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Abstract. In thermal video security monitoring the reliability of de-
ployed systems rely on having varied training data that can effectively
generalize and have consistent performance in the deployed context.
However, for security monitoring of an outdoor environment the amount
of variation introduced to the imaging system would require extensive
annotated data to fully cover for training and evaluation. To this end we
designed and ran a challenge to stimulate research towards alleviating
the impact of concept drift on object detection performance. We used
an extension of the Long-Term Thermal Imaging Dataset, composed of
thermal data acquired from 14th May 2020 to 30th of April 2021, with a
total of 1689 2-minute clips with bounding-box annotations for 4 different
categories. The data covers a wide range of different weather conditions
and object densities with the goal of measuring the thermal drift over
time, from the coldest day/week/month of the dataset. The challenge
attracted 184 registered participants, which was considered a success
from the perspective of the organizers. While participants managed to
achieve higher mAP when compared to a baseline, concept drift remains
a strongly impactful factor. This work describes the challenge design,
the adopted dataset and obtained results, as well as discuss top-winning
solutions and future directions on the topic.

1 Introduction

In the context of thermal video security monitoring the sensor type that is re-
sponsible of quantifying the observed infrared-radiation as a thermograph can
be split into two groups: sensors that produce relative thermographs and sen-
sors that produce absolute thermographs. Absolute thermographs can correlate
the observed radiation directly with temperature, whereas relative thermographs
produce observations relative to the “coldest” and “warmest” radiation. In se-
curity monitoring contexts the absolute temperature readings produced by an
absolute thermograph are not necessary and can potentially suppress thermal
details when observing thermally uniform environment. Furthermore the price
of absolute thermal cameras are much higher than their relative counterpart.
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When performing image recognition tasks the visual appearance of objects
and their surroundings is very important, and in an outdoor context that is
subjected to changes in temperature, weather, sun-radiation, among others, the
visual appearance of objects and their surroundings change quite drastically.
This is further expanded by societal factors like the recent pandemic which
could introduce mandatory masks. This is known as “Concept Drift” where ob-
jects remain the same however the concept definition which is observed through
representation changes. While in theory it could be possible to collect a large
enough dataset encompassing the weather conditions, the actors, usually people,
within the context also dress and act differently. Furthermore the cost of produc-
ing such a dataset would be quite extensive as potentially years worth of data
would have to be annotated. Typically deployment of object detectors would
have a pretrained baseline, and the model would have to be retrained when the
observed context drifts too far away from the training context. The reliability
in such a system is questionable as deployed algorithms tend not to have a way
to quantify the performance during deployment and extra data would have to
be routinely annotated to verify that the system is still performing as expected.
To address this issue and foster more research into long-term reliability of de-
ployed learning based object detectors a benchmark for classifying the impact
of concept drift could greatly benefit the field.

The ECCV 2022 ChaLearn LAP Seasons in Drift Challenge aims to propose
a setting for evaluating the impact of concept drift at a month to month basis
and evaluating the impact of concept drift in a weighted manner. The prob-
lem of concept drift is exacerbated with limited training data, particularly when
the distribution of the visual appearance in the data is similar. To explore the
consistency of performance across varied levels of concept drift particularly of
object detection algorithms, an extended set of frames were annotated spanning
several months. The challenge attracted a total of 184 participants on its differ-
ent tracks. With a total of 691 submissions at the different challenge stages and
tracks, from over 180 participants, the challenge managed to successfully estab-
lish a benchmark for thermal concept drift. Top-wining solutions outperformed
the baseline by a large margin following distinct strategies, detailed in Sec. 4.

The rest of the paper is organized as follows. In Sec. 2 we present the related
work. The Challenge design, which includes a short description of the adopted
dataset, evaluation protocol and baseline are detailed in Sec. 3. Challenge re-
sults and top-winning solutions are discussed in Sec. 4. Finally, conclusion and
suggestions for future research directions are drawn in Sec. 5.

