 10 
elements (Nl = 5 and Nw = 2) to 480 elements (Nl = 40 and Nw = 12), see 

Fig. 4 (a). As expected, the natural frequency converges to a more ac-
curate value by increasing the element numbers; here, the natural fre-
quency reduces from 81.16 with 10-element divisions to 79.42 with 480- 
element divisions. In addition, the natural frequency value becomes less 
sensitive to the element numbers when mesh numbers are sufficiently 

(a) 

(b)

Fig. 4. Mesh study for the bimorph sample (Q220-H4BR-2513YB), (a) the natural frequency, and (b) the natural frequency variation, as a function of divisions in 
length and width. 

Fig. 5. Experimental setup for model verification.  
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large. However, this accuracy comes with a price of computation time, 
which dramatically increases for large element divisions. For instance, 
the computation time in a laptop (CPU: Intel(R) Core(TM) i7-6600U 
2.81 GHz and RAM: 20 GB) for 10, 160, and 480 elements are 3.59, 
11.87, and 61.74 s, respectively. Therefore, mesh size is a trade-off be-
tween accuracy and computation time. 

Fig. 4 (b) shows the natural frequency variation versus the element 
divisions with the reference mesh (a 480-element mesh). An area with 
Nl ≥ 20 and Nw ≥ 8 gives a natural frequency with<0.25 Hz variation, e. 
g., <0.3%. This 160-element mesh is selected, with 20 divisions in 
length and 8 divisions in width, as further mesh refinement does not 
change the FE results substantially. 

Experimental verification of the FE model 
The bimorph sample (Q220-H4BR-2513YB) from Piezo.com [35] is 

subjected to experimental tests and FE analysis for experimental veri-
fication. The bimorph in the clamp-free boundary condition, as shown in 
Fig. 5, is subjected to the base excitation from a vibrating shaker. A force 
transducer and an accelerometer measure the input force and acceler-
ation during the excitation. In addition, the generated voltage from the 
piezoelectric harvester is measured by the National Instrument (NI) Data 
Acquisition (DAQ) system. 

A proper damping model is essential for the proper harvester per-
formance modeling. Using the damping determination method in 
Ref. [13], the mechanical damping coefficient, which contains viscous 
and structural damping mechanisms, is calculated based on transient 
harmonic response and is 8.04%. According to Ref. [36], if the total 
damping contribution is viscous damping, then the output resonant 
power is considerably lower than a half-half viscous-structural damping 
contribution. The proper determination of viscous and structural 
damping contributions is a complex process. Khazaee et al. [26] pre-
sented a study on the experimental determination of the viscous and 
structural damping contributions. According to Ref. [26], the viscous 
and structural damping contributions for a thin-layer piezoelectric 
harvester are considered 64% and 36%, respectively. These contribu-
tions are also employed in this FE model. 

Table 2 compares the first mode natural frequency at short-circuiting 
(R = 0) and R = 30kΩ load resistance cases. The short-circuiting natural 
frequency is compared with the datasheet result, while the load resonant 
frequency is compared with the experimental data. In both cases, the 
difference between the FE model and the validation sources is<2%, 
which is a reasonable error. Moreover, the FE model can capture the 
effect of load on the natural frequency of energy harvester. Ref. [28] 
shows more details about the dependence of natural frequency on 
electromechanical coupling properties. 

The output voltage and power are compared with the experimental 
data in Fig. 6 with two damping models, pure viscous and combined 
viscous-structural damping models. There is a good agreement between 
the experiment and the FE model with the viscous-structural damping 
model, while the pure viscous damping model underestimates the 
output power. This comparison emphasizes that a proper damping 
model is a combined viscous and structural damping model. This 
conclusion agrees with the observations about the experimental results 
on the damping energy sources [26,37,38]. Damping sources in a can-
tilevered bender comprise air resistance force, clamping energy 

dissipation, and internal energy dissipation [39]. These damping sources 
have different energy dissipation mechanisms, so a combined viscous- 
structural damping model is required for an accurate damping model. 
Cooley et al. [40] also used a numerical example to emphasize the 
importance of a combined damping model. 

