

Aalborg Universitet

End-to-end global to local convolutional neural network learning for hand pose
recovery in depth data

Madadi, Meysam; Escalera, Sergio; Baró, Xavier; Gonzàlez, Jordi

Published in:
IET Computer Vision

DOI (link to publication from Publisher):
10.1049/cvi2.12064

Creative Commons License
CC BY-NC 4.0

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Madadi, M., Escalera, S., Baró, X., & Gonzàlez, J. (2022). End-to-end global to local convolutional neural
network learning for hand pose recovery in depth data. IET Computer Vision, 16(1), 50-66.
https://doi.org/10.1049/cvi2.12064

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1049/cvi2.12064
https://vbn.aau.dk/en/publications/dded7b5a-ae13-4589-a453-080cc2d06a87
https://doi.org/10.1049/cvi2.12064

Received: 2 March 2021 - Revised: 14 June 2021 - Accepted: 2 July 2021 - IET Computer VisionDOI: 10.1049/cvi2.12064

OR I G INAL RE SEARCH PA PER

End‐to‐end global to local convolutional neural network learning
for hand pose recovery in depth data

Meysam Madadi1,2 | Sergio Escalera1,3 | Xavier Baró1,4 | Jordi Gonzàlez1,2

1HuPBA Lab, Computer Vision Center, Bellaterra
(Barcelona), Spain

2Department of Computer Science, Universitat
Autònoma de Barcelona (UAB), Bellaterra, Spain

3Department of Mathematics and Informatics,
Universitat de Barcelona, Barcelona, Spain

4Faculty of Computer Science, Multimedia and
Telecommunications, Universitat Oberta de
Catalunya, Barcelona, Spain

Correspondence

Meysam Madadi, Computer Vision Center, Edifici
O, Campus UAB, 08193 Bellaterra (Barcelona),
Spain.
Email: mmadadi@cvc.uab.es

Funding information

MINECO/FEDER, Grant/Award Numbers:
PID2019‐105093GB‐I00, PID2020‐120611RB‐I00,
RTI2018‐095232‐B‐C22, TIN2015‐65464‐R;
CERCA Programme/Generalitat de Catalunya;
ICREA

Abstract
Despite recent advances in 3‐D pose estimation of human hands, thanks to the advent of
convolutional neural networks (CNNs) and depth cameras, this task is still far from being
solved in uncontrolled setups. This is mainly due to the highly non‐linear dynamics of
fingers and self‐occlusions, which make hand model training a challenging task. In this
study, a novel hierarchical tree‐like structured CNN is exploited, in which branches are
trained to become specialised in predefined subsets of hand joints called local poses.
Further, local pose features, extracted from hierarchical CNN branches, are fused to learn
higher order dependencies among joints in the final pose by end‐to‐end training. Lastly,
the loss function used is also defined to incorporate appearance and physical constraints
about doable hand motions and deformations. Finally, a non‐rigid data augmentation
approach is introduced to increase the amount of training depth data. Experimental
results suggest that feeding a tree‐shaped CNN, specialised in local poses, into a fusion
network for modelling joints' correlations and dependencies, helps to increase the pre-
cision of final estimations, showing competitive results on NYU, MSRA, Hands17 and
SyntheticHand datasets.

KEYWORD S
computer vision, data acquisition, human computer interaction, learning (artificial intelligence), pose estimation

1 | INTRODUCTION

Recently, hand pose recovery attracted special attention, thanks
to the availability of low cost depth cameras, like Microsoft
Kinect [1–16]. Unsurprisingly, 3‐D hand pose estimation plays
an important role in most human‐computer interaction
application scenarios, like social robotics and virtual immersive
environments [17]. Despite impressive pose estimation im-
provements, thanks to the use of convolutional neural net-
works (CNNs) and depth cameras, 3‐D hand pose recovery
still faces some challenges before becoming fully operational in
uncontrolled environments with fast hand/fingers motion,
self‐occlusions, noise, and low resolution [18].

Two main strategies have been proposed in the literature
for addressing the aforementioned challenges: Model‐based
and data‐driven approaches. Model‐based generative ap-
proaches fit a predefined 3‐D hand model to the depth image

[4, 6, 19–22]. However, as a many‐to‐one problem, accurate
initialisation is critical; besides, the use of global objective
functions might not convey accurate results in case of self‐
occlusions of fingers.

Alternatively, the so‐called data‐driven approaches consider
the available training data to directly learn hand pose from
appearance [2, 8–10, 12–16, 23, 24]. Data‐driven approaches
for hand pose estimation have benefitted from recent advances
on CNNs. Convolutional neural networks, as in many other
computer vision tasks, have been successfully applied in data‐
driven hand‐pose recovery approaches either for heat‐map
regression of discrete outputs (corresponding to joint estima-
tion probabilities) [3, 16, 25] or direct regression of continuous
outputs (corresponding to joint locations) [5, 12–14, 26, 27].
On the one hand, heat‐map regression models require addi-
tional optimisation time for computing the likelihood of a joint
being located at a particular spatial region. Also, these methods

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited and is not used for commercial purposes.

© 2021 The Authors. IET Computer Vision published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

50 - IET Comput. Vis. 2022;16:50–66. wileyonlinelibrary.com/journal/cvi2

https://doi.org/10.1049/cvi2.12064
https://orcid.org/0000-0002-7384-5712
mailto:mmadadi@cvc.uab.es
https://orcid.org/0000-0002-7384-5712
https://ietresearch.onlinelibrary.wiley.com/journal/17519640

are subject to propagate errors when mapping images to the
final joint space. On the other hand, a main issue with CNNs
as direct regression models is how to deal with high non‐linear
output spaces, since models that are too complex jeopardise
generalisation. Indeed for CNNs, learning suitable features
(i.e., with good generalisation and discrimination properties) in
highly non‐linear spaces, while taking into account the struc-
ture and dependencies among parameters, is still a challenging
task.

In this study, direct regression of the 3‐D hand pose is
implemented as a specific tree‐shaped CNN architecture
designed to avoid training a coarse global hand motion model
but allowing instead finer local specialisations for different
fingers and hand regions. So we break the hand pose estima-
tion problem into hierarchical optimisation subtasks, each one
focussed on a specific finger and hand region. Combined
together in a tree‐like structure, the final CNN shows fast
convergence rates due to computations applied at a local level.
In addition, we model correlated motion among fingers by
fusing the features, learned in the hierarchy, through fully
connected layers and training the whole network in an end‐to‐
end fashion. The main advantage of this strategy is that the
3‐D hand pose prediction problem is attained as a global
learning task based on local estimations.

Moreover, it has been proved that L2 loss, in regression
problems, is sensitive to outliers and ground‐truth noise [28].
Therefore, in order to further improve the final estimation in
high non‐linear spaces of hand configurations, we incorpo-
rate appearance and physical penalties in the loss function,

based on the physical constraints typically applied in 3‐D
reconstruction of human poses [29]. By including such
penalties during the network learning stage, unrealistic pose
configurations are avoided. We qualitatively compare state‐of‐
the‐art pose estimation approaches with respect to ours in
Figure 1.

Lastly, as it is common in deep learning problems, vari-
ability and amount of data defines the success of a model and
its generalisation to unseen data. In this study, we introduce a
non‐rigid augmentation approach to generate realistic data
from training data. To the best of our knowledge, this is the
first time such augmentation is being applied in depth images.
We use ground‐truth joints to compute hand kinematic
parameters and deform hand joints. We then apply interpola-
tion techniques to deform point cloud based on the joints.
Results demonstrate that our proposed framework trained
on augmented data is competitive against state‐of‐the‐art
approaches in NYU and MSRA datasets.

Our main contributions are as follows:

� We propose a tree‐structured network for the 3‐D hand
pose estimation problem. In the proposed architecture,
localised features are learned in each branch for each finger.
Such independent features are fused at the end to learn a
global interconnection of hand parts.

� We also propose a novel loss function, helping the network to
be aware of appearance and hand dynamics. The appearance
criterion is not differentiable. Therefore, we propose an
estimation of its gradients in backpropagation.

F I GURE 1 Qualitative comparison of our proposed approach versus state‐of‐the‐art methods: [5, 25, 26]. The reported results on the state‐of‐the‐art
methods are publicly available in their web pages. The work of Tompson et al. [25] estimates a 2‐D pose using a joints' heat map only, thus providing poor pose
estimation results in the case of noisy input images (second column). Oberweger et al.’s [26] results (DeepPrior) show that principle component analysis is not
able to properly model hand pose configurations. Oberweger et al. [5] improved previous results by applying an error feedback loop approach. However, error
feedbacks do not provide accurate pose recovery for all the variability of hand poses. In essence, in our proposed local‐based pose estimation framework, a
separate network is trained for each finger. Subsequently, we fuse such learned local features to include higher order dependencies among joints, thus obtaining
better pose estimation results than previous approaches

MADADI ET AL. - 51

� We propose a novel non‐rigid data augmentation
approach to boost network performance. By employing
this augmentation approach, the network can better
generalise to the test set. Our experiments on the NYU
dataset shows effectiveness of this idea performing well in
practice.