2 Related Work

Popular thermal detection and segmentation datasets, such as KAIST [13]
and FLIR-ADAS [24], provide thermal and visible images. The focus of a large
part of academic research have been focused on leveraging a multi-modal in-
put [16,29,30,10] or using the aligned visible/thermal pairs as a way to do un-
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supervised domain adaptation between the visible and thermal [25,28,7,10]. Ap-
proaches that leverage the multi-modal input directly typically use siamese style
networks to perform modality specific feature extraction, subsequently leverag-
ing a fusion scheme to combine the information in a learned manner [16,29,25],
alternatively simple concatenation or addition is performed after initial feature
extraction [10,30]. In contrast, a network can be optimized to be domain agnos-
tic. HeatNet [25] and DANNet [28] leverage an adversarial approach to guide
the network to extract domain agnostic features.

It has been proven that in security monitoring contexts fusion of visible
and thermal images outperforms any modality alone [17,14], however in a real-
world scenario camera setups tend to be single sensor setups. While thermal
cameras are robust to changes in weather and lighting conditions, they still
struggle with the change of visual appearance of objects due to the change
of scene temperature [17,15,6,8,9]. Early work [9] leveraged edges to highlight
objects, making detection possible robust to the variation when the relative
contrast between objects and their surroundings were consistent. Recent studies
leverage research in the visible imaging domain, and directly apply it to the
thermal domain [17,6]. Until recently thermal specific detection methods have
been a rarity and recently it was proven that contextual information is important
to increase robustness to day/night variation [15,23] for thermal only object
detection. By employing a conditioning of the latent representation guided by an
auxiliary day/night classification head, the accuracy of day and night accuracy
can be significantly increased [15]. Similar increase in performance can also be
gained with a combination of a shallow feature-extractor and residual FPN-
style connections [8]. Most notably the residual connections are leverage during
training to enforce learning of discriminative features throughout the network,
and serve no purpose during inference, and as such can be removed.

3 Challenge Design

The ECCV 2022 Seasons in Drift Challenge5 aimed to spotlight the problem
of concept drift in a security monitoring context and highlight the challenges
and limitations of existing methods, as well as to provide a direction of research
for the future. The challenge used an extension of the LTD Dataset [21] which
consists of thermal footage that spans multiple seasons, detailed in Sec. 3.1.
The challenge was split into 3 different tracks associated with thermal object
detection. Each track having the same evaluation criteria/data but varying the
amount of train data as well as the time span of the data, as detailed next.

– Track 1 - Detection at day level: Train on a predefined and single day
data and evaluate concept drift across time6. The day is the 13th of February
2020 as it is the coldest day in the recorded data, due to the relative thermal

5 Challenge - https://chalearnlap.cvc.uab.cat/challenge/51/description/
6 Track 1 (on Codalab) - https://codalab.lisn.upsaclay.fr/competitions/4272

https://chalearnlap.cvc.uab.cat/challenge/51/description/
https://codalab.lisn.upsaclay.fr/competitions/4272
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appearance of objects being the least varied in colder environments this is
our starting point.

– Track 2 - Detection at week level: Train on a predefined and single week
data and evaluate concept drift across time7. The week selected is the week
of the 13th – 20th of February 2020 - (i.e. expanding from our starting point)

– Track 3 - Detection at month level: Train on a predefined and single
month data and evaluate concept drift across time8. The selected month is
the entire month of February.

The training data is chosen by selecting the coldest day, and surrounding data
as cold environments introduce the least amount of concept drift. Each track aims
at evaluating how robust a given detection method is to concept drift, by training
on limited data from a specific time period (day, week, month in February) and
evaluating performance across time, by validating and testing performance on
months of unseen data (Jan., Mar., Apr., May., Jun., Jul., Aug. and Sep.). The
February data is only present in the training set and the remaining months are
equally split between validation and test.

Each track is composed of two phases, i.e., development and test phase. At
the development phase, public train data was released and participants needed
to submit their predictions with respect to a validation set. At the test (final)
phase, participants needed to submit their results with respect to the test data,
which was released just a few days before the end of the challenge. Participants
were ranked, at the end of the challenge, using the test data. It is important
to note that this competition involved the submission of results (and not code).
Therefore, participants were required to share their codes and trained models
after the end of the challenge so that the organizers could reproduce the results
submitted at the test phase, in a “code verification stage”. At the end of the chal-
lenge, top ranked methods that pass the code verification stage were considered
as valid submissions.