The FE model’s output voltage and power agree with the resonance 
and off-resonance frequencies experiments, as shown in Fig. 6 (a) and 
(b). As shown in Table 2, the experimental resonant frequency is 1.5% 
higher than the FE resonant frequency. This frequency shift is also 
visible in Fig. 6 (a). Since the output voltage (and power) is highly 
resonant-frequency sensitive, the frequency shift causes more variation 
around the resonance. However, the peak resonant power and voltage 
agree between the experimental and FE modeling. Thus, the FE model 
delivers reasonable power estimations. In addition, this comparison 
shows that the FE model can also simulate suitably the PH’s electrical 
output performance with resistive load. Therefore, this FE model will be 
used for the random excitation analysis. 

Effect of contact layer in the FE model 
The modeling techniques for PH simulation often ignore the contact 

layer role because of its small thickness. However, Khazaee et al. [26] 
experimentally demonstrated that the bonding layer changes the har-
vester’s vibration characteristics and substantially affects the power 
output. Thus, here, for illustrating the bonding layer effect, the har-
vester’s performance is analyzed by two different bonding layer thick-
nesses, i.e., 1 µm and 20 µm (the manufactured thickness). Table 3 
compares the FE model’s output power and fundamental natural fre-
quency when the contact layer’s thickness is 1 µm (intentionally 
considered less than the actual value) and 20 µm. According to Table 3, 
when the contact layer is 1 µm, the FE resonant frequency un-
derestimates the resonant frequency. The output power with an actual 
contact layer thickness (20 µm) is lower than the 1 µm-thickness bonding 
layer. The thickness of the bonding layer will increase the harvesting 
bending stiffness leading to minor bending deformation. This compari-
son shows that even contact layers of 0.02 mm thickness can lead to 
inaccuracies in the modeling. Therefore, it is necessary to consider the 
bonding layer. 

Design of piezoelectric harvesting device 

This subsection provides a resonator piezoelectric harvester design 
for external stochastic vibration. The first step deals with vibration 
analysis of the external stochastic source and calculating the power 
spectral density and dominant frequency. Then, the optimization pro-
cess is carried out for resonance maximum power generation. In the PH 
design, the harvester will generate maximum power when it vibrates at a 
frequency close to the beam’s natural frequency [6] and is connected to 
an optimum electrical load that matches the beam’s internal resistance 
[13]. 

Thus, two modulations are required, one structural or mechanical 
modulation and one electrical modulation. Since the resonant frequency 
depends on the electrical load, these two modulations are coupled. One 
solution can be to perform the structural modulation by considering the 
electromechanical coupling effect and then carry out the electrical 
modulation. Selecting the beam geometry for resonant frequency 
matching is an optimization process, which will be solved through a 
sensitivity-based updating process. The frequency matching process 
requires that the optimization parameters be updated systematically; a 
sensitivity-based optimization will be used with different geometry 
configuration parameters for fast convergence. The electrical modula-
tion is also performed based on entirely random vibration analysis. 

Fig. 7 presents the flowchart for this optimization investigation, with 
four steps, namely, 1. source analysis, 2. natural frequency sensitivity, 3. 
structural modulation, and 4. electrical modulation. These four steps are 
discussed as follows. 

Table 2 
The comparison of structural response between FE model, experiment, and 
datasheet.  

Method FE Experiment Datasheet  
[35] 

Difference 

Short-circuit natural 
frequency,ωn,R=0  

79.57 – 78  2.0% 

Resonant frequency (Hz) 
with R = 30 kΩ,ωn,R  

82.75 84 –  1.5%  
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Step 1: source analysis 
The vibration source is a stochastic vibration source. The PSD of the 

harvester’s base excitation, ΦBB(ω), can be obtained in two ways. The 
first way is the experimental measurements of the car vibration at the 
harvester’s installation location. The second way is to estimate the car 
vibration’s PSD from the road’s PSD and the car’s dynamic model 
[41,42]. The first way is taken in this study, as experimental data are 
more realistic and do not require the car dynamic model. ΦBB(ω) is a 
measured sequence; however, since the input acceleration is random, 
then the distribution of this variable can be estimated by the Gaussian 
normal distribution. Thus, the PSD of the measured acceleration from a 
car is: 

ΦBB(ω) ≈
Y0

σ
̅̅̅̅̅
2π

√ e
− 1

2

(

ω− Ω
σ

)2

(8) 

wherein Ω and σ are the dominant frequency and the standard de-
viation of the PSD of the measured acceleration, and Y0 is the peak 
amplitude of the signal. 

