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Abstract

Grapheme-color synesthesia is a heterogeneous neurological phenomenon whereby the experience
of a grapheme automatically and involuntarily elicits an experience of color. While the majority of
synesthesia research has focused on inducer-specific influences of synesthetic associations, more recent
efforts have examined potential broader differences. Based on spontaneous reports from synesthetes
detailing problems with face recognition, in conjunction with the geographical proximity of neurologi-
cal regions relevant to both synesthesia and face processing, we sought to examine whether synesthetes
demonstrated atypical face-processing abilities.

A total of 16 grapheme-color synesthetes and 16 age-and-gender matched controls (±3 years) com-
pleted the Cambridge Face Memory Test (CFMT; Duchaine & Nakayama, 2006) of face memory,
the Vanderbilt Holistic Face Processing Task (VHPT-F; Richler, Floyd, & Gauthier, 2014) of holistic
face processing, as well as a standardized self-report questionnaire the Faces and Emotions Question-
naire (Freeman, Palermo, & Brock, 2015). The results revealed significantly poorer performance in
synesthete’s ability to recognize faces in the CFMT that was driven by a reduction in upright advan-
tage. Results also revealed a significant reduction in overall accuracy on the VHPT-F for synesthetes,
who despite this displayed a comparable holistic processing advantage compared to matched controls.

Correspondence should be sent to Thomas Alrik Sørensen, Centre for Cognitive Neuroscience, Aal-
borg University and Sino-Danish Center for Education and Research, Teglgårds plads 1, 1205b, 9000,
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Finally, synesthetes also rated themselves as significantly worse at face recognition. We suggest that
this pattern may reflect differences in the development of individualized perceptual strategies.

Keywords: Face processing; Synesthesia; Expertise; Perceptual strategies

1. Introduction

Grapheme-color synesthesia is a heterogeneous neurological phenomenon whereby the
experience of a grapheme automatically and involuntarily elicits an experience of color. An
area that has received little attention in synesthesia research is cohabiting functions in the
neural regions surrounding those known to be active in synesthetic experience. Previously, an
explorative investigation by Sørensen (2013) reported face-processing differences present in
grapheme-color synesthetes using a self-report questionnaire, the Faces and Emotions Ques-
tionnaire (FEQ; Freeman, Palermo, & Brock, 2015) and the Cambridge Face Perception Test
(CFPT; Duchaine, Germine, & Nakayama, 2007). He suggests that the proximity of primary
regions known to be involved in synesthetic experiences to areas known to be selective for
faces may offer some indication as to why some grapheme-color synesthetes may experi-
ence face-processing differences. The potential for such differences has further come to our
attention via two independent and spontaneous reports made to us by synesthetes, where the
common theme was problems with face recognition.

There are a number of key areas of atypical activation evidenced during the synesthetic
experience, primarily in the fusiform gyrus (Hubbard, Arman, Ramachandran, & Boynton,
2005; Sperling, Pruvlovic, Linden, Singer, & Stirn, 2006). Synesthetes demonstrate increased
activation in this area, speculated to be perhaps due to cross-activation and differences in early
neuronal pruning (see Brang, Hubbard, Coulson, Huang, & Ramachandran, 2010 for a more
detailed explanation). More specifically, increased activation between areas V4, a primary
visual area active during color perception (McKeefry & Zeki, 1997), and the visual word
form area (VWFA), a region evidenced to show selective responses to orthographic stimuli
(McCandliss, Cohen, & Dehaene, 2003; Moore, Durisko, Perfetti, & Fiez, 2014), have been
reported in grapheme-color synesthetes (Amsel, Kutas, & Coulson, 2017). The VWFA is also
reported to be connected to another region that demonstrates relatively selective responses to
number representations, the visual number form area (VNFA; Dehaene & Dehaene Lambertz,
2016). Located directly adjacent to the VWFA lies the fusiform expertise area, an area evi-
denced to selectively respond to categorized items of expertise. These include faces (Curby,
Glazek, & Gauthier, 2009; Gauthier, Skudlarski, Gore, & Anderson, 2000; McGugin, New-
ton, Gore, & Gauthier, 2014) as part of the more general process of face recognition which
relies on the projections from early visual areas to the occipital face area, fusiform gyrus, and
superior temporal sulcus (e.g., Lohse et al., 2016).