2 | RELATED WORK

Hand pose estimation has been extensively studied in the
literature [30]; we refer the reader to [19] for a complete
classification of state‐of‐the‐art works in the field. Here, we
focus mostly on recent works using CNNs and depth
cameras.

Most CNN‐based architectures in data‐driven hand pose
estimation approaches are specifically designed to be
discriminative and generalisable. Although the success of such
approaches depends on the availability and variability of
training data, CNN models cope reasonably well with this
problem, and two main families of approaches can be distin-
guished in the literature, namely heat‐map and direct regres-
sion methods.

Heat‐map approaches estimate likelihoods of joints for
each pixel/voxel/point as a pre‐processing step. In [25], a
CNN is fed with multi resolution input images and one heat
map per joint is generated. Subsequently, an inverse kinematic
model is applied on such heat maps to recover the hand pose.
Nevertheless, this approach is prone to propagate errors when
mapping to the original image, and estimated joints may not
correlate with the hand physics constraints. The work of [3]
extends this strategy by applying multi‐view fusion of extracted
heat maps, where 3‐D joints are recovered from only three
different viewpoints. In this approach, erroneous heat maps
are expected to be improved in the fusion step using com-
plementary viewpoints. The key idea in this work is to reduce
the complexity of input data by aligning all data with respect to
the hand point cloud eigenvectors. Recently, researchers paid
attention to 3‐D heat‐maps and 3‐D alternatives to depth
image as input to the network (i.e., voxels [16] or point clouds
[31]). In this regard, it is shown that a CNN can be effectively
made to learn to correspond input 3‐D points to output dense
3‐D probabilities of joints.

As an alternative, a number of works propose direct
regression for estimating the joint positions of the 3‐D hand
pose based on image features [5, 10, 12–14, 26, 27]. As
mentioned in [32], contrary to heat‐map based methods, hand
pose regression can better handle the increase in complexity of
modelling highly non‐linear spaces. Although some approaches
propose principle component analysis to reduce the pose space
[3, 26], such linear methods typically fail when dealing with
large pose and appearance variabilities produced by different
viewpoints (as shown in Figure 1).

Recently, error feedback [5, 12, 33], cascading [10] and
global‐local [9, 10, 27, 34] approaches have proven to avoid
local minima by iterative error reduction. Authors in [5]
propose to train a generative network of depth images by

iteratively improving an initial guess. In this sense, Neverova
et al. [35] use hand segmentation as an intermediate repre-
sentation to enrich pose estimation with iterative multi‐task
learning. Also, the method proposed in [10] divides the
global hand pose problem into local estimations of palm pose
and finger poses. Thus, finger locations can be updated at each
iteration relative to the hand palm. Contrary to our method,
the authors use a cascade of classifiers to combine such local
estimations.

Authors in [27] apply a CNN to make use of the
resulting feature maps as the descriptors for computing
k‐nearest shapes. Similarly to our approach, in their method
the CNN separates the palm and fingers and computes the
final descriptor by dimensionality reduction. Different from
our approach, they factorise the feature vectors and nearest
neighbours hyperparameters to estimate the hand pose. In a
different way, we propose training the network by fusing
local features to avoid non‐accurate local solutions without
the need of introducing cascading strategies or multi‐view
setups. Contrary to the methods trying to simplify the
problem by dividing the output space into subspaces, Guo
et al. [12] divided the input image to smaller overlapping
regions and fused CNN feature maps as a region ensemble
network.

In CNN‐based methods, data augmentation is a common
approach to boost the network to generalise better. Ge et al.
[36] were the first to apply data augmentation in the problem
of hand pose recovery and showed a meaningful improve-
ment in the results. Even Oberweger and Lepetit [14]
extended the DeepPrior model in [26] and showed the
effectiveness of a simple model trained with data augmenta-
tion. However, the aforementioned approaches use simple
and rigid data augmentation like scaling, rotation and trans-
lation, which may not represent the visual variability in terms
of 3‐D articulated joints. Here, we propose a non‐rigid data
augmentation by deforming hand parameters and interpo-
lating point cloud.

Global‐local solutions or applying physical constraints have
been explored in domains other than hand pose estimation as
well [37–39]. In the object detection domain, Felzenszwalb
et al. [37] aggregated score maps generated by applying global
and local object templates. Object templates can be seen as
convolutional filters. In this sense, we perform similarly by
learning specific filters with respect to the local parts in the
tree‐structure network. In the 2‐D human body pose estima-
tion domain, Chu et al. [38] applied higher order joint re-
lationships by designing special message passing layers among
joint feature maps with respect to the body skeleton. This is
different from our approach in which we apply a simple multi‐
layer perceptron network on top of fused features. Finally,
physical constraints on joints have been used before as well in
the domain of weakly supervised 3‐D body pose estimation
[39]. In this approach, a sample without 3‐D ground truth data
is regularised by the body symmetry between left‐right parts
with respect to the limbs' length. However, this is not appli-
cable in the hand domain since the hand does not have a
symmetrical geometry.

52 - MADADI ET AL.

3 | GLOBAL HAND POSE RECOVERY
FROM LOCAL ESTIMATIONS

Given an input depth image I , our goal is to estimate the 3‐D
locations of n hand joints as the set J ¼ fj ∈ R3g

n
1 . We define

n¼ 20 for the wrist, finger joints and finger tips, following the
hand model defined in [10]. We assume that a hand is initially
visible in the depth image, that is not occluded by other objects
in the scene, although it may present self‐occlusions and has
properly been detected beforehand (i.e., pixels belonging to the
hand are already segmented [25]). We also assume that intrinsic
camera parameters are available. We refer to the global pose as
the whole set J , while a local pose is a subset of J (e.g., index
finger joints).

The hand pose space is a highly non‐linear manifold. In the
literature, different architectures have been proposed to deal
with the data complexity [5, 32, 40]. For example, in multi‐task
learning, different branching strategies are typically applied to
solve subproblems [41, 42], and the different subproblems are
solved jointly by sharing features. Similarly, considering hand
pose recovery as a regression problem, we divide the global
hand pose into simpler local poses and solve each local pose
separately in a branch by means of a tree‐shaped network. In
such a design, each network branch is specialised in a local
pose. We show this architecture in Figure 2.

We define the amount of locality by the number of joints
contributing to a local pose. On the one hand, keeping such
locality high (i.e., lower number of joints) causes fingers to be
easily confused among each other or detected in a physically
impossible location. On the other hand, a low locality value
(i.e., higher number of joints) increases the complexity. Besides,
local joints should share a similar motion pattern to maintain
lower complexity. So we follow the hand kinematic tree in the
particular implementation in this study and assign to each local
pose one finger plus palm joints. This means eight joints per
branch, thus leading to a 24 (¼3� 8) dimensional vector as the
branch output.1

The proposed architecture has several advantages. Firstly,
correlated fingers share features in earlier layers. By doing this,
we allow the network to hierarchically learn more specific
features for each finger with respect to its most correlated
fingers. Secondly, the number of filters per finger can be
adaptively determined. Thirdly, the estimation of the global
pose is reduced to the estimations of simpler local poses,
causing the network to train at fast convergence rates.

Training the network only based on local poses omits in-
formation about inter‐fingers relations. Tompson et al. [43]
included a graphical model within the training process to
formulate joints' relationships. Li et al. [44] used a dot product
to compute similarities for embedded spaces of a given pose
and an estimated one in a structural learning strategy. Instead,
we apply late fusion based on local features; thus, the network
learns the joint dependencies through fully connected layers
for estimating the final global pose. The whole network is

trained end‐to‐end jointly for all global and local poses, given a
constrained loss function (see Section 3.2).

3.1 | Hand pose estimation architecture

We preprocess depth images before feeding the network, that
is, the hand area is cropped and normalised. To do so, a fixed
size window in 3‐D coordinates, perpendicular to the image
plane and centred on the hand mean point, is projected on the
image plane. Subsequently, the resulting window is cropped
and resized to a 192� 192 fixed size image using nearest
neighbour interpolation. Then, the mean depth is subtracted
from the hand pixel values. Similarly, the hand mean point is
subtracted from ground‐truth joints to have a translation
invariant network.

