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Objectives: Comprehension of speech in adverse listening conditions is

challenging for hearing-impaired (HI) individuals. Noise reduction (NR)

schemes in hearing aids (HAs) have demonstrated the capability to help HI to

overcome these challenges. The objective of this study was to investigate the

e�ect of NR processing (inactive, where the NR feature was switched o�, vs.

active, where the NR feature was switched on) on correlates of listening e�ort

across two di�erent background noise levels [+3 dB signal-to-noise ratio (SNR)

and +8 dB SNR] by using a phase synchrony analysis of electroencephalogram

(EEG) signals.

Design: The EEG was recorded while 22 HI participants fitted with HAs

performed a continuous speech in noise (SiN) task in the presence of

background noise and a competing talker. The phase synchrony within eight

regions of interest (ROIs) and four conventional EEG bands was computed by

using a multivariate phase synchrony measure.

Results: The results demonstrated that the activation of NR in HAs a�ects the

EEG phase synchrony in the parietal ROI at low SNR di�erently than that at

high SNR. The relationship between conditions of the listening task and phase

synchrony in the parietal ROI was nonlinear.

Conclusion: We showed that the activation of NR schemes in HAs can

non-linearly reduce correlates of listening e�ort as estimated by EEG-based

phase synchrony. We contend that investigation of the phase synchrony

within ROIs can reflect the e�ects of HAs in HI individuals in ecological

listening conditions.

KEYWORDS

listening e�ort, electroencephalography, noise reduction, phase synchrony, local

connectivity, hearing impaired
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1. Introduction

Hearing impaired (HI) individuals often report that listening

to speech in noisy environments such as competing talkers and

background noise demands greater effort, which can lead to

negative effects such as increased incidence of fatigue (Kramer

et al., 2006;Mattys et al., 2012;Wang et al., 2018), disengagement

from conversations (Jaworski and Stephens, 1998) and social

withdrawal (Weinstein and Ventry, 1982). However, current

measurements which are used to examine the performance of a

listening task (e.g., speech reception threshold) do not typically

consider the cognitive factors related to effortful listening

(Sarampalis et al., 2009; Houben et al., 2013).

Pichora-Fuller et al. (2016) defined the concept of listening

effort in a conceptual model as “the deliberate allocation

of mental resources to overcome obstacles in goal pursuit

when carrying out a task, with listening effort applying

more specifically when tasks involve listening.” The obstacles

include acoustic challenges experienced by the listener, which

is the combination of cognitive factors (e.g., linguistic ability

and memory capacity) and acoustic characteristics (e.g., level

of background noise and competing talker) (Peelle, 2018).

Listening effort can also be modulated by the listener’s

motivation (Pichora-Fuller et al., 2016; Peelle, 2018). The

goal of studying listening effort is to develop a reliable

measurement tool, which can be simultaneously utilized with

speech recognition tests and improve the assessment of hearing

disability (Paul et al., 2021) and enhance the rehabilitation

strategy (Miles et al., 2017).

A wide variety of methods and tools have been used to find

correlates of listening effort. This includes subjective ratings

such as scales (Krueger et al., 2017) and questioners (Hart

and Staveland, 1988), dual tasks (Gagne et al., 2017), and

physiological measures such as pupillometry (Zekveld et al.,

2018), skin conductance (Mackersie and Calderon-Moultrie,

2016), heart rate (Mackersie and Calderon-Moultrie, 2016), and

neuroimaging (Paul et al., 2021). Neuroimaging measures tend

to reflect changes in the brain activity underlying listening

effort. In particular, electroencephalography (EEG) is becoming

popular for measuring correlates of listening effort due to its

non-invasiveness and high temporal resolution (Dimitrijevic

et al., 2019; Seifi Ala et al., 2020; Fiedler et al., 2021; Wisniewski

et al., 2021).

A diverse range of signal processing and information

theoreticmethods have been used to analyze the EEG and extract

correlates of listening effort. Some examples include time-

frequency analysis, speech tracking, and functional connectivity.

The change in power in the alpha (8-12 Hz) frequency band

at the parietal region (Petersen et al., 2015; Dimitrijevic et al.,

2017) and theta (4-8 Hz) frequency band at the frontal region

(Wisniewski et al., 2015, 2018) have been reported by using time-

frequency analysis. The coherence between the speech envelope

and the corresponding brain signal at the left frontal cortex in

the 2–5 Hz frequency range has also been demonstrated that it

can be used for predicting correlates of listening effort in speech

tracking analysis (Dimitrijevic et al., 2019).

Functional connectivity describes the statistical

dependencies between neural data and can give some

information about how the brain functions (Bidelman et al.,

2018). Functional connectivity analysis in EEG signals has been

extensively used to investigate cognitive functions of auditory

processing in the brain. Some examples include perceived audio

quality assessment (Mehta and Kliewer, 2017) and semantic

processing (Zhang et al., 2019). The effect of acoustic challenges,

age-related hearing loss, and comprehension of speech on

functional connectivity were also investigated in Bidelman et al.

(2018, 2019), and Zhu et al. (2020), respectively.

Functional connectivity can be extracted by using several

approaches such as phase synchrony (Bernarding et al., 2013),

transfer entropy (Mehta and Kliewer, 2017; Baboukani et al.,

2020, 2021b), and Pearson correlation (Bidelman et al., 2019).

The phase of neural data tends to reflect the timing of neural

activity, and phase synchrony describes the interaction between

or within brain regions in the neural networks (Wöstmann

et al., 2017a). Correlates of listening effort have been estimated

using phase synchrony analysis. Several methods have been

used to extract the phase synchrony, such as wavelet phase

synchronization stability (Bernarding et al., 2010, 2013), the

distribution of the mapped phase mean vector on the unit circle

(Bernarding et al., 2014) and the entropy of instantaneous phase

of EEG signals (Bernarding et al., 2012, 2017).