Written words are also evidenced to interact with face perception. It is well established
that the hemispheric specialization for faces alters from left to right during written language
acquisition (Dundas, Plaut, & Behrmann, 2013). Further, it has been demonstrated that peo-
ple with developmental dyslexia also have problems with face memory tasks (Sigurdardottir,
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Ívarsson, Kristinsdóttir, & Kristjánsson, 2015). Other more recent evidence also suggests that
word processing and face processing are potentially reliant on broader shared processes. In a
meta-analysis of investigations looking at whether reading impairments are present in those
with developmental prosopagnosia, Burns and Bukach (2021) report that poorer face memory
was correlated with slower reading speeds and impoverished face perception is related to word
lengths effects. Additionally, analysis of data from individuals with acquired prosopagnosia
revealed that severe impairments in face recognition coincided with poorer word processing.
The authors suggest that these data imply a shared relationship between face-processing abil-
ities and reading skills, which have been overlooked in previous studies that have failed to
find correlations (e.g., Starrfelt, Klargaard, Petersen, & Gerlach, 2018).

Evidence of a close relation between color and faces can also be found in cases of patients
who have suffered a brain injury (Bouvier & Engel, 2006). These regions share a common
function in expertise, be it orthographic symbols or faces, and in the case of grapheme-color
synesthesia, increased activation in inducer-concurrent selective areas not seen in neurotyp-
ical individuals. The geographical proximity of the VWFA, V4, and VNFA to the fusiform
expertise and face area, coupled with recent suggestions that word and face-processing are
reliant on commonly shared processes (Burns & Bukach, 2021), and the findings of previous
exploratory investigations (Sørensen, 2013) may support a hypothesis that atypical activation
is not limited to those areas active during the synesthetic experience, but extends to other sim-
ilar functions cohabiting the same region, resulting in individual differences in the perceptual
strategies used for different object classes (Brogaard & Sørensen, in press a; Sørensen, 2019).

There has thus far been only one other investigation directly examining face-processing
abilities in grapheme-color synesthesia (Janik McErlean, Susilo, Rezlescu, Bray, & Banissy,
2016), in addition to a more recent investigation indirectly examining face processing in
synesthetes by utilization of an upright/inverted face recognition task to examine perceptual
narrowing in synesthesia (Maurer et al., 2020). In their direct investigation, Janik McErlean
et al. (2016) examined synesthetes’ abilities in face perception (using the CFPT; Duchaine
et al., 2007), emotion perception abilities (CFPT-angry, CFPT-happy; Janik, Rezlescu, &
Banissy, 2015), and holistic processing using a composite face-processing task adapted from
a previous investigation (Susilo, Rezlescu, & Duchaine, 2013). Their findings revealed that
grapheme-color synesthetes outperformed controls on tasks involving local processing of face
identity and emotion but were comparable on tests of holistic face processing. The relevant
experiments of the second investigation by Maurer et al. (2020) compared a mixed sample of
self-reported synesthetes and matched controls on recognition of upright and inverted human
and chimpanzee faces. The human face stimuli consisted of a Caucasian female, and eight
morphed “sister” images whose internal features were adjusted using Photoshop. The task
required participants to match a target face to one of two faces that only differed in the spac-
ing of internal facial features. Aggregated data from three experiments revealed synesthetes as
better at overall face recognition; however, post hoc analyses found this effect to be driven by
significant differences in the inverted task only. Synesthetes were better at matching inverted
faces but were comparable with controls on upright faces.
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Contrary to Sørensen (2013), the outcomes of both of these publications suggest that synes-
thetes may not have deficits in face processing. However, it is important to consider that the
experiments presented in the recent publication from Maurer et al. (2020) were designed to
examine local processing in synesthetes with varied forms of synesthesia and not specifi-
cally to test the face-processing abilities of grapheme-color synesthetes. Validation of tests
designed to examine face processing is essential, especially considering the ongoing debates
regarding the efficacy of relevant tests (e.g., Richler, Floyd, & Gauthier, 2014). Further, while
not reporting a deficit per se, the results would suggest synesthetes possess a smaller upright
advantage compared to controls, like the results from Sørensen (2013).

