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ABSTRACT Spoken keyword spotting (KWS) deals with the identification of keywords in audio streams
and has become a fast-growing technology thanks to the paradigm shift introduced by deep learning a few
years ago. This has allowed the rapid embedding of deep KWS in a myriad of small electronic devices with
different purposes like the activation of voice assistants. Prospects suggest a sustained growth in terms of
social use of this technology. Thus, it is not surprising that deep KWS has become a hot research topic among
speech scientists, who constantly look for KWS performance improvement and computational complexity
reduction. This context motivates this paper, in which we conduct a literature review into deep spoken KWS
to assist practitioners and researchers who are interested in this technology. Specifically, this overview has
a comprehensive nature by covering a thorough analysis of deep KWS systems (which includes speech
features, acoustic modeling and posterior handling), robustness methods, applications, datasets, evaluation
metrics, performance of deep KWS systems and audio-visual KWS. The analysis performed in this paper
allows us to identify a number of directions for future research, including directions adopted from automatic
speech recognition research and directions that are unique to the problem of spoken KWS.

INDEX TERMS Keyword spotting, deep learning, acoustic model, small footprint, robustness.

I. INTRODUCTION
Interacting with machines via voice is not science fiction any-
more. Quite the opposite, speech technologies have become
ubiquitous in nowadays society. The proliferation of voice
assistants like Amazon’s Alexa, Apple’s Siri, Google’s Assis-
tant and Microsoft’s Cortana is good proof of this [1]. A dis-
tinctive feature of voice assistants is that, in order to be used,
they first have to be activated by means of a spoken wake-up
word or keyword, thereby avoiding running far more com-
putationally expensive automatic speech recognition (ASR)
when it is not required [2]. More specifically, voice assis-
tants deploy a technology called spoken keyword spotting
—or simply keyword spotting—, which can be understood
as a subproblem of ASR [3]. Particularly, keyword spot-
ting (KWS) can be defined as the task of identifying keywords
in audio streams comprising speech. And, apart from acti-
vating voice assistants, KWS has plenty of applications such
as speech data mining, audio indexing, phone call routing,
etc. [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

Over the years, different techniques have been explored
for KWS. One of the earliest approaches is based on the use
of large-vocabulary continuous speech recognition (LVCSR)
systems [5]–[7]. These systems are employed to decode the
speech signal, and then, the keyword is searched in the gen-
erated lattices (i.e., in the representations of the different
sequences of phonetic units that, given the speech signal,
are likely enough). One of the advantages of this approach
is the flexibility to deal with changing/non-predefined key-
words [8]–[10] (although there is often a drop in perfor-
mance when keywords are out of vocabulary [11]). The main
disadvantage of LVCSR-based KWS systems might reside
in the computational complexity dimension: these systems
need to generate rich lattices, which requires high compu-
tational resources [9], [12] and also introduces latency [13].
While this should not be an issue for some applications like
offline audio search [9], [14], LVCSR systems are not suitable
for the lately-popular KWS applications1 intended for small
electronic devices (e.g., smartphones, smart speakers and

1By lately-popular KWS applications we mean activation of voice assis-
tants, voice control, etc.
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FIGURE 1. Scheme of a keyword/filler HMM-based KWS system [13]
when the system keyword is ‘‘keyword ’’. While typically the keyword is
modeled by a context-dependent triphone-based HMM,
a monophone-based HMM is depicted instead for illustrative purposes.
The filler HMM is often a speech/non-speech monophone loop.

wearables) characterized by notable memory, computation
and power constraints [12], [15]–[17].

A still attractive and lighter alternative to LVCSR is
the keyword/filler hidden Markov model (HMM) approach,
which was proposed around three decades ago [18]–[20].
By this, a keyword HMM and a filler HMM are trained to
model keyword and non-keyword audio segments, respec-
tively, as illustrated by Figure 1. Originally, the acoustic
features were modeled by means of Gaussian mixture mod-
els (GMMs) to produce the state emission likelihoods in
keyword/filler HMM-based KWS [18]–[20]. Nowadays, sim-
ilarly to the case of ASR, deep neural networks (DNNs)
have replaced GMMs with this purpose [21]–[24] due to
the consistent superior performance of the former. Viterbi
decoding [25] is applied at runtime to find the best path in
the decoding graph, and, whenever the likelihood ratio of the
keyword model versus filler model is larger than a predefined
threshold, the KWS system is triggered [13]. While this type
of KWS systems is rather compact and good performing,
it still needs Viterbi decoding, which, depending on the HMM
topology, can be computationally demanding [12], [22].

The arrival of 2014 represented a milestone for KWS
technology as a result of the publication of the first deep
spoken KWS system [22]. In this paradigm (being new at the
time), the sequence of word posterior probabilities yielded by
a DNN is directly processed to determine the possible exis-
tence of keywords without the intervention of any HMM (see
Figure 2). The deep KWS paradigm has recently attracted
much attention [16], [26] due to a threefold reason:

1) It does not require a complicated sequence search algo-
rithm (i.e., Viterbi decoding); instead, a significantly
simpler posterior handling suffices;

2) The complexity of the DNN producing the posteriors
(acoustic model) can be easily adjusted [9], [26] to fit
the computational resource constraints;

3) It brings consistent significant improvements over
the keyword/filler HMM approach in small-footprint

(i.e., low memory and low computational complexity)
scenarios in both clean and noisy conditions [17], [22].

This threefold reason makes it very appealing to deploy the
deep KWS paradigm to a variety of consumer electronics
with limited resources like earphones and headphones [27],
smartphones, smart speakers and so on. Thus, much research
on deep KWS has been conducted since 2014 until today,
e.g., [15], [22], [26], [28]–[32]. And, what is more, we can
expect that deep KWS will continue to be a hot topic in the
future despite all the progress made.

In this paper, we present an overview of the deep spoken
keyword spotting technology. We believe that this is a good
time to look back and analyze the development trajectory
of deep KWS to elucidate future challenges. It is worth
noticing that only a small number of KWS overview arti-
cles is presently available in the literature [33]–[36]; at
best, they shallowly encompass state-of-the-art deep KWS
approaches, along with the most relevant datasets. Further-
more, while some relatively recent ASR overview articles
covering acoustic modeling —which is a central part of
KWS, see Figure 2— can also be found [37], [38], still (deep)
KWS involves inherent issues, which need to be specifi-
cally addressed. Some of these inherent issues are related to
posterior handling (see Figure 2), the class-imbalance prob-
lem [39], technology applications, datasets and evaluation
metrics. To sum up, we can state that 1) deep spoken KWS
is currently a hot topic,2 2) available KWS overview articles
are outdated and/or they offer only a limited treatment of the
latest progress, and 3) deep KWS involves unique inherent
issues compared to general-purpose ASR. Thus, this article
aims at providing practitioners and researchers who are inter-
ested in the topic of keyword spotting with an up to date
comprehensive overview of this technology.

The rest of this article is organized as follows: in Section II,
the general approach to deep spoken KWS is introduced.
Then, in Sections III, IV and V, respectively, the three main
components constituting a modern KWS system are ana-
lyzed, i.e., speech feature extraction, acoustic modeling and
posterior handling. In Section VI, we review current methods
to strengthen the robustness of KWS systems against different
sources of distortion. Applications of KWS are discussed in
Section VII. Then, in Section VIII, we analyze the speech
corpora currently employed for experimentally validating the
latest KWS developments. The most important evaluation
metrics for KWS are examined in Section IX. In Section X,
a comparison among some of the latest deep KWS systems in
terms of bothKWSperformance and computational complex-
ity is presented. Section XI comprises a short review of the
literature on audio-visual KWS. Finally, concluding remarks
and comments about the future directions in the field are
given in Section XII.

2A proof of this is the organization of events like Auto-KWS 2021
Challenge [40].
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FIGURE 2. General pipeline of a modern deep spoken keyword spotting system: 1) features are extracted
from the speech signal, 2) a DNN acoustic model uses these features to produce posteriors over the different
keyword and filler (non-keyword) classes, and 3) the temporal sequence of these posteriors is processed
(Posterior Handling) to determine the possible existence of keywords.

FIGURE 3. Illustrative example on how a DNN acoustic model performs.
There are N = 4 different classes representing the keywords ‘‘right’’ and
‘‘left’’, other speech and silence/noise. The acoustic model receives a
speech segment X{i } (log-Mel spectrogram) comprising the keyword
‘‘left’’. The DNN produces a posterior distribution over the N = 4 different
classes. Keyword ‘‘left’’ is given the highest posterior probability, 0.8.

II. DEEP SPOKEN KEYWORD SPOTTING APPROACH
Figure 2 depicts the general pipeline of a modern deep spoken
keyword spotting system [15], [22], [28], [41]–[43], which
is composed of three main blocks: 1) the speech feature
extractor converting the input signal to a compact speech
representation, 2) the deep learning-based acoustic model
producing posteriors over the different keyword and filler
(non-keyword) classes from the speech features (see the
example of Figure 3), and 3) the posterior handler processing
the temporal sequence of posteriors to determine the possible
existence of keywords in the input signal.

Let x(m) be a finite acoustic time signal comprising speech.
In the first place, the speech feature extractor computes an
alternative representation of x(m), namely, X. It is desir-
able X to be compact (i.e., lower-dimensional, to limit the
computational complexity of the task), discriminative in
terms of the phonetic content and robust to acoustic varia-
tions [44]. Speech features X are traditionally represented by
a two-dimensional matrix composed of a time sequence of
K -dimensional feature vectors xt (t = 0, . . . ,T − 1) as in

X = (x0, . . . , xt , . . . , xT−1) ∈ RK×T , (1)

where T , the total number of feature vectors, depends on the
length of the signal x(m). Speech features X can be based on
a diversity of representation types, such as, e.g., spectral [22],
[28], [45], cepstral [16], [46] and time-domain ones [47].
Further details about the different types of speech features
used for KWS are provided in Section III.

The DNN acoustic model receivesX as input and outputs a
sequence of posterior probabilities over the different keyword
and non-keyword classes. Particularly, the acoustic model
sequentially consumes time segments

X{i} = (xis−P, . . . , xis, . . . , xis+F ) (2)

of X until the whole feature sequence X is processed.
In Eq. (2), i = dPs e, . . . , b

T−1−F
s c is an integer segment

index and s represents the time frame shift. Moreover, P and
F denote, respectively, the number of past and future frames
(temporal context) in each segment X{i} ∈ RK×(P+F+1).
While s is typically designed to have some degree of overlap
between consecutive segments X{i} and X{i+1}, many works
consider acoustic models classifying non-overlapping seg-
ments that are sufficiently long (e.g., one second) to cover an
entire keyword [16], [30], [48]–[53]. With regard to P and F ,
a number of approaches considers F < P to reduce latency
without significantly sacrificing performance [12], [22], [28],
[41]. In addition, voice activity detection [54] is sometimes
used to reduce power consumption by only inputting to the
acoustic model segments X{i} in which voice is present [11],
[22], [55]–[57].

Then, let us suppose that the DNN acoustic model f(·|θ ) :
RK×(P+F+1)

→ IN has N output nodes meaning N different
classes, where θ and I = [0, 1] denote the parameters of
the acoustic model and the unit interval, respectively. Nor-
mally, the output nodes represent either words [12], [16],
[22], [28], [30], [41], [43], [48]–[53], [57]–[59] or subword
units like context-independent phonemes [31], [60]–[62], the
latter especially in the context of sequence-to-sequence mod-
els [63]–[65] (see Subsection IV-C for further details). Let
subscript n refer to the n-th element of a vector. For every
input segment X{i}, the acoustic model yields

y{i}n = fn
(
X{i}

∣∣ θ) , n = 1, . . . ,N , (3)

where y{i}n = P
(
Cn|X{i}, θ

)
is the posterior of the n-th

class Cn given the input feature segment X{i}. To ensure
that

∑N
n=1 y

{i}
n = 1 ∀i, deep KWS systems commonly

employ a fully-connected layer with softmax activation [66]
as an output layer, e.g., [16], [43], [47], [52], [60], [67]–[72].
The parameters of the model, θ , are usually estimated by
discriminatively training f(·|θ ) by backpropagation from
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FIGURE 4. Example of the processing of two consecutive feature
segments X{i } and X{i+1}, from X comprising the keyword ‘‘right’’, by a
DNN acoustic model: (a) when using an overlapping segmentation
window, and (b) when using a smaller, non-overlapping one.

annotated speech data characterizing the different N classes.
The most popular loss function that is employed to this end
is cross-entropy loss [73], [74].

Figure 3 shows an example, illustrating the above para-
graph, in which there are N = 4 different classes. Two of
these classes represent the keywords ‘‘right’’ (C1) and ‘‘left’’
(C2). The other two classes are the filler classes other speech
(C3) and silence/noise (C4). A segment X{i} consisting of a
log-Mel spectrogram comprising the keyword ‘‘left’’ is input
to the DNN acoustic model. Then, this generates a posterior
distribution y{i} over the N = 4 classes. Keyword ‘‘left’’
is given the highest posterior probability, namely, y{i}2 =

P
(
C2|X{i}, θ

)
= 0.8.