Step 2: natural frequency sensitivity 
The general eigenvalue problem can be written by: 

[
Kqq

]
Φj = ω2

n,j[M]Φj (9) 

where it is considered that the eigenvector is mass-orthogonalized, i. 
e., ΦT

k [M]Φj = δjk. 

By differentiating eigenvalue in Eq. (9) concerning the design vari-
able Θ i, the eigen-sensitivities can be extracted by [43]. 

∂ωn,j

∂Θi
=

1
2ωn,j

ΦT
j

(∂
[
Kqq

]

∂Θi
− ω2

n,j
∂[M]

∂Θi

)

Φj (10) 

Since natural frequencies have global nature, their sensitivity terms 
include only the derivates of stiffness and mass matrices concerning the 
design variables [43], which will make the gradient computation faster 
than iterative eigenvalue problem-solving. 

Step 3: structural modulation 

For the mechanical modulation, the product of |H(ω) |
2e−

1
2 (

ω− Ω
σ )

2 

should be maximum, and since the Gaussian distribution’s maximum 
occurs at ω = Ω, |H(ω = Ω) |

2 is to be maximized. One common practice 
is to match the natural frequency of the energy harvester, i.e., ωn,coupled to 
Ω. 

Generally, let consider that the optimization problem is to update the 
design variables of Θ̂ = {Θ1,⋯,Θi,⋯,ΘI} ∈ RI to match the harvester’s 
fundamental natural frequency to a targeted value determined from the 
external vibration source. A cost function is defined by. 

∊(Θ̂) =
(
ωn,coupled − Ω

)2 (11) 

where ωn,coupled is the natural frequency with electromechanical 
coupling effect. ωn,coupled is the finite element natural frequency. Starting 
from a design parameter set Θ̂N, the step variation ΔΘ̂N is calculated by 
the first-order Taylor series approximation, as expressed by, 

Θ̂N+1 = Θ̂N +
∊(Θ̂N)

∂ωn, N

∂Θ̂N

(12) 

where ∂ωn, N

∂Θ̂N
, natural frequency sensitivity is calculated in step 2. 

The sensitivity-based updating process continues until the error 
function ∊(Θ̂) is below a user-defined threshold. 

(a)

(b)

Fig. 6. Comparison of the electrical response output between the FE model and experiments, (a) voltage and (b) power frequency response functions, considering 
two different damping models (pure viscous and viscous-structural models). 

Table 3 
Comparison of FE resonant frequency and power output with 1 µm-thickness and 
20 µm-thickness contact-layer modeling.  

Method Fundamental natural 
frequency 

Output resonant 
power 

FE model with 1 µm-thickness 
contact-layer 

72.58 Hz 2.25 mW 

FE model with 20 µm-thickness 
contact-layer (actual thickness) 

79.57 Hz 1.95 mW 

Difference 6.99 Hz 0.32 mW  
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Step 4: electrical modulation 
The optimal resistance load for maximum power generation shall be 

obtained for the electrical modulation. Inserting this Gaussian distri-
bution of the measured acceleration into Eq. (7), the average power is 
given by:  

In Eq. (13), the integral bands are replaced with − 3σ and 3σ, as 
99.7% of the Gaussian values lie within this interval. The integration in 
Eq.(13) shall be numerically handled as this integral’s analytical solu-
tion is unknown. In practice, the trapezoid method is employed for this 
numerical integral with a dω ≈ 0.05 Hz. 

For a single harmonic excitation with Y(t) =
̅̅̅̅̅̅
Y0

√
ejΩt input excita-

tion, the steady-state peak power can be obtained by |P| = Y0|H(Ω) |
2
/R. 

For maximum power design, the harvester’s resonant frequency is 
matched, e.g., ωr = Ω (structural modulation), and the peak of the 
transfer function is |H(Ω) | maximized versus R (electrical modulation). 

In other words, in single harmonic excitation, the transfer function’s 
local peak is of interest and, therefore, a sensitive link between ωr and R 
is expected because R changes the ωr. 

On the other hand, for stochastic vibration excitation, the average 
power involves the integration over a frequency range; therefore, there 
is a global behavior of the power over a range of frequencies rather than 

Fig. 7. The flowchart for designing the piezoelectric harvesting device for stochastic vibration excitation.  