The results reported by Janik McErlean et al. (2016) contradict findings from a previous
exploratory investigation. Here Sørensen (2013) showed that grapheme-color synesthetes per-
formed worse compared with non-synesthetic controls, but still better than people with devel-
opmental prosopagnosia using the CFPT. Furthermore their responses on a self-report task,
the FEQ (Freeman et al., 2015) demonstrated an interaction where synesthetes appeared to
compensate for the decreased performance in face recognition by being better at reading non-
facial emotional cues (e.g., the emotional tone of voice).

In recent years, the CFPT has become a less favored method for measuring face recognition
abilities (Klargaard, 2019), which combined with the divergent results of the CFPT by Janik
McErlean et al. (2016) and Sørensen (2013) raises questions as to the validity of this test in
comprehensively determining face-processing differences. Moreover, recent evidence from
investigations into developmental prosopagnosia (Dalrymple, Fletcher, et al., 2014; Weigelt
et al., 2014) implies that the tests used in the Janik McErlean et al. (2016) study may not
be comprehensive in determining face-processing differences. Face recognition models have
suggested that face processing is in fact comprised of discrete independent phases (Bruce &
Young, 1986), including processes that permit the representation of a face and its properties,
termed face perception, and face memory which pertains to the processes that allow us to
store, retain, and retrieve that information. Evidence of these being dissociable can be found
in investigations into prosopagnosia, a neurocognitive disorder characterized by impaired face
recognition (Bodamer, 1947; McConachie, 1976). While face memory is impaired in both
adults and children with prosopagnosia, not all adult cases have displayed impairments in
face perception (Busigny et al., 2014; Dalrymple, Fletcher, et al., 2014; Dalrymple, Garrido,
& Duchaine, 2014). While there is not sufficient evidence at this time to suggest that potential
face-processing differences in synesthetes are limited to a specific type of face process, it is
important at this stage of exploration to consider all tests available.

The evidenced correlations between face and word processing (Burns & Bukach, 2021),
interactions, and subsequent changes to face-selective areas during the acquisition of literacy
(Dundas et al., 2013), in conjunction with the suspected areas of atypical cortical structure
in close proximity to these areas have led researchers to explore whether broader categories
that use high visual acuity are affected by synesthesia. These investigations are conflicted on
whether differences in face processing are present in synesthetes, or are limited in their con-
clusions by the types of tests used. Additionally, more stringently validated methods of inves-
tigating holistic processing are now available (e.g., Richler et al., 2014). On the basis of these
lingering issues, in conjunction with anecdotal reports from synesthetes detailing difficulties
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in face recognition, we further explore potential differences in face processing in grapheme-
color synesthetes by using standardized tests of face memory (Duchaine & Nakayama, 2006),
holistic face processing (Richler et al., 2014), and a self-report questionnaire (Freeman et al.,
2015).