Most of the research that has been conducted on deep KWS
has focused on its key part, which is the design of increasingly
accurate and decreasingly computationally complex acoustic
models f(·|θ ) [32], [75].

Finally, KWS is not a static task but a dynamic one in
which the KWS system has to continuously listen to the
input signal x(m) to yield the sequence of posteriors y{i},
i = dPs e, . . . , b

T−1−F
s c, in order to detect keywords in real-

time. In the example in Figure 3, a straightforward way to
do this could just be choosing the class Ĉ {i} with the highest
posterior, that is,

Ĉ {i} = argmax
Cn

y{i}n = argmax
Cn

P
(
Cn|X{i}, θ

)
. (4)

Nevertheless, this approach is not robust, as discussed in
what follows. Continuing with the illustration of Figure 3,
Figure 4 exemplifies the processing by the acoustic model
of two consecutive feature segments X{i} and X{i+1} from X
comprising the keyword ‘‘right’’. Figure 4a shows the typical
case of using an overlapping segmentation window. As we
can see, following the approach of Eq. (4) might lead to
detecting the same keyword realization twice, yielding a false
alarm. In addition, Figure 4b depicts the case in which a
non-overlapping segmentation window is employed. In this
situation, the energy of the keyword realization leaks into

FIGURE 5. Classical pipeline for extracting log-Mel spectral and
Mel-frequency cepstral speech features using the fast Fourier transform
(FFT).

two different segments in such a manner that neither the
posterior P

(
C1|X{i}, θ

)
nor P

(
C1|X{i+1}, θ

)
is sufficiently

strong for the keyword to be detected, thereby yielding a
miss detection. Hence, a proper handling of the sequence of
posteriors y{i} (i = dPs e, . . . , b

T−1−F
s c) is a very important

component for effective keyword detection [2], [4], [15], [22],
[29], [41]–[43], [45], [46], [56], [76]–[79]. Posterior handling
is examined in Section V.

III. SPEECH FEATURE EXTRACTION
In the following subsections, we walk through the most
relevant speech features revolving around deep KWS: Mel-
scale-related features, recurrent neural network features, low-
precision features, learnable filterbank features and other
features.

A. MEL-SCALE-RELATED FEATURES
Speech features based on the perceptually-motivated Mel-
scale filterbank [80], like the log-Mel spectral coefficients
and Mel-frequency cepstral coefficients (MFCCs) [81], have
been widely used over decades in the fields of ASR and,
indeed, KWS. Despite the multiple attempts to learn opti-
mal, alternative representations from the speech signal (see
Subsection III-D for more details), Mel-scale-related features
are still nowadays a solid, competitive and safe choice [82].
Figure 5 depicts the well-known classical pipeline for extract-
ing log-Mel spectral and MFCC features. In deep KWS, both
types of speech features are commonly normalized to have
zero mean and unit standard deviation before being input
to the acoustic model, thereby stabilizing and speeding up
training as well as improving model generalization [83].

Mel-scale-related features are, by far, the most widely
used speech features in deep KWS. For example,
MFCCs with temporal context and, sometimes, their
first- and second-order derivatives are used in [16], [30],
[46], [51]–[53], [84]–[91]. As can be seen from Figure 5,
MFCCs are obtained from the application of the discrete
cosine transform to the log-Mel spectrogram. This transform
produces approximately decorrelated features, which are
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well-suited to, e.g., acoustic models based on GMMs that,
for computational efficiency reasons, use diagonal covariance
matrices. However, deep learning models are able to exploit
spectro-temporal correlations, yielding the use of the log-Mel
spectrogram instead of MFCCs equivalent or better ASR
and KWS performance [92]. As a result, a good number of
deep KWSworks considers log-Mel or Mel filterbank speech
features with temporal context, e.g., [8], [9], [15], [22],
[26], [28], [29], [31], [43], [45], [48], [55], [58], [60], [62],
[68], [71], [72], [78], [93]–[101]. In addition, [79] proposes
instead the use of the first derivative of the log-Mel spec-
trogram to improve robustness against signal gain changes.
The number of filterbank channels in the above works
ranges from 20 to 128. In spite of this wide channel range,
experience suggests that (deep) KWS performance is not
significantly sensitive to the value of this parameter as long
as the Mel-frequency resolution is not very poor [82]. This
fact could promote the use of a lower number of filterbank
channels in order to limit computational complexity.

B. RECURRENT NEURAL NETWORK FEATURES
Recurrent neural networks (RNNs) are helpful to summarize
variable-length data sequences into fixed-length, compact
feature vectors, also known as embeddings. Due to this fact,
RNNs are very suitable for template matching problems
like query-by-example (QbE) KWS, which involves keyword
detection by determining the similarity between feature vec-
tors (successively computed from the input audio stream)
and keyword templates. In, e.g., [11], [56], [102]–[104], long
short-term memory (LSTM) and gated recurrent unit (GRU)
neural networks are employed to extract word embeddings.
Generally, these are compared, by means of any distance
function like cosine similarity [105] and particularly for
QbE KWS, with keyword embeddings obtained during an
enrollment phase.

While QbE KWS based on RNN feature extraction —
which is different from the approach outlined in Section II
and requires a careful treatment of its specificities— is out
of the scope of this paper, we have considered it pertinent to
allude to it for the following twofold reason. First, there is
little difference between the general pipeline of Figure 2 and
QbE KWS based on RNN feature extraction, since acoustic
modeling is implicitly carried out by the RNN.3 Second,
QbE KWS based on RNN feature extraction is especially
useful for personalized, open-vocabulary KWS, by which
a user is allowed to define her/his own keywords by just
recording a few keyword samples during an enrollment phase.
Alternatively, in [103], a clever RNN mechanism to generate
keyword templates from text instead of speech inputs is pro-
posed. Notice that incorporating new keywords in the context
of the deep spoken KWS approach introduced in Section II

3Actually, in [11], [102], the LSTM networks used there are pure acoustic
models, and the word embeddings correspond to the activations prior to the
output softmax layer.

might require system re-training, which is not always feasi-
ble.

QbE KWS based on RNN feature extraction has shown to
be more efficient and better performing than classical QbE
KWS approaches based on LVCSR [106] and dynamic time
warping (DTW) [107]. Therefore, the RNN feature approach
is a good choice for on-device KWS applications providing
keyword personalization.

C. LOW-PRECISION FEATURES
Away to diminish the energy consumption and memory foot-
print of deep KWS systems to be run on resource-constrained
devices consists, e.g., of quantization —i.e., precision
reduction— of the acoustic model parameters. Research
like [108], [109] has demonstrated that it is possible
to (closely) achieve the accuracy provided by full-precision
acoustic models while drastically decreasing memory foot-
print by means of 4-bit quantization of model’s weights.

The same philosophy can be applied to speech features.
Emerging research [69] studies two kinds of low-precision
speech representations: linearly-quantized log-Mel spectro-
gram and power variation over time, derived from log-Mel
spectrogram, represented by only 2 bits. Experimental results
show that using 8-bit log-Mel spectra yields same KWS accu-
racy as employing full-precisionMFCCs. Furthermore, KWS
performance degradation is insignificant when exploiting 2-
bit precision speech features. As the authors of [69] state,
this fact might indicate that much of the spectral information
is superfluous when attempting to spot a set of keywords.
In [82], we independently arrived at the same finding. In con-
clusion, there appears to be a large room for future work on
the design of new extremely-light and compact (from a com-
putational point of view) speech features for small-footprint
KWS (see also the next subsection).

D. LEARNABLE FILTERBANK FEATURES
The development of end-to-end deep learning systems in
which feature extraction is optimal in line with the task
and training criterion is a recent trend (e.g., [110], [111]).
This approach aspires to become an alternative to the use of
well-established handcrafted features like log-Mel features
and MFCCs, which are preferred for many speech-related
tasks, including deep KWS (see Subsection III-A).
Optimal filterbank learning is part of such an end-to-

end training strategy, and it has been explored for deep
KWS in [70], [82]. In this context, filterbank parameters are
tuned towards optimizing word posterior generation. Particu-
larly, in [70], the acoustic model parameters are optimized
jointly with the cut-off frequencies of a filterbank based
on sinc-convolutions (SincConv) [112]. Similarly, in [82],
we studied two filterbank learning approaches: one con-
sisting of filterbank matrix learning in the power spec-
tral domain and another based on parameter learning of a
psychoacoustically-motivated gammachirp filterbank [113].
While the use of SincConv is not compared with using
handcrafted speech features in [70], in [82], we found no

VOLUME 10, 2022 4173
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statistically significant KWS accuracy differences between
employing a learned filterbank and log-Mel features. This
finding is in line with research on filterbank learning for
ASR, e.g., [114]–[116]. In [82], it is hypothesized that such a
finding might be an indication of information redundancy.4

As suggested in Subsection III-C, this should encourage
research on extremely-light and compact speech features for
small-footprint KWS. In conclusion, handcrafted speech fea-
tures currently provide state-of-the-art KWS performance at
the same time that optimal feature learning requires further
research to become the preferred alternative.

E. OTHER SPEECH FEATURES
A small number of works has explored the use of alternative
speech features with a relatively low computational impact.
For example, [47] introduced the so-called multi-frame
shifted time similarity (MFSTS). MFSTS are time-domain
features consisting of a two-dimensional speech represen-
tation comprised of constrained-lag autocorrelation values.
Despite their computational simplicity, which can make them
attractive for low-power KWS applications, features like
MFCCs provide much better KWS accuracy [47].

A more interesting approach is that examined by [117],
[118], which fuses two different KWS paradigms: DTW
and deep KWS. First, a DTW warping matrix measuring
the similarity between an input speech utterance and the
keyword template is calculated. From the deep KWS per-
spective, this matrix can be understood as speech features
that are input to a deep learning binary (i.e., keyword/non-
keyword) classifier playing the role of an ‘‘acoustic model’’.
This hybrid approach brings the best of both worlds: 1) the
powerful modeling capabilities of deep KWS, and 2) the
flexibility of DTW KWS to deal with both open-vocabulary
and language-independent scenarios. In spite of its potentials,
further research on this methodology is needed, since, e.g.,
it is prone to overfitting [118].

IV. ACOUSTIC MODELING
This section is devoted to review the core of deep spo-
ken KWS systems: the acoustic model. The natural trend is
the design of increasingly accurate models while decreasing
computational complexity. In an approximate chronological
order, Subsections IV-A, IV-B and IV-C review advances in
acoustic modeling based on fully-connected feedforward net-
works, convolutional networks, and recurrent and time-delay
neural networks, respectively. Finally, Subsection IV-D is
dedicated to how these acoustic models are trained.

A. FULLY-CONNECTED FEEDFORWARD NEURAL
NETWORKS
Deep spoken KWS made its debut in 2014 [22] employing
acoustic modeling based on the most widespread type of

4With a sufficiently powerful DNN acoustic model, the actual input fea-
ture representation is of less importance (as long as it represents the relevant
information about the input signal).

neural architecture at the time: the fully-connected feed-
forward neural network (FFNN). A simple stack of three
fully-connected hidden layers with 128 neurons each and
rectified linear unit (ReLU) activations, followed by a soft-
max output layer, greatly outperformed, with fewer param-
eters, a (at that time) state-of-the-art keyword/filler HMM
system in both clean and noisy acoustic conditions. How-
ever, since the constant goal is the design of more accu-
rate/robust and computationally lighter acoustic models, the
use of fully-connected FFNNs was quickly relegated to a
secondary level. Nowadays, state-of-the-art acoustic models
use convolutional and recurrent neural networks (see Sub-
sections IV-B and IV-C), since they can provide better per-
formance with fewer parameters, e.g., [9], [28]. Even so,
standard FFNN acoustic models and variants of them5 are
considered in recent literature for either comparison purposes
or studying different aspects of KWS such as training loss
functions, e.g., [9], [17], [42], [56].

Closely related and computationally cheaper alternatives
to fully-connected FFNNs are single value decomposition
filter (SVDF) [31], [71], [119] and spiking neural net-
works [41], [53], [120]. Proposed in [119] to approximate
fully-connected layers by low-rank approximations, SVDF
achieved to reduce by 75% the FFNN acoustic model size of
the first deep KWS system [22] with no drop in performance.
A similar idea was explored in [121], where a high degree
of acoustic model compression is accomplished by means
of low-rank weight matrices. The other side of the same
coin is that modeling power can be enhanced by increasing
the number of neurons while keeping the original number
of multiplications fixed [121]. In this way, the performance
of the first deep KWS system [22] was improved without
substantially altering the computational resource usage of
the algorithm. Higuchi et al. [59] have shown that an SVDF
neural network is a special case of a stacked one-dimensional
convolutional neural network (CNN), so the former can be
easily implemented as the latter.