As intermediate layers, the network is composed of six
branches, where each branch is associated with specific fingers
as follows: two branches for index and middle fingers, two
branches for ring and pinky fingers, one branch for thumb, and
one branch for palm. In the palm branch, we assume that the
palm is a rigid object. Therefore, it can be estimated by a linear
transformation of a reference palm. Let ĴP ∈ R3�5 be the set of
reference palm joints in a canonical viewpoint (e.g., frontal
upright hand). We set ĴP as the average palm joints of all
training samples after transforming them to the canonical
viewpoint. Then, palm joints JP ∈ R3�5 can be reconstructed
by b� R� ĴP þ c, where b is a scaling factor, R is a rotation
matrix and c is a translation vector. As shown in the results,
regressing b, R and c leads to more accurate results than directly
regressing JP . We compute the ground‐truth values for b, R
and c by Procrustes analysis. We also convert R to quaternions
Q ∈ R4 to make sure we always estimate a valid rotation.
Another reason why we use the palm branch is to provide more
intermediate features for the global pose regression.

As shown in Figure 2, each convolutional block consists of
a convolution layer with 3� 3 filter kernels and a ReLU fol-
lowed by a max‐pooling layer, except for the last block. All
pooling layers contain a 2� 2 window. The last block contains
a convolutional layer with 6� 6 filter kernels, providing a
feature vector. Fully connected layers are added to the end of
each branch for both local and global pose learning. For the
local pose at each branch, there are two hidden layers with
1024 neurons with a dropout layer in between. Similarly, for
the global pose at each branch, the feature vector is followed
by two hidden layers with 1024 neurons with a dropout layer in
between. Then, the last hidden layers are concatenated, fol-
lowed by a dropout and a hidden layer with 1024 neurons.
Finally, the global and local output layers provide the estima-
tion of joints with one neuron per joint and dimension.

3.2 | Constraints as loss function

In regression problems, the goal is to optimise parameters such
that a loss function between the estimated values of the
network and the ground‐truth value gets minimised. Usually, in1

Note palm is overlapped in all local poses for the stability of the network estimations.

MADADI ET AL. - 53

the training procedure, an L2 loss function plus a regularisation
term is optimised. However, it is generally known that, in an
unbalanced dataset with availability of outliers, L2 norm min-
imisation can result in poor generalisation and sensitivity to
outliers where equal weights are given to the training data [28].
Weight regularisation is commonly used in deep learning as a
way to avoid overfitting. However, it does not guarantee weight
updating to bypass the local minima. Besides, a high weight
decay causes low convergence rates. Belagiannis et al. [28]
proposed Tukey's biweight loss function in the regression
problems as an alternative to L2 loss robust against outliers.
We formulate the loss function as L2 loss along with con-
straints applied to hand joints regarding the hand dynamics and
appearance, leading to more accurate results and less sensitivity
to ground‐truth noise. We define the loss function for one
frame in the form of

L¼ λ1Lloc þ λ2Lglo þ λ3LQ þ λ4Lapp þ λ5Ldyn; ð1Þ

where λi i ∈ f1 ‥ 5g are factors to balance loss functions. Lloc,
Lglo,LQ,Lapp andLdyn denote the loss for the estimated local and
global pose, palm quaternion, appearance, and hand dynamics,
respectively. Next, each component is explained in detail.

Let Fl ∈ R3�m be the concatenation of the m estimated
local joints in each branch of the proposed network and
Gl ∈ R3�m be the ground‐truth matrix. Note that m is not
necessarily equal to n¼ 20. Also, let Fg ∈ R3�n and

Gg ∈ R3�n be the outputs of the fusion network for the esti-
mated global joints and ground truth, respectively. Finally, let
Q̂ ∈ R4 be the ground truth quaternion. Then, we define local,
global and quaternion2 losses as follows:

Lloc ¼
X3m

i¼1

ðFli −GliÞ
2
; ð2Þ

Lglo ¼
X3n

i¼1

ðFgi −Ggi Þ
2
; ð3Þ

LQ ¼
X4

i¼1
ðQi − Q̂iÞ

2
: ð4Þ

A common problem in CNN‐based methods for pose
estimation is that in some situations the estimated pose does
not properly fit with the appearance. For instance, joints are
predicted in physically incorrect locations where there is no
evidence of the presence of hand points [3, 5, 26]. We show
examples of such cases in Figure 9b,c. In this study, during
training, we penalise those joint estimations that do not fit with
the appearance or are physically not possible and include such
penalties in the loss function.

F I GURE 2 Proposed network architecture. The branching strategy connects convolutional neural network blocks into a tree‐shaped structure while
regressing the local pose at each branch. Each local pose is a 24 dimensional vector. We also include an extra branch in the network to regress viewpoint Q,
which is a quaternion rotation matrix. We then fuse all the features of the last convolutional layers to estimate the output global pose. We use Q features in the
fusion to extract palm joints more accurate

2
Note that we compute b and c by the aid of Fg .

54 - MADADI ET AL.

We first assume that, rationally, joints must be located inside
the hand area and have a depth value higher than the hand sur-
face. Besides, jointsmust present physically possible angles in the
kinematic tree. We denote the model output as jxyz in the world
coordinate system and show its projection to the image plane by
juvz. Then, for a given joint jxyz the inequality Iðju; jvÞ − jz < 0
must hold, where Iðju; jvÞ is the pixel value at location ðju; jvÞ.
To avoid violating the first condition (i.e., when a joint is located
outside the hand area after projection to the image plane), we set
the background with a cone function as follows:

5
ffi

ðu − 0:5wÞ2 þ ðv − 0:5hÞ2
q

þ ϕ;

where w and h are the width and height of the image and ϕ is a
fixed value set to 100. The reason for using a cone function
instead of a fixed large value is to avoid zero derivatives on the
background. We use hinge formulation to convert inequality to
a loss through the following:

Lapp ¼
Xm

i¼1
maxð0; Iðjui ; j

v
i Þ − jzi Þ: ð5Þ

We subsequently incorporate the hand dynamics by means
of the top‐down strategy described in Algorithm 1. We assume
that all joints belonging to each finger (except thumb) should
be collinear or coplanar. The thumb has an extra non‐coplanar
form and we do not consider it in the hand dynamics loss. A
ground‐truth finger state sG ∈ f1 ‥ 4g is assigned to each
finger computed by the conditions defined in Algorithm 1.
Each finger has a ground‐truth normal vector eG, which is the
finger direction for case 1 and the finger plane normal vector
for the other cases. Therefore, we define four different losses,
one of them triggered for each finger (as shown in Algo-
rithm 1). Let A, B, C and D be four joints belonging to a finger
starting in A as the root joint and ending in D as the fingertip.
Then the dynamics loss is defined as follows:

Ldyn ¼
X4

i¼1
ΔiðA;B;C;D; sG; eGÞ; ð6Þ

where i denotes a finger index. Now we consider each case in
Algorithm 1 in the following:

We consider a collinear finger in case 1. A finger is collinear if

‖B − A‖þ ‖C − B‖þ ‖D − C‖ < ‖D − A‖þ κ;

where κ is a threshold defining the amount of collinearity and
set to 0:01‖D − A‖. To compute the loss for a collinear
ground‐truth finger, the following condition has to hold:
ρ < cosð∠ðAD

�!
; eGÞÞ ≤ 1, where ρ is a threshold set to 0.9962

for all the experiments, found experimentally. This condition
has to be met for AB

�!
and AC

�!
as well. The cosine function can

be extracted through the dot product. Therefore, using hinge
formulation, the loss is defined as

ΔiðA;B;C;D; 1; eGÞ ¼

max 0; ρ −
AB
�!

⋅ eG
kAB
�!
k

 !

þ

max 0; ρ −
AC
�!

⋅ eG
kAC
�!
k

 !

þ

max 0; ρ −
AD
�!

⋅ eG
kAD
�!
k

 !

þ

μ maxð0; kAB
�!
kþ kBC

�!
kþ kCD

�!
k − 1:01kAD

�!
kÞ;

ð7Þ

where μ is a factor to balance the different components of the
loss function.

We consider a coplanar finger for cases 2, 3 and 4. We
define a finger as coplanar if the cross products of all
subsets of the finger joints with three members are parallel.
Note that a collinear finger is necessarily coplanar. How-
ever, we exclude collinear fingers from this definition due
to cross‐product ambiguity, as shown in Algorithm 1. For a
ground‐truth coplanar finger, such cross products must be
parallel to the plane normal vector. Therefore, for the
given joints A, B and C, the following condition must
hold:

ρ < cos ∠ðAB
�!
� BC
�!

; eGÞ
�

≤ 1:

Given that the ground‐truth finger is coplanar for case 2,
we compute the loss function as follows:

MADADI ET AL. - 55

ΔiðA;B;C;D; 2; eGÞ ¼max 0; ρ −
ðAB
�!
� BC
�!
Þ ⋅ eG

kAB
�!
� BC
�!
k

 !