3.1 The dataset

The dataset used in the challenge is an extension of the Long-Term Thermal
Imaging [21] dataset, and spans 188 days in the period of 14th May 2020 to
30th of April 2021, with a total of 1689 2-minute clips sampled at 1fps with
associated bounding box annotations for 4 classes (Human, Bicycle, Motorcycle,
Vehicle). The collection of this dataset has included data from all hours of the
day in a wide array of weather conditions overlooking the harborfront of Aalborg,
Denmark. In this dataset depicts the drastic changes of appearance of the objects
of interest as well as the scene over time in a static security monitoring context
to develop robust algorithms for real-world deployment. Figure 1 illustrates the
camera setup and two annotated frames of the dataset, obtained at different
time intervals.

7 Track 2 (on Codalab) - https://codalab.lisn.upsaclay.fr/competitions/4273
8 Track 3 (on Codalab) - https://codalab.lisn.upsaclay.fr/competitions/4276

https://codalab.lisn.upsaclay.fr/competitions/4273
https://codalab.lisn.upsaclay.fr/competitions/4276
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(a) (b) (c)

Fig. 1: Illustration of the camera setup (a) and two annotated frames of the
dataset, captured at different time intervals (b-c).

For a detailed explination of the datasets weather contents, an overview can
be found in the original dataset paper [21]. As for the extended annotations
provided with this challenge, we can observe that the distribution of classes is
heavily skewed towards the classes that are most commonly observed in the
context. As can be seen in Table 1 the total number of occourances of each
class is heavily scewed towards the Person class. Furthermore, as can be seen
in Figure 2, each class follows roughly the same trend in terms of the density of
which they occur. While the most common for all classes is a single count of the
given object present in a given image is 1, the range of occurrences are greater
for the Person category.

The camera used for recording the dataset was elevated above the observed
area, and objects often appear very distant with regards to the camera, in
combination with the resolution of the camera most objects appear very small
in the image (see Figure 1). Table 1 summarizes the amount of objects from
each class pertaining to each size category. The size is classified using the same
scheme as used in the COCO dataset[19], where objects with areas area < 322,
322 < area < 962 and area > 962 are considered small, medium and large re-
spectively. The density of object sizes are also illustrated in Figure 3, where it
can be more clearly seen that the vast majority of objects fall within the small
category for classes. This holds true for classes Person, Bicycle and Motorcycle,
where as the Vehicle class more evenly covers all size categories. This is a result
of larger vehicles only being allowed to drive in the area closest to the camera.

Table 1: Object frequency observed for each COCO-style size category.
Class

Size Person Bicycle Motorcycle Vehicle
Small 5.663.804 288.081 27.153 113.552
Medium 454 7 0 37.007
Large 176.881 5.192 5.240 550.696
Total 5.841.139 293.280 32.393 701.255
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(a) Person (b) Bicycle

(c) Vehicle (d) Motorcycle

Fig. 2: Histogram of object density, across the dataset, density of objects (x-axis)
and occurrences (y-axis).

3.2 Evaluation protocol

The challenge followed the COCO evaluation9 scheme for mAP. The primary
metric is, mAP across 10 different IoU thresholds (ranging from 0.5 to 0.95 at
0.05 increments). This is calculated for each month in the validation/test set
and the model is then ranked based on a weighted average of each month (more
distant months having a larger weight as more concept drift is present), referred
to as mAPw in the analysis of the results (Table 2). The evaluation is performed
leveraging the official COCO evaluation tools10.

3.3 The baseline

The baseline is a YOLOv5 with the default configuration from the Ultralytics11

repository, including augmentations. It was trained with a batch size of 64 for
300 epochs, with an input image size of 384×288 and the best performing model
is chosen. Naturally, the labels were converted to the normalized yolo format

9 https://cocodataset.org/#detection-eval
10 https://github.com/cocodataset/cocoapi
11 https://github.com/ultralytics/yolov5

https://cocodataset.org/#detection-eval
https://github.com/cocodataset/cocoapi
https://github.com/ultralytics/yolov5
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(a) Person (b) Bicycle

(c) Vehicle (d) Motorcycle

Fig. 3: Illustration of object size (height×width, in pixels) across the dataset.
The white outlines seperate the areas that would be labeled as small, medium
and large following COCO standards.