On the other hand, spiking neural networks (SNNs) are
human brain-inspired neural networks that, in contrast to
artificial neural networks (ANNs), process the information in
an event-driven manner, which greatly alleviates the compu-
tational load when such information is sparse as in KWS [41],
[53], [120]. To make themwork, in the first place, real-valued
input data like speech features have to be transformed to a
sequence of spikes encoding real values in either its frequency
(spike rate) or the relative time between spikes. Then, spikes
propagate throughout the SNN to eventually fire the corre-
sponding output neurons, which represent word classes in
KWS [41]. SNNs can yield a similar KWS performance to
that of equivalent ANNswhile providing a computational cost
reduction and energy saving above 80% [41] and of dozens
of times [53], respectively. Apart from having been applied

5For example, in [32], it is evaluated an FFNN acoustic model integrating
an intermediate pooling layer, which yields improved KWS accuracy in
comparison with a standard FFNN using a similar number of parameters.
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FIGURE 6. Example of shortcut connections linking non-consecutive
layers in residual learning models.

to fully-connected FFNNs for KWS [41], [53], the SNN
paradigm has also been recently applied to CNN acoustic
modeling [53], which is reviewed in the next subsection.

B. CONVOLUTIONAL NEURAL NETWORKS
Moving from fully-connected FFNN to CNN acoustic mod-
eling was a natural step taken back in 2015 [28]. Thanks to
exploiting local speech time-frequency correlations, CNNs
are able to outperform, with fewer parameters, fully-
connected FFNNs for acoustic modeling in deep KWS [28],
[32], [72], [86], [96], [117], [122]–[125]. One of the attractive
features of CNNs is that the number of multiplications of the
model can be easily limited to meet the computational con-
straints by adjusting different hyperparameters like, e.g., filter
striding, and kernel and pooling sizes. Moreover, this may be
done without necessarily sacrificing much performance [28].

Residual learning, proposed by He et al. [126] for image
recognition, is widely considered to implement state-of-the-
art acoustic models for deep KWS [30], [32], [50]–[52],
[57], [67], [69], [78]. In short, residual learning models
are constructed by introducing a series of shortcut con-
nections linking non-consecutive layers (as exemplified by
Figure 6), which helps to better train very deep CNN mod-
els. To the best of our knowledge, Tang and Lin [30] were
the first authors exploring deep residual learning for deep
KWS. They also integrated dilated convolutions increas-
ing the network’s receptive field in order to capture longer
time-frequency patterns6 without increasing the number of
parameters, as also done by a number of subsequent deep
KWS systems, e.g., [47], [51], [78]. In this way, Tang and
Lin greatly outperformed, with less parameters, standard
CNNs [28] in terms of KWS performance, establishing a new
state-of-the-art back in 2018. Their powerful deep residual
architecture so-called res15 has been employed to carry out
different KWS studies in areas like robustness for hearing
assistive devices [128], [129], filterbank learning [82], and
robustness to acoustic noise [130], among others.

Largely motivated by this success, later work further
explored the use of deep residual learning. For exam-
ple, [67] uses a variant of DenseNet [131], which can be

6In [49], the authors achieve this same effect by means of graph convolu-
tional networks [127].

interpreted as an extreme case of residual network comprising
a hive of skip connections and requiring fewer parameters.
The use of an acoustic model inspired by WaveNet [132],
involving both skip connections and gated activation units,
is evaluated in [78]. Choi et al. [50] proposed utilizing
one-dimensional convolutions along the time axis (tempo-
ral convolutions) while treating the (MFCC) features as
input channels within a deep residual learning framework
(TC-ResNet). This approach could help to overcome the
challenge of simultaneously capturing both high and low
frequency features by means of not very deep networks
—although we think that this can also be accomplished,
to a great extent, by two-dimensional dilated convolutions
increasing the network’s receptive field—. The proposed
temporal convolution yields a significant reduction of the
computational burden with respect to a two-dimensional con-
volution with the same number of parameters. As a result,
TC-ResNet matches Tang and Lin’s [30] KWS performance
while dramatically decreasing both latency and the amount of
floating-point operations per second on a mobile device [50].
In [32], where an interesting deep KWS system comparison
is presented, TC-ResNet, exhibiting one of the least latency
and model sizes, is top-ranked in terms of KWS perfor-
mance, outperforming competitive acoustic models based
on standard CNNs, convolutional recurrent neural networks
(CRNNs) [75], and RNNs with an attention mechanism [133]
(see also the next subsection), among others. Furthermore,
very recently, Zhou et al. [134] adopted a technique so-called
AdderNet [135] to replace multiplications by additions in
TC-ResNet, thereby drastically reducing its power consump-
tion while maintaining a competitive accuracy.

Another appealing way to reduce the computation and
size of standard CNNs is by depthwise separable convolu-
tions [136]. They work by factorizing a standard convolution
into a depthwise one and a pointwise (1×1) convolution com-
bining the outputs from the depthwise one to generate new
feature maps [136]. Depthwise separable CNNs (DS-CNNs)
are a good choice to implement well-performing acoustic
models in embedded systems [43], [45]. For example, the
authors of [70] are able to reproduce the outstanding per-
formance of TC-ResNet [50] using less parameters thanks
to exploiting depthwise separable convolutions. Furthermore,
the combination of depthwise separable convolutions with
residual learning has been recently explored for deep KWS
acoustic modeling [51], [52], [57], [100], generally outper-
forming all standard residual networks [30], plain DS-CNNs
and TC-ResNet with less computational complexity.

Upon this review, we believe that a modern CNN-based
acoustic model should ideally encompass the following three
aspects:

1) A mechanism to exploit long time-frequency depen-
dencies like, e.g., the use of temporal convolutions [50]
or dilated convolutions.

2) Depthwise separable convolutions [136] to substan-
tially reduce both the memory footprint and computa-
tion of the model without sacrificing the performance.
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3) Residual connections [126] to fast and effectively train
deeper models providing enhanced KWS performance.

C. RECURRENT AND TIME-DELAY NEURAL NETWORKS
Speech is a temporal sequence with strong time dependen-
cies. Therefore, the utilization of RNNs for acoustic model-
ing —and also time-delay neural networks (TDNNs), which
are shaped by a set of layers performing on different time
scales— naturally arises. For example, LSTM neural net-
works [137], which overcome the exploding and vanishing
gradient problems suffered by standard RNNs, are used for
KWS acoustic modeling in, e.g., [4], [29], [76], [78], [84],
clearly outperforming FFNNs [29]. When latency is not a
strong constraint, bidirectional LSTMs (BiLSTMs) can be
used instead to capture both causal and anticausal depen-
dencies for improved KWS performance [76], [138]. Alter-
natively, bidirectional GRUs are explored in [32] for KWS
acoustic modeling. When there is no need to model very long
time dependencies, as it is the case in KWS, GRUs might be
preferred over LSTMs since the former demand less memory
and are faster to train while performing similarly or even
better [93].

Besides, [58] studies a two-stage TDNN consisting of an
LVCSR acoustic model followed by a keyword classifier. The
authors of [58] also investigate the integration of frame skip-
ping and caching to decrease computation, thereby outper-
forming classical CNN acoustic modeling [28] while halving
the number of multiplications.

As we already suggested in Subsection IV-B, CNNs might
have difficulties to model long time dependencies. To over-
come this point, they can be combined with RNNs to build the
so-called CRNNs. Thus, it may be stated that CRNNs bring
the best of two worlds: first, convolutional layers model local
spectro-temporal correlations of speech and, then, recurrent
layers follow suit by modeling long-term time dependencies
in the speech signal. Some works explore the use of CRNNs
for acoustic modeling in deep spoken KWS using either
unidirectional or bidirectional LSTMs or GRUs [32], [48],
[76], [93], [109], [118]. Generally, the use of CRNNs allows
us for outperforming standalone CNNs and RNNs [48].

1) CONNECTIONIST TEMPORAL CLASSIFICATION
As for the majority of acoustic models, the above-reviewed
RNN acoustic models are typically trained to produce
frame-level posterior probabilities. At training time, in case
of employing, e.g., cross-entropy loss, frame-level annotated
data are required, which may be cumbersome to get. In the
context of RNN acoustic modeling, connectionist temporal
classification (CTC) [63] is an attractive alternative letting
the model unsupervisedly locate and align the phonetic unit
labels at training time [4]. In other words, frame-level align-
ments of the target label sequences are not required for
training.

Mathematically speaking, let C = (c0, . . . , cm−1) be the
sequence of phonetic units or, e.g., characters corresponding
to the sequence of feature vectorsX = (x0, . . . , xT−1), where

FIGURE 7. Example of sequence-to-sequence (Seq2Seq) model. Here,
‘‘<sos> ’’ stands for ‘‘start of sequence’’. See the text for further details.

m < T and the accurate alignment between C and X is
unknown. CTC is an alignment-free algorithm whose goal is
to maximize [63]

P (C|X) =
∑

A∈AX ,C

T−1∏
t=0

Pt (c|x0, . . . , xt) , (5)

where c is the whole set of recognizable phonetic units or
characters plus a blank symbol (modeling confusion informa-
tion of the speech signal [4]), and the summation is performed
over the set of all valid alignments AX ,C . From Eq. (5), the
acoustic model outputs can be understood as the probability
distribution over all the possible label sequences given the
sequence of input features X [46].
The very first attempt to apply CTC to KWS was carried

out by Fernández et al. [46] using a BiLSTM for acoustic
modeling. At training time, this system just needs, along with
the training speech signals, the list of training words in order
of occurrence. After this first attempt, several works have
explored variants of this approach using different RNN archi-
tectures like LSTMs [4], [60], [61], [139], BiLSTMs [84],
[98] and GRUs [61], [140], as well as considering different
phonetic units such as phonemes [60], [84] and Mandarin
syllables [8], [139]. In general, these systems are shown
to be superior to both LVCSR- and keyword/filler HMM-
based KWS systems with less or no additional computational
cost [4], [8], [139]. Notice that since CTC requires searching
for the keyword phonetic unit sequence on a lattice, this
approach is also suitable for open-vocabulary KWS.

2) SEQUENCE-TO-SEQUENCE MODELS
CTC assumes conditional label independence, i.e., past
model outputs do not influence current predictions
(see Eq. (5)). Hence, in the context of KWS and ASR
in general, CTC may need an external language model to
perform well. Therefore, a more convenient approach for
KWS acoustic modeling might be the use of sequence-to-
sequence (Seq2Seq) models, first proposed in [141] for lan-
guage translation. Figure 7 illustrates an example of Seq2Seq
model. In short, Seq2Seq models are comprised of an RNN
encoder7 summarizing the variable-length input sequence

7In [9], Shan et al. show, for KWS, the superiority of CRNN encoders
with respect to GRU ones, which, in turn, are better than LSTM encoders.
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into a fixed-dimensional vector followed by an RNN decoder
generating a variable-length output sequence conditioned on
both the encoder output and past decoder predictions.

Besides for related tasks like QbE KWS [142], Seq2Seq
models such as an RNN-Transducer (RNN-T) have also
been studied for deep spoken KWS [60], [62], [101], [143].
RNN-T, integrating both acoustic and language models (and
predicting phonemes), is able to outperform a CTC KWS
system even when the latter exploits an external phoneme
N-gram language model [60].

3) THE ATTENTION MECHANISM
As aforementioned, in Seq2Seq models, the encoder has to
condense all the needed information into a fixed-dimensional
vector regardless the (variable) length of the input sequence,
which might be challenging. The attention mechanism [144],
similarly to human listening attention, might assist in this
context by focusing on the speech sections that are more
likely to comprise a keyword [9].

Let ht be the hidden state of the RNN encoder of a Seq2Seq
model at time step t:

ht = Encoder (xt ,ht−1) . (6)

Before decoding it, the whole input sequence X = (x0, . . . ,
xT−1) has to be read, since hT−1 is the fixed-dimensional
vector summarizing the whole input sequence that is finally
input to the decoder (see Figure 7). To assist the decoder,
a context-relevant subset of {h0, . . . ,hT−1} can be attended
to yield A, which is to be used instead of hT−1:

A =
T−1∑
t=0

αtht , (7)

where αt = Attend (ht), being Attend (·) an attention func-
tion [144] and

∑
t αt = 1.

The integration of an attention mechanism (including
a variant called multi-head attention [144]) in (primarily)
Seq2Seq acoustic models in order to focus on the keyword(s)
of interest has successfully been accomplished by a number
of works, e.g., [26], [32], [60], [68], [133], [143], [145]. These
works find that incorporating attention provides KWS per-
formance gains with respect to counterpart Seq2Seq models
without attention.

Lastly, let us notice that attention has also been studied in
conjunction with TDNNs for KWS [12], [16]. Particularly,
in [16], thanks to exploiting shared weight self-attention, Bai
et al. reproduce the performance of the deep residual learning
model res15 of Tang and Lin [30] by using 20 times less
parameters, i.e., around 12k parameters only.

D. ACOUSTIC MODEL TRAINING
Once the acoustic model architecture has been designed
(see the previous subsections) or optimally ‘‘searched’’ [95],
[146], it is time to discriminatively estimate its parameters
according to an optimization criterion —defined by a loss
function— by means of backpropagation [147] and using

labeled/annotated speech data (see Section VIII in the latter
respect).

1) LOSS FUNCTIONS
Apart from CTC [63], which has been examined in the previ-
ous subsection, cross-entropy loss [73], [74] is, by far, the
most popular loss function for training deep spoken KWS
acoustic models. For example, cross-entropy loss LCE is con-
sidered by [12], [16], [22], [29]–[32], [42], [43], [76], [93],
[121], [123], [124], and, retaking the notation of Section II,
can be expressed as

LCE = −

∑
i

N∑
n=1

l{i}n log
(
y{i}n
)
, (8)

where l{i}n is the binary true (training) label corresponding to
the input feature segment X{i}. Notice that when the acous-
tic model is intended to produce subword-level posteriors,
commonly, training labels are generated by forced alignment
using an LVCSR system [22], [31], [42], which will condition
the subsequent KWS system performance.