þmax 0; ρ −
ðAC
�!
� CD
�!
Þ ⋅ eG

kAC
�!
� CD
�!
k

 !

:

ð8Þ

The loss functions for the other coplanar finger cases are
computed in the same way.

3.3 | Loss function derivatives

All components in Equation (1) are differentiable; thus we are
able to use gradient‐based optimisation methods. In this sec-
tion, we explain derivatives of the constraint loss function in
Equation (5). Derivatives of the rest of the loss functions are
computed through matrix calculations. We first define the
derivative of Lapp with respect to t ∈ fjxi ; j

y
i ; j
z
ig through the

following:

∂Lapp
∂t
¼

0 if Iðjui ; j
v
i Þ − jzi ≤ 0

∂I
�
∂t − ∂jzi

�
∂t otherwise:

(

ð9Þ

In the following, we just consider the positive condition of
Equation (9). Besides, we omit index i (which denotes i‐th
joint) from the notations for the ease of reading. Depth image
I is a discrete multi‐variable function of ju and jv, where ju is a
multi‐variable function of jx and jz, and jv is a multi‐variable
function of jy and jz. Consequently, the total derivative of a
depth image can be computed by the chain rule through the
following:

dI
dt
¼
∂I
∂ju

dju

dt
þ
∂I
∂jv

djv

dt
ð10Þ

dju

dt
¼
∂ju

∂jx
djx

dt
þ
∂ju

∂jz
djz

dt
ð11Þ

djv

dt
¼
∂jv

∂jy
djy

dt
þ
∂jv

∂jz
djz

dt
ð12Þ

Next, we present components of ju derivative in detail.3

Depth image I is a function of the hand surface. However,
the hand surface given by the depth camera may have noise
and may not be differentiable at some points. To cope with
this problem, we estimate depth image derivatives by
applying hand surface normal vectors. Let s be the surface
normal vector for a given joint. Then, derivative of I with
respect to u axis is given by the tangent vectors through the
following:

∂I
∂ju
¼
sx

sz
: ð13Þ

As mentioned, juvz is the projection of the estimated
joint jxyz from the world coordinate to the image plane. Note
that joints have zero mean and juvz is extracted after the
image has been cropped and resized. Let f x, px, M

xyz and
Muvz be the camera focal length and image centre for x axis,
world coordinate hand point cloud centre, and its projection
to the image plane, respectively. Then, ju is computed as
follows:

juðjx; jzÞ ¼
f xðj

xþ MxÞ
jzþ Mz

þ px −Mu
� �

scalex þ
w
2
;

scalex ¼
wMz

cf x
;

ð14Þ

where c is the cube size used around the hand point cloud to
crop the hand image. Using this formulation, the derivative of
ju can be easily computed and replaced in Equation (11).

4 | EXPERIMENTS

In this section, we evaluate our approach on three real‐world
datasets NYU [25], MSRA [10] and Hands17 [45], and one
synthetic dataset SyntheticHand [46]. The NYU dataset has
around 73k annotated frames as training data (single subject)
and 8k frames as test data (two subjects). Each frame has been
captured from three different viewpoints and the ground truth
is almost accurate. The MSRA dataset has 76k frames captured
from nine subjects each in 17 pose categories. This dataset
does not provide an explicit training/test set and a subject
exclusive nine‐fold cross validation is used to train and evaluate
this dataset. The MSRA dataset has smaller image resolution
and less pose diversity and accurate ground truth compared to
the NYU dataset. The Hands17 dataset is a large scale dataset
with 957k training and 296k test data. This is a challenging
dataset with diverse viewpoints and number of subjects. The
data is captured from the third and egocentric views. The
training data contains five subjects while the test data has five
unseen subjects plus training subjects. Finally, the Synthetic-
Hand dataset has over 700k training data and 8k test data
consisting of a single synthetic subject performing random
poses from all viewpoints, thus being useful for the analysis of
our methodology under occlusions. All three datasets have at
least 20 hand joints in common. However, the NYU dataset
has 16 extra joints.

We evaluate our approach using two metrics: average
Euclidean distance in mm for all the joints with respect to the
ground‐truth joints and success rate error [47], which evalu-
ates the proportion of test images with their maximum joint
error within a threshold. Next, we provide the details of the
method parameters and evaluate our approach both quanti-
tatively and qualitatively in comparison to state‐of‐the‐art
alternatives.3

Derivatives belonging to jv are computed in the same way as ju .

56 - MADADI ET AL.

4.1 | Training

We utilise MatConvNet library [48] on a server with graphics
processing unit (GPU) device GeForce GTX Titan X with
12 GB memory and Cuda 8. We optimise the network using
the stochastic gradient descent algorithm. We report hyper-
parameters used in the NYU dataset. We set the batch size,
learning rate, weight decay and momentum to 50, 0.5e‐6,
0.0005 and 0.9, respectively. We set the probability of dropout
to 0.5. Our approach converges in almost six epochs while
reducing the learning rate by a factor of 10 for two more
epochs. Overall, the training takes 2 days on the original NYU
dataset while testing takes 50 fps.
Loss function parameters tuning. We set a low value for

parameter μð¼ 0:0005Þ in Equation (7) since it behaves like a
regularisation and it is not connected to ground truth.
Regarding the ρ, it is the lower bound in the hinge loss, that is
Equations (7) and (8). For instance, in Equation (7)
ρ¼ cosð∠maxðAD

�!
; eGÞÞ, where ∠max is the maximum

threshold angle. Increasing this angle makes the lower bound
smaller and, thus, Equation (7) becomes less effective due to
the hinge loss. We set this maximum angle to 5°. Ldyn is mainly
a summation of cosine functions while Lapp is in millimetres.
Therefore, we set λ5 higher than λ4 to balance the cosine space
against millimetre. Finally, we set parameters λ1, λ2, λ3, λ4 and
λ5 experimentally to 4, 4, 1, 3 and 20, respectively. Note that we
train the Q branch isolated from the rest of the network
because it converges slower than the other branches. We show
derivatives of appearance and dynamics loss functions for a
number of joints in the first five epochs in Figure 3 as well as
qualitative images of estimated joints.
Data augmentation is a common approach to boost

CNN models with small deformations in the images. The
mainly used data augmentation approaches are rotation,
scaling, stretching and adding random noise to pixels. Such
approaches are primarily rigid (in‐plane rotation and scaling)
or unrealistic (stretching). Here, we apply rigid data
augmentation and additionally propose a realistic non‐rigid
data augmentation approach. Our non‐rigid data augmenta-
tion consists of the palm size, fingers length and pose
modification. The main idea is two folds: (1) deforming
ground‐truth joints and (2) interpolating point cloud based on
new joints. We show some generated images in Figure 4a. In
the following section, we explain the details of the proposed
data augmentation.

A first possible shape deformation is the change of hand
scale. However, simple scaling does not guarantee generalisa-
tion to all sorts of hand skeletons, especially when the number
of subjects is limited in the training set. Instead, we deform the
shape non‐rigidly by independently changing the palm size or
fingers' length. Some examples can be seen in the fourth row
of Figure 4a. As the first step, we define the hand coordinate
with the aid of palm joints such that, in a quite open hand, the
thumb defines the x coordinate direction, other fingers define
the y coordinate direction and the z coordinate is perpendic-
ular to the palm plane. For the ease of computations, we align
the hand coordinate to the world coordinate. This is possible

by transforming the joints (and point cloud) into ĴP by RT .
Then, the palm joints can be stretched in the direction of x or
y. We stretch each direction by a random factor. We apply
other sorts of skeleton deformations by computing the skel-
eton kinematic parameters in terms of 19 degrees of freedom
(three DoF for thumb and four DoF for the other fingers
following [46]). This representation is invariant to size; thus, on
having the kinematic parameters fixed, we are able to randomly
modify fingers' length and reconstruct new joints for each
finger. It is also likely to slightly modify kinematic parameters
and reconstruct joints in a new pose. However, we keep ki-
nematic parameters close to the original values to avoid un-
realistic point cloud deformations and possible big holes in the
depth image.

After deforming the joints, we use thin plate spline (TPS)
[49] as a standard interpolation technique to deform the point
cloud. We use the original and deformed joints as anchors in
the TPS interpolation. However, to avoid extrapolation
problems and unrealistic warping, we add some auxiliary
points to the set of joints. Auxiliary points are built by adding
fixed offsets to certain joints. We show some possible auxil-
iary points in Figure 4b: we mainly add points around the

F I GURE 3 Constraints' derivatives during training process (original
NYU dataset). Estimated joints along with derivatives of appearance and
hand dynamics are illustrated for the first five epochs in the training
process. We qualitatively show how the proposed network converges very
fast in few epochs

MADADI ET AL. - 57

wrist and thumb. We observed unrealistic deformation around
the thumb and by adding three fixed points we avoid
extrapolation problems. For the wrist case, we do not want to
deform the points of the lower arm. Fixed auxiliary points
around the wrist add constraints to space, avoiding unrealistic
warping. Finally, we project the new point cloud to the image
plane, build depth image and apply morphological operations
to fill small gaps.