The functional connectivity within a localized region of

the brain is called local connectivity. It has been utilized to

classify different motor imagery movements (Baboukani et al.,

2017), estimate the cognitive workload (Zarjam et al., 2013),

investigate schizophrenia (Jalili et al., 2007), and Alzheimer’s

disease (Jalili et al., 2013). Phase synchrony has also been used to

assess the local connectivity. Phase synchrony assessment across

multivariate signals (or channels of EEG) in a localized region

of the brain by averaging over all possible traditional bi-variate

phase synchrony values (e.g., phase coherence, phase locking

value) may not provide a full picture of the global synchrony

within the signals (Oshima et al., 2006; Canolty et al., 2011;

Omidvarnia et al., 2013; Al-Khassaweneh et al., 2016; Baboukani

et al., 2019). Alternatively, multivariate measures generalized the

traditional bi-variate ones to evaluate phase synchrony within

multichannel data (Omidvarnia et al., 2013; Al-Khassaweneh

et al., 2016; Baboukani et al., 2019). Local connectivity estimated

by multivariate phase synchrony has been used in several studies

(Jalili et al., 2013; Al-Khassaweneh et al., 2016; Baboukani et al.,

2017). A new multivariate phase synchrony measure called

circular omega complexity (COC) was recently proposed and

has shown better performance than conventional multivariate

phase synchrony techniques in simulated and real EEG data

(Baboukani et al., 2019). Recently, we showed that local

connectivity estimated by the COC measure can be used to
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estimate the correlates of listening effort (Baboukani et al.,

2021a).

Although HI individuals in real-life encounter listening

situations which involve continuous speech and long sentences,

most of the studies (some exceptions include Alickovic et al.,

2020, 2021; Fiedler et al., 2021) investigate the effect of NR

processing and SNR when the stimuli are single words or short

sentences (Bernarding et al., 2014; Dimitrijevic et al., 2017; Miles

et al., 2017). However, in this study, continuous long stimuli are

used in a speech in noise (SiN) task.

Modern hearing aid (HA) devices can help HI individuals

through various advanced signal processing approaches

(Bernarding et al., 2014, 2017; Winneke et al., 2018). In

particular, noise reduction (NR) processing intends to reduce

the effect of background noise and enhance the signal-to-noise

ratio (SNR). It has shown the capability to free up cognitive

resources for other tasks during listening and reduce the

listening effort (Sarampalis et al., 2009; Ohlenforst et al.,

2018). The activation of NR processing can improve speech

understanding at low SNRs. Furthermore, it has been also shown

that activation of the NR schemes in HAs provides a listening

effort enhancement in addition to any effect associated with

improved intelligibility (Ohlenforst et al., 2018). In addition

to that, NR schemes can improve the performance of the HA

users during a selective attention task (Alickovic et al., 2020,

2021). Alickovic et al. (2020) also showed that the improvement

of selective attention tasks due to NR was different at low SNR

than that at high SNR. Another study on the same data showed

that NR changed correlates of listening effort estimated by pupil

size differently at the two SNR values, while a time-frequency

analysis of EEG signals showed no statistical change due to

SNR, NR, and the interaction between them (Fiedler et al.,

2021). This inspired us to replace conventional power analysis

in the time-frequency domain with local connectivity estimates

based on multivariate phase synchrony to investigate the effect

of NR processing at two SNR values. Inspired by the results in

Alickovic et al. (2020) and Fiedler et al. (2021), we hypothesized:

H1: The use of NR in hearing aids affects the EEG phase

synchrony within localized regions of the brain (i.e., local

connectivity) at low SNR differently than that at high SNR.

H2: The effect of the NR scheme on EEG phase synchrony

within localized regions of the brain at different SNR values

shows a nonlinear (inverted U-shape) trend.

2. Materials and methods

In this section, the EEG data utilized in this study will

be briefly explained. It will be followed by the description

of the COC measure and the steps required to assess local

connectivity. Finally, the statistical test used in this study will

be described.

2.1. EEG data

The EEG data of this study has been utilized for other

analyses by Alickovic et al. (2020) and Fiedler et al. (2021), which

focused on neural tracking and pupil dilation, respectively. The

EEG analysis of listening effort recruited by Fiedler et al. (2021)

was based on alpha power and did not show significant results.

2.1.1. Participants

We recruited 22 (11 men), native Danish-speaking

participants, with hearing loss. The stimuli used in this study

were based on participants-centered language (Nicks et al.,

2022) and consisted of Danish news clips of neutral content.

They aged between 40 and 80 years with the mean and standard

deviation (SD) ages of 69 and 11.2, respectively. The participants

were experienced HA users with more than 3 months of HA

usage. Participants had mild-to-moderate sensorineural hearing

loss. The audiometric thresholds at 500, 1,000, 2,000, and 4,000

Hz ranged from 33 to 58 dB hearing level, with an average

threshold of 45 dB hearing level. The maximum difference

between the left and the right ear’ averaged audiometric

thresholds was less than 8 dB. The experimental procedure

was approved by the ethics committee for the capital region of

Denmark (journal number H-1-2011-033) and all participants

signed written consent before the experiment.

2.1.2. Hearing aid fitting and signal processing

All participants were fitted with identical HA models during

the experiment. Two pairs of HAs were adapted for each

participant: NR inactive and NR active. Rather than NR, all

other signal processing settings did not change between the

conditions. The Voice Aligned Compression (VAC) rationale

(Le Goff, 2015) based on each individual’s hearing threshold

was applied to amplify the sound in both pairs of HAs. In the

NR inactive condition, the omnidirectional setting was applied

with an added natural slight forward effect of the pinna. In the

other pairs, NR active, the combination of minimum variance

distortionless response beamformer and a single channelWiener

post filter was applied before the VAC. The articulation-index-

weighted SNR improvements (Ohlenforst et al., 2018) were 6.24

dB and 5.17 dB at +3 dB SNR and +8 dB SNR, respectively,

for NR active than that for NR inactive (Alickovic et al., 2020;

Fiedler et al., 2021).