E[P(t) ] ≈
Y0

Rσ
̅̅̅̅̅
2π

√

⎛

⎝
∫∞

− ∞

|H(ω) |2e
− 1

2

(

ω− Ω
σ

)2

dω

⎞

⎠ ≅
Y0

Rσ
̅̅̅̅̅
2π

√

⎛

⎝
∫Ω+3σ

Ω− 3σ

|H(ω) |
2e

− 1
2

(

ω− Ω
σ

)2

dω

⎞

⎠ (13)   
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single resonant power. Analytically, the optimum load cannot be 
calculated from Eq.(13) because the integration involves the voltage 
output from all the frequencies. However, as the random input vibration 
is maximum at ω = Ω, the resonant power contributes most to the total 
power. Therefore, the optimum load from a random vibration can be 
expected to be close to the optimum resonant resistance but not neces-
sarily equal to the optimum resonant resistance. This research question 
will be examined for the stochastic vibration case. 

Results: Piezoelectric harvester design for car vibration 
harvesting 

This section presents the case study results of designing and power 
optimization in the piezoelectric harvester for stochastic car vibration. 
Initially, a general harvester is considered, which the material properties 
are identical to the FE experimental verification example. Then the step- 
by-step analysis of the design methodology flowchart in Fig. 7 is taken. 

General harvester’s configuration 

Piezoelectric harvesters are available in different geometries, and 
therefore, the optimization can be performed for any combination of 
these geometric parameters, such as length or thickness. First, a com-
mercial piezoelectric harvester that the FE model is validated using this 
sample (Q220-H4BR-2513YB) is selected for narrowing down optimi-
zation factors. This sample has PZT-5H as piezoelectric material, which 
previously showed its privilege for car energy harvesting applications 
[24]. Then, a benchmark geometry is formed for the optimization pro-
cess by adding tip mass and trapezoid substrate geometries, as shown in 
Fig. 8. Then, by tuning the sample length L2, tip mass Mt (tip mass height 
h), and tapering angle α, the harvester’s fundamental natural frequency 
matches dominant frequencies for each direction. The optimization 
parameters are demonstrated in the harvester FE model in Fig. 2. From 
the mesh study for the optimization example in Figure S1 (supplemen-
tary data), a 30 × 15-element mesh is used in this example. 

Step 1: Source Analysis, a real-time car stochastic vibration 

There are two approaches for car vibration estimation: numerical 
simulation and experimental measurements. Accurate and realistic 
simulations require a complex multi-degree-of-freedom model, compu-
tationally demanding. Moreover, smoothening the signal may provide 
numerical stability [44], while this smoothing may misrepresent the 
actual car vibration signal. Thus, the experimental measurement 
method is used in this study. 

The experimental vibration data are retrieved from the practical 
vibration database [45]. The car understudy is Renault Clio, an accel-
erometer placed on the frame close to the wheel and a data acquisition 
system. Acceleration data has been recorded for 30 s in three directions 
with a sampling rate of 20000 Hz. Fig. 9 (a) shows the acceleration 
signals in three directions when the car moves on an urban road. The X- 
axis is toward the global gravity. Because the road unevenness is not 

deterministic, the car vibration is random. Vibration frequency plays an 
essential role in harvester design in energy harvesting applications. 
Therefore, the PH structural design needs the power spectral density 
(PSD). The PSDs are calculated using the Fast Fourier Transform and 
shown in Fig. 9 (b). The acceleration in the gravity is considerably 
higher than forwarding and lateral directions, as can be observed from 
the time and PSD signals. 

Since the car vibration is random, the Gaussian normal distributions 
(see Eq. (8)) for the PSDs are plotted in Fig. 9 (b). The parameters for 
these Gaussian normal distributions can be found in Table S1 (supple-
mentary data). The PSDs in different axes show that the dominant fre-
quencies for different directions differ. For example, while the dominant 
frequency on the X-axis is the smallest with Ωx = 14.1 Hz, the dominant 
frequencies are Ωy = 65.0 and Ωz = 63.4 in the Y and Z directions, 
respectively. 