([cls] [cx] [cy] [w] [ht]) for both training and evaluation. For submission on the
Codalab platform they were converted back to the ([cls] [tlx] [tly] [brx] [bry])
coordinates. The models were all trained on the same machine with 2x Nvidia
RTX 3090 GPUs, all training is also conducted as multi GPU training using the
pytorch distributed learning module.

4 Challenge Results and Winning Methods

The challenge ran from 25 April 2022 to 24 June 2022 through Codalab12 [22], a
powerful open source framework for running competitions that involve result or
code submission. It attracted a total of 184 registered participants, 82, 52 and
50 on track 1, 2 and 3, respectively. During development phase we received 267
submissions from 17 active teams in track 1, 117 submissions from 6 teams in

12 Codalab - https://codalab.lisn.upsaclay.fr

https://codalab.lisn.upsaclay.fr
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track 2, and 96 submissions from 4 teams in track 3. At the test (final) phase, we
received 84 submissions from 23 active teams in track 1, 55 submissions from 22
teams in track 2, and 72 submissions from 24 teams in track 3. The reduction in
the number of submissions from the development to the test phase is explained
by the fact that the maximum number of submissions per participant on the
final phase was limited to 3, to minimize the change of participants to improve
their results by trial and error.

Table 2: Codalab leaderboards∗ at the test (final) phase.
Participant mAPw mAP Jan Mar Apr May Jun Jul Aug Sep

Track 1 (day level)
Team GroundTruth∗ .2798 .2832 .3048 .3021 .3073 .2674 .2748 .2306 .2829 .2955
Team heboyong∗ .2400 .2434 .3063 .2952 .2905 .2295 .2318 .1901 .2615 .1419
Team BDD .2386 .2417 .2611 .2775 .2744 .2383 .2371 .1961 .2365 .2122
Team Charles .2382 .2404 .2676 .2848 .2794 .2388 .2416 .2035 .2446 .1630
Team Relax .2279 .2311 .2510 .2642 .2556 .2138 .2336 .1856 .2214 .2235
Baseline∗ .0870 .0911 .1552 .1432 .1150 .0669 .0563 .0641 .0835 .0442

Track 2 (week level)
Team GroundTruth∗ .3236 .3305 .3708 .3502 .3323 .2774 .2924 .2506 .3162 .4542
Team heboyong∗ .3226 .3301 .3691 .3548 .3279 .2827 .2856 .2435 .3112 .4662
Team Hby .3218 .3296 .3722 .3556 .3256 .2806 .2818 .2432 .3067 .4714
Team PZH .3087 .3156 .3999 .3588 .3212 .2596 .2744 .2502 .3013 .3592
Team BDD .3007 .3072 .3557 .3367 .3141 .2562 .2735 .2338 .2936 .3942
Baseline∗ .1585 .1669 .2960 .2554 .2014 .1228 .0982 .1043 .1454 .1118

Track 3 (month level)
Team GroundTruth∗ .3376 .3464 .4142 .3729 .3414 .3032 .2933 .2567 .3112 .4779
Team heboyong∗ .3241 .3316 .3671 .3538 .3289 .2838 .2864 .2458 .3132 .4735
Team BDD .3121 .3186 .3681 .3445 .3248 .2680 .2843 .2450 .3062 .4076
Team PZH .3087 .3156 .3999 .3588 .3212 .2596 .2744 .2502 .3013 .3592
Team BingDwenDwen .2986 .3054 .3565 .3477 .3241 .2702 .2707 .2337 .2808 .3598
Baseline∗ .1964 .2033 .3068 .2849 .2044 .1559 .1535 .1441 .1944 .1827

Top solutions are highlighted in bold, and solutions that passed the “code veri-
fication stage” are marked with a ∗.

4.1 The Leaderboard

The leaderboards at the test phase for the different tracks are shown in Table 2.
Note that we only show here the top-5 solutions (per track), in addition to the
baseline results. Top solutions that passed the “code verification stage” are high-
lighted in bold. The full leaderbord of each track can be found in the respective
Codalab competition webpage.