2. Method

2.1. Participants

2.1.1. Synesthetes
Sixteen grapheme-color synesthetes (12 female, M = 27.9 years, SD = 8.07; four male,

M = 32 years, SD = 17.9) were recruited via SynQuest an online self-report questionnaire
(https://www.communication.aau.dk/research/knowledge_groups/cnn/synesthesia/resources/
synquest/) where they reported having grapheme-color synesthesia. Synesthesia was verified
via a consistency screening of their color associations using an in-lab color selection tool
(see Ásgeirsson, Nordfang, & Sørensen, 2015, pp. 8–9). A consistency score (see Eagleman,
Kagan, Nelson, Sagaram, & Sarma, 2007, equations 1 and 2) cutoff point of 1.43 was used,
based on previously established discrimination calculations for RGB mean values (Rothen,
Seth, Witzel, & Ward, 2013). Synesthetes completed the screening, including the color wheel
in a separate session than the main experiment. The minimum time between synesthetes
completing the screening and taking part in the main experiment was 3 h to negate any effects
of fatigue. All synesthetes produced consistency scores below this threshold (M = 0.692,
minimum = 0.39, maximum = 1.3). Of the synesthetes, one was identified as belonging to
the projector subtype, and all others were identified as belonging to the associator subtype.
One associator synesthete reported also having chromesthesia, while all others reported only
experiencing the grapheme-color variant. Finally, one synesthete belonging to the associator
subtype spontaneously reported difficulty in face perception prior to testing.

2.1.2. Controls
Age (±3 years) and gender-matched controls (N = 16) participated in the experiment. The

control participants were recruited via online advertisements. It was a mandatory require-
ment for controls to have no synesthesia, which was stated in the advertisement and verbally
confirmed prior to testing. All participants received DKK 150 (approximately $ 25) for their
participation.

2.2. Tasks

2.2.1. Face memory
The experiment used the Cambridge Face Memory Test (CFMT) (see Duchaine &

Nakayama, 2006, for a detailed description) as a measure of face memory. The CFMT was
chosen because it is specifically designed to measure face memory processes, which have not
been specifically examined previously. Further, inversion tests of face processing are argued
to be the most valid in determining face perception difficulties (Rezlescu, Susilo, Wilmer,

https://www.communication.aau.dk/research/knowledge_groups/cnn/synesthesia/resources/synquest/
https://www.communication.aau.dk/research/knowledge_groups/cnn/synesthesia/resources/synquest/
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Fig. 1. Sample stimuli of the VHPT-F using the upper half of the face as the target area. In the congruent trial,
the correct response is the upper half of the target face presented in combination with the corresponding bottom
half. In the incongruent trial, the target upper half of the study face is presented with an incongruent bottom half.
Other trials differed by using either the middle or lower half of the face as target areas. Reprinted with the authors
permission (from Richler et al., 2014).

& Caramazza, 2017). The stimuli for the CFMT include six target faces, each a Caucasian
male with a neutral expression and no visible hair or facial blemishes. The task is comprised
of three segments, the first of which measures recognition of the same image by present-
ing participants with an image of a target face, then asking them to identify the same image
from a choice of three. The second segment measures recognition of novel images by asking
participants to recognize the target face from a different viewing angle, while the third mea-
sures recognition from a different viewing angle with added Gaussian noise.

The variant of the test used in this experiment included both an “upright” and “inverted”
version, whereby the experimental protocol is exactly repeated but with all stimuli inverted, to
allow for an examination of upright advantage in face recognition (e.g., de Gelder, Bachoud-
Lévi, & Degos, 1998).

2.2.2. Holistic face processing
For a measure of holistic face processing, the experiment used the Vanderbilt Holistic Face

Processing Task (VHPT-F; Richler et al., 2014). This test has been demonstrated to be more
reliable than other tests of holistic processing by its manipulation of image size and face area
(Richler et al., 2014). The VHPT-F is modeled on classic composite tests, where the measure
of holistic face-processing ability is indexed by the inability of an individual to selectively
attend to a specific part of a face. Participants are presented with a face where the target area
(either the upper, middle or lower part of the face) is highlighted using a red box. Participants
are then presented with a test where the previously viewed target face area has been sup-
planted onto either a novel face or the same face, alongside two distractor faces. The distractor
faces include the composition of non-target face parts from the target face (see Fig. 1). Unlike
classic composite tasks (e.g., Young et al., 1987), the VHPT-F employs a three-alternative
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forced-choice task rather than a same/different approach, which reduces the risk of by-chance
correct responses. A more detailed task description can be found in Richler et al. (2014).