Step 2: Sensitivity of natural frequency to design parameters 

The sensitivity is calculated numerically, as the analytical is not 
solvable. For numeric sensitivity, the FE mesh element size becomes 
essential. So, a sensitivity analysis was performed for a fine mesh with 
434 elements and a coarse mesh with 60 elements, and the sensitivity 
was, on average, 30% different. Therefore, a fine mesh is employed even 
though the computation time becomes high. 

Fig. 10 (a) shows the natural frequency ratio versus tip mass ratio for 
various L2s and αs. As a function of Mt, the natural frequency ratio shows 
that the tip mass substantially reduces the natural frequency. For 
instance, a tip-mass ratio of 100% reduces the natural frequency by 73%. 
In addition, α has a substantial effect than the L2 effect on the natural 
frequency sensitivity, indicating that the natural frequency sensitivity 
for an L2 range of 5 to 10 mm is less significant. This high tip mass 
sensitivity suggests that a high tip mass ratio is recommended for 
considerably lowering the harvester’s natural frequency. 

Fig. 10 (b) shows the natural frequency ratio as L2 and α with a fixed 
tip-mass ratio of 100%. Both L2 and α have a considerable effect on the 
natural frequency, yet their effectiveness is not constant. Overall, L2 
causes a more significant natural frequency change than α, and the 
natural frequency sensitivity diminishes by increasing the L2 and α 
magnitudes. In other words, the effect of L2 and α on the natural fre-
quency saturates for great L2 and α values. This conclusion clarifies the 
limitation of L2 and α for natural frequency matching. 

Step 3: Structural modulation 

The objective function is the difference between the first mode 
electromechanically coupled resonant frequency and the dominant fre-
quency of car vibration. However, as the resonant frequency of the en-
ergy harvester depends on the electrical load, the resonant frequency 
shift due to the electrical load shall be taken into account [3]. Khazaee 
et al. [13] investigated the resonant matching considering the electrical 
load effect, and they recommended settingωn =

Ω
1.04for harmonic anal-

ysis. Thus, the objective functions for the three harvester beams can be 

Fig. 8. The optimization benchmark harvester, geometry, and material information.  
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expressed with ∊x(Θ̂) =
(
ωn, PHx −

Ωx
1.04

)2, ∊y(Θ̂) =
(

ωn, PHy −
Ωy

1.04

)2 
and 

∊z(Θ̂) =
(
ωn, PHz −

Ωz
1.04

)2, respectively, where Θ̂ contains the updating 
parameters. For reducing the number of updating parameters, α angle is 
set manually based on the magnitude of the objective frequency. Thus, 
the independent updating parameters are reduced to L2 and Mt , i.e., Θ̂ =

{L2,Mt} ∈ R2. Since the FE model contains a fine mesh, sensitivity- 
based optimization is developed to reduce the computation time for 
the optimization.  

• For PHx harvester: 

A tip-mass ratio of 100% is considered, and α is set to − 15 in the 
optimization since the dominant frequency in the X-direction is 
considerably lower than the reference harvester natural frequency. Note 
that the tip mass is not constant and varies by beam mass for variable 
substrate length. 

Using the first-order Taylor series approximation, the variation of 
natural frequency to L2 can be obtained by: 

ωn, N+1 ≈ ωn, N +
dωn, N

dL2

⃒
⃒
⃒
⃒Mtratio = 100%

α = − 15

(
L2,N+1 − L2,N

)
(14) 

wherein dωn, N
dL2 

is the natural frequency sensitivity, previously calcu-
lated and shown in Fig. 10 (b). 

Using Eq. (7), the updating equation for tuning the length L2 is given 
by: 

L2,N+1 ≈ L2,N +
Ω

1.04 − ωn, N

dωn, N
dL2

⃒
⃒
⃒Mtratio = 100%

α = − 15

(15)    

• For PHy and PHz harvester: 

The objective frequency is close to the reference bimorph model for 
these two harvesters. Thus, L2 and α are set to 0, and the added tip mass 
is tuned. The equation for updating the tip mass can be obtained simi-
larly, as shown by: 

Mt,N+1 ≈ Mt,N +
Ω

1.04 − ωn, N

dωn, N
dMt

⃒
⃒
⃒L2 = 0

α = 0

(16) 

The optimal parameters from the above sensitivity-based method are 
given in Table 4. The optimal parameters are obtained after four itera-
tions, a low iteration number. As shown in Table 4, the optimized nat-
ural frequency is satisfactorily close to the objective frequency 
demonstrating the reported optimization’s convergence ability for fre-
quency matching. 