2.1.3. Experimental design

The experiment took place in an acoustically shielded

listening booth with controlled light conditions. Participants

were seated on a chair positioned in the middle of six

loudspeakers (Genelec 8040A; Genelec Oy, Iisalmi, Finland)

with a distance of 1.2 m from each loudspeaker (refer
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FIGURE 1

Schematic illustration of (A) experiment design including six loudspeakers. The target streams (colored as purple and orange) and background

noise (colored as blue) were delivered by the two foreground and four background loudspeakers, respectively. The screen located in the middle

of the two foreground speakers shows the to-be-attended talker (colored as orange). (B) trial design in which 5 s of only background noise and

33 s of simultaneous target, masker, and background noise stimuli were delivered in each trial.

to Figure 1A), two loudspeakers in the front (at ±22◦

azimuth) and four loudspeakers in the back (at ±90◦

and ±150◦ azimuth). Each of the background loudspeakers

(B1-B4 in Figure 1A) played four-talker babble. The two

foreground speakers played the target streams which were

spoken by talkers of a different gender. Participants were

asked to gaze at the screen positioned between the two

frontal loudspeakers and were instructed to attend to one

of the talkers in the foreground speakers while ignoring

the other talker on the contralateral side and background

noise. To-be-attended talkers (either the right or the left

side) was indicated by an arrow on the screen (refer to

Figure 1A).

2.1.4. Stimuli

Continuous 33 s long Danish news clips of neutral content

were utilized for talker streams. The organization of the location

(left or right) and gender (male or female) of the target stream

was randomized. Each of the four-talker babble noises delivered

by the background loudspeakers consisted of four unique single

talkers, two women and twomen, speaking different news giving

the impression of the 16 talkers active in the background.

The experiment was a 2 × 2 design: the first factor was NR

(active vs. inactive) and the second factor was the SNR level

(+3 vs. + 8 dB). The SNR in our setup was defined as the ratio

between the signal power of the attended talker and the total

signal power of the background noise, similar to that in Das et al.

(2018) and Alickovic et al. (2020). In order to create real-life

listening conditions at two levels of difficulty (SNR values of +3

and +8 dB), the maskers were set at either 53 or 48 dB, leading to

a total of 59 or 54 dB background Sound Pressure Level (SPL).

Each of the two foreground loudspeakers was always set at a

fixed level of 62 dB SPL, leading to a fixed level of 65 dB for the

foreground talkers.

2.1.5. Procedure

A total of 84 trials were recorded for each participant,

organized in a block design. For each of the four blocks

(experimental conditions including +3 dB NR inactive, +3 dB

NR active, +8 dB NR inactive, and +8 dB NR active), 20

trials were conducted. The remaining four trials were used for

training. Each trial consisted of a short period of silence, 5 s of

only background noise (delivered by background loudspeakers),

and 33 s of the simultaneous target, masker, and background

noise stimuli (refer to Figure 1B). After each trial, participants

were asked to answer a two-choice question about the content of

the attended speech which was displayed on the screen. The HAs

were always removed and replaced again between the blocks.

The participants were given a rest period after five trials.

2.1.6. EEG data acquisition and pre-processing

The BioSemi ActiveTwo amplifier system (Biosemi,

Amsterdam, Netherlands) was used to record EEG data. A total

of 64 electrodes on a cap were mounted on the scalp according

to the 10-20 international system. The driven right leg and

common mode sense electrode were used as a reference for

all other recording electrodes. The EEG data were sampled at

1,024 Hz. All electrodes were mounted by applying conductive

gel to obtain a stable connection and below 50 mv offset voltage.

The pre-processing includes a 0.5 Hz high-pass filter,

95 Hz low-pass filter, and downsampling to 512 Hz. Then,

The EEG channels with excessive noise were visually

identified (on average, 3.1 ± 0.8 channels were rejected)

and interpolated from the surrounding clean EEG channels by

using the nearest neighbor method in Fieldtrip (Oostenveld

et al., 2011). The logistic Infomax independent component

analysis algorithm was applied to reduce artifacts caused

by eye movements, eye blinks, muscle activity, heartbeats,

and single-channel noise, as implemented in Fieldtrip
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(Bell and Sejnowski, 1995; Delorme and Makeig, 2004). The

components were visually inspected and rejected if clearly

reflected as artifacts, on average, 7.9 ± 3.6 of the components

were rejected. Finally, the EEG data were epoched from 8 s

before to 33 s after the onset of the target loudspeakers. The EEG

data for one subject was removed from further analysis due to

being excessively noisy. In addition to that, no data for one block

of one participant was recorded due to technical problems.

2.2. Circular omega complexity

The COC measure is used in this study to extract local

connectivity. This is a multivariate phase synchrony measure

that was recently proposed in Baboukani et al. (2019) and

was shown to perform better than the conventional measures

in a particular setup. The COC assesses the level of phase

dependency within multivariate signals by quantifying the

dimensionality of the state-space formed by their corresponding

instantaneous phases (Baboukani et al., 2019).

Estimating the instantaneous phase of a real valued mono-

component discrete signal X ∈ R
1×N is the first step to calculate

the COC. A Hilbert transform-based approach is commonly

used whereby the instantaneous phase is estimated as Baboukani

et al. (2019):

φX[n] = tan−1

(

X̂[n]

X[n]

)

, (1)

where X̂[n] and φX[n] are the Hilbert transform and

instantaneous phase of X[n], respectively. The next step is

calculating the circular correlation matrix. Considering a K-

channels signal X ∈ R
K×N and its corresponding instantaneous

phase signal φX ∈ R
K×N , the circular correlation matrix CX ∈

R
K×K is defined as Baboukani et al. (2019):

CX = [C(m,l)], (2)

where m, l ∈ {1, 2, . . .K}. The circular correlation between

the instantaneous phase φm and φl is noted by C(m,l) where φm

and φl are the m
th and lth rows of φX, respectively. The circular

correlation C(m,l) is given as Baboukani et al. (2019):

C(m,l) =

∑N
n=1 sin

(

φm[n]− φ̄m
)

sin
(

φl[n]− φ̄l
)

√

∑N
n=1 sin

2
(

φn[n]− φ̄m
)

sin2
(

φl[n]− φ̄l
)

, (3)

where the circular mean φ̄m is given by Baboukani et al.