2.2.3. Questionnaire
As a measure of self-reported face-processing ability, we included the FEQ (Freeman et al.,

2015). The FEQ was used here in order to replicate previous self-report results in synesthetes
(Sørensen, 2013) as well as to implement the third measure of face-processing ability, as there
is discourse over which tests are most accurate at determining face-processing differences
(e.g., Richler et al., 2014). The questionnaire presents participants with scenarios and asks
them to respond to how well each describes them using a 4-point scale. It comprises various
scenarios regarding face recognition (29 items), how well one can decipher emotional state
from facial expressions (15 items), and how well one can detect emotional state from voice
cues (10 items). The questionnaire was made available in both Danish and English and all
participants completed the questionnaire in their native language.

2.3. Protocol

The stimuli were presented on a 24-inch LCD monitor with an aspect ratio of 4:3, con-
nected via display port to a MacBook Pro Mid-2015 computer. Participants were seated
50 cm away from the monitor. Participants began with the upright and inverted versions of
the CMFT, the order of version was counterbalanced between participants. Participants then
completed the FEQ self-report questionnaire, and finally the VHPT-F. The total testing time
for control participants was 1.5 h. A total testing time for synesthetes was on average 2.5 h
on account of their initial screening. Screening for synesthesia was conducted in a separate
testing session to negate potential fatigue effects.

3. Results

The analysis was conducted using SPSS statistics 25.0.0.2, and effect sizes Cohens d were
calculated using G*power 3.1 (Faul, Erdfelder, Buchner, & Lang, 2009). Where t-tests are
used, Cohen’s d is reported as a measure of effect size. For analyses of variance (ANOVAs),
ηp

2 is reported.

3.1. Cambridge face memory test

Overall accuracy was calculated using mean percentage correct. A t-test conducted to com-
pare overall accuracy of the CFMT revealed that control participants performed significantly
better (M = 0.74, SD = 0.095) than synesthetes (M = 0.66, SD = 0.095), t(30) = 2.521, p =
.01, d = 0.88. Analysis of accuracy by upright and inverted condition revealed a significant
difference between synesthetes and controls for the upright condition (t(30) = 5.105, p <

.01, d = 1.91), but no group differences for the inverted condition (t(30) = 0.089, p = .92,
d = 0.03), Synesthetes showed reduced differences between upright (M = 0.72, SD = 0.12)
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Fig. 2. Average upright advantage scores for synesthetes and controls. A score of 0 corresponds to no upright
advantage, and thus equal performance on recognition of both upright and inverted faces. Synesthetes’ lower
score reflects a greater disadvantage for recognizing upright faces compared to controls. Bars represent 1 SE.

and inverted faces (M = 0.61, SD = 0.09) compared with controls, who demonstrated greater
accuracy for upright faces (M = 0.88, SD = 0.09) and inverted faces (M = 0.62, SD = 0.14).

3.2. Upright advantage score

To calculate upright advantage performance for our participants, the data were converted
to a single ratio value by dividing the overall score from the inverted condition of the CFMT
by the overall score of the upright condition. The data were then calculated using the formula
1 − (X −1), allowing for an intuitive single value between 0 and 1 in which a score of 0
corresponds to no upright advantage, and thus equal ability in face recognition regardless
of whether a face is presented upright or inverted. Scores above 0 indicate the degree of
advantage in recognizing upright faces. The benefit of the upright advantage score is that
each participant provides his or her own baseline negating some of the noise that arises due
to individual differences in the tasks.