As expected, Table 2 shows that overall better results are obtained with more
train data. That is, a model trained at the month level is overall more accurate
than the same model trained at the week level, which is overall more accurate
than the one trained at the day level. Therefore, the differences in performance
improvement when training the model at the month level (compared to week
level) are smaller than those obtained when training the model at the week
level (compared to day level), particularly when a large shift in time is observed
(e.g., from Jun. to Sep.), suggesting that the increase of train data from week to
month level may have a small impact when large shifts are observed. This was
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also observed by the Team heboyong (described in Sec. 4.3), which reported to
have only used week level data to train their model (i.e., on Tracks 2 and 3),
based on the observation that using more data was not improving the final result.
This raises an interesting point in that even for winning approaches the variation
of the training data is much more important than the amount of training data,
a further analysis of what causes the loss of mAP across will be discussed in 4.4.

Table 3 shows some general information about the top winning approaches.
As it can be seen from Table 3, common strategies employed by top-winning
solutions are the use of pre-trained models combined with data augmentation.
Next, we briefly introduce the top-winning solutions that passed the code veri-
fication stage based on the information provided by the authors. For a detailed
information, we refer the reader to the associated fact sheets, available for down-
load in the challenge webpage50. Two participants (i.e., Team GroundTruth and
Team heboyong) ranked best on all tracks. Each participant applied the same
method on all tracks, but trained at day, week or month level, detailed as follows.

Table 3: General information about the top winning approaches.
Top-1

Team GroundTruth
Top-2

Team heboyong
Pre-trained model ✓ ✓
External data ✗ ✗
Data augmentation ✓ ✓
Use of the provided validation set as part
of the training set at the final phase

✗ ✗

Handcrafted features ✗ ✗
Spatio-temporal feature extraction ✗ ✗
Object tracking ✗ ✗
Leverage timestamp information ✗ ✗
Use of empty frames present in the dataset ✗ ✗
Construct any type of prior to condition
for visual variety

✗ ✗

4.2 Top-1: Team GroundTruth

The Team GroundTruth proposed to take benefit of temporal and contextual in-
formation to improve object detection performance. Based on Scaled-YOLOv4
[26], they first perform sparse sampling at the input. The best sampling setting
is defined based on experiments given different sampling methods (i.e., average
sampling, random sampling, and active sampling). Mosaic [1] data augmenta-
tion is then used to improve the detector’s recognition ability and robustness to
small objects. To obtain a more accurate and robust model at inference stage,
they adopt Model Soups [27] for model integration, given the results obtained
by Scaled-YOLOv4p6 and Scaled-YOLOv4p7 detectors trained using different
hyperparameters, also combined with horizontal flip data augmentation to fur-
ther improve the detection performance. Given a video sequence of region pro-
posals and their corresponding class scores, Seq-NMS [12] associates bounding
boxes in adjacent frames using a simple overlap criterion. It then selects boxes
to maximize a sequence score. Those boxes are used to suppress overlapping
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boxes in their respective frames and are subsequently re-scored to boost weaker
detections. Thus, Seq-NMS [12] is applied as post-processing to improve the per-
formance further. An overview of the proposed pipeline is illustrated in Figure 4.

Fig. 4: Top-1 winning solution pipeline: Team GroundTruth.

4.3 Top-2: Team heboyong

The Team heboyong employed Cascade RCNN [4], a two-stage object detec-
tion algorithm, as the main architecture for object detection, with Swin Trans-
former [20] as backbone. According to the authors, Swin Transformer gives bet-
ter results when compared with other CNN-based backbones. CBNetv2 [18] is
used to enhance the Swin Transformer to further improve accuracy. MMdetec-
tion [5] is adopted as the main framework. During training, only 30% of the train
data is randomly sampled, to reduce overfitting, combined with different data
augmentation methods, such as Large Scale Jitter, Random Crop, MixUp [31],
Albu Augmentation [3] and CopyPaste [11]. At inference stage, they use Soft-
NMS [2] and flip augmentation to further enhance the results. An overview of the
proposed pipeline is illustrated in Figure 5. They also reported to have not ad-
dressed well the long-tail problem caused by the extreme sparsity of the bicycle
and motorcycle categories, which resulted in low mAP for these two categories.

4.4 What challenge the models the most?

In this section we analyze the performance of the baseline, Team GroundTruths
and Team heboyongs models on the test set. Particularly, we inspect the perfor-
mance of each model with regards to temperature, humidity object area and ob-
ject density. Temperature and humidity are chosen as they were discovered that
these two factors have the highest correlation with visual concept drift [21]. Ad-
ditionally, because of the uneven distribution of object densities across dataset,
the impact of the object density is also investigated.