First proposed in [148], max-pooling loss is an alternative
to cross-entropy loss that has also been studied for KWS
purposes [29], [39], [71]. In the context of KWS, the goal
of max-pooling loss is to teach the acoustic model to only
trigger at the highest confidence time near the end of the
keyword [29]. Let L̂ be the set of all the indices of the
input feature segments in a minibatch belonging to any non-
keyword class. In addition, let y?p be the largest target posterior
corresponding to the p-th keyword sample in the minibatch,
where p = 1, . . . ,P and P is the total number of keyword
samples in the minibatch. Then, max-pooling loss can be
expressed as

LMP = −

∑
i∈L̂

N∑
n=1

l{i}n log
(
y{i}n
)
−

P∑
p=1

log
(
y?p
)
. (9)

From (9), we can see that max-pooling loss is cross-entropy
loss for any non-keyword class (left summand) while, for
each keyword sample, the error is backpropagated for a single
input feature segment only (right summand). Max-pooling
loss has proven to outperform cross-entropy loss in terms
of KWS performance, especially when the acoustic model
is initialized by cross-entropy loss training [29]. Weakly-
constrained and smoothed max-pooling loss variants are pro-
posed in [39] and [71], respectively, which benefit from
lowering the dependence on the accuracy of LVCSR forced
alignment.

2) OPTIMIZATION PARADIGMS
In deep KWS, the most frequently used optimizers are
stochastic gradient descent (SGD) [149] (normally with
momentum), e.g., see [30], [31], [49]–[51], [53], [76], [91],
[100], [121], [138], [143], [146], and Adam [150], e.g.,
see [9], [12], [16], [26], [32], [42], [43], [47], [48], [68],
[70], [78], [90], [98], [151]. It is also a common practice
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to implement a mechanism shrinking the learning rate over
epochs [9], [12], [16], [22], [29], [43], [48], [49], [51], [53],
[68], [70], [76], [121], [152]. Furthermore, many deep KWS
works, e.g., [9], [49]–[51], [90], [100], [143], deploy a form
of parameter regularization like weight decay and dropout.
While random acoustic model parameter initialization is the
normal approach, initialization based on transfer learning
from LVCSR acoustic models has proven to lead to better
KWSmodels by, e.g., alleviating overfitting [22], [58], [101].

V. POSTERIOR HANDLING
In order to come upwith a final decision about the presence or
not of a keyword in an audio stream, the sequence of posteri-
ors yielded by the acoustic model, y{i}, needs to be processed.
We differentiate between twomain posterior handlingmodes:
non-streaming (static) and streaming (dynamic) modes.

A. NON-STREAMING MODE
Non-streamingmode refers to standard multi-class classifica-
tion of independent input segments comprising a single word
each (i.e., isolated word classification). To cover the duration
of an entire word, input segments have to be long enough, e.g.,
around 1 second long [153], [154]. In this mode, commonly,
given an input segment X{i}, this is assigned to the class with
the highest posterior probability as in Eq. (4). This approach
is preferred over picking classes yielding posteriors above
a sensitivity (decision) threshold to be set, since experience
tells [82], [128]–[130] that non-streaming deepKWS systems
tend to produce very peaked posterior distributions. This
might be attributed to the fact that non-streaming systems
do not have to deal with inter-class transition data as in the
dynamic case (see the next subsection), but withwell-defined,
isolated class realizations.

As mentioned in Section II, KWS is not a static task but
a dynamic one, which means that a KWS system has to
continuously process an input audio stream. Therefore, it is
obvious that the non-streaming mode lacks some realism
from a practical point of view. Despite this, isolated word
classification is considered by a number of deep KWSworks,
e.g., [16], [30], [32], [48]–[52], [58], [69], [82], [89], [99],
[109], [125], [128]–[130]. We believe that this is because of
the simpler experimental framework with respect to that of
the dynamic or streaming case. Fortunately, non-streaming
performance and streaming performance seem to be highly
correlated [129], [130], which makes non-streaming KWS
research more relevant than it might look at first sight.

B. STREAMING MODE
Streaming mode alludes to the continuous processing
(normally in real-time) of an input audio stream in which
keywords are not isolated/segmented. Hence, in this mode,
any given segment may or may not contain (parts of) a key-
word. In this case, the acoustic model yields a time sequence
of (raw) posteriors

{
. . . , y{i−1}, y{i}, y{i+1}, . . .

}
with strong

local correlations. Due to this, the sequence of raw posteri-
ors, which is inherently noisy, is typically smoothed over

time —e.g., by moving average— on a class basis [15], [22],
[29], [42], [43], [45], [56], [58], [72], [76], [77] before further
processing.

Let us denote by ȳ{i} the smoothed version of the raw
posteriors y{i}. Furthermore, let us assume that each of
the N classes of a deep KWS system represents a whole
word (which is a common case). Then, the smoothed
word posteriors ȳ{i} are often directly used to determine
the presence or not of a keyword either by comparing
them with a sensitivity threshold8 [29], [43], [58] or by
picking, within a time sliding window, the class with the
highest posterior [76]. Notice that since consecutive input
segments

{
. . . ,X{i−1},X{i},X{i+1}, . . .

}
may cover frag-

ments of the same keyword realization, false alarms may
occur as a result of recognizing the same keyword realiza-
tion multiple times from the smoothed posterior sequence{
. . . , ȳ{i−1}, ȳ{i}, ȳ{i+1}, . . .

}
. To prevent this problem, a sim-

ple, yet effective mechanism consists of forcing the KWS
system not to trigger for a short period of time right after a
keyword has been spotted [29], [43].

Differently from the above case, let us now consider the
two following scenarios:

1) Each of the N classes still represents a whole word but
keywords are composed of multiple words (e.g., ‘‘OK
Google’’).

2) Each of the N classes represents a subword unit
(e.g., a syllable) instead of a whole word.

To tackle such scenarios, the first deep spoken KWS sys-
tem [22] proposed a simple method processing the smoothed
posteriors ȳ{i} in order to produce a keyword presence deci-
sion. Let us assume that the first class C1 corresponds to the
non-keyword class and that the remaining N − 1 classes rep-
resent subunits of a single keyword.9 Then, a time sequence
of confidence scores S{i}c can be computed as [22]

S{i}c =
N−1

√√√√ N∏
n=2

max
hmax(i)≤k≤i

ȳ{k}n , (10)

where hmax(i) indicates the onset of the time sliding window.
A keyword is detected every time S{i}c exceeds a sensitivity
threshold to be tuned. This approach has been widely used in
the deep KWS literature, e.g., [45], [56], [77].

In [15], Eq. (10) is subject to the constraint that the
keyword subunits trigger in the correct order of occurrence
within the keyword, which contributes to decreasing false
alarms. This improved version of the above posterior han-
dling method is also considered by a number of deep KWS
systems, e.g., [42], [72].

When each of the N classes of a deep KWS system repre-
sents a subword unit like a syllable or context-independent
phoneme, a searchable lattice may be built from the time

8This decision threshold might be set by optimizing, on a development
set, some kind of figure of merit (see also Section IX on evaluation metrics).

9This method can easily be extended to deal with more than one key-
word [22].
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sequence of posteriors y{i}. Actually, this is typically done
in the context of CTC [4], [8]. Then, the goal is to find,
from the lattice, the most similar subword unit sequence
to that of the target keyword. If the score resulting upon
the search on the lattice is greater than a predefined score
threshold, a keyword is spotted. Notice that this approach,
despite its higher complexity, provides a great flexibility by,
for example, allowing a user defining her/his own keywords.

VI. ROBUSTNESS IN KEYWORD SPOTTING
Normalizing the effect of acoustic variability factors such as
background noise and room reverberation is paramount to
assure good KWS performance in real-life conditions. This
section is intended to review the scarce literature on KWS
robust against, primarily but not only, background noise and
far-field conditions. The motivation behind primarily dealing
with the two latter acoustic variability factors lies in typical
use cases of KWS technology.10

This section has been arranged according to a taxonomy
that segregates front- and back-end methods, which reflects
the available literature on KWS robustness. Let us stress that
these are normally cross-cutting methods, since they either
come from or can be applied to other areas like ASR.

A. FRONT-END METHODS
Front-end methods refer to those techniques that modify the
speech signal before it is fed to the DNN acoustic model.
In this subsection, we further differentiate among gain control
for far-field conditions, DNN feature enhancement, adaptive
noise cancellation and beamforming methods.

1) GAIN CONTROL FOR FAR-FIELD CONDITIONS
Keyword spotting deployment is many times conceived to
facilitate real hands-free communication with devices such
as smart speakers or in-vehicle systems that are located at a
certain distance from the speaker. This means that commu-
nication might take place in far-field conditions, and, due to
distance attenuation, background noise and reverberation can
be particularly harmful.

Prabhavalkar et al. [15] were the first to propose the use
of automatic gain control (AGC) [155] to provide robustness
against background noise and far-field conditions for deep
KWS. The philosophy behind AGC is based on selectively
amplifying the audio signal depending on whether speech
is present or absent. This type of selective amplification is
able to yield a significant reduction of miss detections in the
far-field scenario [15].

Later, a more popular [61], [93], [94], [122] and simpler
AGC method called PCEN (Per-Channel Energy Normal-
ization) [156] was proposed for KWS. Keeping the original
notation of [156], E(t, f ) represents (Mel) filterbank energy
at time frame t and frequency bin f , and

M (t, f ) = (1− s)M (t − 1, f )+ sE(t, f ) (11)

10For example, activation of voice assistants typically takes place at home
in far-field conditions and with some TV or music background noise.

is a time smoothed version of E(t, f ), where 0 < s < 1 is a
smoothing coefficient. Thus, PCEN is intended to replace the
typical log compression of filterbank features as follows:

PCEN(t, f ) =
(

E(t, f )
(ε +M (t, f ))α

+ δ

)r
− δr , (12)

where ε prevents division by zero, α ∈ (0, 1) defines the gain
normalization strength, and δ and r determine the root com-
pression. As we can see from Eq. (12), the energy contour of
E(t, f ) is dynamically normalized by M (t, f ) on a frequency
band basis, which yields significant KWS performance gains
under far-field conditions since M (t, f ) mirrors the loudness
profile of E(t, f ) [156].

An appealing aspect of PCEN is that all its operations are
differentiable. As a result, PCEN can be integrated in the
DNN acoustic model in order to comfortably tune its set of
parameters —i.e., s, ε, α, δ and r— towards the optimization
of KWS performance during acoustic model training [156].

2) DNN FEATURE ENHANCEMENT
The powerful modeling capabilities of DNNs can also be
exploited to clean the noisy speech features (usually, mag-
nitude spectral features) before these are input to the KWS
acoustic model. A variety of approaches can be followed:

1) Enhancement Mask Estimation: The aim of this
approach is to estimate, from the noisy observation
(e.g., noisy Mel spectra [157]) and using a neural
network (e.g., a CRNN [157]), a multiplicative de-
noising time-frequency mask to be applied to the noisy
observation [157], [158]. The result is then passed to
the acoustic model.

2) Noise Estimation: A DNN (e.g., a CNN with dilated
convolutions and residual connections [159]) might
also be used to provide an estimate of the distortion that
contaminates the target speech signal. The estimated
distortion can then be subtracted from the noisy obser-
vation before feeding the acoustic model with it [159].

3) Clean Speech Estimation: In this case, the DNN
front-end directly produces an estimate of the clean
speech features, from the noisy observation, to be input
to the acoustic model. While this approach has been
studied for robust ASR [160], to the best of our knowl-
edge and surprisingly, this has not been the case for
KWS.

4) Filter Parameter Estimation: The parameters of an
enhancement filter (e.g., a Wiener filter [158]) to be
applied to the noisy observation before further process-
ing can be estimated by means of a DNN. Similarly to
the above case, while this has been studied for robust
ASR [158], this has not been the case for KWS.

Regardless of the chosen approach, the DNN front-end and
the KWS acoustic model can be jointly trained following a
multi-task learning scheme to account the complementary
objectives of the front-end and the acoustic model. By mak-
ing the DNN front-end aware of the global keyword detec-
tion goal [157], [159], superior KWS performance can be
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FIGURE 8. Block diagram of adaptive noise cancellation. A signal of
interest s(m) is retrieved from a noisy observation x(m) = s(m) + v (m) by
subtracting an estimate of v (m), v̂ (m). This estimate is obtained by
filtering a noise reference v ′(m) that originates from the same noise
source as v (m) (i.e., v (m) and v ′(m) are highly correlated). The filter
weights are continuously adapted to typically minimize the power of the
estimated signal of interest ŝ(m).

achieved in comparison with independent training of the two
components.

One conclusion is that, oddly, DNN feature enhancement
is a rather unexplored area in the context of KWS. This
contrasts with the case of robust ASR, which has widely and
successfully studied the application of this type of de-noising
front-ends [158], [160]. Immediate future work on robust
KWS could address this imbalance, especially by exploring
promising time domain solutions that can benefit from phase
information [161].

