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of AI are varied and depend on providing orders to humans versus providing information for further 

human handling and in which occupation it is used. AI may enhance or augment skills through, for 

example, the increased use of high-performance work practices, or it may simply increase work pace 

constraints and reduce employee autonomy. The results imply that the diffusion of AI can increase 

inequalities in the labour market by augmenting skills used in high-skill jobs while having relatively 

more adverse impacts on other jobs. We use additive noise modelling to establish the likely direction 

of causality in our results and find that the direction of causality is from AI use to skill requirements.  
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1. Introduction 

There is an on-going debate on the effects of new and emerging technologies on jobs and skills (Frey 

and Osborne, 2017; Brynjolfsson et al., 2018; Felten et al., 2019). Much of the literature has focused 

on robots and artificial intelligence (AI) and has attempted to assess how the adoption of these 

technologies will affect the employment and skills of different occupational groups. While the 

literature on robotics has drawn on the results of data collected mainly at the sector and national levels 

in the 1990s,1 the research on the effects of AI has been more speculative in nature and has sought to 

predict future patterns of adoption based on technical assessments of the susceptibility of different 

detailed occupations to substitution by AI. This paper contributes to this literature with an analysis of 

the impact of AI on the skills employees use in their daily work based on what we believe to be a unique 

large-scale, employee-level survey with measures of the use of AI. The survey results allow us to 

identify two basic types of AI used in daily work, distinguishing between tasks where the employee 

receives orders or directions generated automatically by a computer or computerized machinery and 

tasks where the employee makes use of information compiled automatically by a computer or 

computerized machinery for further decision making or for advising clients or customers. We thus 

focus on AI defined as computer systems performing tasks that normally require human intelligence 

and on how such systems are used to automate and augment tasks in jobs. This focus may be 

contrasted both with ‘true’ AI that is capable of replicating and outperforming human intelligence in 

all respects (Agraval et al., 2019: 3), and with AI defined more narrowly as a machine learning (ML) 

prediction technology. Our way of measuring AI encompasses but is not limited to ML. We find that AI 

 
1 There is a large body of literature that draws mainly on the data collected by the International Federation of 
Robotics (IFR) on the installation of industrial robots dating from the 1990s. See in particular Acemoglu and 
Restrepo (2017); Dauth et al. (2017); Graetz and Michaels (2018) and Giuntella and Wang (2019). 
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most often augments skills used in high-skill jobs, while other jobs more often become more 

constrained in terms of work pace. 

The paper is structured in the following manner. In Section 2, we present an overview of the recent 

economics literature on the adoption of AI and its impact on employment and skills. We point to some 

of the limitations of this literature in terms of capturing how AI may transform employees’ skills in daily 

work activity as opposed to simply substituting for their skills. In Section 3, we describe the survey 

design and present descriptive statistics on the adoption of the two forms of AI use we identify 

according to sector and broad occupational category. In Section 4, our econometric analysis shows 

that the two different forms of AI use have different impacts on employees’ skills at work and that 

these impacts may differ across high, middling and low skilled occupational categories. Using additive 

noise modelling (ANM), we provide indications that the direction of causality is from the use of AI at 

work to skill requirements. In Section 5, we conclude by pointing to the importance of our results for 

education and training systems and argue that there is a clear need for further micro-level studies on 

AI and skills. 

 

2. Background to the debate on the impact of AI on employment and skills 

Concerns about the impact of automation technologies on employment and skills are far from new. 

Keynes (1930) is famously credited with popularising the term ‘technological unemployment’, referring 

to technology destroying jobs faster than we can discover new ones. In an article focusing on the recent 

debate on the impact of new technology on employment, Autor (2015) notes that during the 1950s 

and 1960s concern in the US led the Johnson administration to set up a commission on automation 

and employment. Braverman’s (1974) book on the labour process gave rise to a large debate during 

the 1970s and 1980s on whether management has an interest in pursuing a general strategy of 

deskilling to increase managerial control. Braverman distinguished between organisational deskilling 

and technological deskilling and with respect to the latter identified the use of numerical control (NC) 

machine tools as an example of how management may use automation technologies to increase their 

control by separating the tasks of conception from execution.2 The 1990s witnessed a burgeoning 

literature in economics on skill-biased technological change (Katz and Murphy, 1992; Machin and van 

Reenen (1998) which attributed the secular decline in the relative wages of low skilled workers to the 

effects of technological change.3 This literature argued that technology substitutes for the skills of 

workers in low paid jobs and augments the skills of the higher paid occupations. A related strand of 

literature focused on the skill-biased effects of organizational change, arguing that organizational 

changes such as the delayering of hierarchies, which enhances worker autonomy, can have 

independent effects on the occupational distribution by reducing demand for workers with the lowest 

skills. (Caroli and Van Reenen 2001; Piva et al., 2005). 

 

2.1. The task-based approach 

 
2 For a useful discussion of Braverman’s thesis of deskilling and the subsequent research that qualified or 
criticized his views, see Noon et al. (2013, pp. 147-56). 
3 For a survey of the literature on skill-biased technological change, see Sanders, M. and ter Weel, B., (2000). 
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The recent literature on the effects AI on skills has positioned itself in relation to the research on the 

skill bias of technical change. A striking feature of this literature is that it has investigated the impact 

of AI on employment and skills without any attempt to measure what takes place inside the enterprise. 

The 24 contributions to a recent NBER volume edited by Agraval et al. (2019) focus on the implications 

of AI for employment, wages and economic growth, but none deal explicitly with effects at the level of 

firms, employees or jobs. The possible exception is the contribution by Athey (2019), which can be 

seen as an argument that AI will change the jobs of research economists by automating some aspects 

of econometrics. The lack of focus on the workplace is a defining feature of the task-based approach 

to studying the impact of new technologies on jobs and skills, associated notably with the seminal work 

of Autor et al. (2003) on the effects of computerization on labour market polarization beginning in the 

1980s. The task-based approach uses the standardized descriptors of the different mix of knowledge, 

skills and abilities required for detailed occupations provided in the O*NET or its precursor the US 

Dictionary of Occupational Titles (DOT) as a basis for interpreting medium-term patterns of change in 

occupational shares in the labour market. The O*NET descriptors are compiled in a way that draws on 

employee-level information, as they are based on a measurement program that involves interviewing 

employees using standardized questionnaires from a random sample of US businesses.4 However, the 

objective of the O*NET is not to identify any differences that may exist amongst employees in the same 

occupational category but rather to provide useful and general information to job seekers and 

employers about the types of skills and training required for different career options.  