An independent samples t-test was conducted to examine potential differences in upright
advantage score between synesthetes and controls for the CFMT. Results of the analysis indi-
cated a significant difference in upright advantage between synesthetes and controls, t(30) =
3.144, p = .004, d = 1.11, where controls displayed a significantly greater upright advantage
score (M = 0.32, SD = 0.15) than synesthetes (M = 0.16, SD = 0.14) (see Fig. 2).

3.3. Holistic processing

Accuracy for the VHPT-F was calculated as mean percentage correct. A t-test conducted to
examine overall performance revealed a significant difference between groups (t(30) = 2.445,
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Fig. 3. (a) Overall accuracy for synesthetes and controls for the VHPT-F and (b) averaged accuracy scores by
congruency for the VHPT-F. All bars represent 1 SE.

p = .02, d = 0.87). Control participants (M = 0 .65, SD = 0 .09) performed significantly better
than synesthetes (M = 0.60, SD = 0.10) for overall accuracy.

A 2 (congruent/incongruent) × 2 (synesthete/control) repeated measures ANOVA examining
holistic processing in the VHPT-F revealed a significant effect of congruency overall (F(1,
30) = 86.917, p < .01, ηp

2 = 0.74), but did not reveal any significant group × congruency
differences (F(1, 30) = 0.409, p = .53, ηp

2 = 0.13). Synesthetes performed better in the con-
gruent condition (M = 0.66, 95% CI [0.69, 0.76]) compared with the incongruent condition
(M = 0.54, 95% CI [0.51, 0.58]). Controls also performed better in the congruent condition
(M = 0.72, 95% CI [0.69, 0.76]) compared with the incongruent condition (M = 0.59, 95%
CI [0.55, 0.62]). While synesthetes’ performance was poorer overall, both synesthetes and
controls demonstrated an advantage for holistic face processing (see Fig. 3).

3.4. Questionnaire

In order to give a clearer overview of how these results are represented in the general pop-
ulation, normative data for the questionnaire were collected from undergraduate students at
Aalborg University (N = 322). These additional normative data were included in the analysis.
FEQ responses from all groups were quantified based on the ratings 1–4 (4 = strongly agree,
3 = slightly agree, 2 = slightly disagree, 1 = strongly disagree). Responses to reverse ques-
tions were then adjusted to coincide with the rating scheme of positive responses and then
averaged per participant for each of the three subcategories.

A repeated measure ANOVA using the group as a between-subjects factor was conducted.
The ANOVA compared self-reported abilities in face recognition, facial emotion recognition,
and voice emotion recognition between synesthetes, controls, and normative sample partici-
pants. The analysis revealed a significant group × condition interaction (F(4, 702) = 41.204,
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Fig. 4. Averaged self-report Likert ratings for face recognition, face emotion recognition, and vocal emotion recog-
nition for synesthetes (n = 16), matched controls (n = 16), and normative sample (n = 322). Bars represent 1 SE.
Differences between synesthetes and controls across the three measures demonstrated large effect sizes for face
recognition (d = 3.8) and voice emotion (d = 1.5), and medium effect sizes for non-significant face emotion
comparison (d = 0.55).

p < .01, ηp
2 = 0.19). Post hoc analysis with Tukey correction revealed synesthetes reported

themselves as significantly worse at face recognition (M = 2.46, 95% CI [2.3, 2.6]) than both
controls (M = 3.13, 95% CI [3.15, 3.47]) and normative participants (M = 3.25, 95% CI
3.[21, 3.28]).

There were no differences in self-reported face emotion recognition between synesthetes
(M = 3.15, 95% CI [2.98, 3.31]), controls (M = 3.31, 95% CI [3.15, 3.48]), or norm partic-
ipants (M = 3.16, 95% CI [3.13, 3.21]). Synesthetes rated themselves as significantly better
at non-facial emotional cues (M = 3.65, 95% CI [3.47, 3.83]) compared with both controls
(M = 3.2, 95% CI [3.02, 3.37]) and norm participants (M = 2.94, 95% CI [2.91, 2.98]).
Controls also rated themselves as better at reading non-facial emotional cues compared with
the norm sample (see Fig. 4).