4.2 | Ablation study

In this section, we study different components of the proposed
architecture trained on the NYU and Hands17 datasets. We
denote each experiment by a number explained in Table 1. All
the models are trained without any data augmentation unless it
is specifically mentioned.

4.2.1 | Ablation study on NYU dataset

We study the following models on this dataset: 1:local, 2:1 +
palm, 3:2 + constraint, single channel + constraint, FC
branching + constraint, 4:3 + viewpoint+fusion, 5:4 + rigid
aug, 6:4 + aug1, 7:4 + aug2 and 8:7 + BN. We also study the
accuracy on the occluded joints, Q versus palm joints regres-
sion and the robustness against overfitting.
Locality. Locality refers to the number of joints in the

network output. In the first case, we analyse the hierarchical
network in Figure 5a trained with Lloc loss just on one finger in
each branch (so called 1:local). This network shows a high
locality value. As one can expect, this network can easily overfit
on the training data and exchange estimations for similar fin-
gers. We show a significant improvement by decreasing the
locality by including palm joints in each branch (so called 2:1 +
palm). Palm joints are located in a near planar space and thus
do not add high non‐linearity to the output of each branch,

while helping with better finger localisation. We compare these
methods in Figure 6a (red vs. green lines).
Constraints. We train method 2:1+ palm by including

constraints in the loss function: Lloc þ Lapp þ Ldyn (so called
3:2 + constraint). We still do not explicitly model any rela-
tionship among fingers in the output space but let the network
learn each finger joints with respect to the hand surface and
finger dynamics. In Figure 6a we show the effectiveness of this
strategy (magnet line) against method 2:1+ palm.
Branching strategy versus single‐channel architecture. It is

also possible to study the impact of the tree‐structure network
in comparison with single channel architectures. Therefore, we
create a single channel network with 6 convolutional layers, as
shown in Figure 5b. The output of this network (so called
single‐channel network) is 3‐D locations of the full set of
joints. In this architecture, the capacity of convolutional layers
is kept similar to the whole branching network in Figure 5a by
merging parallel layers. This network is trained with
Lglo þ Lapp þ Ldyn loss function. As one can see in Figure 6a,
single‐channel network (dashed magneta line) performs worse
than method 3:2+ constraint, showing the effectiveness of
the tree‐structure network. Additionally, we trained the single‐
channel network with the capacity of one branch, which
performed 1 mm worse than the full capacity one. This means
that regardless of the capacity of the network, in a single‐
channel network, backpropagation of the gradients of the
loss is not able to train network filters to map the input im-
age to a highly non‐linear space in an optimal and general-
isable solution.

Moreover, we study the impact of branching if applied on
FC layers. For this task, we create the network in Figure 5c (so
called FC‐branching network). The outputs of this network
and the loss function are similar to method 3:2+ constraint.
The capacity of convolutional layers in this architecture is
similar to one branch in Figure 5a. The results of the
FC‐branching network (dashed dark brown line) are even
worse than the single‐channel network in Figure 6a.

F I GURE 4 Data augmentation. (a) We generate new data by applying non‐rigid hand shape deformation along with rigid transformations like in‐plane
rotation. Hand kinematic parameters are slightly deformed and new hand joints are used to interpolate the hand point cloud. We also change the palm and
fingers' size. Therefore, given a pose, different hand shapes can be generated, which helps to generalise better to unseen subjects. The first column shows the
original images and others are generated samples. (b) Auxiliary points ‘*’ are added to the set of joints to avoid unrealistic warping in non‐rigid hand
augmentation

58 - MADADI ET AL.

Global versus local pose. We add a fusion network to
method 3:2 + constraint to model correlations among
different local poses in an explicit way (so called 4:3 + view‐
point + fusion). We include Q branch features in the fusion as
well. We illustrate the results in Figure 6a (dashed blue line).
Compared to method 3:2 + constraint, method 4:3 + view‐
point + fusion improves performance for error thresholds
below 30 mm.
Data augmentation. As the first step, we remove

redundant data by checking the ground‐truth joints. In this
sense, a redundant data is an image which has a high
similarity to at least one image in the training set. Such
similarity is defined by the maximum Euclidean distance Ψ
among corresponding joints. Therefore, two images are
similar if Ψ is below a threshold. We used threshold 10 mm
for this task.

In the NYU dataset, around 60k images were left after
removing redundant images from all 218k samples in the
training set (including all cameras). We then generated two sets
of non‐rigid augmented images including around 780k and
1500k samples. We used random scaling factors in the range
½0:85; 1:05� for the palm and fingers. The kinematic parame-
ters were changed by summation to random degrees in the
range ½−7:5; 7:5�. The only difference in the generated sets is
the in‐plane rotation degrees. The first and second sets have
in‐plane rotation in the range ½−30; 30� and ½−90; 90� degrees,
respectively. To show the effectiveness of the proposed non‐
rigid data augmentation approach, we also generated an
extra set of 1500k samples with rigid data augmentation, that is
scaling and rotation. We used random scales in the range
½0:8; 1:05� and random rotation in the range ½−90; 90� degrees.

Therefore, our data distribution is similar to the second
non‐rigid set.

We train method 4:3 + viewpoint+fusion on these three
new sets, so called method 5:4 + rigid aug, method 6:4 +
aug1 and method 7:4 + aug2, respectively. We compare the
results of these three models in Figure 6a (cyan, brown and
dark green lines). One can see that the model trained on the
set with more samples and wide in‐plane rotation degrees
(method 7:4 + aug2) generalises better to the test set. Also, a
significant improvement is achieved compared to the original
data (method 4:3 + viewpoint + fusion). On comparing rigid
and non‐rigid data augmentation, one can see a clear advan-
tage of the proposed data augmentation over standard rigid
ones. Even our smaller non‐rigid set can better generalise to
the test set than the rigid set, showing its effectiveness for
small error thresholds. Interestingly, we observed that the
wrist joint has the maximum error in 20% of the cases in
method 7:4 + aug2. Also, fingertips have the highest error
among the joints, which are significantly improved by data
augmentation, as we can see in Figure 10a comparing
different baselines qualitatively.
Training with batch normalisation (BN) is a common

practice in deep learning. We update our model by adding a
BN layer after all convolutional layers including fully con-
nected layers. We train the model using the second non‐rigid
set, so called method 8:7 + BN, and learning rate 1e − 4. As
a result, method 8:7 + BN performs the best, as one can
see in Figure 6a (pink line) and 6b. Using the BN layer we
improve 7:4 + aug2 fingertips by 2 mm while the overall
improvement is 1 mm. However, it slightly worsens the
wrist by 1.5 mm.

TABLE 1 The list of studied ablation experiments

Name Network Output Loss

1:local Figure 5a One finger per branch Lloc

2:1 + palm Figure 5a One finger plus palm per branch (Fl) Lloc

3:2 + constraint Figure 5a Fl Lloc þ Lapp þ Ldyn

single channel + constraint Figure 5b All joints (Fg) Lglo þ Lapp þ Ldyn

FC branching + constraint Figure 5c Fl Lloc þ Lapp þ Ldyn

4:3+viewpoint + fusion Figure 2 Fl , Q and Fg L

4v:4 w/o viewpoint Figure 2 without Q branch ≃ method 4 without Q L without LQ

4a:4 w/o app loss Figure 2 ≃ method 4 L without Lapp

4d:4 w/o dyn loss Figure 2 ≃ method 4 L without Ldyn

5:4 + rigid aug Figure 2 trained with 1500k rigid augmented data ≃ method 4 L

6:4 + aug1 Figure 2 trained with 700k non‐rigid augmented data ≃ method 4 L

7:4 + aug2 Figure 2 trained with 1500k non‐rigid augmented data ≃ method 4 L

8:7 + BN Figure 2 including batch normalisation trained same as 7:4+aug2 ≃ method 4 L

palm joints regressor Q branch in Figure 2 Palm joints (JP) L2 loss

Abbreviation: BN, batch normalisation.