 

The work by Autor et al. (2003) and researchers such as Goos and Manning (2007) on labour market 

polarization has generated important new insights into the effect of computers on employment and 

skills. As discussed in Holm et al. (2020), the task-based approach they use is nonetheless limited by its 

reliance on aggregate data at the sector and occupational levels that precludes investigating within-

firm effects related to differences in investments in new technology and in the adoption of 

organizational practices. Consequently, the contribution of within-firm effects to the observed 

patterns of change in employment and skills remains unexplained. The limitation of investigating the 

effect of new automation technologies on employment and skills without the insights derived from 

micro-level data has arguably become more evident in the debate engendered by research by Frey and 

Osborne (2017) on the future effects of AI in the form of ML on employment. As is well known, Frey 

and Osborn (2017) came up with the alarmist prediction that 47% of people currently working in the 

US are at high risk (70% chance or greater) of having their jobs automated over the coming decade or 

so. Their methodology follows that of the earlier work by Autor and others on job polarization in using 

the O*NET as a basis for characterizing the skills and knowledge requirements for the tasks of detailed 

occupational categories across the economy. ML researchers from the University of Oxford assessed 

whether occupations were susceptible to automation with AI using 70 handpicked occupational 

descriptors from the O*NET. These assessments considered various technical bottlenecks to fully 

automating the occupational tasks given the current state of AI technology. The assessments served 

as the training data for a Gaussian process classifier, which was then used to estimate the probability 

of automation for all 702 occupations included in the O*NET database (Frey and Osborne, 2017).  

 

 
4 For a description of the measurement program, see: https://www.onetcenter.org/dataCollection.html. 
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2.2 AI impacts and the limitations of the task-based approach  

Although creative, the methodology is arguably flawed in several respects. As also discussed by Lloyd 

and Payne (2019), one limitation has to do with the assumption that all employees with the same 

occupational category within a sector and across countries are identical in terms of their tasks and 

skills. The prediction bias this assumption may engender is discussed in a study by Arntz et al. (2016) 

focusing on the set of 21 OECD countries covered in the first wave of the PIAAC survey, an employee-

level survey of adult skills.5 Although Arntz et al. (2016) use the same at-risk-of-automation 

assessments for the 70 handpicked occupational task descriptors used in Frey and Osborne (2017), 

their study differs by using an imputation procedure to map these at-risk assessments onto employee-

level data collected via the background questionnaire in the PIACC survey measuring skills 

requirements for individual workers.6 Their analysis arrives at a substantially lower estimate of the 

share of workers at high risk of automation, ranging from 6% for Korea and Estonia to a high of about 

13% for Austria and Germany. In the case of the US, they estimate that only about 9% are at high risk. 

 

A second limitation of the approach used by Frey and Osborne (2017) to predict the impact of AI that 

is shared by Arntz et al. (2016) relates to their use of estimates of the scientific susceptibility of tasks 

to automation. This fails to consider that the adoption of AI may be constrained by the possibly costly 

reorganization of work necessary to unbundle those tasks in a job or occupation that can be automated 

from those that cannot. A recent study by Brynjolfsson et al. (2018), while still using the O*NET to 

describe the skills and knowledge needed for detailed occupations, addresses the issue of unbundling. 

Brynjolfsson et al. (2018) develop a 24-item rubric designed to capture the extent to which work 

activity is well structured in the sense that there is a clear mapping between inputs or actions and 

outputs that can be learnt by a ML neural net with sufficient data. If there are difficulties in measuring 

this relationship, as is the case for unstructured social interaction or a lot of complex cognitive work, 

then the work activity receives a low susceptible to ML (SML) score. Using CrowdFlower, a human 

intelligence task crowd sourcing platform, they apply the rubric to 2,056 direct work activities shared 

across occupations they identify based on the occupational task descriptors in the O*NET.7 

 

Brynjolfsson et al. (2018) find in general that there is considerable variability across occupations in the 

susceptibility of their component tasks to automation, with only a few having high SML scores for all 

tasks. This implies that automation technologies are unlikely to result in the elimination of entire 

occupations. The authors conclude that significant job redesign will be needed ‘for unleashing ML 

potential’ and that ‘The focus of researchers, as well as managers and entrepreneurs, should be not 

(just) on automation, but on job redesign’ (Brynjolfsson et al., 2018: 44).  

 

 
5 PIAAC: The Programme for the International Assessment of Adult Competencies. 
6 The OECD’s Survey of Adult Skills (PIAAC) uses a household survey frame. The main objective of the survey is 

to measure adult literacy, numeracy and ICT-related problem-solving skills. The survey includes a background 
questionnaire with a module addressed to employees that is designed to measure adult skills at work using the 
job requirements approach (JRA) developed for the UK Skills Surveys (Felstead et al., 2002). Rather than 
measuring skills by asking employees for a subjective assessment of what skills they have, the JRA measures 
skills by asking employed persons what they do at work. In this way, the survey design seeks to avoid biases 
associated with the tendency of employees to be overconfident about the level of their own skills. For a 
discussion of the conceptual framework of the JRA, see OECD (2009).  
7 For details on the methodology, see Brynjolfsson et al. (2018). For the detailed rubric, see 
www.sciencemag.org/content/358/6370/1530/suppl/DC1.  
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A third limitation common to all three studies cited above is the exclusive focus on the future 

substitution effects of AI and the failure to investigate how AI may complement or augment the skills 

of existing occupations as opposed to replacing them. The exclusive focus of the paper by Frey and 

Osborne (2017) on the predicted substitution effects may in part be justified by the fact that their 

research was carried out in 2013 at the beginning of a new wave of adoption of AI in industry resulting 

from advances in ML methods. Our knowledge of ML methods was understandably limited at this point 

in time, and Frey and Osborne were not alone in predicting that ML was the harbinger of a 

technological singularity that would progressively eliminate all or most human labour in industrial 

production.8 Today, more than seven years after the original Frey and Osborne (2013) working paper 

appeared, there has been a considerable diffusion of AI, including ML methods, in industry that 

potentially provides the empirical basis for assessing the extent to which it substitutes for or 

complements human labour. However, attempts to investigate the possibly complementary effects of 

AI on skills have been hampered by the task-based approach’s reliance on aggregate employment data 

and the O*NET as a basis for investigating AI impacts. This precludes an investigation of possibly 

heterogeneity in the within-job changes in skills that may result from an individual employee’s use of 

AI. The importance of these within-job effects can only be assessed with micro-level data at the 

employee level.  

 

This limitation of the task-based approach in this respect is illustrated by a recent paper by Felten et 

al. (2019). To estimate task susceptibility to AI automation, the authors draw on the Electronic Frontier 

Foundation (EFF) AI Progress Measurement dataset that tracks advances since 2010 in specific 

applications of AI, such as image recognition, translation or the ability to play strategic games. These 

measurements are mapped onto the occupational descriptors in the O*NET to construct AI 

occupational impact (AIOI) measures for occupations at the six-digit Standard Occupational 

Classification (SOC) level. As the authors observe, these impact measures cannot distinguish between 

impacts that are substituting for as opposed to complementing human labour, and in this respect the 

analysis makes little headway in analysing what the impact of AI on skills has been. To infer what this 

impact may have been, the authors perform a regression analysis at the occupational level to estimate 

the relationship between the AI impact score and the observed change in occupational employment 

and wages for the US using the data from the Bureau of Labor Statistics (BLS) for each occupation from 

2010 to 2016. They conclude that while AI has not had an impact on employment in the US, it has had 

a small but positive impact on wages, and it is the high-income groups that have benefited the most. 