4. Discussion

The current investigation sought to examine potential differences in the face-processing
abilities of grapheme-color synesthetes. Analyses revealed significant between-group dif-
ferences, with synesthetes demonstrating poorer performance on the CFMT and a deficit
in upright advantage in face recognition. Synesthetes also performed poorer in overall task
accuracy for the VHPT-F but demonstrated a comparable advantage for holistic processing.
In addition, synesthetes reported their own abilities in face recognition as being poorer than
controls, equivalent in face emotion recognition, and superior in detecting emotion from vocal
cues. These results suggest that grapheme-color synesthesia coincides with differences in face
processing, potentially demonstrating a more far-reaching influence of synesthesia over other



T. Mannix, T. A. Sørensen / Cognitive Science 46 (2022) 11 of 16

perceptual processes. The results also indirectly support the suggestion by Burns and Bukach
(2021) that word and face processing are not entirely dissociable.

Data presented here from the CFMT and FEQ further supports previous findings reported
by Sørensen (2013) for the CFPT and FEQ by demonstrating an overall disadvantage in face
processing for synesthetes. Although data presented by Janik McErlean et al. (2016) suggest
no deficits in face-processing abilities, the different tests used may be more sensitive to the dif-
ferences of synesthetes. For example, it is possible that synesthetes’ differences are reflected
in face memory processes only, as face perception and face memory have been shown to
be dissociable in adults (Busigny et al., 2014), although further investigation is required to
confirm whether specific aspects of face processing are affected. It is also important to note
that both the CFPT and CFMT consist of relatively few trials (a total of eight in each con-
dition) and may thus be more influenced by individual variation of participants, which may
contribute to conflicting findings across experiments.

While overall accuracy in the VHPT-F was reduced in synesthetes, they displayed com-
parable advantages for holistic processing as controls. This is in line with Janik McErlean
et al. (2016), who found no group differences in holistic face processing using an alternative
composite task. Previous investigations have reported a lack of correlation between composite
effects and face recognition, and more specifically between outcomes of the VHPT and the
CFMT (Richler, Floyd, & Gauthier, 2015). Well-replicated effects in face processing includ-
ing the composite effect, inversion effect, and part-whole effect have been argued to actually
represent distinct perceptual processes given their lack of correlation with face recognition
and each other (Rezlescu et al., 2017). A recent comparison using a large sample (N = 282)
found of these three components, the inversion effect had the highest correlation with overall
face recognition abilities (Rezlescu et al., 2017). The data presented here indicate that while
synesthetes show a reduction in face processing driven by a lack of upright advantage, this is
not caused by a deficit in holistic face processing, supporting the theory that these are in fact
separate processes.

We propose that differences in face perception ability in synesthetes, including an apparent
lack of upright advantage, may be the result of the development of different perceptual strate-
gies (Brogaard & Sørensen, in press a; Sørensen & Overgaard, 2018). Research has identified
that grapheme-color synesthesia is not apparent until the time an individual begins to become
literate (Watson, Akins, Spiker, Crawford, & Enns, 2014) and may itself develop as a per-
ceptual strategy in order to facilitate the acquisition of a new category (e.g., letters; Mannix
& Sørensen, 2021). This key period of development coincides with the triggering of func-
tional competition between words and faces. Words and faces experience joint hemispheric
lateralization (Dundas et al., 2013), and a number of investigations have found concomitant
effects on face processing during letter acquisition for both children and pre-literate adults
(Cantlon, Pinel, Dehaene, & Pelphrey, 2010; Dehaene et al., 2010). Others suggest that the
neural tuning of faces in the left hemisphere is dependent on the neural tuning for letters and
words, which are thought to become left lateralized due to their requirement for high visual
acuity in discrimination and the convenience of proximity to language-related areas (Dundas,
Plaut, & Behrmann, 2014). Similarly, as face processing competes for representation in the
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mid-fusiform region (Hasson, Levy, Behrmann, Hendler, & Malach, 2002), this would further
promote hemispheric lateralization.