(2019):

φ̄m = arg





N
∑

n=1

expiφm[n]



 . (4)

It was shown by Baboukani et al. (2019) that the eigenvalues

of CX can be used as an index for the dimensionality of the state-

space formed by φX whereby the level of phase synchronization

can be determined. The COC was then defined as Baboukani

et al. (2019):

COC = 1+

∑K
i=1 λ̄i log λ̄i

logK
, (5)

where λ̄i = λm
∑K

j=1 λj
and λi; i = 1, . . . ,K are the

eigenvalues of CX. The COC varies between 0 and 1 where

higher values show that the channels within CX are more phase

synchronized, which means that only fewer eigenvalues of the

CX are significant (Baboukani et al., 2019).

2.3. Local connectivity assessment

The effect of NR at two SNR values on local connectivity

will be explored in this article. Listening in adverse conditions

can possibly engage multiple cognitive processes such as

working memory and distractor inhibition (Wisniewski et al.,

2021), which can possibly change the local connectivity within

different brain regions and frequency bands. We, therefore,

did not restrict our analysis to one specific band or ROI and

local connectivity within eight ROIs and four conventional

EEG bands will be examined. The ROIs include left frontal,

frontal, right frontal, left temporal, central, right temporal,

parietal, and occipital, similar to that in Mehta and Kliewer

(2017). Figure 2 and Table 1 show the electrodes and their

corresponding positions of different ROIs, respectively 1. The

EEG bands consist of Delta (0.5–4 Hz), Theta (4–8 Hz),

Alpha (8–12.5 Hz), and Beta (12.5–25 Hz). The EEG channels

were filtered by using Window-based FIR band-pass filters.

Filtering to narrow frequency bands can also reduce the

multi-component nature of EEG signals and can improve the

estimation of the instantaneous phase signals by using the

Hilbert transform technique (Boashash and Aïssa-El-Bey, 2018).

The EEG channels were common average re-referenced to

reduce the effect of volume conduction.

The local connectivity of each trial of the experiment was

estimated during the time interval that frontal loudspeakers

were presenting the target streams (33 s). We also omitted the

first second of the delivering target streams to minimize the

effects of event-related potential which led to 32 s (1 to 33 s

relative to the onset of the target streams). The 32 s time spanwas

then divided into 16 non-overlapping 2 s windows2. The COC

was then quantified for each of the windows and the average

over all windows was considered as an indicator of the strength

1 An alternative group of electrodes for frontal, central, parietal, and

occipital ROIs, which include the midline electrodes located in the

regions, such as Fz, Pz, Cz, and Oz produced the same trend of results.

2 An alternative longer length (such as 10 s) of time windows leads to

a better estimation of COC. However, the results produced by longer or

equal to 2 s time windows were following the same trend.
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FIGURE 2

In the electrode position of ROIs, di�erent colors show di�erent

ROIs. The lines in the figure show schematic presentations of

the ROIs. The ROIs include left frontal (dark blue), frontal (aqua),

right frontal (light blue), left temporal (yellow), central (green),

right temporal (red), parietal (orange), and occipital (brown).

TABLE 1 Mapping electroencephalogram (EEG) electrodes to regions

of interest (ROIs).

ROI Electrodes ROI Electrodes

Left frontal AF7, AF3, F3 Frontal Fp1, Fp2, AF4

F5, F7, Fp1 AF3, F1, F2

Right frontal AF4, AF8, F8 Central FC1, FC2, C1

F6, F4, Fp2 CP1, C2, CP2

Left temporal FT7, T7, TP7 Parietal CP1, CP2, P1

CP5, FC5, C5 P2, PO4, PO3

Right temporal FT8, T8, TP8 Occipital O1, O2, PO3

CP6, FC6, C6 PO4

of local connectivity. The higher the average of COC values

over time windows is, the more channels within the ROI are

phase synchronized. The higher phase synchrony is considered

as higher local connectivity in this study. The steps required

to assess local connectivity in a specific band and ROI can be

summarized as follows:

S1) Band-pass filters the EEG channels in the ROI to a

conventional EEG band.

S2) Estimate the instantaneous phase of the filtered channels.

S3) Extract the COC value for each of the 2 s time windows.

S4) Average the COC values corresponding to time windows.

The aforementioned steps were repeated for eight ROIs

and four EEG bands leading to 32 local connectivity values for

each trial.

2.4. Statistical test

All the statistical analysis was performed in RStudio Team

(2021). In order to investigate the effect of NR at two SNR values

on local connectivity (our first Hypothesis H1), two-way Linear

mixed effect (LMM) ANOVA was applied by using lme4 (Bates

et al., 2014) and lmerTest (Kuznetsova et al., 2017) packages.

We fitted separate LMM ANOVA models for local connectivity

values estimated at each ROI and band. Local connectivity values

were treated as a continuous variable and normalized by using

COCnormalized = COC−M
S , where the M and S are the mean

and SD of the local connectivity values at specific band and ROI

calculated over all experimental conditions and all subjects. The

experiment factor NR was treated as a factor variable with two

levels, inactive and active. The experiment factor SNR was also

treated as a factor variable with two levels, high (+8 dB) and low

(+3 dB). The local connectivity was modeled as a function of

fixed factors NR, SNR, and their interaction, and the participants

were treated as a random effect. The analysis was conducted

based on subject-averaged local connectivity values. We will also

report the results based on single trial models for the statistically

significant local connectivity, in which the interaction between

participants and trials was treated as a random effect.

In order to investigate our second hypothesis which is

about the relationship between local connectivity and the four

experimental conditions- +3 dB active, +3 dB inactive, +8 dB

active, and +8 dB inactive, we applied the measured SNR

improvement of the NR processing, refer to Section 2.1.2 for

more details. The SNR improvements of the active NR scheme

were 6.24 dB and 5.17 dB at 3 dB SNR and 8 dB SNR,

respectively. This process reduces the two factors SNR and NR

of the experiment to only one factor SNR, with values of 3, 8,

9.24, and 13.17 dB. Then, one-way LMMANOVA has applied to

model local connectivity as a function of fixed factor SNR which

was treated as a continuous variable. Two models were used for

each local connectivity: the first model included the quadratic

(nonlinear) term alongside the linear term for the fixed factor

SNR and the second model only consisted of the linear term.

The participants were treated as a random effect. Similar to the

two-way LMM ANOVA, the results based on single trial models

for the statistically significant trends will be reported.