MADADI ET AL. - 59

Per joint mean error. We also illustrate the per joint mean
error in Figure 6b. It can be observed from the figure that, as
expected, a very local solution (method 1) performed the
worst among the baselines. Comparing method 2 and 3:2 +
constraint in average error shows the benefits of applying
constraints as loss as well. By including viewpoint features in
the fusion network, the palm joints' mean error was consid-
erably reduced by method 4:3 + viewpoint + fusion. Although
method 4:3 + viewpoint + fusion performed better for the
pinky and ring fingertips, it did not achieve the best results for
index and thumb fingertips.
Palm viewpoint versus palm joints regression. As we

explained in Section 3.1, Q can be used to transform the
reference palm joints Ĵ P and reconstruct the palm joints. Here,
we study how accurate the palm viewpoint regression can be to
reconstruct the palm joints. Therefore, we build a network with
the same architecture as Q branch to regress the palm joints

trained with L2 loss. We then evaluate our palm joints versus
the palm viewpoint regression in terms of the success rate
error in Figure 6c. As can be seen in the figure, the palm
viewpoint regression significantly reduces palm joints' error.
Occlusions. To analyse the performance of the occluded

joints, we first need to compute which joints are occluded. To
do so, we base on [50] to first segment the hand based on the
nearest distance of each ground‐truth joint to the point cloud.
Then, we count the number of pixels assigned to each joint. If
the number of pixels for joint i is less than 20, we consider that
joint as occluded. On average, 11% of the joints are occluded
in the test set. Visible and occluded joints' error of our final
methodology (i.e., 8:7 + BN) are 9.2 and 16.1 mm, respectively.
Robustness against overfitting. We also analyse the effect

of constraints in the training process in Figure 6d. As can be
seen, by applying the proposed constraints, method 3:2 +
constraint is more robust against overfitting than method 1.
The validation error in method 3 does not significantly change
from epoch 7 to 15. On comparing both methods in epoch 20,
it can be observed that method 1 has a lower error in training
while its validation error is almost 1.5 times the validation error
of method 3.

4.2.2 | Ablation study on Hands17 dataset

We study the following models on this dataset: 4:3 + view‐
point + fusion + BN, 4v:4‐viewpoint + BN, 4a:4‐app loss +
BN, 4d:4‐dyn loss+BN and 8:7 + BN. Note that we include
BN in all the models on this dataset.

We compare the maximum error success rate in Figure 7a.
As expected, 3:2 + const. + BN method performs the worst.
We also study the impact of Q branch, Lapp and Ldyn on 4:3 +
viewpoint + fusion + BN by individually removing them from
the training. The results show that Ldyn works better than Lapp
for error thresholds smaller than 25 mm (cyan vs. brown line).
Perhaps one reason is because of the high rate of occluded
joints due to egocentric captures in this dataset. Moreover,
Ldyn has an impact similar to the Q branch (cyan vs. green
dashed line). The combination of all these components in the
training improves the results, as visible in 4:3 + viewpoint +
fusion + BN method (blue line). Finally, training the model
with the proposed data augmentation improved the results by a
large margin. To generate the augmented data, similar to the
NYU dataset, we removed redundant samples. As a result,
343k samples remained in the training set. Then, we generated
four additional augmented data per sample, resulting in a total
of 1700k training data samples. We used random scaling and
rotation in the range ½0:95 ‥ 1:05� and ½−90 ‥ 90�, respectively.
We expect more improvements by increasing the amount of
augmented data.

We also compare the average error per joint in Figure 7b.
The results are consistent among all the joints. Interestingly,
the thumb has the smallest fingertip error among all the fingers
in this dataset. The overall average error is 15.3 and 12.7 mm
for 4:3 + viewpoint + fusion + BN with and w/o data
augmentation, respectively.

F I GURE 5 Baseline architectures. (a) Tree‐structure network without
Q branch and fusion layers. (b) A single channel network with the same
convolutional capacity as (a). (c) A single channel network with the same
capacity as one branch in (a) in which branching is applied on FC layers. We
train all the networks with the same loss as in Equation (1), omitting LQ from
all, Lglo from (a) and (c), and Lloc from (b)

60 - MADADI ET AL.

4.3 | Comparison with state‐of‐the‐art
approaches

We report the performance of our final model compared to
state‐of‐the‐art data‐driven approaches like [5, 12–16, 25, 27,
31, 35, 36, 51] on the NYU dataset. On the MSRA dataset we
compare to [3, 10, 13–16, 31, 36, 52]. Finally, we compare to
[26, 46] on the SyntheticHand dataset.

NYU dataset. The works mentioned in the comparison use
14 joints (as proposed in [25]) to compare on the NYU dataset.
For a fair comparison on this dataset we take 11 joints that are
most similar to [25] out of our 20 joints. We show the
maximum error success rate results in Figure 8a. As one can
see, we outperform the state‐of‐the‐art approaches' results.
Although [15] performs slightly better than 8:7 + BN for error
thresholds lower than 19 mm, our approach performs the best

F I GURE 6 Ablation results comparing baselines on NYU dataset. (a) Maximum error success rate. (b) Per joint average error. (c) Comparing palm joints
regression versus viewpoint regression. (d) Training process in terms of average error per epoch

F I GURE 7 Ablation results on Hands17 dataset. (a) Maximum error success rate. (b) Per joint average error

MADADI ET AL. - 61

for higher error thresholds. We also illustrate the average error
success rate in Figure 8b. This shows that our method per-
forms well on average for a majority of frames, that is less than
10 mm error for 60% of the test set. We compare to state‐of‐
the‐art approaches regarding the overall mean error in Table 2.
Although recent point‐to‐point heatmap‐based approaches

perform better than our method on this dataset, our approach
outperforms regression‐based state‐of‐the‐art approaches. All
these results show a significant improvement using data
augmentation and BN.
MSRA dataset. We applied introduced non‐rigid hand

augmentation same as the NYU dataset. However, we
observed a divergence during training. A possible reason could
be the accuracy of ground‐truth annotations in the MSRA
dataset, which caused wrong hand point cloud warping. We
show some MSRA examples with wrong annotations or
missing data in Figure 9. Therefore, we applied standard
augmentation techniques such as random scaling (in range
½0:9; 1:05�) and rotation (in range ½−90; 90� degrees). We show
the maximum error success rate results in Figure 8c. As can be
seen, with and without data augmentation, our methods 4:3 +
viewpoint + fusion (dashed blue line) and 5:4 + rigid aug
perform slightly worse than [3] and similar to [14], respectively.
When we use BN, our method 8:5+BN outperforms all the
methods in the comparison except [15] for the error thresholds
higher than 15 mm. We also illustrate the average error in
Table 3, showing the best results (7.1 mm in average) among
methods in comparison (including point‐to‐point heatmap‐
based approaches). We show some qualitative results in
Figure 10b.

F I GURE 8 State‐of‐the‐art comparison. (a) and (b) Maximum and mean error success rate on NYU dataset. (c) Maximum error success rate on MSRA
dataset. (d) Mean error success rate on SyntheticHand dataset. We compare to [5, 25] on (a), [5, 12, 14, 15, 25, 27, 35, 36, 51] on (b), [3, 10, 14, 15, 36] on (c) and
[26, 46] on (d)

F I GURE 9 MSRA dataset examples with wrong annotations. We can
observe that the following elements are wrong: (a) the whole ground truth,
(b) thumb, (c) palm and thumb and thus the rest of fingers, (d) thumb,
(e) pinky and ring fingers are confused, (f) palm and wrist, (g) thumb and
index and (h) empty image

62 - MADADI ET AL.

Hands17 dataset. We compare our approach to the state‐
of‐the‐art approaches on this dataset in Table 4. As it is
common on this dataset, along with the overall average error,

the results are reported on the seen subjects in the training set
versus the unseen subjects. Our 8:7 + BN approach generates
good results on this dataset. However, it is not among the top

F I GURE 1 0 Qualitative results. (a) NYU dataset. Rows from top to bottom: depth image, ground truth, single channel network, methods 4:3 +
viewpoint + fusion and 7:4 + aug. 2. Last three columns show maximum error higher than 50 mm. (b) MSRA dataset. Rows from top to bottom: depth
image, ground truth and method 5:4 + rigid aug. Last three columns show maximum error higher than 50 mm. Ground‐truth annotations show inaccurate
ground truth for this dataset, especially for thumb; 12th column has inaccurate ground truth for little finger. (c) SyntheticHand dataset. Rows from top to
bottom: depth image, ground truth and method 4:3 + viewpoint + fusion. See text for details of the methods

MADADI ET AL. - 63

performing approaches. We believe that by training on the
higher rates of augmented data (currently 4:1 vs. 36:1 in the
NYU dataset), we can close the margin to the state‐of‐the‐art

approaches. Interestingly, the error rate between seen and
unseen subjects is homogeneous among all the methods in
comparison.
SyntheticHand dataset. We use the original training set

without augmentation to train our model (4:3+ viewpoint+
fusion) on this dataset. Our model converges in seven epochs.
The mean error success rate is shown in Figure 8d. As can be
seen, our method performs quite well on this dataset even for
complex poses and viewpoints. Some qualitative results are
shown in Figure 10c. The overall average error on this dataset
is 3.94 mm.