3) ADAPTIVE NOISE CANCELLATION
Presumably thinking of voice assistant use cases, Google
developed a series of noise-robust KWS methods based on
dual-microphone adaptive noise cancellation (ANC) to par-
ticularly deal with speech interference [94], [122], [162]. The
working principle of ANC is outlined in Figure 8. The reason
for accounting a dual-microphone scenario is that Google’s
smart speaker Google Home has two microphones [163]. It is
interesting to point out that the authors of this series of ANC
works also tried to apply beamforming and multi-channel
Wiener filtering,11 but they only found marginal performance
gains by doing so [94].

In [122], Google researchers proposed a de-noising front-
end inspired by the human auditory system. In short, the de-
noising front-end works by exploiting posterior probability
feedback from the KWS acoustic model:

1) If the acoustic model finds that voice is absent, the
weights of a recursive least squares (RLS) ANC filter
working in the short-time Fourier transform (STFT)
domain are updated;

2) If the posterior probabilities computed by the acoustic
model are inconclusive (i.e., the presence of a keyword
is uncertain), the most recent ANC weights are used
to filter/clean the input signal and the presence of a
keyword is rechecked.

11Notice that multi-channel Wiener filtering is equivalent to mini-
mum variance distortionless response (MVDR) beamforming followed by
single-channel Wiener post-filtering [164], [165].

In a similar vein, a so-called hotword cleaner was reported
in [94], which overcomes one of the shortcomings of the
above ANC approach [122]: the increased latency and CPU
usage derived from having to run the acoustic model twice
(one to provide feedback to the de-noising front-end and
another for KWS itself). The hotword cleaner [94] leverages
the following two characteristics of the KWS scenario to
deploy a simple, yet effective de-noising method: 1) there is
typically no speech just before a keyword, and 2) keywords
are of short duration. Bearing these two characteristics in
mind, the hotword cleaner [94] simply works by continuously
computing fast-RLS ANCweights that are stored and applied
to the input signal with a certain delay to clean and not
damage the keyword. This methodology was generalized to
an arbitrary number of microphones in [162]. Overall, all
of these ANC-based methods bring significant KWS per-
formance improvements in everyday noisy conditions that
include strong TV and music background noise.

4) BEAMFORMING
Spatial filtering, also known as beamforming, enables the
exploitation of spatial cues in addition to time and frequency
information to boost speech enhancement quality [166]. Sim-
ilarly to the aforementioned case with DNN feature enhance-
ment, KWS lags several steps behind ASR regarding the
integration of beamforming as done, e.g., in [167].

To the best of our knowledge, [97] is the first research
studying beamforming for deep KWS. In particular, [97]
applies four fixed beamformers that are arranged to uni-
formly sample the horizontal plane. The acoustic model is
then fed with the four resulting beamformed signals plus a
reference signal picked from one of the array microphones to
avoid degrading performance at higher signal-to-noise ratios
(SNRs) [97]. The acoustic model incorporates an attention
mechanism [144] to weigh the five input signals, which can
be thought as a steering mechanism pointing the effective
beam towards the target speaker. Actually, the motivation
behind using fixed beamformers lies in the difficulty of esti-
mating the target direction in noisy conditions. However,
notice that the attention mechanism implicitly estimates it.

The same authors of [97] went farther in [96] by replacing
the set of fixed beamformers by a set of data-dependent,
multiplicative spectral masks playing an equivalent role. The
latter masks, which are estimated by a neural network, can
be interpreted as semi-fixed beamformers. This is because
though they are data-dependent, mask look directions (equiv-
alent to look directions of beamformers) are still fixed. This
beamforming front-end, which is trained jointly with the
acoustic model, outperforms the previous fixed beamform-
ing approach, especially at lower signal-to-interference ratios
(SIRs) [96].

There is still a long way to go regarding the application
of beamforming to deep KWS. More specifically, despite
the aforementioned steering role of the attention mechanism,
we believe that deep beamforming that does not pre-arrange
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the look direction but estimates it continuously based on
microphone signals —as in, e.g., [168]— is worth to explore.

B. BACK-END METHODS
Back-end methods refer to techniques applied within the
acoustic model to primarily improve its generalization ability
to a variety of acoustic conditions. The rest of this sub-
section is devoted to discuss the following matters: multi-
style and adversarial training, robustness to keyword data
scarcity, the class-imbalance problem and other back-end
methods.

1) MULTI-STYLE TRAINING
One of the most popular and effective back-end methods
to, especially, deal with background noise and reverbera-
tion is multi-style training of the KWS acoustic model (see,
e.g., [15], [32], [39], [43], [50], [60], [71], [88], [90], [118],
[169], [170]). Multi-style training, which has some regular-
ization effect preventing overfitting [118], simply consists of
training the acoustic model with speech data contaminated by
a variety of distortions trying to better reflect what is expected
to be found at test time.

Usually, distorted speech data are generated by contam-
inating —e.g., by background noise addition at different
SNR levels— clean speech data in an artificial manner
(see Section VIII for practical details). This artificial dis-
tortion procedure is known as data augmentation [171].
For instance, a series of data augmentation policies like
time and frequency masking is defined by a tool like
SpecAugment [172]. First proposed for end-to-end ASR,
SpecAugment has recently become a popular way for
generating distorted speech data, also for KWS training
purposes [32], [39], [90], [100], [143], [151].

2) ADVERSARIAL TRAINING
Deep neural networks often raise the following issue:
networks’ outputs might not be smooth with respect to
inputs [173], e.g., because of the lack of enough training data.
This might involve, for example, that a keyword correctly
classified by the acoustic model is misclassified when a very
small perturbation is added to such a keyword. This kind of
subtly distorted input to the network is what we call an adver-
sarial example. Interestingly, adversarial examples can be
generated by means of techniques like the fast gradient sign
method (FGSM) [174] to re-train with them a well-trained
KWS acoustic model. The goal of this is to improve robust-
ness by smoothing the distribution of the acoustic model. This
approach, which can be interpreted as a type of data augmen-
tation, has shown to be effective to drastically decrease false
alarms and miss detections for an attention-based Seq2Seq
acoustic model [26]. Alternatively, [45] proposes to replace,
with the same goal, adversarial example re-training by adver-
sarial regularization in the loss function. Wang et al. [45]
demonstrate that the latter outperforms the former under
far-field and noisy conditions when using a DS-CNN acoustic
model for KWS.

3) ROBUSTNESS TO KEYWORD DATA SCARCITY
To effectively train a KWS acoustic model, a sufficient
amount of speech data is required. This normally includes a
substantial number of examples of the specific keyword(s) to
be recognized. However, there is a number of possible rea-
sons for which we might suffer from keyword data scarcity.
Certainly, collecting additional keyword samples can help to
overcome the problem. Nevertheless, speech data collection
can be costly and time-consuming, and is often infeasible.
Instead, a smart way to obtain additional keyword samples for
model training is by synthetically generating them through
text-to-speech technology. This type of data augmentation
has proven to be highly effective by significantly improving
KWS performance in low-resource keyword settings [62],
[175], [176]. In particular, in [62], it is found that it is impor-
tant that synthetic speech reflects a wide variety of tones of
voice (i.e., speaker diversity) for good KWS performance.

4) THE CLASS-IMBALANCE PROBLEM
The class-imbalance problem refers to the fact that, typi-
cally, many more non-keyword than keyword samples are
available for KWS acoustic model training. Actually, the
class-imbalance problem can be understood as a relative
keyword data scarcity problem: for obvious reasons, it is
almost always easier to access a plethora of non-keyword than
keyword samples. The issue lies in that class imbalance can
lead to under-training of the keyword class with respect to the
non-keyword one.

To reach class balance for acoustic model training, one can
imagine many different things that can be done based on data
augmentation:

1) Generation of adversarial examples yielding miss
detections, e.g., through FGSM [174], to re-train the
acoustic model in a class-balanced way;

2) Generation of additional synthetic keyword samples by
means of text-to-speech technology [62], [175].

To the best of our knowledge, the above two data augmen-
tation approaches have not been studied for tackling the
class-imbalance problem.

Differently, a series of works has proposed to essentially
focus on challenging non-keyword samples12 at training time
instead of fully exploiting all the non-keyword samples avail-
able [39], [42], [177]. For instance, Liu et al. [42] suggested
to weigh cross-entropy loss LCE (see Eq. (8)) by

(
1− y{i}n

)γ
to come up with focal loss LFL:

LFL = −

∑
i

N∑
n=1

(
1− y{i}n

)γ
l{i}n log

(
y{i}n
)
, (13)

where γ is a tunable focusing parameter. As one can easily
reason, weighing cross-entropy loss as in Eq. (13) helps to
focus training on challenging samples. While this weighting
procedure is more effective than regular cross-entropy in

12A challenging non-keyword sample can be, e.g., one exhibiting similar-
ities with the keyword in terms of phonetics.
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class-imbalanced scenarios [42], notice that it might be able
to strengthen the model in a wide sense. Because focal loss
LFL operates on a frame basis, [177] improved it by also
considering the time context when computing the weight
for cross-entropy loss. Particularly, such an improvement
is equivalent to assigning bigger weights to those frames
belonging to non-keyword samples yielding false alarms.

An alternative approach —so-called regional hard-
example mining— for dealing with the class-imbalance prob-
lem was described in [39]. Regional hard-example mining
subsamples the available non-keyword training data to keep a
certain balance between keyword and non-keyword samples.
Non-keyword sample mining is based on the selection of the
most difficult non-keyword samples in the sense that they
yield the highest keyword posteriors.

5) OTHER BACK-END METHODS
A few other methods for robustness purposes not falling into
any of the above categories can be found in the literature.
For instance, [72] extracts embeddings characterizing the
acoustic environment that are passed to the acoustic model
to carry out KWS which is robust to far-field and noisy
conditions. In this way, by making the acoustic model aware
of the acoustic environment, better keyword prediction can be
achieved.

We also recently contributed to noise-robust KWS in [130],
where we proposed to interpret every typical KWS acoustic
model as the concatenation of a keyword embedding extrac-
tor followed by a linear classifier consisting of the typical
final fully-connected layer with softmax activation for word
classification (see Section II). The goal is to, first, multi-
style train the keyword embedding extractor by means of
a (CN ,2 + 1)-pair loss function extending the idea behind
tuple-based losses like N -pair [178] and triplet [179] losses
(the latter used both standalone [103] and combined with the
reversed triplet and hinge losses [56] for keyword embedding
learning). In comparison with these and similar losses also
employed for word embedding learning (e.g., a prototyp-
ical loss angular variant [180]), in [130], we demonstrate
that the (CN ,2 + 1)-pair loss reaches larger inter-class and
smaller intra-class embedding variation.13 Secondly, the final
fully-connected layer with softmax activation is trained by
multi-style keyword embeddings employing cross-entropy
loss. This two-stage training strategy is much more effective
than standard end-to-end multi-style training when facing
unseen noises [130]. Moreover, another appealing feature of
this two-stage training strategy is that it increases neither the
number of parameters nor the number of multiplications of
the model.

VII. APPLICATIONS
Keyword spotting technology (including deep KWS) has
a number of applications, which range from the more

13This is because the (CN ,2 + 1)-pair loss constrains the way the training
samples belonging to different classes relate to each other in terms of
embedding distance.

traditional ones like voice-dialing, interaction with a call
center and speech retrieval to nowadays flagship application,
namely, the activation of voice assistants.

In addition to the above, KWS technology could be useful,
e.g., to assist disabled people like vision-impaired pedes-
trians when it comes to the activation of pedestrian call
buttons in crosswalks. For example, [87] proposes the use
of a CRNN-based KWS system [93] for the activation of
pedestrian call buttons via voice, thereby contributing to
improve accessibility in public areas to people with the
above-mentioned disability.

In-vehicle systems can also benefit from voice control.
For example, in [77], Tan et al. explore multi-source fusion
exploiting variations of vehicle’s speed and direction for
online sensitivity threshold selection. The authors of [77]
demonstrate that this strategy improves KWS accuracy with
respect to using a fixed, predetermined sensitivity threshold
for the posteriors yielded by the DNN acoustic model.

Moreover, it is worth noticing that KWS is a technology
that is sometimes better suited than ASR to the solution of
certain problems where the latter is typically employed. This
is the case, for instance, of by-topic audio classification and
audio sentiment detection [181], [182], since the accuracy
of these tasks rather relies on being able to correctly spot a
very focused (i.e., quite limited) vocabulary in the utterances.
In other words, lexical evidence is sparse for such tasks.

Some work has explored KWS also for voice control of
videogames [138], [152]. Particularly, [138] points out how
KWS becomes an extremely difficult task when it comes
to dealing with children controlling videogames with their
voice due to excitement and, generally speaking, the nature
of children and children’s voice [183]. To partially deal with
this, the authors of [138] propose the detection of overlap-
ping keywords in the context of a multiplayer side-scroller
game called Mole Madness. Since BiLSTMs have proven to
work well for children’s speech [184], a BiLSTM acoustic
model with 2N output classes —where N is the number of
keywords— is used to represent all possible combinations of
overlapping keywords. It is found that, under the videogame
conditions, modeling the large variations of children’s speech
time structure is challenging even for a relatively large
BiLSTM.