Step 4: Electrical modulation 

After geometry optimizations, the optimum electrical load should be 
selected to have the maximum power. Two approaches can be taken. 
One, which is the standard practice in VPEH, is to find the optimum load 
under the resonant excitation analysis. The other is to compute the 
output power based on the entirely random vibration analysis. For the 

(a)

(b)

Fig. 9. (a) Time signals and (b) PSD and Gaussian normal distributions of random car vibration in X, Y, and Z axes [45] (x-axis along with the gravity).  
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harmonic analysis, an input acceleration of unit gravity, g = 9.81 m/s2, 
is considered under harmonic excitation, e.g., äB(t) = gsin

(
ωn,optt

)
, and 

the output power is calculated over different load conditions for the case 
of optimized length. Two frequency excitations are considered, namely 
ω = ωn similar to common practice in the literature, and ω = 1.04ωn, as 
suggested by [13]. The numerical integration calculates the output 
power over the total frequency range for the random analysis. Therefore, 
it is expected that the random analysis is the most accurate. 

Fig. 11 shows the output power as a function of electrical loads for 
the harmonic and random analyses. The optimum load with harmonic 
analysis under ω = 1.04ωn is 22 kΩ and under ω = ωn is 15 kΩ, while the 
optimum load by the random vibration analysis is 29 kΩ. The harmonic 
analysis underestimates the optimum load for this actual car excitation. 
Therefore, a random analysis is required for real-time vibration sources. 
This result agrees with the random analysis study by Halvorsen [14], 
where they argued that the optimum load between the wideband 
random signal is different from the harmonic signal. However, the op-
timum load from harmonic excitation with ω = 1.04ωn frequency is 
closer to the actual value. Therefore, Ref. [13] ’s suggestion, derived 

from the harmonic excitations, gives a better result than random 
excitation. 

As discussed in subsection 2.1, the optimum load depends on the 
material properties, geometrical parameters, and excitation frequency. 
The frequency dependency is often hidden yet vital because this is an 
external factor in the harvester system design. The optimum load de-
pends considerably on the excitation frequency, as seen from Fig. 12 
from the numerical FE solutions. At the maximum power generation, e. 

(a) 

(b) 

Fig. 10. The sensitivity of fundamental natural frequency as a function of (a) tip-mass and (b) substrate excess length and tapering angle with tip-mass ratio 100%.  

Table 4 
Optimized parameters of the harvester’s substrate and tip mass for the resonant 
frequency matching.    

PHx PHy PHz 

Objective frequency (=Ω/1.04) 13.56 62.50 60.96 
Natural frequency after optimization process 13.57 62.90 60.84 
Optimized substrate characteristics L2 (mm) 12.9 0 0 

α (deg) − 15 0 0 
Mt (gr) 11.9 1.1 1.3  

Fig. 11. Optimum electrical load for the PHx harvester from harmonic and 
random excitation analyses. 
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g., ω/ωn≈1.03, there is an inflection point in the optimum load graph. 
For 0.9 <ω/ωn < 1.1, the optimum load is specially highly sensitive to 
the excitation frequency. At low-frequency excitation, such asω/ωn <

0.75, when the dynamic effect becomes less significant, the optimum 
load rises sharply, reaching approximately Ropt = 129 kΩ for ω/ωn = 0.1. 
On the other hand, the optimum load considerably reduces for the high 
frequency excitation. For instance, Ropt is 1.5 kΩ for ω/ωn = 10. 

The inflection point and extremum points in the optimum resistance 
curve are expected to depend on the piezoelectric coupling coefficients, 
same as the resonant frequencies of the harvester [46]. For exploring the 
piezoelectric coefficient effect, the optimum load and power are again 
calculated for a hypothetical material with a 50% increase in its piezo-
electric coefficient, as depicted in Fig. 13. When the piezoelectric con-
version coefficients increase, the inflection point shifts to the right, 
proving the link between the conversion coefficient and inflection point. 
Here, only a brief investigation of the optimum load is presented, but a 
detailed study is recommended for the optimum load analysis due to 
many controlling material and geometrical parameters. 