Since a series (eight ROIs and four bands leading to 32

models) of LMM ANOVA models were applied, we used

the Bonferroni correction to compensate for the multiple

comparisons effect. The significance levels for all the two-way

and one-way LMM ANOVA models were, therefore, chosen as

α = 0.05
32 = 0.0016.
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TABLE 2 P-values of the two-way LMM ANOVA. (A) P-values for interaction between two factors SNR and NR. (B) P-values of the main factor SNR.

(C) P-values of the main factor NR. The two factors are SNR values, +3 dB and +8 dB, and NR schemes, on and o�. The boldface numbers show the

rejection of the null hypothesis. The significance level was Bonferroni corrected, α = 0.05
32

= 0.0016.

(A)

Left
frontal

Frontal
Right
frontal

Central
Left

temporal
Parietal

Right
temporal

Occipital

Delta 0.3083 0.9577 0.9004 0.2891 0.7109 0.0086 0.5054 0.6982

Theta 0.5986 0.9038 0.8941 0.2419 0.8460 0.0098 0.1991 0.8890

Alpha 0.5811 0.7302 0.6898 0.1370 0.5116 0.0009 0.04 0.6041

Beta 0.6868 0.3757 0.5041 0.2295 0.8981 0.0033 0.1544 0.7814

(B)

Left
frontal

Frontal
Right
frontal

Central
Left

temporal
Parietal

Right
temporal

Occipital

Delta 0.6430 0.1143 0.0535 0.6862 0.4565 0.7421 0.9075 0.7022

Theta 0.4882 0.0497 0.5245 0.3467 0.8811 0.4504 0.1736 0.9586

Alpha 0.6072 0.1096 0.6841 0.8241 0.8235 0.6635 0.0981 0.1719

Beta 0.2794 0.0757 0.9245 0.4805 0.6725 0.9951 0.0260 0.3742

(C)

Left
frontal

Frontal
Right
frontal

Central
Left

temporal
Parietal

Right
temporal

Occipital

Delta 0.5015 0.8633 0.7418 0.4164 0.8241 0.6195 0.6881 0.5722

Theta 0.7668 0.9642 0.5383 0.4872 0.6733 0.3703 0.8001 0.8816

Alpha 0.6963 0.7806 0.2371 0.7766 0.6075 0.4634 0.5812 0.2326

Beta 0.7135 0.5241 0.2805 0.8134 0.7648 0.7150 0.8649 0.4089

3. Results

Participants were prompted with a two-choice question

related to the content of the attended speech after each trial.

They correctly answered 86% of the questions. This indicates

that the participants followed the task as instructed. However,

after applying a two-way LMM ANOVA on the behavioral

performances, there was no statistical effect of NR, SNR,

and their interaction, with the p-values of 0.25, 0.06, and

0.37, respectively.

To test Hypothesis H1, two-way LMM ANOVA was

applied to local connectivity at each ROI and band, which

modeled the normalized local connectivity as a function of

fixed factors NR and SNR. Tables 2A–C summarized the p-

values obtained from applying two-way LMM ANOVA on

the average over trials for each subject local connectivity. As

shown in able Table 2A, we found a significant interaction of

SNR and NR on local connectivity at the parietal region alpha

frequency band (will be referred to as parietal alpha hereinafter),

F(59.02) = 12.28, p = 0.0009. Note that, as mentioned

in Section 2.1.6, the EEG data of one block for one subject

was not recorded. Therefore, our data is unbalanced and the

denominator degree of freedom (DF) is estimated by using

Satterthwaite’s method. As there is no p-value less than 0.0016

in Tables 2B,C, no significant main effect was found for SNR

and NR. The results of applying LMM ANOVA on single trial

data were in line with the average trial analysis. The interaction

between SNR and NR was statistically significant at parietal

alpha, F(1228.5) = 83.59, p < 0.0001.

The one-way LMMANOVAwas applied to average trial data

after applying the SNR improvement of the NR processing to

investigate Hypothesis H2. The normalized local connectivity

was modeled as a function of continuous fixed factor SNR

by using two separate one-way LMM ANOVA to study the

relationship between the normalized local connectivity and

experiment conditions. The first model was based on including

the quadratic term for the fixed factor SNR and the second

model only consisted of the linear term. Table 3A shows the

results of the first model in which quadratic terms alongside

linear terms were included. As shown in Table 3A, the nonlinear

trend between local connectivity and SNR at parietal alpha was

statistically significant, F(60.22) = 11.92, p = 0.0010. We found

no linear relationship between the experimental conditions and

local connectivity, as there is no p-value less than the significant
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TABLE 3 P-values of the one-way LMM ANOVA. (A) P-values for the quadratic term. (B) P-values for the linear term. The local connectivity at

di�erent ROIs and bands is independently modeled by di�erent listening conditions. The conditions are +3 dB inactive (+3 dB), +8 dB inactive (+8

dB), +3 dB active (9.24 dB), and +8 dB active (13.17 dB). The boldface numbers show the rejection of the null hypothesis. The significance level was

Bonferroni corrected, α = 0.05
32

= 0.0016.

(A)

Left
frontal

Frontal
Right
frontal

Central
Left

temporal
Parietal

Right
temporal

Occipital

Delta 0.3358 0.9458 0.9256 0.3253 0.6948 0.0094 0.4790 0.6577

Theta 0.6181 0.9998 0.9405 0.2151 0.8761 0.0129 0.2118 0.8773

Alpha 0.6061 0.7128 0.6102 0.1282 0.5417 0.0010 0.0593 0.5358

Beta 0.7114 0.4093 0.5719 0.2195 0.9201 0.0035 0.1618 0.8435

(B)

Left
frontal

Frontal
Right
frontal

Central
Left

temporal
Parietal

Right
temporal

Occipital

Delta 0.3699 0.2595 0.3415 0.6413 0.7490 0.4511 0.7277 0.5054

Theta 0.8699 0.2342 0.9215 0.2923 0.65551 0.6869 0.5770 0.8868

Alpha 0.9773 0.2288 0.5105 0.7980 0.7522 0.3106 0.6534 0.9599

Beta 0.3135 0.0942 0.3961 0.5875 0.9849 0.6326 0.2555 0.9071

level in Table 3B. The nonlinear trend between local connectivity

and SNR at parietal alpha was also significant by single trial

analysis, F(1229.5) = 76.36, p < 0.0001.