Other KWS applications include voice control of home
automation [185], even the navigation of complex procedures
in the International Space Station [186], etc.

A. PERSONALIZED KEYWORD SPOTTING SYSTEMS
For some of the above applications, having a certain degree
of personalization in the sense that only a specific user is
allowed to utilize the KWS system can be a desirable feature.
Towards this personalization goal, some research has studied
the combination of KWS and speaker verification [10], [76],
[140], [159]. While [10], [140] employ independently trained
deep learning models to perform both tasks, [76], [159]
address, following a multi-task learning scheme, joint KWS
and speaker verification with contradictory conclusions,
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FIGURE 9. Typical voice assistant client-server framework.

since KWS performance is negatively and positively affected
in [76] and [159], respectively, by the integration of speaker
verification. A reason for this could be that, unlike in [159],
higher-level features are shared for both tasks in [76], so this
further preservation of speaker information may contaminate
the phonetic information required to carry out KWS.

Personalization can be of particular interest for voice acti-
vation of voice assistants [187] as well as for voice control of
hearing assistive devices like hearing aids. These two KWS
applications are reviewed in a bit more detail in the next
subsections.

B. VOICE ACTIVATION OF VOICE ASSISTANTS
The flagship application of (deep) KWS is the activation of
voice assistants like Amazon’s Alexa, Apple’s Siri, Google’s
Assistant and Microsoft’s Cortana. Actually, without fear of
error, we can say that revitalization of KWS research over
the last years is owed to this application [28]. And there is
a compelling reason for this: forecasts suggest that, by 2024,
the number of voice assistant units will exceed that of world’s
population [188].

Figure 9 illustrates the typical voice assistant client-server
framework. The client consists of an electronic device like
a smartwatch or a smart speaker integrating the client-side
of a voice assistant and an always-on KWS system to detect
when a user wakes up the assistant by uttering a trigger
word/phrase, e.g., ‘‘hey assistant!’’. To limit the impact on
the battery life, the KWS system has to be necessarily
light. In this vein, Apple employs a two-pass detection strat-
egy [187]. By this, a very light, always-on KWS system lis-
tens for the corresponding wake-up word. If this is detected,
a more complex and accurate KWS system —also placed on
the client device— is used to double check whether or not the
wake-up word has been really uttered.

When the wake-up word is spotted on the client-side, the
supposed wake-up word audio and subsequent query audio
are sent to a server on which, first, the presence of the
wake-up word is checked for a second or third time by using
much more powerful and robust LVCSR-based KWS [2],
[187], [189]. If, finally, the LVCSR-basedKWS system deter-
mines that the wake-up word is not present, the subsequent
audio is discarded and the process is ended. Otherwise, ASR
is applied to the supposed query audio and the result is
further processed —e.g., using natural language processing
techniques— to provide the client device with a response.

FIGURE 10. Users’ own voice/external speaker detection in the context of
voice control of hearing aids. Red and blue dots symbolize the two
microphones of a hearing aid sitting behind the ear.

In the context of Google’s Assistant [2], it is shown that
this server-side wake-up word check drastically reduces the
false alarm rate while marginally increasing the rate of miss
detections. Notice that this server-side check could be useful
for mitigating privacy issues as a result of pseudo-query audio
leakage if it were not for the fact that the supposed wake-up
word audio and query audio are inseparably streamed to the
server. Interestingly, Garg et al. [190] have recently proposed
a streaming Transformer encoder carrying out the double
check efficiently on the client-side, which can truly help to
mitigate privacy issues.

C. VOICE CONTROL OF HEARING ASSISTIVE DEVICES
Manually operating small, body-worn devices like hearing
aids is not always feasible or can be cumbersome. One rea-
son could be that hands are busy doing other activities like
cooking or driving. Another cause could be that the wearer is
an elderly person with reduced fine motor skills. Whatever
the reason is, KWS can help to deploy voice interfaces to
comfortably operate such a kind of devices. Furthermore,
these devices are personal devices, so it is desirable that the
user is the only person who can handle them.

In the above respect, in [128], [129] we studied an
alternative way to speaker verification to provide robust-
ness against external speakers (i.e., personalization) in KWS
for hearing aids as exemplified by Figure 10. Particularly,
we extended the deep residual learning model proposed by
Tang and Lin [30] to jointly perform KWS and users’ own
voice/external speaker detection following a multi-task learn-
ing scheme. A keyword prediction is then taken into account
if and only if the multi-task network determines that the
spotted keyword was uttered by the legitimate user. Thanks to
exploiting GCC-PHAT (Generalized Cross-Correlation with
PHAse Transform) [191] coefficients from dual-microphone
hearing aids in the perceptually-motivated constant-Q trans-
form [192] domain, we achieve almost flawless users’ own
voice/external speaker detection [129]. This is because phase
difference information is extremely useful to characterize
the virtually time-invariant position of the user’s mouth with
respect to that of the hearing aid. It is worth noting that
this experimental validation was carried out on a hearing aid
speech database created by convolving the Google Speech
Commands Dataset v2 [154] with acoustic transfer functions
measured in a hearing aids set-up.
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TABLE 1. A selection of the most significant speech datasets employed for training and validating deep KWS systems. ‘‘P.A.’’ stands for ‘‘publicly
available’’, while ‘‘Y’’ and ‘‘N’’ mean ‘‘yes’’ and ‘‘no’’, respectively. Furthermore, ‘‘+ sampl.’’ (‘‘- sampl.’’) refers to the size of the positive/keyword
(negative/non-keyword) subset, and ‘‘Size’’ denotes the magnitude of the whole set. Such sizes are given, depending on the available information,
in terms of either the number of samples or time length in hours (h). Unknown information is indicated by hyphens.

VIII. DATASETS
Data are an essential ingredient of any machine learning
system for both training the parameters of the algorithm
(primarily, in our context, the acoustic model parameters)
and validating it. Some well-known speech corpora that have
been extensively used over the years in the field of ASR
are now also being employed for the development of deep
KWS systems. For example, LibriSpeech [193] has been used
by [55], [76], [142], [151], [169], TIDIGITS [194], by [140],
TIMIT [195], by [41], [84], [117], [118], [196], and the
Wall Street Journal (WSJ) corpus [197], by [4], [76], [103].
The main problem with these speech corpora is that they
were not developed for KWS, and, therefore, they do not
standardize a way of utilization facilitating KWS technology
reproducibility and comparison. By contrast, KWS research
work exploiting these corpora employs them in a variety of
ways, which is even reflected by, e.g., the set of considered
keywords.

In the following we focus on those datasets particu-
larly intended for KWS research and development, which,

normally, are comprised of hundreds or thousands of differ-
ent speakers who do not overlap across sets (i.e., training,
development and test sets), e.g., [17], [26], [56], [61], [68],
[78], [93], [102], [154], [198]. Table 1 shows a wide selection
of the most significant speech corpora available for training
and testing deep KWS systems. From this table, the first
inference that we can draw is that the advancement of the
KWS technology is led by the private sector of the United
States of America (USA) and China. Seven and five out of
the seventeen different dataset developers included in Table 1
are, respectively, North American and Chinese corporations.
Actually, except for the ‘‘Narc Ya’’ corpus [152], which is
in Korean, all the datasets shown in this table are in either
English or Mandarin Chinese.

A problem with the above is that the majority of the speech
corpora of interest for KWS research and development are
not publicly available (P.A.), but they are for (company)
internal use only. On many occasions, these datasets are
collected by companies to improve their wake-up word detec-
tion systems for voice assistants running on smart speakers.
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For example, this is the case for the speech corpora reported
in [26], [122] and [9], which were collected, respectively,
from Mobvoi’s TicKasa Fox, Google’s Google Home and
Xiaomi’s AI Speaker smart speakers. Unfortunately, only
seven out of twenty six datasets in Table 1 are publicly
available: one from Sonos [169], two different arrangements
of AISHELL-2 [199] (used in [98]), the Google Speech Com-
mands Dataset v1 [153] and v2 [154], the Hey Snapdragon
Keyword Dataset [200], and Hey Snips [78], [198] (also used
in, e.g., [53], [177]). In case of interest in getting access
to any of these speech corpora, the reader is pointed to the
corresponding references indicated in Table 1. Among these
publicly available datasets, the Google Speech Commands
Dataset (v1 and v2) is, by far, the most popular, and has
become the de facto open reference for KWS development
and evaluation. Because of this, the KWS performance com-
parison presented in Section X is carried out among KWS
systems that are evaluated on the Google Speech Commands
Dataset. Further information on this corpus is provided in
Subsection VIII-A.
Also from Table 1, we can observe that the great majority

of datasets are noisy, which means that speech signals are
distorted in different ways, e.g., by natural and realistic back-
ground acoustic noise or room acoustics. This is generally
a must if we want to minimize the mismatch between the
KWS performance at the lab phase and that one observable in
the inherently-noisy real-life conditions. In particular, dataset
acoustic conditions should be as close as possible as those
that we expect to find when deploying KWS systems in real-
life [201]. Noisy corpora can be classified as natural and/or
simulated noisy speech:

1) Natural Noisy Speech: Some of the datasets in
Table 1 (e.g., [17], [31], [45], [56], [59], [122], [152],
[202]) were partially or totally created from natu-
ral noisy speech recorded —many times in far-field
conditions—by electronic devices such as smart speak-
ers, smartphones and tablets. Often, recording scenar-
ios consist of home environments with background
music or TV sound, since this is the target scenario of
many KWS systems.

2) Simulated Noisy Speech: Some other noisy datasets
conceived for KWS —e.g., [15], [22], [28], [31], [42],
[58], [93]— were partially or totally generated by
artificially distorting clean speech signals through a
procedure called data augmentation [171]. Typically,
given a clean speech signal, noisy copies of it are
created by adding different types of background noises
(e.g., daily life noises like babble, café, car, music
and street noises) in such a manner that the resulting
SNR levels (commonly, within the range [−5, 20]
dB) are under control. Filtering and Noise-adding Tool
(FaNT) [203] is a useful software to create such noisy
copies. For example, FaNT was employed in [43],
[130] to generate, in a controlled manner, noisier
versions of the already noisy Google Speech Com-
mands Dataset. Normally, background noises for data

TABLE 2. List of the words included in the Google Speech Commands
Dataset v1 (first six rows) and v2 (all the rows). Words are broken down
by the standardized 10 keywords (first two rows) and non-keywords (last
five rows).

augmentation come from publicly available databases
like TUT [204], DEMAND [205], MUSAN [206],
NOISEX-92 [207] and CHiME [208], [209]. In addi-
tion, alteration of room acoustics, e.g., to simulate far-
field conditions from close-talk speech [93], is another
relevant data augmentation strategy.

Collecting a good amount of natural noisy speech data in the
desired acoustic conditions is not always feasible. In such
cases, simulation of noisy speech is a smart and cheaper
alternative allowing us for obtaining similar technology per-
formance [210].

We can clearly see from Table 1 that the number of
keywords per dataset is mostly 1 or 2. A reason for this
is that datasets mainly fit the application of KWS that,
lately, is boosting research on this technology: wake-up word
detection for voice assistants.

Finally, the right part of Table 1 tells some informa-
tion about the sizes of the training and test sets14 of
the different corpora in terms of either the number of
samples (i.e., words, normally) or time length in hours
(h) —depending on the available information—. Specif-
ically, ‘‘+ sampl.’’ (‘‘- sampl.’’) refers to the size of the
positive/keyword (negative/non-keyword) subset, and ‘‘Size’’
denotes the magnitude of the whole set. Unknown informa-
tion is indicated by hyphens. From this table, we note that,
as a trend, publicly available datasets tend to be smaller than
in-house ones. Furthermore, while the ratio between the sizes
of the training and test sets is greater than 1 in all the reported
cases except [169], ratio values tend to differ from one corpus
to another. Also, mainly, the ratio between the sizes of the
corresponding negative/non-keyword and positive/keyword
subsets is greater than 1, that is, - sampl.

+ sampl. > 1. This is
purposely done to accurately reflect potential scenarios of use
consisting of always-onKWS applications like wake-upword
detection, in which KWS systems, most of the time, will be
exposed to other types of words instead of keywords.

A. GOOGLE SPEECH COMMANDS DATASET
The publicly available Google Speech Commands Dataset
[153], [154] has become the de facto open benchmark

14Many of these corpora also include a development set. However, this
part has been omitted for the sake of clarity.
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for (deep) KWS development and evaluation. This crowd-
sourced database was captured at a sampling rate of
16 kHz by means of phone and laptop microphones, being,
to some extent, noisy. Its first version, v1 [153], was
released in August 2017 under a Creative Commons BY
4.0 license [211]. Recorded by 1,881 speakers, this first
version consists of 64,727 one-second (or less) long speech
segments covering one word each out of 30 possible different
words. The main difference between the first version and
the second version —which was made publicly available in
2018— is that the latter incorporates 5 more words (i.e.,
a total of 35 words), more speech segments, 105,829, and
more speakers, 2,618. Table 2 lists the words included in the
Google Speech Commands Dataset v1 (first six rows) and v2
(all the rows). In this table, words are broken down by the
standardized 10 keywords (first two rows) and non-keywords
(last five rows). To facilitate KWS technology reproducibil-
ity and comparison, this benchmark also standardizes the
training, development and test sets, as well as other crucial
aspects of the experimental framework, including a training
data augmentation procedure involving background noises
(see, e.g., [30] for further details). Multiple recent deep KWS
works have employed either the first version [16], [30], [32],
[43], [48]–[52], [57], [58], [67], [69], [70], [86], [90], [100],
[125] or the second version [32], [47], [48], [53], [70], [82],
[89], [90], [99], [100], [109], [128]–[130], [159], [175] of the
Google Speech Commands Dataset.