Discussion on power generation estimation 

After geometry optimizations and optimum electrical load selection, 
the output power from the stochastic vibration can be derived from Eq. 
(7) by numerical integration over the frequency range, performed by the 
trapezoid integration method. 

As a case study, the stochastic vibration from one typical input signal 
from Fig. 9 is considered for demonstrating the optimized harvester. A 
three-axis stochastic acceleration was used in Fig. 8, and harvesters 
associated with different directional excitations called PHx, PHy, and 
PHz (See Fig. 1). Table 5 shows the optimized output voltage and power 
from the PHx, PHy, and PHz harvesters. As shown in Table 5, the gravity- 
excitation harvester, X-axis, generates the highest power output, an 
average power of 1.32 mW. The power density values at different axes 
are also shown in Table 5. The X-axis harvester generates a power 
density of 425 µW/cm3, which is considerably higher than the others 
are. This higher power generation is expected, as the tip mass and input 
vibration level for the PHx harvester is more significant than for other 
harvesters because the car vibration from a straight path is considered in 
this study. If setting-off, turning, and braking maneuvers are simulated 
[33], PHy and PHz harvesters are expected to generate more power. 
Nevertheless, these maneuvers require a comprehensive and separate 
study out of the current paper’s scope. 

The average power output, defined by Eq. (7), e.g., E[P(t) ] =

1
R

⎛

⎝
∫∞

− ∞
|H(ω) |2ΦBB(ω)

⏞̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅⏞
ΦVV (ω) ⎞

⎠, is the integration of the product of |H(ω) |, the 

Fig. 12. Optimum load and optimum power with the excitation frequency for the optimized PHx harvester.  

Fig. 13. The effect of piezoelectric conversion coefficients on the frequency dependency of optimum load and optimum power (when the piezoelectric coupling 
coefficients are increased by 50%). 

Table 5 
The output voltage and power from optimized piezoelectric harvesters using 
random excitation analysis.  

Optimized substrate characteristics PHx PHy PHz 

The optimum load from random input analysis 29,000 
The optimum average voltage, E[V(t) ] (V) 13.60  3.42  3.00 
The optimum average power, E[P(t) ] (mW) 1.32  0.11  0.09 
The optimum average power density (µW/cm3) 425.92  80.80  64.88  
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harvester’s transfer function, and ΦBB(ω), the input vibration power 
spectral density. Thus, the peaks of |H(ω) |max and (ΦBB(ω) )max, the 
bandwidth σ, and the dominant peak’s location in the frequency axis Ω, 
are significant. The whole subsection 2.2, design of piezoelectric har-
vesting device, focused on the harvester transfer function |H(ω) |, and its 
optimization while stochastic source dependency has not been thor-
oughly studied. For demonstrating the stochastic source importance, 

two input acceleration signals, ’a’ and ’b’ with σ2 > σ1 and Ω2 > Ω1, are 
shown in Fig. 14 (a) and (b), respectively. The voltage power spectral 
density for these two acceleration signals is compared in Fig. 14 (c), 
which clearly shows that the output voltage spectrum differs. This 
comparison demonstrates how the piezoelectric voltage varies by the 
stochastic input signal for a system transfer function. 

Further sensitivity analysis of piezoelectric PHx performance with 

)b()a(

(c)

Fig. 14. Presenting the effect of stochastic input acceleration characteristics on the piezoelectric output voltage power spectrum, (a) the input acceleration type ’a’, 
(b) the input acceleration type ’b’ and (c) the output voltage comparisons between input signals ’a’ and ’b’. 

Fig. 15. Effect of input stochastic vibration characteristics, the dominant frequency Ω, and bandwidth σ, on the output voltage, current, and power.  
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the input stochastic acceleration is demonstrated in Fig. 15. The sto-
chastic acceleration variables are the dominant frequency 13 Hz < Ω <
15 Hz and the acceleration bandwidth 1 Hz < σ < 3 Hz. The following 
remarks can be made:  

• Higher stochastic vibration bandwidth σ leads to higher power 
generation because of wideband input excitation. The sensitivity to 
wide bandwidth becomes less important at extremely high σ, since 
the voltage transfer function |H(ω) | is also a narrowband function.  

• The power is maximum for the modulated dominant frequency Ωx, 
and the power reduces either for smaller or for greater dominant 
frequencies. The dominant frequency sensitivity is more substantial 
for narrowband stochastic signal, e.g., smaller σ, and flatter for 
wideband input stochastic vibration. 