For the purposes of visualization, (Figures 3, 4) plot

regression line and 95% CI for the nonlinear trend between

normalized local connectivity and experimental conditions at

both individual and average trial analyses, respectively. The

inverted U-shaped relationship shows that local connectivity at

parietal alpha is higher for +3 dB active and +8 dB inactive and

lower for +3 dB inactive and +8 dB active. The figures also show

that NR processing at lower SNR (+3 dB) leads to an increase

in the local connectivity at parietal alpha while NR processing at

higher SNR (+8 dB) leads to a decrease.

4. Discussion

4.1. Summary

In a sample of 22 HIs, we studied the effect of NR processing

in HAs on the EEG local connectivity during a continuous SiN

task. Inspired by the results reported in Alickovic et al. (2020)

and Fiedler et al. (2021), we hypothesized that the effect of NR

schemes on local connectivity differs at the two SNR values,

+3 dB and +8 dB, of the experiment. Consistent with our

Hypothesis (H1), we found a significant interaction between the

factors of the experiment, SNR and NR, at parietal alpha by

using both average-trial and single-trial analysis, which would

suggest that NR processing affects the local connectivity at low

SNR differently than that of at high SNR. It should be noted that

FIGURE 3

Parietal alpha local connectivity is regressed based on di�erent

listening conditions. The analysis is performed by single trial

data and the red points show the average over all trials and all

subjects for di�erent listening conditions.

the p-values corresponded to the interaction at the parietal, and

all frequency bands are small. However, the dominant significant

change due to the interaction between SNR and NR appears to

be at the alpha band as only the parietal alpha band survives a

correction for multiple comparisons.

The articulation-index-weighted SNR improvements

(Ohlenforst et al., 2018) of the NR processing were applied,

which reduces the two factors of the experiment to only one

factor SNR with values +3 dB, +8 dB, +9.24, and +13.17 dB.

We then investigated the relationship between the experimental

conditions and local connectivity. We found a significant

inverted U-shaped function at parietal alpha by both single
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FIGURE 4

Parietal alpha local connectivity is regressed based on di�erent

listening conditions. The analysis is performed by average over

trials data. The black points in the figure show the average over

trials for subjects and the red points show the average over

black points for di�erent listening conditions.

and average trial analysis, which was in line with our second

Hypothesis H2. Since this study is the first work, to our

knowledge, that investigates the effect of different levels of

listening effort and NR schemes in HA on local connectivity, the

results will be discussed in terms of hypothesized functions in

the following sections.

4.2. NR schemes in HAs reduce the
listening e�ort

Recent studies have shown that the activation of advanced

signal processing algorithms in HAs provides hearing benefits

for HIs, particularly in adverse listening conditions (Sarampalis

et al., 2009; Ohlenforst et al., 2018; Winneke et al., 2018). Studies

focusing on changes or benefits in speech intelligibility may not

provide a complete picture of the processes involved in speech

recognition (Dillon and Lovegrove, 1993; Sarampalis et al., 2009;

Ohlenforst et al., 2018). In particular, NR processing, which is

the main focus of this study, can reduce listening effort and

free up cognitive resources for other tasks while it may not

have positive effects on speech reception threshold (Sarampalis

et al., 2009). The effects of NR schemes have been investigated

when the stimuli is a single word or sentence (Dimitrijevic et al.,

2017; Miles et al., 2017; Ohlenforst et al., 2018). However, HI

individuals encounter long speech in real ecological situations.

For this reason, long continuous news clips were presented at

different SNR levels. Our first finding based on speech tracking

analysis of the EEG data published in Alickovic et al. (2020)

showed that NR processing can improve the performance of HAs

during a selective auditory attention task. Then, Fiedler et al.

(2021) showed that the NR schemes can also reduce the listening

effort estimated by pupillometry. However, the neural index of

listening effort estimated by spectral power analysis of the EEG

data did not show any statistical change. It inspired us to recruit

a new correlate of listening effort estimated by local connectivity

in EEG data to investigate the effect of NR schemes during a long

continuous SiN task.

As shown in Table 2A, the interaction between SNR and

NR on local connectivity is statistically significant. This suggests

that NR processing affects the local connectivity differently at

the two SNR values of the experiment, which is in line with

pupillometry results reported in Ohlenforst et al. (2018) and

Fiedler et al. (2021) where they also found a different effect of

NR schemes at different SNR values. This result is also consistent

with results published in Alickovic et al. (2020) in which they

found that NR processing improved the performance of the

selective attention task differently at the two SNR values. We

also investigated the relationship between correlates of listening

effort and the experimental conditions by applying the SNR-

improvement of NR processing. As demonstrated in Figures 3, 4

and Table 3A, we found an inverted U-shaped trend. We believe

that this study is the first work that showed the nonlinear trend

of neural estimation of correlates of listening effort as a result of

NR processing at different SNR values during a continuous long

SiN task. This result is consistent with pupil dilation analysis

in Ohlenforst et al. (2018) and EEG analysis in Marsella et al.

(2017), Wisniewski et al. (2017), Decruy et al. (2020), and Paul

et al. (2021) where nonlinear relationship due to NR processing

at different SNR values and different levels of listening difficulty

were found, respectively.

4.3. Local connectivity is modulated by
top-down cognitive functions or changes
of brain networks

Most of the existing studies in the literature which

investigated the listening effort by using EEG signals tend

to focus on spectral power features and particularly event-

related spectral perturbation (ERSP) (c.f Section 4.5). Finding

a relationship between local connectivity estimated at scalp

level, which is the case in this study, and power change can

be controversial and even two features can be significantly

uncorrelated, as is the case in Jalili et al. (2007) study where

no significant correlation was found between power change

and local connectivity in Schizophrenia EEG data analysis.

There might be possibilities to discuss the relationship based

on the Firefly model presented in Burgess (2012) or the model

presented in Jirsa (2009). However, we believe that the local

connectivity estimated in this study can violate the required

assumptions of these models. Nonetheless, the studies which

investigate spectral power changes during effortful listening

described the possible top-down cognitive functions or brain

networks that can lead to the change in the power features. There
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are two theories that can connect top-down cognitive function

or brain networks and local connectivity.