4.4 | Time complexity

We compare test time complexity of our proposed tree‐
structure network with some state‐of‐the‐art architectures
[12, 14–16, 31] in Table 5. Our approach performs near 50 fps,
which is applicable in real‐time scenarios. We also compare
with common benchmark architectures in the same setup
(GPU and library) in Table 6. Although our full model has a
slightly higher number of parameters (152M) and FLOPs
(16.6B) than VGG‐16, it performs 11% faster for a batch size
of 32. It shows the parallelisation capability of the proposed
tree‐structure network.

TABLE 2 Average 3‐D error on NYU dataset

Method Average 3‐D error (mm)

Oberweger et al. [26] (DeepPrior) 19.8

Oberweger et al. [5] (feedback) 16.2

Neverova et al. [35] 14.9

Guo et al. [12] (Ren) 13.4

Oberweger et al. [14] (DeepPrior++) 12.3

Ge et al. [13] (PointNet) 10.5

Wan et al. [15] 10.2

Moon et al. [16] 9.2a

Ge et al. [31] (point‐to‐point) 9.1

Ours (4:3 + viewpoint + fusion) 15.6

Ours (5:4 + rigid Aug) 12.5

Ours (7:4 + Aug 2) 11.0

Ours (8:7 + BN) 10.1

Note: Lowest error in bold.
Abbreviation: BN, batch normalisation.
aThe result is shown without epoch ensembling for fair comparison.

TABLE 3 Average 3‐D error on MSRA dataset

Method Average 3‐D error (mm)

Sun et al. [10] 15.2

Wan et al. [52] (CrossingNet) 12.2

Oberweger and Lepetit [14] (DeepPrior++) 9.5

Ge et al. [13] (PointNet) 8.5

Wan et al. [15] 7.2

Ge et al. [31] (point‐to‐point) 7.7

Moon et al. [16] 7.6

Ours (4:3 + viewpoint + fusion) 12.9

Ours (5:4 + rigid Aug) 9.7

Ours (8:5 + BN) 7.1

Note: Lowest error in bold.
Abbreviation: BN, batch normalisation.

TABLE 4 Average 3‐D error on Hands17 dataset

Method Average 3‐D error (mm) Seen Unseen

Vanora [53] 11.9 9.5 13.9

Chen et al. [33] 11.7 9.1 13.8

Ge et al. [13] (PointNet) 11.3 8.9 13.3

Moon et al. [16] 9.9 7.0 12.4

Ours (8:7 + BN) 12.7 10.2 14.7

Note: Lowest error in bold.
Abbreviation: BN, batch normalisation.

TABLE 6 Comparing time complexity of proposed architecture to
standard networks

Model Im. size # param. # FLOPs Time (ms)

AlexNet 227 61M 726M 11.1–15.2

VGG‐16 224 138M 16B 16.2–330.3

ResNet‐152 224 60M 11B 161.6–582.8

Ours (one channel) 192 25M 4.8B 4.5–79.4

Ours (full) 192 152M 16.6B 20.8–294.4

Note: We compare number of parameters, number of FLOPs and feed‐forward time of
1 versus 32 batch size. All the models have been tested in the same setup.

TABLE 5 Comparing test time complexity of the proposed
architecture to the state‐of‐the‐art architectures

Model
Im.
size Library GPU

Time
(ms)

Guo et al. [12] 96 Caffe Titan X 0.31

Ge et al. [31] 6ka PyTorch GTX 1080 20.5

Oberweger and Lepetit
[14]

128 Theano GTX 980
Ti

33

Wan et al. [15] 128 Tensorflow Titan X 36

Moon et al. [16] 88b Torch7 Titan X 285

Ours (one channel) 192 Matconvnet Titan X 4.5

Ours (full) 192 Matconvnet Titan X 20.8

Note: The information in this table is directly taken from the corresponding articles.
Abbreviation: GPU, graphics processing unit.
aThe input is a point cloud.
bThe input is a 3‐D voxelised tensor.

64 - MADADI ET AL.

5 | CONCLUSIONS

We proposed a novel hierarchical tree‐like structured CNN for
recovering hand poses in depth maps. In this structure,
branches are trained to become specialised in predefined
subsets of the hand joints. We fused a network based on
learned local features to model higher order dependencies
among joints. The network is trained end‐to‐end. By including
a new loss function incorporating appearance and physical
constraints about doable hand motions and deformations, we
found that our network helps to increase the precision of the
final hand pose estimations for quite challenging datasets. In
particular, we found that a fusion network can help to better
localise joints for easier hand configurations while it behaves
similar to a local solution for more complex cases. We
improved palm joints by applying a viewpoint regressor and by
fusing its learned features into the global pose. Finally, we
introduced a non‐rigid hand augmentation technique to
deform original hands in terms of the shape and pose, helping
to generalise better to the test set. As a result, we significantly
improved estimations on the original NYU dataset by 4.6 mm
in average. As future work, we will consider the network ar-
chitecture optimisation for local branches in which we learn
which fingers are more correlated to share earlier layers.
Moreover, we will apply more complex data augmentation
techniques to cope with noise in the depth image. Realistic data
can be combined with synthetic data as well. In this sense, we
will work on filling gaps realistically when more complex pose
deformations are applied in the augmentation. Another pos-
sibility is to deform the hand surface to generate new subject
hands.

ACKNOWLEDGMENT
This work has been partially supported by the Spanish projects
PID2019‐105093GB‐I00, PID2020‐120611RB‐I00, RTI2018‐
095232‐B‐C22 and TIN2015‐65464‐R (MINECO/FEDER,
UE), the CERCA Programme/Generalitat de Catalunya, and
ICREA under the ICREA Academia programme.

CONFLICT OF INTEREST
None.

PERMISSION TO REPRODUCE MATERIALS
FROM OTHER SOURCES
None. The datasets we used have all public license.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly
available in (1) NYU at https://jonathantompson.github.io/
NYU_Hand_Pose_Dataset.htm; (2) MSRA at https://www.
dropbox.com/s/c91xvevra867m6t/cvpr15_MSRAHandGes-
tureDB.zip?dl=0; (3) HAND2017 at http://icvl.ee.ic.ac.uk/
hands17/challenge/; (4) SYNTHETIC HAND at http://
chalearnlap.cvc.uab.es/dataset/25/description/#

ORCID
Meysam Madadi https://orcid.org/0000-0002-7384-5712

REFERENCES
1. Choi, C., et al.: A collaborative filtering approach to real‐time hand pose

estimation. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 2336–2344. (2015)

2. Steven Supancic, J., et al.: Depth‐based hand pose estimation: methods,
data, and challenges. arXiv:150406378v1 (2015)

3. Ge, L., et al.: Robust 3d hand pose estimation in single depth images:
from single‐view CNN to multi‐view CNNs. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3593–3601. (2016)

4. Qian, C., et al.: Realtime and robust hand tracking from depth. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1106–1113. (2014)

5. Oberweger, M., Wohlhart, P., Lepetit, V.: Training a feedback loop for
hand pose estimation. In: Proceedings of the IEEE International Con-
ference on Computer Vision, pp. 3316–3324. (2015)

6. Tan, D.J., et al.: Fits like a glove: rapid and reliable hand shape person-
alization. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 5610–5619. (2016)

7. Sridhar, S., Oulasvirta, A., Theobalt, C.: Interactive markerless articu-
lated hand motion tracking using RGB and depth data. In: Proceedings
of the IEEE International Conference on Computer Vision,
pp. 2456–2463. (2013)

8. Keskin, C., et al.: Real time hand pose estimation using depth sensors. In:
IEEE International Conference on Computer Vision Workshops (ICCV
Workshops), pp. 1228–1234. (2011)

9. Tang, D., et al.: Latent regression forest: structured estimation of 3d
articulated hand posture. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3786–3793. (2014)

10. Sun, X., et al.: Cascaded hand pose regression. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 824–832. (2015)

11. Perez‐Sala, X., et al.: A survey on model based approaches for 2d and 3d
visual human pose recovery. Sensors. 14(3), 4189–4210 (2014)

12. Guo, H., et al.: Region ensemble network: improving convolutional
network for hand pose estimation. In: IEEE International Conference
on Image Processing, pp. 4512–4516. (2017)

13. Ge, L., et al.: Hand pointnet: 3d hand pose estimation using point sets.
In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 8417–8426. (2018)

14. Oberweger, M., Lepetit, V.: Deepprior++: improving fast and accurate
3d hand pose estimation. In: Proceedings of the IEEE international
conference on computer vision Workshops, pp. 585–594. (2017)