From an energy harvesting perspective, the voltage, current, and 
power output for the modulated energy harvester in a Gaussian sto-
chastic input acceleration with 0.109 m2. s− 4/Hz peak amplitude, 
dominant frequency 13 Hz < Ω < 15 Hz, and acceleration bandwidth 1 
Hz < σ < 3 Hz are between 5 and 7 V, 160 to 240 µA, and 0.8 to 1.32 
mW. This power output is estimated from the stochastic car vibration of 
a moving car on an urban road [45]. The power output has linear 
variation concerning the input acceleration stochastic PSD, and there-
fore for different input signal magnitudes, the power can be estimated. 
The measured car stochastic vibration at the highway and urban road 
lies within ~< 0.05 m2. s− 4/Hz and ~> 0.08 m2. s− 4/Hz [45], thus the 
power of < 0.6 mW is expected on the highway and > 1.0 mW for the 
urban road. 

Conclusion and future work 

A study was presented about designing an energy-harvesting device 
with piezoelectric harvesters to generate energy from car vibration. An 
experimentally validated finite element model is developed for the 
random base vibration. Then, the design and optimization of a non- 
uniform piezoelectric harvester are carried out. First, car vibration sig-
nals were analyzed, and their characteristics were used for the geometric 
design of piezoelectric beams. Later, a sensitivity-based optimization 
process was carried out for selecting the optimum load resistance. 
Finally, the output power was calculated using the developed model for 
the piezoelectric harvester. The following remarks can be made from 
this study:  

• A finite element model is developed for analyzing piezoelectric 
harvester’s performance under random base vibration.  

• The finite element model can accurately model the structural 
response considering the contact layer.  

• A combined viscous-structural damping model is essential for proper 
power output estimation.  

• The sensitivity-based optimization process can reliably and quickly 
be employed for resonant-matching designs.  

• Optimum load resistance for maximum power generation under 
natural vibration shall be investigated considering the random vi-
bration analysis.  

• The optimal energy harvester has a power of 1.32 mW and a power 
density of 425.92 µW/cm3. 

Required power consumption for truly wireless sensors is previously 
reported. A fully autonomous wireless vibration sensor (WVS) consumes 
energy of 360 µJ during one 3.28 s-duration cycle [47], comprising a 
20.8 ms-duration acceleration measurement, a 4.5 ms-duration radio 
frequency data transmission, and the rest is sleeping mode. Thus, the 
power required for a wireless sensor is 109.76 μW. Other studies for 
WNS power estimation are 900 µW at a 10 Hz update rate [48], the 
average power of 400 to 600 µW [49], and the RF CMOS transmitter 
with 300 µW power from a 1-V supply [50]. The optimal energy 

harvester generates 425.92 µW/cm3; according to Table 5, the energy 
harvester PHx can provide the power required for the autonomous WVS. 
Therefore, the designed energy harvester can be attached to the car’s 
frame, and it can feed power to the autonomous WVS. However, the 
electrical current generation is approximately 200 µA, which is lower 
than the required for electronic consumption, suggesting the use of 
multiple harvesters and the DC-DC converter. 

Future works include practical demonstration, conversion efficiency 
improvement, and field testing to propose piezoelectric-based wireless 
sensors. In addition, various locations in the car shall be investigated to 
provide an “Energy Generation Contour.” Toward conversion efficiency 
improvement, a detailed analysis of the optimum load and its de-
pendency on various material properties and geometrical parameters is 
suggested. The practical demonstration shall consider power manage-
ment circuits, power storage, and converters. As vital issues, the issues 
with a cold start, electronic loss, and low current generation need micro- 
electronic knowledge, which shall be included in future works. The 
narrowband issue for useful stochastic vibration sources needs further 
research by changing the car’s working condition (engine rotation 
speed). Adding nonlinear boundary conditions, such as variable span 
stopper and hybrid magnetic forces. Material efficiency improvement 
ensures enough power generation at very-low amplitude vibration. 
Some possible future configuration focuses are optimum beam geome-
try, composite Piezoceramic fiber with optimal fiber orientation, and 
variable thickness. Addressing these research questions opens a robust 
candidate application in smart cars for piezoelectric harvesters. 
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