They conclude by arguing that their findings suggest that complementary skills effects are important 

and that by increasing the relative earnings of the high-skills groups AI may have increased labour 

market polarization. 

 

Although the paper has the merit of seeking to analyse the impact of AI based on the actual changes 

in wages and employment for occupations that have occurred between 2010 and 2016, it is limited for 

 
8 See in particular Brynjolfsson and McAfee (2014). For a critical discussion of the singularity hypothesis, see 
Nordhaus (2015). Also see Aghion et al. (2019), who analyze different potentials for a singularity in a growth 
model. They argue that Baumol’s cost disease, that is, the presence of economic activities that are ‘essential 
but hard to improve’, prohibits a singularity. Another result from their model is that if AI is used in the 
innovation process AI will replicate innovation instantly, thus removing incentives from innovation and 
prohibiting a singularity by acting as a break on innovation. 
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one of the reasons discussed above. It assumes that all employees with the same detailed occupational 

title are affected in the same way, and this abstracts from an analysis of within-job changes in skills 

that is the natural level of analysis to adopt if one wants to investigate the way AI may complement 

the skills of employees whose jobs are transformed but not eliminated by AI. In this paper, we present 

the results of what we believe to be the first study of the impacts of AI on skills using micro data at the 

employee level: the TASK survey carried out at Aalborg University Business School in 2019. While the 

cross-sectional survey design does not allow us at present to investigate the employment impacts of 

AI, we are able to investigate the within-job effects of AI on skills at work. Section 3 below presents 

the survey design and provides descriptive statistics on the diffusion of AI in the Danish economy.  

 

3. The TASK Survey 

The survey on technology and skills (TASK survey) in Denmark was carried out in the spring of 2019 by 

Statistics Denmark. It relied on a stratified sample of employees in workplaces outside public sector 

administration with at least five full-time equivalent employees and. The questionnaire for TASK was 

inspired by other major surveys on employees’ tasks at work for comparability and includes a number 

of novel questions on the use of technology at work. Further details and descriptive statistics for the 

TASK dataset can be found in Gjerding et al. (2020). Some of the early results from the TASK data 

concerned the differences and similarities between AI and robotics. It was shown that while robotics 

is used more intensively in some industries than in others, AI is broadly diffused and already in 2019 

more than 1 in 4 employees in Denmark use AI with regular intervals compared to less than 1 in 10 for 

robots (Holm et al., 2021).9 

In this paper, we are interested in the relationship between the use of AI and the skills required for a 

job as revealed by the tasks performed in the job. As we are interested in assessing how jobs may be 

transformed by AI, we set a high bar for using AI and only focus on the effect of using AI on employees 

who use it on a daily basis. Of employees, 12.56% ‘make use of information compiled automatically by 

a computer or by computerized machinery for making decisions or for advising clients or customers’ 

daily, while 7.90 % ‘receive orders or directions generated automatically by a computer or by 

computerized machinery’ daily. We focus on these two types of use and refer to them as ‘AI for 

decisions’ and ‘AI orders’, respectively. These two types of use contrast AI as a tool used for potentially 

complex and autonomous decision making with AI supplying orders or directions and thus potentially 

putting constraints on work activity. The TASK data contain an array of variables capturing skill 

requirements as revealed by the tasks of a job to illuminate these hypothesized relationships between 

AI use and skills. These variables are described in Section 4. In Section 3.1, we present some descriptive 

statistics on AI use in jobs. 

3.1 Descriptive statistics 

 
9 An important proviso regarding the TASK survey data is that while it measures the use of AI and provides the 
basis for an investigation of the relationship of AI use to job skills, it does not allow for an investigation of the 
implementation process of AI, and correspondingly the data cannot be used to assess questions relating to 
whether the observed impacts of AI on skills are those that were intended by management. Nor can it explore 
possible reconstitution effects linked to the use of AI over time in the firm. For a discussion of the distinction 
between intended and unintended effects and reconstitution effects, see Edwards and Ramirez (2016). 
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In the literature on job polarization, occupations are commonly grouped into high-, mid- and low-skill 

jobs based on the first digit of the ISCO10 code for the occupation. Table 1 below shows this grouping. 

If the first digit for an occupation is 1 then the occupation is a managerial occupation, which is classified 

as high skill. Of employees, 5.59% have a job in this category. The polarization literature generally finds 

that the proportions of high- and low-skill jobs are increasing, while the proportion of mid-skill jobs is 

decreasing. This pattern was confirmed for Denmark in Holm et al. (2020). 

[Table 1 here] 

Table 1 also contains examples of the jobs placed in each category that are observed in our data. As 

can be seen, the groupings are necessarily somewhat broad, and while they contain jobs of arguably 

similar skill level, significant qualitative differences are observed within each group. The analysis 

presented in this paper does not concern the relationship between the use of AI and job polarization—

that is, shifts in occupational shares—but rather focuses on changes at the job level associated with AI 

use. That is, we analyse the effect of AI on the skill requirements of jobs. There are two reasons why 

AI affects jobs differently; some job types use AI more frequently than others, and using AI can have 

different effects on different jobs. Figure 1 shows the propensity of the various occupational groups in 

Table 1 to use AI daily. The reference lines are the national averages presented above and a 45-degree 

line. 

Most occupational groups are above the 45-degree line, meaning that it is more common to use AI 

daily for decision making than it is to use AI orders daily. The exceptions are groups 8 and 9 (operators 

and elementary occupations) and the total average for the low-skill group. 

[Figure 1 here] 

Mid-skill workers are clearly the group that most often use AI, and this is consistent with mid-skill jobs 

being the group of jobs most exposed to automation technologies in general. However, there is large 

variation within the group of mid-skill jobs, as group 4 (clerks) comprises the workers most likely to 

use AI for decisions daily, while group 8 (operators) comprises the workers most likely to use AI orders 

daily.11 As a whole, the high-skill group has less than average likelihood of using AI orders but average 

likelihood of using AI for decisions, which sets jobs in this category apart from the other occupational 

groups. 

4. The impact of AI on skills in work 

 4.1 Measuring job skills 

To measure employees’ skills, we adopt the job requirement approach (JRA) used in the OECD’s PIAAC 

survey referred to above and in other surveys, including the British Skills Survey. The JRA measures the 

skills employees use in their work by asking about the tasks they perform. For example, if an employee 

works on a team then this is seen as reflecting the use of team work skills. This means we focus on ‘job 

skills’ and not on the employee’s ‘own skills’ in the sense of what skills the employee has. As noted in 

 
10 ISCO: International Standard Classification of Occupations. 
11 Despite this difference within the mid group, we use the high-mid-low grouping in the regressions. Using 
instead the eight groups in Table 1 produced very similar results. The main difference is that as some groups 
are relatively small, the associated estimates become imprecise when using eight groups. 
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the methodological report for PIAAC, there may be a discrepancy between the two, and this means 

that at any point in time a skills mismatch is a possibility. There is also a risk of bias in the sense that 

the individual respondent might exaggerate what he or she does to present their work in a favourable 

light. However, the risk of a bias in this sense is likely to be less than it would be if the respondent were 

asked how good he or she is at performing a task (OECD, 2009: 13). 