The first theory is based on the phase reset model in which

phase locking of ongoing EEG activity can be a modulatory

effect of top-down functions of the brain (Bernarding et al.,

2017). Peelle et al. (2013) found that neural data and the

envelope of the external acoustic stimuli become more phase-

locked when linguistic information is available. They concluded

that the phase-locking of the neural oscillations does not rely

only on sensory cues and top-down cognitive function can

also modulate phase locking. Dimitrijevic et al. (2019) also

found that the phase-locked cortical representation can be

modulated by top-down cognitive function related to different

levels of listening effort. Bernarding et al. (2017) demonstrated

that the distribution of the phase of the ongoing EEG signal

can be modulated by the top-down cognitive functions related

to different listening efforts. Considering these aspects, one

interpretation can be that local connectivity estimated by

multivariate phase synchrony is alsomodulated by the top-down

cognitive functions related to the listening effort.

The second theory explains that change in local connectivity

estimated by phase synchronization can be one of the

mechanisms for coordinating the information transfer in brain

networks (Helfrich et al., 2016; Olejarczyk et al., 2017). For

example, Helfrich et al. (2016) showed that local parieto-

occipital phase coupling at the alpha band controls the inter-

hemispheric information transfer. Additionally, Olejarczyk et al.

(2017) reported an increase in local phase coupling in closed

eyes compared to open eyes in a resting-state EEG analysis and

they concluded that fronto-parietal information transfer can be

regulated by local phase synchrony. Regarding these aspects, it

can be interpreted that local connectivity estimated by phase

synchrony also coordinates the information transfer related to

effortful listening and NR schemes in HAs.

4.4. Significant change at parietal alpha
local connectivity

Most prior studies that investigated EEG correlates of

listening effort have tended to restrict their analysis to a single

EEG band and region (Wisniewski et al., 2015; Dimitrijevic et al.,

2019; Seifi Ala et al., 2020). However, Wisniewski et al. (2021)

conducted a comprehensive study in which they investigated a

fuller range of the EEG power spectrum and independent source

activities. They found several significant changes in different

regions and bands. They concluded that listening in adverse

conditions can possibly engage multiple cognitive processes.

Consistent with Wisniewski et al. (2021), NR processing can

also engage multiple cognitive processes which can possibly

change the local connectivity. As the effect of NR processing

in HAs on local connectivity in ecologically adverse conditions

was investigated for the first time in this article, we did not

restrict our analysis to one specific EEG band and region. Local

connectivity at a total of eight ROIs and four conventional EEG

bands were, therefore, examined.

Frontal theta and parietal alpha activity at the sensor level

have been mainly reported in the literature as the regions and

bands that can be used to estimate correlates of listening effort

(Wisniewski et al., 2017, 2018; Dimitrijevic et al., 2019; Fiedler

et al., 2021). The change in the frontal theta activity is mostly

observed in experiments in which non-speech stimuli were used

(Wisniewski et al., 2017, 2018). This tends to reflect the internal

attention and it does not show general endogenously exerted

effort related to externally generated object representations (e.g.,

competing speech streams and background noise) (Wisniewski

et al., 2018). As the change of listening effort in this study is

mostly due to changes in externally represented speech stimuli,

we did not observe any significant change in frontal theta local

connectivity, which is in line with the results reported in Seifi Ala

et al. (2020) that significant change of frontal theta change

was not observed as a results changes in the speech stimuli

characteristics. On the other hand, the change of parietal alpha

activity has been widely observed when listening effort was

examined in experiments with speech stimuli (Petersen et al.,

2015; Wöstmann et al., 2015, 2017b; McMahon et al., 2016;

Dimitrijevic et al., 2017, 2019; Marsella et al., 2017; Miles et al.,

2017; Seifi Ala et al., 2020; Fiedler et al., 2021; Paul et al., 2021),

which is line with our results where we only found significant

change at the parietal alpha activity.

4.5. Top-down cognitive functions in
listening e�ort

The direction (i.e., increase, decrease, or inverted U-shape)

of the parietal alpha activity modulation found in the literature

has been controversial. Some studies reported that higher

listening effort leads to an increase in parietal alpha power

(relative to the baseline) arguing that it reflects the inhibition

of neural activity in task-irrelevant brain area (Petersen et al.,

2015; Wöstmann et al., 2015, 2017b; McMahon et al., 2016;

Dimitrijevic et al., 2017, 2019; Marsella et al., 2017; Miles

et al., 2017; Paul et al., 2021). In contrast, other studies showed

that more demanding conditions lead to a decrease in parietal

alpha power (Seifi Ala et al., 2020; Fiedler et al., 2021). The

first explanation for the contradictory results is that multiple

sources of alpha power contribute to parietal alpha power

and the balance between suppression and enhancement can be

determined by the stimuli and task design (Dimitrijevic et al.,

2017; Seifi Ala et al., 2020; Fiedler et al., 2021; Wisniewski

et al., 2021). Seifi Ala et al. (2020) observed lower parietal

alpha power related to more difficult conditions during long

speech listening. It was discussed in Seifi Ala et al. (2020)
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that sustained attention and constant update of information

in working memory is required when the stimuli are long,

which would lead to contradictory results. Another explanation

for the opposite direction can be related to the inverted U-

shape relationship. Depending on the level of difficulties of the

experiment, estimated correlates of listening effort can be on

one or the other side of the inverted U’s maximum, which

would result in an increase or decrease in parietal alpha power,

respectively (Fiedler et al., 2021).

The last relationship between listening conditions and

parietal alpha power reported in the literature is an inverted

U-shape (Marsella et al., 2017; Wisniewski et al., 2017; Decruy

et al., 2020; Paul et al., 2021). There are two explanations for

the observed nonlinear trend. One theory is that during difficult

conditions subjects disengaged and gave up to perform the task,

which can influence the parietal alpha changes (Marsella et al.,

2017). The second explanation is that at very high levels of

difficulty, other sensory networks might be activated to help

speech understanding which leads to an inverse direction of

parietal alpha modulation compared to that at lower difficulty

levels (Paul et al., 2021). The supportive sensory networks under

very hard conditions can be related to sustained attention and

constant update of information in working memory as reported

in Seifi Ala et al. (2020).