Despite how valuable this open reference is for KWS
research and development, we can raise two relevant points
of criticism:

1) Class Balancing: The different keyword and non-
keyword classes are rather balanced (i.e., they
appear with comparable frequencies) in this bench-
mark, which, as we know, is generally not realistic.
See Subsection IX-A for further comments on this
question.

2) Non-Streaming Mode: Most of the above-referred
works using the Google Speech Commands Dataset
performs, due to the nature of this corpus, KWS eval-
uations in non-streaming mode, namely, multi-class
classification of independent short input segments.
In this mode, a full keyword or non-keyword is surely
present within every segment. However, real-life KWS
involves the continuous processing of an input audio
stream.

A few deep KWS research works [43], [58], [129], [130]
have proposed to overcome the above two limitations by
generating more realistic streaming versions of the Google
Speech Commands Dataset by concatenation of one-second
long utterances in such a manner that the resulting word class
distribution is unbalanced. Even though the author of the
Google Speech Commands Dataset reports some streaming
evaluations in the database descriptionmanuscript [154], still,
we think that this point should be standardized for the sake
of reproducibility and comparison, thereby enhancing the
usefulness of this valuable corpus.

Lastly, we wish to draw attention to the fact that we pro-
duced three outcomes revolving around the Google Speech
Commands Dataset v2: 1) a variant of it emulating hearing
aids as a capturing device (employed, as mentioned in Sub-
section VII-C, for KWS for hearing assistive devices robust
to external speakers) [128], [129], 2) another noisier variant
with a diversity of noisy conditions15 (i.e., types of noise and
SNR levels) [130], and 3)manually-annotated speaker gender
labels.16

IX. EVALUATION METRICS
Obviously, the gold plate test of any speech communication
system is a test with relevant end-users. However, such tests
tend to be costly and time-consuming. Instead (or in addition
to subjective tests), one adheres to objective performance
metrics for estimating system performance. It is important to
choose a meaningful objective evaluation metric that allows
us to determine the goodness of a system and is highly
correlated to the subjective user experience. In what follows,
we review and provide some criticism of the most common
metrics considered in the field of KWS. These metrics are
rather intended for binary classification—e.g., keyword/non-
keyword— tasks. In the event of having multiple keywords,
a common approach consists of applying the metric computa-
tion for every keyword and, then, the result is averaged, e.g.,
see [30], [129], [130].

A. ACCURACY
Accuracy can be defined as the ratio between the number
of correct predictions/classifications and the total number
of them [212]. In the context of binary classification (e.g.,
keyword/non-keyword), accuracy can also be expressed from
the number of true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN) as follows [213]:

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
. (14)

Accuracy ∈ [0, 1], where 0 and 1 indicate, respectively, worst
and perfect classification.

It is reasonable to expect that, in real-life applications
like wake-up word detection, KWS systems will hear other
word types rather than keywords most of the time. In other
words, KWS is a task in which, in principle, the keyword
and non-keyword classes are quite unbalanced. Under these
circumstances, accuracy tends to be an unsuitable evalua-
tionmetric yielding potentiallymisleading conclusions [214],
[215]. Let us illustrate this statement with the following
example. Let us consider two different KWS systems SYS1
and SYS2. While SYS1 is a relatively decent system, SYS2 is
a totally useless one, since it always outputs ‘‘non-keyword’’
regardless of the input. Figure 11 depicts, alongwith an exam-
ple ground truth sequence, the sequences of keywords (KW)

15Tools to create this noisy dataset can be freely downloaded from
http://ilopez.es.mialias.net/misc/NoisyGSCD.zip

16These labels are publicly available at https://ilopezes.files.wordpress.
icom/2019/10/gscd_spk_gender.zip
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FIGURE 11. Example of two different KWS systems SYS1 and SYS2
recognizing a sequence of keywords (KW) and non-keywords (NK). The
ground truth sequence is also shown on top.

and non-keywords (NK) predicted by SYS1 and SYS2. In this
situation, both KWS systems perform with 80% accuracy,
even though SYS2 is useless while SYS1 is not. Thus, par-
ticularly in unbalanced situations, more appropriate evalua-
tion metrics than accuracy may be required, and these are
discussed in the next subsections.

In spite of its disadvantage in unbalanced situations, accu-
racy is a widely used evaluation metric for deep KWS, espe-
cially when performing evaluations on the popular Google
Speech Commands Dataset [153], [154] in non-streaming
mode [16], [30], [32], [48]–[52], [58], [69], [89], [91], [99],
[109], [125]. In this latter case, accuracy can still be con-
sidered a meaningful metric, since the different word classes
are rather balanced in the Google Speech Commands Dataset
benchmark. Hence, the main criticism that might be raised
here is the lack of realism of the benchmark itself, as dis-
cussed in Subsection VIII-A. Nevertheless, we have exper-
imentally observed for KWS a strong correlation between
accuracy on a quite balanced scenario and more suitable met-
rics like F-score (see Subsection IX-C) on a more realistic,
unbalanced scenario [129], [130]. This might suggest that
the employment of accuracy, although not ideal, can still be
useful under certain experimental conditions to adequately
explain the goodness of KWS systems.

B. RECEIVER OPERATING CHARACTERISTIC AND
DETECTION ERROR TRADE-OFF CURVES
Let TPR denote the true positive rate —also known as
recall [216]—, which is defined as the ratio

TPR = Recall =
TP

TP+ FN
. (15)

Notice that Eq. (15) is the probability that a positive sample
(i.e., a keyword in this paper) is correctly detected as such.
Similarly, let FPR be the false positive rate—also known as
false alarm rate—, namely, the probability that a negative
sample (i.e., a non-keyword in our case) is wrongly classified
as a positive one [217]:

FPR =
FP

FP+ TN
. (16)

Then, a better and prominent way of evaluating the per-
formance of a KWS system is by means of the receiver
operating characteristic (ROC) curve, which consists of the
plot of pairs of false positive and true positive rate val-
ues that are obtained by sweeping the sensitivity (decision)
threshold [218]. The left part of Figure 12 outlines example

FIGURE 12. Outlining of the receiver operating characteristic (left) and
detection error trade-off (right) curves. The location of SYS1 and SYS2 is
indicated by green and red crosses, respectively. See the text for further
explanation.

ROC curves. Coordinate (FPR = 0,TPR = 1) in the
upper left corner represents a perfect classifier. The closer
to this point a ROC curve is, the better a classification sys-
tem. In addition, a system performing on the ROC space
identity line would be randomly guessing. The area under
the curve (AUC), which equals the probability that a classi-
fier ranks a randomly-chosen positive sample higher than a
randomly-chosen negative one [218], is also often employed
as a ROC summary for KWS evaluation, e.g., [76], [85],
[123], [145], [152], [219]–[221]. The larger the AUC ∈
[0, 1], the better a system is [222].
Let us return for a moment to the example of Figure 11.

It is easy to check that the KWS systems SYS1 and SYS2
would be characterized, in the ROC space, by the coordinates
(FPR = 0.125, TPR = 0.5) and (FPR = 0,TPR = 0),
respectively (see Figure 12). Unlike what happened when
using accuracy, now we can rightly assess that SYS1 (above
the random guessing line) is much better than SYS2 (on the
random guessing line).

An alternative (with no particular preference) to the ROC
curve (e.g., [24], [138], [177], [223]) is the detection error
trade-off (DET) curve [224]. From the right part of Figure 12,
it can be seen that a DET curve is like a ROC curve except
for the y-axis being false negative rate —also known as miss
rate [225]—, FNR:

FNR =
FN

FN+ TP
. (17)

This time, coordinate (FPR = 0,FNR = 0) in the bottom left
corner represents a perfect classifier. The closer to this point
a DET curve is, the better a classification system. Therefore,
the smaller the AUC ∈ [0, 1] in this case, the better a system
is. Notice that, as FNR = 1 − TPR, the DET curve is
nothing else but a vertically-flipped version of the ROC curve.
From the DET curve we can also straightforwardly obtain
the equal error rate (EER) as the intersection point between
the identity line and the DET curve (i.e., the point at which
FNR = FPR) [226]. Certainly, the lower the EER value, the
better. Though the use of EER ismuchmorewidespread in the
field of speaker verification [227]–[229], this DET summary
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FIGURE 13. Outlining of the precision-recall (left) and F-score (right)
curves. See the text for further explanation.

is sometimes considered for KWS evaluation [4], [76], [117],
[123], [159], [220], [230].

In real-world KWS applications, typically, the cost of a
false alarm is significantly greater than that of a miss detec-
tion17 [231]. This is for example the case for voice activation
of voice assistants, where privacy is a major concern [232]
since this application involves streaming voice to a cloud
server. As a result, a popular variant of the ROC and DET
curves is that one replacing false positive rate along the
x-axis by the number of false alarms per hour [8], [28],
[31], [59], [60], [156], [162], [200]. By this, a practitioner
can just set a very small number of false alarms per hour
(e.g., 1) and identify the system with the highest (lowest)
true positive (false negative) rate for deployment. An alter-
native good selection criterion consists of picking up the sys-
tem maximizing, at a particular system-dependent sensitivity
threshold, the so-called term-weighted value (TWV) [88],
[231], [233]–[238]. Given a sensitivity threshold, TWV is a
weighted linear combination of the false negative and false
positive rates as in

TWV = 1− (FNR+ βFPR) , (18)

where β � 1 (e.g., β = 999.9 [231]) is a constant expressing
the greater cost of a false alarm with respect to that of a miss
detection.

C. PRECISION-RECALL AND F-SCORE CURVES
The precision-recall curve [239] is another important visual
performance analysis tool for KWS systems (e.g., [12], [77],
[129], [140]). Let precision, also known as positive predictive
value [240], be the probability that a sample that is classified
as positive is actually a positive sample:

Precision =
TP

TP+ FP
. (19)

Then, the precision-recall curve plots pairs of recall (equiva-
lently, TPR, see Eq. (15)) and precision values that, as in the
case of the ROC and DET curves, are obtained by sweeping
the sensitivity threshold. This definition is schematized by the

17Evidently, in these circumstances, EER may not be a good metric
candidate for system comparison.

left part of Figure 13, where a perfect classifier lies on the
coordinate (Recall = 1, Precision = 1). The closer to this
point a precision-recall curve is and the larger the AUC ∈
[0, 1], the better a classifier. This time, a (precision-recall)
random guessing line has not been drawn, since it depends on
the proportion of the positive class within both classes [240].
For example, while in a balanced scenario random guessing
would be characterized by a horizontal line at a precision of
0.5, we can expect that such a line is closer to 0 precision in
the event of the KWS problem due to the highly imbalance
nature of it.

The close relationship between the ROC (and DET)
and precision-recall curves can be intuited, and, in fact,
there exists a one-to-one correspondence between both of
them [239]. However, the precision-recall curve is considered
to be a more informative visual analysis tool than the ROC
one in our context [240]. This is because, thanks to the use
of precision, the precision-recall curve allows us to better
focus on the minority positive (i.e., keyword) class of interest
(see Eq. (19)). On the precision-recall plane, while SYS1 lies
on the point (Recall = 0.5, Precision = 0.5), precision is
undefined (i.e., Precision = 0/0) for SYS2, which should alert
us to the existence of a problem with the latter system.

From precision and recall we can formulate the F-score
metric [241], F1, which is often used for KWS evaluation,
e.g., [12], [129], [130], [140], [151], [242]. F-score is the
harmonic mean of precision and recall, that is,

F1 =
2

Recall−1 + Precision−1
=

2TP
2TP+ FP+ FN

, (20)

where 0 ≤ F1 ≤ 1, and the larger F1, the better. Indeed, as for
precision and recall, F-score can be calculated as a function
of the sensitivity threshold and plotted as exemplified by the
right part of Figure 13. In this representation, we assume
that a KWS system provides confidence scores resulting from
posterior probabilities, and this is why the sensitivity thresh-
old ranges from 0 to 1. The larger the AUC ∈ [0, 1], the better
a system is. A perfect classifier would be characterized by an
AUC of 1. As in the case of the precision-recall curve, a ran-
dom guessing line has not been drawn either on the F-score
space, since this similarly depends on the proportion between
the positive and negative classes. Finally, let us notice that
F-score is 0.5 and 0 for SYS1 and SYS2, respectively, which
clearly indicates the superiority of SYS1with respect to SYS2.

X. PERFORMANCE COMPARISON
In this section, we present a performance comparison among
some of the latest and most relevant deep KWS systems
reviewed throughout this manuscript. This comparison is
carried out in terms of both KWS performance and compu-
tational complexity of the acoustic model, which is the main
distinctive component of every system.