Table 2 below presents the 14 binary indicators we use to construct measures of job skills in the 

analysis of AI impacts.12 These measures are based on those used in successive rounds of the European 

Working Conditions Survey (EWCS) carried out by Eurofound since the 1990s.13 They are designed to 

identify a set of generic skills that may characterize work activity across different occupations and 

sectors of the economy. Work on the trend of the skill bias of technical change since the 1980s argues 

that work has evolved under the impact of information and communication technologies (ICTs) to 

become more cognitively demanding and to require increased interpersonal skills (Autor and Price, 

2013; Katz and Autor, 1999: 1509-38). Our indicators are chosen in part to assess how AI affects these 

features of work by capturing whether or not an employee’s work activity is cognitively demanding, 

requiring the skills and judgement needed to cope with complex tasks and with learning as opposed 

to being repetitive and monotonous and whether it requires the skills needed to work autonomously. 

We include four indictors that capture whether or not the employee has the social interaction, 

adaptability and technical skills needed for working in a high-performance work system (HPWS), 

including the skills needed to work on teams, to work at multiple and flexible tasks and to undertake 

tasks involving quality control and meeting precise quality standards. There is a variety of research on 

the characteristics of work organization demonstrating the importance of these tasks and the skills 

associated with them in both the manufacturing and services sectors. The results of the survey also 

confirm this for Denmark, as shown by the frequencies of their use in Table 2 below.14 For example, 

about 86% of our sample of employees has responsibility for quality control, and about 58% work on 

teams. We also include indicators of whether the job requires that the employee adapt his or her pace 

of work to various constraints, including those imposed by the automatic movement of equipment or 

machinery, the demands of one’s boss, production norms or targets set by management and the pace 

at which one’s colleagues work. A striking feature of employees’ responses to the survey questions on 

work pace constraints is how infrequent the former two types of constraints are. Less than 13% of the 

employees surveyed in Denmark responded that their work pace is constrained by their boss and less 

than 16% that it is constrained by the automatic movement of equipment or machinery. 

It is important to recognize both the merits and shortcomings of the survey-based measures we use 

for capturing job skills. The questions we use are posed in a simple and for the most part objective 

manner to increase their reliability in the sense of being unaffected by differences in the type of 

respondent in terms of occupational category or sector of activity.15 For example, workers are not 

 
12 For the survey questions used to measure the 14 indicators, see the Appendix. 
13 For the objectives of the EWCS and changes in the questionnaires used in successive rounds of the survey, 
see https://www.eurofound.europa.eu/surveys/european-working-conditions-surveys-ewcs. 
14 Classic studies on the core set of work practices used in a HPWS include Appelbaum et al. (2000), Black and 
Lynch (2004) and Freeman and Kleiner (2000). For evidence on the use of high-performance work practices in 
the member states of the EU, see Lorenz and Potter (2019) and Holm and Lorenz (2015). 
15 For the extensive cognitive testing of the questions used in the 2010 round of the EWCS designed to assure 
high reliability and high content validity in the sense of measuring what was intended, see 
https://www.eurofound.europa.eu/sites/default/files/ef_files/surveys/ewcs/2010/documents/pretest.pdf. 
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asked whether they exercise autonomy at work, which would likely be interpreted in various ways, but 

rather are asked if they are able to change or modify their methods or pace of work. This allows us to 

capture relevant features of work activity and has the advantage of allowing us to assess whether or 

not these same features are present for employees across the entire sample population. However, this 

advantage of survey-based methods necessarily comes at the cost of an inability to capture qualitative 

differences in work activity that may be highly specific to the context in which the individual employee 

works. 

[Table 2 here] 

To identify a set of underlying skill domains, we perform a principal component analysis (PCA) on the 

14 binary indicators of job skills. We retain the first five components from the PCA each of which has 

an eigenvalue over 1 and which together account for 54% of the total variance in the dataset.16 Table 

3 shows the factor loadings of the five retained components on the original variables after varimax 

rotation. Factor 1 loads positively on repetitiveness and monotony and negatively on learning and 

complexity. We refer to it as Monotony. Factor 2 loads positively on three of the work pace constraint 

indicators—hierarchical, norm-based and automatic constraints. We refer to it as Constraints. Factor 

3 loads positively on two of the work practices used in HPWS, teamwork and job rotation and therefore 

unsurprisingly also loads positively on horizontal constraints in the sense of work pace being 

constrained by the work of one’s colleagues. We refer to it as HPWP1. Factor 4 loads positively on 

exercising control over one’s work methods and work pace. We refer to it as Autonomy. Factor 5 loads 

positively on two other HPWP—individual responsibility for quality control and meeting precise quality 

norms or standards. We refer to it as HPWP2. 

[Table 3 here] 

4.2 Regressions 

In this section, we use regression analysis to determine the association between the skill requirements 

of jobs and AI use. Skill requirements are measured using the five factors or components described 

above. We regress each of the factors on the two binary indicators for AI use described above. 

AI.decisons takes the value 1 if the employee uses AI for decision making daily and zero otherwise. 

AI.orders takes the value 1 if the employee follows orders generated by AI daily. We use a number of 

categorical control variables that, except for the variables for occupation, were added to the dataset 

by Statistics Denmark based on their registry data. Reference categories are in bold. We control for 

occupation by skill level (High, Middling, Low), education (primary, secondary or <= 2 years tertiary, 

>2 years tertiary), Age (18–39, 40–59, 60+) and industry (agriculture, manufacturing, construction, 

trade, ICT, finance and real estate, business services, health and education, culture and other services).  

By indexing the 14 control variables by 𝑗 so that 𝑧𝑗 is the 𝑗th variable the regression, the equation for 

Factor X becomes 

 𝐹𝑎𝑐𝑡𝑜𝑟𝑋𝑖 = 𝛽0 + 𝛼2𝐴𝐼. 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠𝑖 + 𝛼2𝐴𝐼. 𝑜𝑟𝑑𝑒𝑟𝑠𝑖 + ∑ 𝛽𝑗𝑧𝑗,𝑖
14
𝑗=1 + 𝜖𝑖  , (1) 

where epsilon is the normally distributed error term. The five regressions following equation 1 are 

estimated separately with ordinary least squares using the post stratification weights supplied by 

 
16 For the values of the eigenvalues, see Table 9 in the Appendix. 
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Statistics Denmark for the TASK survey. Next, we add four interaction terms to the regression equation 

multiplying the categorical variables for occupations and the indicators of AI use. These interactions 

will allow us to determine whether the relationship between AI use and skill requirements vary across 

the three skill groups. 

Table 4 shows the result of estimating equation 1 for each of the five factors. Daily use of AI for decision 

making is found to be positively associated with both HPWP1 and HPWP2 in the job and with 

constraints on work pace, although the latter is only marginally significant. This means that AI for 

decision making is associated with increased teamwork, task rotation, quality control, meeting quality 

standards and constraints on the work pace. Thus, AI for decision making both increases the need for 

the skills related to adaptability, social interaction and judgement but at the same time tends to fix the 

pace of work. This result shows that an increase in the use of HPWS practices, such as teamwork or job 

rotation, does necessarily imply greater discretion in work in the sense of fewer constraints on the 

work pace. 