The dynamic lateralization of cognitive processing with increased environmental pressure
may directly influence the development of individual differences. Specifically, differences in
how individuals develop perceptual strategies (Brogaard & Sørensen, in press b; Sørensen &
Overgaard, 2018), and more importantly which of these strategies consolidate over time can
differ based on both the predisposition of the individual and interactions with the environ-
ment. It is well established that environmental factors shape the brain (e.g., Maguire, Wool-
lett, & Spiers, 2006), and there is evidence that synesthesia too is influenced by external cues
(Witthoft & Winawer, 2006; Witthoft, Winawer, & Eagleman, 2015). The development of the
grapheme-color variant of synesthesia, in conjunction with the dynamic activity occurring
within its primary region of activation during development, may reflect differences in which
perceptual strategies are adopted by synesthetes for visually complex object categories.

Similarly, it was recently demonstrated that perceptual processing in experts can be very
similar to face processing (see also Curby et al., 2009). An exploration of the processing of
Chinese characters and how familiarity and the number of feature elements (i.e., stroke count)
influence perception found that processing is affected by familiarity independent of the num-
ber of feature elements (Dall, Wang, Cai, Chan, & Sørensen, 2021; see also Sun, Zimmer,
& Fu, 2011). While perceptual discrimination is initially influenced by feature elements of
an object, this reliance may change with increasing expertise (Popov & Reder, 2020, see
Figure 8) to the degree that objects are processed in a holistic fashion independent of individ-
ual feature elements (Dall et al., 2021).

This suggests a high degree of perceptual variation based on environmental interaction
and the consolidation of particular perceptual strategies (Brogaard & Sørensen, in press b). It
also demonstrates that a gradual shift to holistic processing is not unique to faces but present
in other areas of expertise, including conceptualized graphemes and logograms as in Dall
et al. (2021). Synesthetes’ reduced ability in face recognition combined with the presence of
holistic advantage indicates that they are not deficient in the typical development of expertise,
but at the same time are not comparable to the neurotypical population in face recognition.
This reflects the processing of individual graphemes—synesthesia is not correlated with any
literacy disability (Basirat & Hupé, 2020), but they do not appear to process graphemes in the
same way as the neurotypical population (Amsel et al., 2017). This may represent a general
pattern of development of alternative perceptual strategies for processes with similar cognitive
demands.

Within this framework, the data presented here may reflect grapheme-color associations
influencing the development of typical perceptual strategies, potentially by atypical modula-
tion of the lateralization changes in literacy development, leading synesthetes to emphasize
other features such as emotional or vocal cues to compensate (Sørensen, 2013).

The developmental stages at which face perception and face memory processes mature
may provide an explanation for this phenomenon. Face perception matures early in develop-
ment, in line with the development of perception of other objects, while face memory has
a far longer trajectory spanning the first 10 years of life or more (Weigelt et al., 2014).
As grapheme-color synesthesia is not apparent up to the point of developing literacy, the
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timeline of longer-term development of face memory and the typical age of learning to read
would make face memory more vulnerable to influence by synesthetic development.

Based on our results, we suggest that the competition between words and faces occurs after
an individual begins to acquire letters and words as graphemic concepts, a developmental
period that coincides with synesthetic development and at which face perception processes
have matured but face memory processes remain in development (Weigelt et al., 2014). The
co-development of synesthesia during the acquisition of literacy may affect the typical parity
of competition for representation between words and faces in individuals with grapheme-
color synesthesia, resulting in alternative perceptual strategies becoming more favorable for
identifying people.
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