To measure KWS performance, we examine accuracy of
systems in non-streaming mode on the Google Speech Com-
mands Dataset (GSCD) v1 and v2 (described in Subsec-
tion VIII-A), which standardize 10 keywords (see Table 2).
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TABLE 3. Performance comparison among some of the latest deep KWS systems in terms of both accuracy (%) and computational complexity (i.e.,
number of parameters and multiplications) of the acoustic model. Accuracy, provided with confidence intervals for some systems, is on the Google
Speech Commands Dataset (GSCD) v1 and v2. The reported values are directly taken from the references in the ‘‘Description’’ column. Unknown
information is indicated by hyphens.

In this way, since the publicly available GSCD has become
the de facto open benchmark for deep KWS, we can straight-
forwardly use accuracy values reported in the literature in
order to rank themost prominent deepKWS systems. Regard-
ing accuracy as an evaluation metric, recall that this metric,
although not ideal, is still meaningful under the GSCD exper-
imental conditions to explain the goodness of KWS systems,
as discussed in Subsection IX-A.

On the other hand, the number of parameters and multipli-
cations of the acoustic model is used to evaluate the computa-
tional complexity of the systems. Notice that these measures
are a good approximation to the complexity of the entire deep
KWS system since the acoustic model is, by far, the most
demanding component in terms of computation. Actually,
in [86], Tang et al. show that the number of parameters
and, especially, the number of multiplications of the acoustic
model are solid proxies predicting the power consumption of
these systems.

Table 3 shows a performance comparison among some of
the latest deep KWS systems in terms of both accuracy on
the GSCD v1 and v2 (in percentages), and complexity of the
acoustic model. The reported values are directly taken from
the references in the ‘‘Description’’ column, while hyphens

indicate non-available information. Notice that some of the
accuracy values in Table 3 are shown along with confidence
intervals that are calculated across different acoustic mod-
els trained with different random model initialization. Deep
KWS systems are listed in ascending order in terms of their
accuracy on the first version of the GSCD. From Table 3,
it can be observed that KWS performance on GSCD v2 tends
to be slightly better than that on the first version of this
dataset. This behavior could be related to the fact that the
second version of this dataset has more word samples (see
Table 1), which might lead to better trained acoustic models.
Also from Table 3, we can see the wide variety of architec-

tures (e.g., standard FFNNs, SVDFs, TDNNs, CNNs, RNNs
and CRNNs) integrating different elements (e.g., attention,
residual connections and/or depthwise separable convolu-
tions) that has been explored for deep KWS. It is not surpris-
ing that the worst-performing system is that whose acoustic
model is based on a standard and relatively heavy (447k
parameters) FFNN [32] (ID 1 in Table 3). Besides, the most
frequently used acoustic model type is based on CNN. This
surely is because CNNs are able to provide a highly compet-
itive performance —thanks to exploiting local speech time-
frequency correlations— while typically involving lesser
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FIGURE 14. Location of some of the deep KWS systems of Table 3 on the
plane defined by the dimensions ‘‘number of parameters’’ and ‘‘accuracy’’
(on the Google Speech Commands Dataset v1). Better systems can be
found on the lower right corner of this plane. The systems are identified
by the numbers in the ‘‘ID’’ column of Table 3. More recent systems are
marked with a darker color.

computational complexity than other well-performing types
of models like RNNs.

Furthermore, it is interesting to note the capability of
neural architecture search techniques [243] to automatically
produce acoustic models performing better than those man-
ually designed. Thus, the performance of the residual CNN
with temporal convolutions TC-ResNet14 [50] (ID 9) is
improved when NoisyDARTS-TC14 [146] (ID 17) auto-
matically searches for kernel sizes, additional skip con-
nections and enabling or not squeeze-and-excitation [244].
Even better, this is achieved by employing fewer parameters,
i.e., 137k versus 108k. In addition, the CNN with neu-
ral architecture search NAS2_6_36 [125] (ID 22) reaches
an outstanding performance (97.22% accuracy on the
GSCD v1), though at the expense of using a large number of
parameters (886k).

The effectiveness of CRNNs combining CNNs and RNNs
(see Subsection IV-C) can also be assessed from Table 3.
For instance, the combination of DenseNet18 [131] with a
BiLSTM network with attention as in [48] (ID 8) yields
superior KWS accuracy with respect to considering stan-
dalone either DenseNet [67] (ID 2) or a BiLSTM network
with attention [133] (ID 5). Moreover, we can see that the
performance of a rather basic CRNN incorporating a GRU
layer [32] (ID 20) is quite competitive.

Due to the vast number of disparate factors contributing
to the performance of the deep KWS systems of Table 3,
it is extremely difficult to draw strong conclusions and even
trends far beyond the ones indicated above. Figure 14 gives
another perspective of Table 3 by plotting the location of
some of the systems of this table on the plane defined by the
dimensions ‘‘number of parameters’’ and ‘‘accuracy’’ (on the

18Recall that DenseNet is an extreme case of residual CNN with a hive of
skip connections.

GSCD v1). In this figure, the systems are identified by the
numbers in the ‘‘ID’’ column of Table 3.
Since more recent deep KWS systems are marked with a

darker color in Figure 14, it can be clearly observed that,
primarily, the driving force is the optimization of KWS
performance, where the computational complexity, although
important, is relegated to a secondary position. A good exam-
ple of this is the so-called Keyword Transformer KWT-3 [90]
(ID 23), a fully self-attentional Transformer [144] that is an
adaptation of Vision Transformer [245] to the KWS task.
KWT-3 (not included in Figure 14), which achieves state-
of-the-art performance (97.49% and 98.56% accuracy on the
GSCD v1 and v2, respectively), has the extraordinary amount
of more than 5 million parameters. That being said, generally,
we will be more interested in systems exhibiting both high
accuracy and a small footprint, i.e., in systems that can be
found on the lower right corner of the plane in Figure 14.
In this region of the plane we have the following two groups
of systems:

1) Systems With IDs 14, 15, 16 and 17: These systems are
characterized by a good KWS performance along with
a particularly reduced number of parameters. All of
them are based on CNNs while most of them integrate
residual connections and/or depthwise separable con-
volutions. Furthermore, the three best performing sys-
tems (with IDs 15, 16 and 17) integrate either dilated or
temporal convolutions to exploit long time-frequency
dependencies.

2) Systems With IDs 24 and 25: These two systems are
characterized by an outstanding KWS performance
along with a relatively small number of parameters.
Both of them are based on CNNs and they inte-
grate residual connections and a mechanism to exploit
long time-frequency dependencies: dilated convolu-
tions in System 25, and temporal convolutions and
self-attention layers in System 24. System 25 also
incorporates depthwise separable convolutions.

The analysis of the above two groups of systems very
much reinforces our summary reflections concluding Sub-
section IV-B. In other words, a state-of-the-art KWS system
comprising a CNN-based acoustic model should cover the
following three elements in order to reach a high perfor-
mance with a small footprint: a mechanism to exploit long
time-frequency dependencies, depthwise separable convolu-
tions [136] and residual connections [126].

XI. AUDIO-VISUAL KEYWORD SPOTTING
In face-to-face human communication, observable articula-
tors like the lips are an important information source. In other
words, human speech perception is bimodal, since it relies
on both auditory and visual information. Similarly, speech
processing systems such as ASR systems can be benefited
from exploiting visual information along with the audio
information to enhance their performance [246]–[249]. This
can be particularly fruitful in real-world scenarios where
severe acoustic distortions (e.g., strong background noise and
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FIGURE 15. General diagram of a modern audio-visual keyword spotting
system.

reverberation) are present, since the visual information is not
affected by acoustic distortions.

While fusion of audio-visual information is a quite active
research area in ASR (e.g., see [246]–[249]), very few works
have studied it for (deep) KWS [250]–[252]. This means
that audio-visual KWS is a new and essentially unexplored
field. Nevertheless, we believe that this emerging area could
become extremely important in future applications, and this
is why we devote the present section to audio-visual KWS.

Figure 15 illustrates the general diagram of a modern
audio-visual KWS system. First, speech and visual features
are extracted. In former audio-visual KWSwork [250], [251],
visual feature extraction consists of a pipeline comprising
face detection and lip localization (via landmark estima-
tion), and visual feature extraction itself from the lips crop.
Nowadays, the use of a deep learning model fed with raw
images containing the uncropped speaker’s face seems to be
the preferred approach for visual feature extraction [252].
Finally, the extracted audio-visual information is fused in
order to come upwith a decision about the presence or not of a
keyword. Typically, one of the two following fusion strategies
is considered in practice [253]:

1) Feature-Level Fusion: Speech and visual features are
somehow combined (e.g., concatenated) before their
joint classification using a neural network model.

2) Decision-Level Fusion: The final decision is formed
from the combination of the decisions from separate
speech and visual neural network-based classifiers.
This well-performing approach seems to be pre-
ferred [250]–[252] over the feature-level fusion scheme
and is less data-hungry than feature-level fusion [250].

Notice that thanks to the integration of visual information
—which, as aforementioned, is not affected by acoustic
distortions—, audio-visual KWS achieves the greatest rela-
tive improvements with respect to audio-only KWS at lower
SNRs [250]–[252].

For those who are interested in audio-visual KWS
research, the following realistic and challenging audio-visual
benchmarks can be of interest: Lip Reading in the Wild
(LRW) [254], and Lip Reading Sentences 2 (LRS2) [255]
and 3 (LRS3) [256] datasets. While LRW comprises
single-word utterances from BBC TV broadcasts, LRS2 and

LRS3 consist of thousands of spoken sentences from BBC
TV and TED(x) talks, respectively.

XII. CONCLUSION AND FUTURE DIRECTIONS
The goal of this article has been to provide a comprehen-
sive overview of state-of-the-art KWS technology, namely,
of deep KWS. We have seen that the core of this paradigm
is a DNN-based acoustic model whose goal is the genera-
tion, from speech features, of posterior probabilities that are
subsequently processed to detect the presence of a keyword.
Deep spoken KWS has revitalized KWS research by enabling
a massive deployment of this technology for real-world appli-
cations, especially in the area of voice assistant activation.

We foresee that, as has been happening to date, advances in
ASR research will dramatically continue impacting the field
of KWS. In particular, we think that the expected progress in
end-to-end ASR [257] (replacing handcrafted speech features
by optimal feature learning integrated in the acoustic model)
will also be reflected in KWS.

Immediate future work will keep focusing on advanc-
ing acoustic modeling towards two goals simultaneously:
1) improving KWS performance in real-life acoustic condi-
tions, and 2) computational complexity reduction. With these
two goals in mind, surely, acoustic model research will be
mainly focused on the development of novel and efficient
convolutional blocks. This is because of the good proper-
ties of CNNs allowing us to achieve an outstanding perfor-
mance with a small footprint, as has been widely discussed
throughout this paper. Furthermore, based on its promising
initial results for KWS [125], [146], we expect that neural
architecture search will play a greater role in acoustic model
architecture design.

Specifically within the context of computational complex-
ity reduction, acoustic model compression will be, more than
ever, a salient research line [101]. Indeed, this is driven
by the numerous applications of KWS that involve embed-
ding KWS technology in small electronic devices charac-
terized by severe memory, computation and power con-
straints. Acoustic model compression entails three major
advantages: 1) reduced memory footprint, 2) decreased infer-
ence latency, and 3) less energy consumption. All of this is
of utmost importance for, e.g., enabling on-device acoustic
model re-training for robustness purposes or personalized
keyword inclusion. Acoustic model compression research
will undoubtedly encompass model parameter quantization,
neural network pruning and knowledge distillation [258],
among other approaches.

Another line of research that might experience a notable
growth in the short term could be semi-supervised learn-
ing [259] for KWS. Especially in an industrial environment,
it is simple to daily collect a vast amount of speech data from
users of cloud speech services. These data are potentially
valuable to strengthen KWS acoustic models. However, the
cost of labeling such an enormous amount of data for discrim-
inative model training can easily be prohibitively expensive.
To not ‘‘waste’’ these unlabeled speech data, semi-supervised
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learning methodologies can help by allowing hybrid learning
based on both small and big volumes of labeled and unlabeled
data, respectively.

On the other hand, consumers seem to increasingly
demand or, at least, value a certain degree of personaliza-
tion when it comes to consumer electronics. While some
research has already addressed some KWS personalization
aspects (as we have discussed in this article), we foresee
that KWS personalization will become even more relevant
in the immediate future. This means that we can expect
new research going deeper into topics like efficient open-
vocabulary (personalized) KWS and joint KWS and speaker
verification [260], [261].

Last but not least, recall that KWS technology is many
times intended to run on small devices like smart speakers and
wearables that typically embed more than one microphone.
This type of multi-channel information has been successfully
leveraged by ASR in different ways (which includes, e.g.,
beamforming) to provide robustness against acoustic distor-
tions [44], [262]. Surprisingly, and as previously outlined in
Section VI, multi-channel KWS has only been marginally
studied. Therefore, we expect that this rather unexplored area
is worthy to be examined, which could lead to contributions
further improving KWS performance in real-life (i.e., noisy)
conditions.
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