Relying daily on orders generated by AI, however, only has a relationship with work pace constraints, 

and this positive relationship is both numerically much larger and statistically more significant than the 

relationship between AI for decision making and constraints. The estimated magnitudes of the 

variations in skill requirements related to a synthetic factor are therefore not readily interpretable, but 

it can be noticed that the magnitudes are at about the same level as the differences by occupation or 

industry. 

The control variables included in the regression model perform largely as expected. After controlling 

for occupation, there are few effects of industry and of education. However, there are a number of 

statistically significant effects of age, implying that experience matters for skills at work. The results 

show that the jobs of older and more experienced workers are on average less monotonous, involve 

more learning and entail fewer work pace constraints compared to the work of younger colleagues 

while at the same time being less likely to involve teamwork and task rotation (HPWP1) and to have 

work pace be constrained by the work of colleagues However, the work of older and experienced 

workers more often involves responsibility for quality control and meeting precise quality norms or 

standards (HPWP2). These differences suggest a process of upskilling that may represent rewards for 

experience; as workers become more experienced, their work activity tends to involve more learning, 

they are entrusted with greater responsibility for quality control and their work pace is less 

constrained. These difference in the results for work experience in relation to HPWP1 and HPWP2 

point to the usefulness of using PCA to separate out different underlying skills domains in the data.  

[Table 4 here]  

In the next set of regressions, we add four interaction terms to each model. The full results are 

presented in the appendix. Tables 5 and 6 show the resulting differences in the relationship between 

AI use and skill requirements by occupational group. 

[Table 5 here] 

AI use was not found to affect monotony and learning in the first set of regressions, but when including 

the interaction terms it can be seen that daily use of AI for decisions is associated with lower monotony 

and more learning for high-skill workers, while the daily receipt of orders generated by AI is associated 

with more monotony and less learning for mid-skill workers. 
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[Table 6 here] 

As seen in Table 5, the positive relationship between AI for decisions and work pace constraints 

identified earlier is found to only pertain to high-skill workers when adding the interactions, while the 

positive relationship between AI orders and constraints is confirmed to pertain to all workers (Table 

6). The positive association between AI for decisions and HPWP is also qualified. Only mid- and high- 

skill workers experience the positive relationship between HPWP1 and AI for decisions, and only high- 

skill workers experience the positive relationship between HPWP2 and AI for decisions. Finally, AI 

orders is now found to decrease autonomy for the high-skill workers. 

All in all, these results show that AI use has differing effects on work and job skill requirements 

depending on the type of use and the skill level of the job: 

High-skill jobs that involve daily use of AI for decision making are very different from high-skill jobs 

that do not. Such jobs have less monotony and more learning and more use of HPWP, both in terms of 

teamwork and job rotation (HPWP1) and quality control and meeting quality standards (HPWP2). 

However, such jobs also have more work pace constraints. 

High-skill jobs that involve receiving orders daily from an AI system, however, experience only 

increased work pace constraints and decreased autonomy. 

Mid-skill jobs that involve daily use of AI for decision making differ from other mid-skill jobs that do 

not by having more use of HPWP1 (task rotation and teamwork). 

Mid-skill jobs that involve receiving orders from AI daily have more constraints, more monotony and 

less learning than other mid-skill jobs. 

All jobs, regardless of skill level, have more pace constraints when daily receiving orders from an AI 

system.  

Therefore, the positive effect on skill requirements associated with AI for decision making 

(adaptability, social interaction, judgement) are primarily felt by high-skill workers. Such skill 

requirements arguably make the jobs more interesting and potentially also more productive and hence 

may allow for a higher wage. The negative effect of AI orders, however, are felt across jobs but are  

even stronger among mid-skill workers who also experience decreased learning and increased 

monotony. Even the general relationship that AI orders is associated with increased constraints will 

affect mid-skill jobs more, as AI for orders is used relatively often in such jobs; cf. Figure 1. The result 

that AI use affects workers in mid-skill jobs particularly adversely is consistent with AI use contributing 

to job polarization both in terms of wages and jobs, as mid-skill jobs are simplified. 

Relatively few statistically significant relationships between AI use and skill requirements in low-skill 

jobs were found in the regressions. One possible explanation is the different nature of decisions made 

in jobs across skill levels. While decision making in a high-skill job may include which tasks to undertake, 

decision making in a low-skill job could relate more to the order of tasks and hence not affect which 

specific skills are needed. 

 

4.3 The causal relationship between AI and skill requirements 
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The above results clearly show a relationship between the use of AI and skill requirements, but as the 

data are collected with a single survey and both questions on tasks at work and questions on 

technology use at work pertain to the respondent’s current main paid job, the results do not show the 

direction of causality—if any—between technology use and skill requirements. This is a general 

shortcoming of survey data. To use our results as a basis for managerial action, however, indications 

of the direction of causality are very useful. The identification of causality generally relies on the use 

of instrumental variables and untestable assumptions regarding the exogeneity of such instruments. 

The survey data used for our analysis do not provide us with a useable instrument. However, ANM, a 

tool used in ML to tease out causality between otherwise simultaneous variables, can also be applied 

for causal inference from cross-sectional survey data (Coad et al., 2018). We are therefore testing for 

causality in a narrow sense, as we are testing for consistency with causality as described by the ANM. 

ANM identifies causality from 𝑋 to 𝑌 if the relationship 𝑌 = 𝑓(𝑋) is consistent with an ANM while the 

reverse relationship, 𝑋 = 𝑓(𝑌), is not. 𝑓(. ) is the ANM and is what in econometrics is a linear additive 

regression equation with an error term. 𝑌 = 𝑓(𝑋) is consistent with an ANM if the relationship does 

not exhibit endogeneity, which is identified by testing whether the residual is independent of 𝑋. The 

test for independence between 𝑋 and the residual is the Hilbert Schmidt Independence Criterion (HSIC) 

test. The HSIC test is used to test for higher-order dependencies between the residual and 𝑋 as 

opposed to just linear dependence. Whether the method supports or rejects causality is interpreted 

from a comparison of the p-values from modelling causality in each direction. If there is endogeneity 

in both or neither direction, then the method is inconclusive (Coad et al., 2018). 

As the usefulness of ANM for discrete data is not well known, we do not use the binary indicators of 

daily use of AI as used in the regressions above. Instead, we use a variable that takes the values 1–5 

for every day, at least once per week, 1–3 per month, less than once per month and never. There are 

10 potential causal relations to test—the two variables for AI use by the five factors for tasks at work. 

For each test, we first correct the left-hand side variable for the variance that can be explained by the 

variables included as controls in the regressions—occupation, age, industry and education. 

The p-values from the resulting 20 HSIC tests are shown in Table 7. 