Impact of temperature. can be observed in Figure 7, as the temperature
increases the performance of the model degrades. This is expected as the available



ChaLearn LAP Seasons in Drift Challenge: Dataset, Design and Results 11

Input image

Backbone 1 Backbone 2

Neck

Head 2

Head 1
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Neck

𝐿𝑜𝑠𝑠%&&'&(

× 3

Detection head

CBNetv2 with Swin Transformer Swin FPN Cascade Detection Head

Fig. 5: Top-2 winning solution pipeline: Team heboyong.

training data has been picked from the coldest month and as such warmer scenes
are not properly represented in the training data, and as mentioned in 3 this
is deliberately done as temperature is one of the most impactfull factors of
concept drift in thermal images [21]. The performance of the baseline model
shows severe degradation when compared to the winner and Team heboyong,
while the performance consistently degrades for all models. Interestingly, Team
heboyong method is distinctly more sensitive to concept drift with the smaller
training set, while the winning solutions seems to perform consistently regardless
of the amount of data trained on.

Impact of humidity. According to the initial paper [21], humidity is one of
the most impactfull factors of concept drift, as it tends to correlate positively
with the different types of weather. This leads to a quite interesting observation,
which can be made across all tracks with regards to the impact of humidity. As
can be observed in Figure 8, the mAP of detectors increases with the humidity
across all tracks. This could be because higher humidity tends to correlate with
the level of rain-clouds, which would explain partially cloudy being more difficult
for the detectors as the visual appearance in the image is less uniform.

Impact of object size. As would be expected the models converge towards
fitting bounding-boxes to the most dominant object size of the training data
(see Table 1). As shown in Figure 10, the models obtain very good performance
on the most common of object sizes and struggle with objects as they increase
in size and rarity. In this case the participants see strong improvement over
baseline, and also manage to become more robust towards rarer cases. As can
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also be observed in the figure this problem is increasingly alleviated with the
increase of training data.

(a) Track 1: Day

(b) Track 2: Week

(c) Track 3: Month

Fig. 7: Overview of performance
with samples separated with
regards to the temperature
recorded for the given frame.

(a) Track 1: Day

(b) Track 2: Week

(c) Track 3: Month

Fig. 8: Overview of performance
with samples separated with re-
gards to the humidity recorded for
the given frame.

Impact of object density. As shown in Figure 2, the density of objects for
the majority of the images is towards the lower end, as such one would expect
the detectors’ mAP to degrade when a scene becomes more crowded and the
individual objects become more difficult to detect due to occlusions. However
what is observed is the mAP of highlighted methods are consistent as density
increases, while the performance across densities also correlate to the amount of
training data.
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(a) Track 1: Day

(b) Track 2: Week

(c) Track 3: Month

Fig. 10: Overview of performance
with samples separated with re-
gards the size of objects bounding-
box

(a) Track 1: Day

(b) Track 2: Week

(c) Track 3: Month

Fig. 11: Overview of performance
with samples separated with re-
gards to the object density of the
frame

5 Conclusions

The Seasons in Drift challenge attracted over 180 participants whom made 480
submissions during validation and 211 submissions for test set and a potential
place on the finale leaderboard. While the concept of measuring the impact of
thermal drift on detection performance in a security monitoring context is a
very understudied field, a lot of people participated. Many of the participants
managed to beat the proposed baseline by quite a large margin, especially with
limited training data, and achieved more robust solutions when compared to
the degradation of the baseline in terms of performance with respect to drift.
Allthough great improvements can be observed, the problem of concept drift still
negatively affects the performance of participating methods. Interestingly while
the winner and Team heboyong methods use different architectures, the impact of
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concept drift seems to transcend the choice of SotA object detectors. This lends
merit investigating methods that could condition layers of the network given
the input image, and introduce a venue for the model to learn an adaptable
approach as opposed to learning a generalized model specific to the thermal
conditions of the training context. As can be observed in Figures 10 and 11
the size of the observed objects seem to be a more challenging factor than the
density of which they occour in. Detection of small objects is a known and well
documented problem, and despite the nature of thermal cameras, still persist as
an issue in the thermal domain. Further research could be done to learn more
scale invariant object detectors or rely entirely on other methods than an RPN
or Anchors to produce object proposals.
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