15. Wan, C., et al.: Dense 3d regression for hand pose estimation. Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5147–5156. (2018)

16. Moon, G., Chang, J.Y., Lee, K.M.: V2V‐posenet: voxel‐to‐voxel predic-
tion network for accurate 3D hand and human pose estimation from a
single depth map. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5079–5088. (2018)

17. Rautaray, S.S., Agrawal, A.: Interaction with virtual game through hand
gesture recognition. In: 2011 International Conference on Multimedia,
Signal Processing and Communication Technologies, Aligarh, 17–19
December 2011, pp. 244–247. (2011)

18. Usabiaga, J., et al.: Global hand pose estimation by multiple camera
ellipse tracking. Mach Vis Appl. 21, 1–15 (2009)

19. Sharp, T., et al.: Accurate, robust, and flexible real‐time hand tracking. In:
Proceedings of the 33rd annual ACM Conference on Human Factors in
Computing Systems, pp. 3633–3642. (2015)

20. Makris, A., Kyriazis, N., Argyros, A.: Hierarchical particle filtering for 3d
hand tracking. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pp. 8–17. (2015)

21. Oikonomidis, I., Kyriazis, N., Argyros, A.: Efficient model‐based 3d
tracking of hand articulations using kinect. In: Proceedings of the British
Machine Vision Conference, pp. 101.1–101.11. (2011)

22. De La Gorce, M., Fleet, D.J., Paragios, N.: Model‐based 3d hand pose
estimation from monocular video. IEEE Trans. Pattern Anal. Mach.
Intell. 33(9), 1793–1805 (2011)

MADADI ET AL. - 65

https://jonathantompson.github.io/NYU%5FHand%5FPose%5FDataset.htm
https://jonathantompson.github.io/NYU%5FHand%5FPose%5FDataset.htm
https://www.dropbox.com/s/c91xvevra867m6t/cvpr15%5FMSRAHandGestureDB.zip%3Fdl%3D0
https://www.dropbox.com/s/c91xvevra867m6t/cvpr15%5FMSRAHandGestureDB.zip%3Fdl%3D0
https://www.dropbox.com/s/c91xvevra867m6t/cvpr15%5FMSRAHandGestureDB.zip%3Fdl%3D0
http://icvl.ee.ic.ac.uk/hands17/challenge/
http://icvl.ee.ic.ac.uk/hands17/challenge/
http://chalearnlap.cvc.uab.es/dataset/25/description/%23
http://chalearnlap.cvc.uab.es/dataset/25/description/%23
https://orcid.org/0000-0002-7384-5712
https://orcid.org/0000-0002-7384-5712
https://orcid.org/0000-0002-7384-5712

23. Xu, C., Cheng, L.: Efficient hand pose estimation from a single depth
image. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 3456–3462. (2013)

24. Kirac, F., Kara, Y.E., Akarun, L.: Hierarchically constrained 3d hand pose
estimation using regression forests from single frame depth data. Pattern
Recogn. Lett. 50(0), 91–100 (2014)

25. Tompson, J., et al.: Real‐time continuous pose recovery of human hands
using convolutional networks. ACM Trans. Graph. 33(5), 1–10 (2014)

26. Oberweger,M.,Wohlhart, P., Lepetit,V.:Hands deep in deep learning for hand
pose estimation. In: Computer Vision Winter Workshop, pp. 1–10. (2015)

27. Sinha, A., Choi, C., Ramani, K.: Deephand: robust hand pose estimation
by completing a matrix imputed with deep features. In: Proceedings of
the IEEE conference on computer vision and pattern recognition,
pp. 4150–4158. (2016)

28. Belagiannis, V., et al.: Robust optimization for deep regression. In:
Proceedings of the IEEE International Conference on Computer Vision,
pp. 2830–2838. (2015)

29. Akhter, I., Black, M.J.: Pose‐conditioned joint angle limits for 3d human
pose reconstruction. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1446–1455. (2015)

30. Erol, A., et al.: Vision‐based hand pose estimation: a review. Comput.
Vis. Image Understand. 108(1–2), 52–73 (2007)

31. Ge, L., Ren, Z., Yuan, J.: Point‐to‐point regression pointnet for 3d hand
pose estimation. Proceedings of the European Conference on Computer
Vision (ECCV), pp. 475–491. (2018)

32. Tompson, J., et al.: Efficient object localization using convolutional
networks. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 648–656. (2015)

33. Chen, X., et al.: Pose guided structured region ensemble network for
cascaded hand pose estimation. arXiv preprint arXiv:170803416 (2017)

34. Zhang, Z.: On the epipolar geometry between two images with lens
distortion. In: Proceedings of the International Conference on Pattern
Recognition, pp. 407–411. (1996)

35. Neverova, N., et al.: Hand pose estimation through semi‐supervised and
weakly‐supervised learning. CVIU (2017)

36. Ge, L., et al.: 3d convolutional neural networks for efficient and robust
hand pose estimation from single depth images. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1991–2000. (2017)

37. Felzenszwalb, P.F., et al.: Object detection with discriminatively trained
part‐based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9),
1627–1645 (2009)

38. Chu, X., et al.: Structured feature learning for pose estimation. Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4715–4723. (2016)

39. Zhou, X., et al.: Towards 3d human pose estimation in the wild: a weakly‐
supervised approach. Proceedings of the IEEE International Conference
on Computer Vision, pp. 398–407. (2017)

40. Wei, S.E., et al.: Convolutional pose machines. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 4724–4732. (2016)

41. Dosovitskiy, A., Tobias Springenberg, J., Brox, T.: Learning to generate
chairs with convolutional neural networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1538–1546. (2015)

42. Fan, X., et al.: Combining local appearance and holistic view: dual‐source
deep neural networks for human pose estimation. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1347–1355. (2015)

43. Tompson, J.J., et al.: Joint training of a convolutional network and a
graphical model for human pose estimation. NIPS (2014)

44. Li, S., Zhang, W., Chan, A.B.: Maximum‐margin structured learning with
deep networks for 3d human pose estimation. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 2848–2856.
(2015)

45. Yuan, S., et al.: The 2017 hands in the million challenge on 3d hand pose
estimation. arXiv preprint arXiv:170702237 (2017)

46. Madadi, M., et al.: Occlusion aware hand pose recovery from sequences
of depth images. In: IEEE International Conference on Automatic Face
and Gesture Recognition, pp. 230–237. (2017)

47. Taylor, J., et al.: The vitruvian manifold: inferring dense correspondences
for one‐shot human pose estimation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 103–110.
(2012)

48. Vedaldi, A., Lenc, K.: Matconvnet – convolutional neural networks
for matlab. In: Proceeding of the ACM Int Conf on Multimedia,
pp. 689–692. (2015)

49. Bookstein, F.L.: Principal warps: thin‐plate splines and the decomposi-
tion of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11(6),
567–585 (1989)

50. Madadi, M., et al.: Top‐down model fitting for hand pose recovery
in sequences of depth images. Image Vis. Comput. J. 79, 63–75
(2018)

51. Xu, C., et al.: Lie‐x: depth image based articulated object pose estimation,
tracking, and action recognition on lie groups. Int. J. Comput. Vis. 123(3),
454–478 (2017)

52. Wan, C., et al.: Crossing nets: dual generative models with a shared latent
space for hand pose estimation. In: Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, vol. 7. (2017)

53. Yuan, S., et al.: Depth‐based 3d hand pose estimation: from current
achievements to future goals. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2636–2645. (2018)

How to cite this article:Madadi, M., et al.: End‐to‐end
global to local convolutional neural network learning for
hand pose recovery in depth data. IET Comput. Vis.
16(1), 50–66 (2022). https://doi.org/10.1049/cvi2.
12064

66 - MADADI ET AL.

https://doi.org/10.1049/cvi2.12064
https://doi.org/10.1049/cvi2.12064

	End‐to‐end global to local convolutional neural network learning for hand pose recovery in depth data
	1 | INTRODUCTION
	2 | RELATED WORK
	3 | GLOBAL HAND POSE RECOVERY FROM LOCAL ESTIMATIONS
	3.1 | Hand pose estimation architecture
	3.2 | Constraints as loss function
	3.3 | Loss function derivatives

	4 | EXPERIMENTS
	4.1 | Training
	4.2 | Ablation study
	4.2.1 | Ablation study on NYU dataset
	4.2.2 | Ablation study on Hands17 dataset

	4.3 | Comparison with state‐of‐the‐art approaches
	4.4 | Time complexity

	5 | CONCLUSIONS
	ACKNOWLEDGMENT
	CONFLICT OF INTEREST
	PERMISSION TO REPRODUCE MATERIALS FROM OTHER SOURCES
	DATA AVAILABILITY STATEMENT