[Table 7 here] 

In Table 7, the cells with dark shading provide relatively conclusive evidence, as the p-value in one 

direction is relatively large while the other p-value is small. Interpreted with the sign of the relationship 

as identified in the regressions, this means that AI for decision making causes lower monotony and 

more learning, while AI orders cause increased monotony and HPWP1 and lower autonomy. The lightly 

shaded cells are relationships where it depends on the p-value cut-off used for interpretation whether 

the result is conclusive. In all cases, there is strong evidence of endogeneity when modelling causality 

as an ANM from work tasks to AI, while the evidence is somewhat weaker in the opposite direction. It 

can therefore be argued that AI for decision making causes increased constraints, HPWP1 and HPWP2. 

The relationship between AI orders and HPWP1 seen in Table 7 was not observed in the regressions. 

It is possible that there is a non-linear relationship between these two variables, which we are not able 

to capture in the regressions. 

5 Conclusions 
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The analysis in this paper using a novel and unique dataset on the use of AI among employees in 

Denmark allows us to engage with some of the limitations of the existing literature and the task-based 

approach. Unlike most of the literature investigating the impact of AI on skills, the analysis presented 

here does not assume that the effects of AI on skills are uniform for all employees with the same 

occupational title. Rather, our micro-level data allows us to handle each job separately and investigate 

within-job relationships between technology use and skill requirements as revealed with the JRA 

approach. This allows us to go beyond the existing literature, which has assumed for the most part that 

the effect of AI is to substitute for existing skills, and to show that the effects of AI are varied and 

depend on how it is used. AI may enhance or augment skills in the sense of increasing complexity and 

learning, as well as the need for social interactive and adaptability skills, or it may simply increase work 

pace constraints and reduce employee autonomy. We use ANM to establish the likely direction of 

causality in our results and find that the direction of causality is from AI use to skill requirements. This 

result is not found consistently in all cases, but it is contradicted in none of our cases. 

In our data, we capture two different types of use of AI from the perspective of the employee without 

distinguishing between symbolically coded AI and AI created from ML. One type is where the AI has 

chosen the action to be performed and gives the employee orders or instructions, while the other type 

is where the employee uses information from the AI in his or her own decision making. These two 

types of AI use are relatively generic, which they must necessarily be when conducting a broad survey 

of AI use. Therefore, our analysis does not approach issues of domain-specific skills. 

For example, in the case of high-skilled jobs our regression analysis shows that while the use of AI as 

an input for further decision making entails an increase in job pace constraints it also results in less 

monotony and more learning and in increased use of a wide range of HPWP, including teamwork, job 

flexibility and responsibility for quality control. However, if AI is used as a tool for giving orders to 

workers with high-skill jobs it only results in increased work pace constraints and decreased autonomy. 

Similar differences in AI impacts on skills are found to be true for medium-skill jobs, although to a lesser 

degree than in the case of high-skill jobs. For the workers with medium-skill jobs, fewer of the HPWP 

practices are associated with using AI for decision making, and the adverse effects of using AI as a tool 

for giving orders are enhanced in the sense of a larger positive impact on work pace constraints, more 

monotony and less learning. For low-skill jobs, the effects of using AI as an input for further decision 

making are neutral, while the dominant effect of using AI for giving orders is to increase work pace 

constraint.  

Our results clearly are not consistent with the literature arguing that the adoption of AI foretells an 

economic singularity that will uniformly reduce the importance of human skills in work activity. The 

observed variability in how AI is used and in its impacts raises the important question of how much 

discretion or voluntarism employers have in how they use AI and whether they can decide to use AI in 

ways that enhance skills and assure that work is less monotonous and provides more opportunities for 

learning. The answer to this question in turn has important implications for the policies employers 

adopt for their provision of AI-related training and skills development on and off the job. It also has 

important implications for the scope that the social partners have for shaping labour market policies 

that serve to ‘future-proof’ skills and competence development by providing opportunities for workers 

to continuously renew and upgrade their skills. The Danish institutional framework includes unions 

that traditionally have been focussed on maintaining jobs through supporting efforts to improve firms’ 

competitiveness and hence partake in competence upgrading both through workers’ rights to further 
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education and training explicitly defined in collective agreements, and corporatist policy making aimed 

at developing the active labour market policy (Ibsen, 2012).  The distinctive Danish system of flexible 

security which combines unemployment protection with public provision of training for the 

unemployed, also supports skills and competence development. As discussed in Nielsen et al. 2021, 

this objective can be furthered by actively involving local educational institutions, and one possible 

solution suggested by the authors is establishing local competence clusters where employers and 

unions in partnership with educational institutions are systematically involved in training and re-

training of the workforce.  

We see a pressing need for additional micro-level data to better address these issues. Employee-level 

survey data complementary to that collected in the TASK survey could provide information on the 

types and amount of training received by employees. Assessing how much discretion employers have 

in how AI is used and in the role of worker representatives in monitoring skills needs and in directing 

the demands made on external training providers could be explored with complementary micro-data 

at the enterprise level. It is our hope that the analysis presented here will encourage both researchers 

and policy makers alike to pursue this data collection effort and to contribute to generating 

information that can improve our understanding of AI and how it may be mobilized as a tool to both 

increase the quality of working life and economic performance. 

 

Data availability statement 

The data that support the findings of this study are available from the corresponding author upon 

reasonable request and subject to conditions and approval by Statistics Denmark. 
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Group Label Percent of 

employees 

Skill 

level 

Job examples  

1 Managers 5.59 High CEO, vice president, sales/factory/school 

manager 

 

2 Professionals 34.36 High Professor, engineer, doctor, nurse, 

teacher, chief consultant, computer 

programmer, auditor, lawyer 

 

3 Technicians and 

associate 

professionals 

16.99 High Consultant, lab assistant, pharmacist, 

accountant, technician, head of 

department 

 

4 Clerical support 10.99 Mid Office assistant, administrative officer, 

secretary, receptionist, payroll clerk 

 

5 Service and sales 11.26 Low Kitchen assistant, shop assistant, building 

caretaker, personal care assistant, porter, 

watchman 

 

7 Craft and related 

trades 

6.70 Mid Brick layer, carpenter, smith, electrician  

8 Plant and machine 

operators and 

assemblers 

6.81 Mid Chauffeur, machine operator in 

industry/meat/boiler/cutting, locomotive 

driver 

 

9 Elementary 

occupations 

7.31 Low Cleaning, gravedigger, tradesman’s 

assistant, warehouse assistant 

 

Note: Data and examples from the TASK survey. Post-stratification weights are used. 