4.6. Parietal alpha local connectivity is
modulated by listening e�ort

Referring to Figure 3 and Table 3A, we also found a

significant nonlinear trend in local connectivity at parietal

alpha. As shown in Figure 3, an increase in levels of difficulty

in listening (decrease in SNR values) from the condition +8

dB ON (NR: active) to +8 dB off (NR: inactive) leads to an

increase in local connectivity. Consistent with results reported in

Petersen et al. (2015), Wöstmann et al. (2015, 2017b), McMahon

et al. (2016), Dimitrijevic et al. (2017), Marsella et al. (2017),

Miles et al. (2017), Dimitrijevic et al. (2019) and Paul et al.

(2021), the increase of the parietal alpha power can be due

to inhibition cognitive function. Considering the first theory

mentioned in Section 4.3, the inhibition of top-down cognitive

function can lead to the modulation of local connectivity. This

interpretation is in line with the results of Mathewson et al.

(2009) and Paul et al. (2021) where the authors also found

that phase synchronization in parietal alpha increases due to

inhibition of cognitive function. The change of local connectivity

due to inhibition function can also be supported by the second

theory mentioned in Section 4.3. The inhibition function mostly

engages the fronto-parietal network. We interpreted that the

local connectivity at parietal alpha can also coordinate the

fronto-parietal information transfer. This interpretation is in

line with the results reported in Olejarczyk et al. (2017) where

the authors also found that phase synchrony in parietal alpha

coordinates the fronto-parietal information transfer in rest-state

EEG analysis.

As shown in Figure 3, in the more difficult condition (i.e.,

at +3 dB) the local connectivity decreases, whereas in the easier

condition (i.e., at + 8dB) the local connectivity increases. In

line with EEG band power analysis results, this change can

be due to either giving up during more difficult conditions

(Marsella et al., 2017) or other sensory networks that might be

activated to help speech understanding during such listening

conditions (Paul et al., 2021). Our findings provide evidence

that the change from increase to decrease in local connectivity

under more difficult conditions could be due to the activation of

other networks at the lowest SNR value. Considering the second

theory mentioned in Section 4.3 which describes that local

connectivity estimated by phase synchrony can coordinate the

information transfer in brain networks, the change of direction

in local connectivity modulation at +3 dB OFF condition can

also be due to activation of other sensory networks which can be

coordinated by local connectivity at parietal alpha. One possible

sensory network can be due to sustained attention and constant

update of information in working memory which is in line with

the results reported in Seifi Ala et al. (2020). It was discussed

in Seifi Ala et al. (2020) that sustained attention and constant

update of information in working memory are required when

the stimuli are long. This was also observed during a Stenberg

task in which encoding and retention phases were entangled and

a contradictory increase in parietal alpha power was reported as

a result of higher working memory loads (Jensen et al., 2002;

Hjortkjær et al., 2020; Seifi Ala et al., 2020). Kim et al. found that

the brain network involved in updating function engaged in an

n-back level experimental paradigm mostly includes the parietal

cortex which is served as the main hub for the cognitive network

(Kim et al., 2017). They also found a substantially different

pattern during the most demanding condition compared to

easier conditions. Considering the second theory in Section 4.3,

the change of direction of the local connectivity modulation

at the hardest condition in our experiment can also be due to

substantially different networks involved in updating function.

4.7. Limitations

The local connectivity at eight ROIs and four EEG frequency

bands were investigated in this study. The selection of the

ROIs was similar to that in Mehta and Kliewer (2017)

where they used 128 electrodes, and we adapted their ROI

selections with 64 electrodes setup. However, there might

be a better selection of ROIs, which can lead to different

results. Additionally, considering that we had two states of

NR processing and two SNR values, our experiment had four

listening conditions. We checked the relationship between local

connectivity and listening conditions, and we found a nonlinear
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trend. Examination with more SNR values is required, which

can provide more insights, and we expect to observe a complete

inverted U-shape relationship with more SNR values.

Obleser and Kayser (2019) showed that the phase locking

between neural data and the envelope of the speech can be

modulated by the behavioral performance of the task. There

is a possibility that local connectivity is also modulated by the

performance of the task or subjective rating of listening effort

(often referred to as self-report or experienced listening effort)

(Paul et al., 2021), similar to the first theory in Section 4.3. The

behavioral performance evaluation was accomplished by asking

a two-choice question about the to-be-attended speech stream

at the end of each trial in our experiment. Our investigation of

the effect of the experimental factors on behavioral performance

published in Fiedler et al. (2021) did not show any significant

effect of NR, SNR, or their interactions on the behavioral

performance. The behavioral performance was though well

above the chance level (50%) and the participants followed the

task as instructed. However, the lack of valuable behavioral

performance or subjective ratings of listening effort prevented

us from checking the possibility that local connectivity is

modulated by them.

The second theory in Section 4.3 explained that local

connectivity can coordinate the information transfer in brain

networks. We interpreted that local connectivity at parietal

alpha can also coordinate the large-scale connectivity engaged in

inhibition function and constant update of the working memory

and referred to the studies in which these information transfers

were studied. There is a possibility that other brain networks are

also engaged during a continuous long SiN task, which could be

provided by a large-scale connectivity investigation.

5. Conclusion

We investigated the effect of activation of NR processing on

EEG-based phase synchrony measure within localized regions

of the brain at eight regions of interest and four conventional

EEG frequency bands during a longer continuous speech in

noise (SiN) task with two SNR levels. We demonstrated that

the effect of noise reduction (NR) processing algorithms on

EEG-based phase synchrony have a non-linear trend in the

parietal region of interest, specifically in the alpha band. The

interpretation of the phase synchrony modulation is in line

with the literature. These results confirmed that the EEG-based

phase synchrony within localized regions of the brain contains

informative features which can reflect the effects of HA signal

processing algorithms in HA users. Taken together, our study

provided further evidence that the NR processing algorithms

in HAs positively affect HA users in their everyday natural

listening environments.
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