Table 1: Occupational groups  
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Variable Percent of employees 

Learning new things in work 60.4 

Complexity of tasks 64.8 

Discretion in fixing work methods  56.8 

Discretion in fixing work pace 57.1 

Teamwork 58.3 

Job rotation 57.0 

Responsibility for quality control 86.0 

Precise quality standards 80.4 

Horizontal constraints on work pace 57.0 

Hierarchical constraints on work pace 12.9 

Norm-based constraints on work pace 42.1 

Automatic constraints on work pace 15.4 

Repetitiveness of tasks 33.3 

Monotony 26.8 

 

Table 2: Share of employees characterized by each work activity trait 
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Variable Monotony Constraints HPWP1 Autonomy HPWP2 

Learning new things in work -0.4362 0.1127 0.2475 0.0253 0.005 

Complexity -0.4471     0.1323     0.1168    -0.0013     0.1854     

Discretion in fixing work methods -0.1244 0.0857 0.0964 0.5813 -0.0573 

Discretion in fixing work pace 0.0765 -0.0103 -0.0279 0.7101 0.0806 

Teamwork 0.0823 

 

-0.0783 0.5410 0.1877 0.0650 

Job rotation  -0.0229     -0.0823     0.6130    -0.0732    -0.0987    

Responsibility for quality control -0.0361    -0.0500    -0.0650     0.0830     0.7826     

Precise quality standards 0.0890     0.1484     0.1428    -0.2814     0.4889    

Horizontal constraints on work pace -0.0505   -0.2904     0.3293    -0.1481    0.1926    

Hierarchical constraints on work 
pace 

-0.0481     

 

0.5673    -0.1617     0.0196    -0.1591     

Norm-based constraints on work pace    -0.0478    
-  

0.5139     0.0790    0.0060     0.1412    

Automatic constraints on work pace 0.1894 0.4877        -0.0890     0.0874     0.0350    

Repetitiveness of tasks 0.4925     0.0338     0.2659     0.0238     0.0815     

Monotony 0.5352    

  

0.1248     0.0509     0.0080    -0.0158     

 

Table 3: Factor loadings  
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Table 4: Regression results 

____________________________________________________________________________________________________ 

                          Model 1         Model 2         Model 3         Model 4         Model 5    

                          + Monotony    Constraints        HPWP1          Autonomy    HPWP2 

                         - Learning 

____________________________________________________________________________________________________ 

 

AI.decisions               -0.151           0.263*          0.531***        0.005           0.300**  

                           (0.13)          (0.14)          (0.13)          (0.12)          (0.13)    

AI.orders                   0.122           0.867***        0.020          -0.117           0.200    

                           (0.16)          (0.18)          (0.17)          (0.14)          (0.15)    

Occupation high                                    Reference    

                               

Occupation middling        0.717***       -0.067          -0.384***       -0.166          -0.129    

                           (0.13)          (0.13)          (0.13)          (0.11)          (0.11)    

Occupation low             0.476***       -0.276**        -0.285**        -0.231**        -0.210*   

                           (0.12)          (0.13)          (0.12)          (0.12)          (0.12)    

Education primary                                 Reference 

                               

Education secondary        -0.167          -0.337**         0.005           0.038           0.080    

or <=2 years tertiary      (0.13)          (0.17)          (0.14)          (0.14)          (0.12)    

 

Education >2 years         -0.752***       -0.448**         0.171           0.104           0.025    

tertiary                   (0.16)          (0.19)          (0.16)          (0.15)          (0.15)    

 

Age 18-39                                          Reference 

                                                   

Age 40-59                 -0.296***       -0.294***       -0.130           0.113           0.146*   

                           (0.10)          (0.10)          (0.10)          (0.09)          (0.09)    

Age => 60                 -0.427***       -0.465***       -0.448***        0.150           0.310*** 

                           (0.12)          (0.14)          (0.14)          (0.13)          (0.10)    

Agriculture,                                       Reference    

Forestry and Fishing 

 

Industry and Mining        -0.638**         0.104          -0.217          -0.184          -0.198    

                           (0.32)          (0.47)          (0.46)          (0.31)          (0.26)    

Construction               -1.223***       -0.263           0.043          -0.133           0.098    

                           (0.36)          (0.50)          (0.48)          (0.35)          (0.28)    

Trade and Transport        -0.398          -0.191          -0.338          -0.486          -0.445*   

                           (0.31)          (0.47)          (0.46)          (0.31)          (0.26)    

Information and           -0.882**        -0.324          -0.032          -0.399          -0.401    

Communication              (0.35)          (0.50)          (0.50)          (0.34)          (0.31)    

 

Finance, Insurance         -0.824**        -0.453          -0.531          -0.699**        -0.722**  
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and Real Estate            (0.37)          (0.48)          (0.48)          (0.34)          (0.30)    

 

Business services          -0.545*         -0.291          -0.327          -0.495          -0.058    

                           (0.32)          (0.47)          (0.47)          (0.32)          (0.25)    

Education and              -0.587*         -0.503          -0.024          -0.670**        -0.419*   

Health        (0.31)          (0.46)          (0.46)          (0.30)          (0.25)    

 

Culture, Leisure           -0.560          -0.472          -0.264          -0.160          -0.513    

and other services         (0.35)          (0.52)          (0.50)          (0.37)          (0.33)    

 

Constant                    1.016***        0.819*          0.269           0.442           0.152    

                           (0.35)          (0.50)          (0.48)          (0.34)          (0.29)    

 

____________________________________________________________________________________________________ 

 

N            1,116     1,116     1,116   1,116      1,116   

 

R-squared        0.192     0.113       0.077        0.035            0.056             

____________________________________________________________________________________________________ 

* p<0.10, ** p<0.05, *** p<0.01; Robust standard errors in parentheses. The data are weighted. 
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  Monotony Constraints HPWP1 Autonomy HPWP2 

High -0.289* 0.390** 0.340*** 0.029 0.327** 

 (0.159) (0.177) (0.148) (0.149) (0.165) 

Middling -0.012 0.141 0.930*** 0.140 0.390 

 (0.276) (0.294) (0.220) (0.236) (0.263) 

Low -0.210 -0.112 0.486 -0.218 0.130 

  (0.350) (0.275) (0.408) (0.260) (0.344) 

 Robust SE in parentheses. Full results in appendix. 
Table 5: Marginal effects of AI for decisions by occupational group 
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  Monotony Constraints HPWP1 Autonomy HPWP2 

High 0.011 0.679*** -0.204 -0.528** 0.258 

 (0.249) (0.254) (0.215) (0.225) (0.200) 

Middling 0.607** 1.238*** -0.197 0.039 -0.018 

 (0.292) (0.363) (0.335) (0.266) (0.298) 

Low -0.326 0.776** 0.424 0.241 0.332 

  (0.278) (0.307) (0.298) (0.221) (0.301) 

 Robust SE in parentheses. Full results in appendix. 

  
Table 6: Marginal effects of AI orders by occupational group 
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Factor Monotony Constraints HPWP1 Autonomy HPWP2 

From AI orders 0.119 <0.001 0.960 0.450 <0.001 

To AI orders 0.005 <0.001 0.002 0.014 <0.001 

From AI for decision 0.456 0.070 0.068 0.173 0.020 

To AI for decision 0.029 <0.001 <0.001 0.129 <0.001 

p-values from ANM HSIC test. 'From'/'To' is the implied direction of causality 

Table 7: Results from additive noise modelling 
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Figure captions 

Figure 1: Daily AI use by occupational group and type of use 
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Appendix 
Below are the 14 questions from the TASK survey that are used to construct the factors for skills used 

at work. All 14 questions are answered using the scale Always-Often-Sometimes-Rarely-Never. We 

use only binary indicators coded 1 if the response was ‘Always’ or ‘Often’. 

How often does your main job involve: 

1. Meeting precise quality standards?  

2. Assessing yourself the quality of your own work? 

3. Monotonous tasks? 

4. Complex tasks? 

5. Learning new things? 

6. Short, routine and repeated tasks of less than 10 minutes? 

7. Rotating tasks between yourself and colleagues? 

8. That you are able to choose or change your methods of work? 

9. That you have the option to change your speed of work? 

10. That you work in a group or team that has common tasks and plan its work? 

How often does your pace of work depend on: 

11. The work done by colleagues? 

12. Measurable production targets or performance targets? 

13. Automatic speed of a machine or movement of a product? 

14. Direct control of superiors? 

Regression with interaction effects 

Table 8 shows the results of expanding the regression in equation 1 to include interaction terms 

between the variables for AI use and the categorical variable for occupation. This entails that the 

marginal effects of AI use varies across occupational groups. The estimate for the direct effect on AI 

use then becomes the estimate for the reference group High, as no interaction terms are included 

when computing this marginal effect. The estimates for the interaction terms are the differences in 

the marginal effects between occupational groups, and this must be added to the direct effect (i.e. 

the effect for High) when computing the marginal effects for other groups. This can also be seen 

from taking the partial derivative of the regression equation. For example, the marginal effect of 

AI.orders on Monotony is 

 
𝜕𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑦𝑖

𝜕𝐴𝐼.𝑜𝑟𝑑𝑒𝑟𝑠𝑖
= 𝛼𝐴𝐼.𝑜𝑟𝑑𝑒𝑟𝑠 + 𝛽𝐴𝐼.𝑜𝑟𝑑𝑒𝑟𝑠∗𝑀𝑖𝑑𝑑𝑙𝑖𝑛𝑔𝑀𝑖𝑑𝑑𝑙𝑖𝑛𝑔𝑖 + 𝛽𝐴𝐼.𝑜𝑟𝑑𝑒𝑟𝑠∗𝐿𝑜𝑤𝐿𝑜𝑤𝑖. (2) 

In equation 2, Monotony is the first factor from the PCA and AI.orders, Middling and Low are all 

binary variables as described in the main text. 

[Table 8 here]  
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Table 9 below shows the value of the eigenvalues for the five components after orthogonal varimax 

rotation. 

[Table 9 here] 
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Table 8: Regression results 

____________________________________________________________________________________________________ 

                          Model 1         Model 2         Model 3         Model 4         Model 5    

                         + Monotony    Constraints       HPWP1           Autonomy        HPWP2 

                         - Learning 

____________________________________________________________________________________________________ 

 

AI.decisions               -0.289*          0.390**         0.400***        0.029           0.327**  

                           (0.16)          (0.18)          (0.15)          (0.15)          (0.16)    

AI.orders                  0.011           0.679***       -0.204          -0.528**         0.258    

                           (0.25)          (0.25)          (0.21)          (0.23)          (0.20)    

Occupation high       Reference 

 

Occupation middling         0.607***       -0.085          -0.468***       -0.236*         -0.113    

                           (0.14)          (0.14)          (0.14)          (0.13)          (0.12)    

Occupation low              0.499***       -0.236*         -0.351***       -0.272**        -0.204    

                           (0.12)          (0.14)          (0.12)          (0.13)          (0.13)    

AI.decisions * middling     0.276          -0.249           0.530**         0.111           0.063    

                           (0.32)          (0.34)          (0.26)          (0.28)          (0.31)    

AI.decisions * low          0.079          -0.502           0.086          -0.247          -0.197    

                           (0.38)          (0.33)          (0.44)          (0.30)          (0.38)    

AI.orders * middling       0.596           0.560           0.006           0.568          -0.276    

                           (0.38)          (0.44)          (0.40)          (0.35)          (0.36)    

AI.orders * low            -0.336           0.097           0.628*          0.769**         0.074    

                           (0.37)          (0.39)          (0.37)          (0.31)          (0.36)    

Education primary      Reference 

 

Education secondary        -0.172          -0.341**         0.011           0.042           0.080    

or <=2 years tertiary      (0.13)          (0.17)          (0.14)          (0.14)          (0.12)    

 

Education >2 years         -0.756***       -0.452**         0.168           0.099           0.024    

Tertiary                   (0.16)          (0.19)          (0.16)          (0.16)          (0.15)    

 

Age 18-39       Reference  

 

Age 40-59                  -0.295***       -0.296***       -0.127           0.112           0.149*   

                           (0.10)          (0.10)          (0.10)          (0.09)          (0.09)    

Age => 60                  -0.460***       -0.484***       -0.447***        0.140           0.317*** 

                           (0.12)          (0.13)          (0.14)          (0.13)          (0.10)    
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Agriculture,       Reference 

Forestry and Fishing 

 

Industry and Mining        -0.671**         0.109          -0.222          -0.188          -0.179    

                           (0.32)          (0.46)          (0.47)          (0.31)          (0.26)    

Construction               -1.199***       -0.246           0.084          -0.092           0.105    

                           (0.36)          (0.50)          (0.50)          (0.35)          (0.28)    

Trade and Transport        -0.436          -0.193          -0.328          -0.476          -0.432    

                           (0.32)          (0.47)          (0.48)          (0.31)          (0.27)    

Information and            -0.887**        -0.341          -0.028          -0.416          -0.393    

Communication              (0.35)          (0.50)          (0.51)          (0.34)          (0.31)    

 

Finance, Insurance         -0.809**        -0.449          -0.507          -0.677**        -0.724**  

and Real Estate            (0.37)          (0.47)          (0.50)          (0.34)          (0.31)    

 

Business services          -0.583*         -0.282          -0.319          -0.477          -0.043    

                           (0.33)          (0.46)          (0.48)          (0.32)          (0.26)    

Education and              -0.619**        -0.497          -0.020          -0.659**        -0.407    

Health                     (0.31)          (0.45)          (0.47)          (0.30)          (0.26)    

 

Culture, Leisure           -0.550          -0.428          -0.241          -0.109          -0.501    

and other services         (0.36)          (0.52)          (0.51)          (0.37)          (0.34)    

 

Constant                    1.072***        0.815           0.289           0.455           0.133    

                           (0.36)          (0.50)          (0.50)          (0.34)          (0.29)    

    

   N           1,116    1,116           1,116        1,116     1,116   

 

   R-squared       0.201        0.116            0.084   0.042     0.057                

_____________________________________________________________________________________________________ 

* p<0.10, ** p<0.05, *** p<0.01; Robust standard errors in parentheses. The data are weighted



34 
 

Table 9: Eigenvalues of first 5 rotated components 

Component Variance Proportion Cumulative 

Component 1 1.70211 0.1216 0.1216 

Component 2 1.66715 0.1191 0.2407 

Component 3 1.62262 0.1159 0.3566 

Component 4 1.44189 0.1030 0.4596 

Component 5 1.13361 0.0810 0.5405 
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