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UNCONDITIONAL BASES FOR HOMOGENEOUS
α-MODULATION TYPE SPACES

MORTEN NIELSEN

ABSTRACT. In this article we construct orthonormal bases compatible with bi-variate
homogeneous α-modulation spaces and the associated spaces of Triebel-Lizorkin
type. The construction is based on generating a separable α-covering and using
carefully selected tensor products of univariate brushlet functions with regards to
this covering. We show that the associated systems form an unconditional bases for
the homogeneous α-spaces of Triebel-Lizorkin type.

1. INTRODUCTION

Unconditional bases for smoothness spaces play an important role for many ap-
plications as the bases often provide simple characterizations of the space in terms
of certain sparseness conditions. For example, smoothness measured in a Besov
space is equivalent to a certain sparseness of a wavelet expansion [17]. Moreover,
norm characterizations often allow us to identify certain smoothness spaces as non-
linear approximation spaces [11,14]. As a consequence we gain a better understand-
ing of how to compress smooth functions by using the sparse representation of the
function in the unconditional basis [7, 8].

The α-modulation spaces M s,α
p,q (Rd), α ∈ [0, 1], form a parameterized family of

smoothness spaces defined on Rd that include the Besov and modulation spaces
as special cases, corresponding to α = 1 and α = 0, respectively. The spaces are
built from the same type of scheme arising from different segmentations of the fre-
quency space. The α-parameter determines the nature of the segmentation. For
example, the Besov spaces (α = 1) correspond to a dyadic segmentation of the fre-
quency space, while the modulation spaces (α = 0) correspond to a uniform cover-
ing. The intermediate cases correspond to “polynomial type” segmentations of the
frequency space. The classical α-modulation spaces are inhomogeneous spaces in
the sense that the underlying segmentation of the frequency space cover the zero-
frequency (so a natural low-pass filter is integrated in the representation). Recently,
however, the α-modulation spaces have been extended to a homogeneous setup.
The main contribution of of this note is to present a construction of unconditional
bases for homogeneous α-modulation spaces.

The α-modulation spaces were introduced by Gröbner [12], and it was pointed
out by Feichtinger and Gröbner [9,10] that Besov and modulation spaces are special
cases of an abstract construction, the so-called decomposition type Banach spaces.
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2 MORTEN NIELSEN

The coverings giving rise to α-modulation spaces have also been considered by
Päivärinta and Somersalo in [19] as a tool to study pseudo-differential operators.
The close connection between decomposition spaces and classical smoothness space
such as modulation spaces was first pointed out by Triebel [23]. Triebel’s work later
inspired a more general treatment of decomposition smoothness spaces [5, 6]. An-
other benefit of the connection to the general theory of decomposition spaces it that
one can easily construct associated smoothness spaces of Triebel-Lizorkin type (α-
TL spaces).

The main contribution of the present paper is to offer a construction of an or-
thonormal basis for L2(R2) that extends to an unconditional basis for bi-variate α-
modulation spaces and for the associated α-TL spaces.We believe that our construc-
tion is the first example of a non-redundant representation system for multivari-
ate α-TL spaces. Orthonormal bases for classical (inhomogeneous) α-modulation
spaces were constructed by the author in [18]. This construction was later extended
to anisotropic bi-variate setting by Rasmussen [21].

The orthonormal basis is constructed using a carefully calibrated tensor product
approach based on so-called univariate brushlet systems. Brushlets are the image
of a local trigonometric basis under the Fourier transform, and such systems were
introduced by Laeng [15]. Later Coifman and Meyer [16] used brushlets as a tool for
image compression. In [3], Borup and Nielsen used the freedom to choose the fre-
quency localization of a brushlet system to construct (orthonormal) unconditional
brushlet bases for the univariate α-modulation spaces. Using the orthonormal ba-
sis for bi-variate α-modulation spaces, we give a characterization of the bi-variate
α-modulation spaces in terms a sparseness condition on the expansion coefficients,
and we also identify the α-modulation spaces as approximation spaces associated
with nonlinear m-term approximation.

2. BI-VARIATE BRUSHLET BASES

Given an orthonormal basis {fk}k for L2(R), a universal method to created an
associated orthonormal basis for L2(R2) is to consider the tensor product basis {fk⊗
fk′}k,k′ . While this works very well for e.g. the trigonometric system on a cube, the
straightforward tensor product approach can be considered more problematic for
wavelets and similar systems as basis elements with long ”skinny” support in the
frequency plane are created. Such elements are not well-adapted for analysis of
classical isotropic smoothness spaces such as Besov or Triebel-Lizorkin spaces.

In this section we wish to avoid creating elements with ”skinny” support in fre-
quency, but still use a tensor product construction to obtain an orthonormal basis
for L2(R2). We will accomplish this by modifying the tensor product construction
carefully by keeping track of the shape of the system in the frequency plane by ex-
tracting subsystems from a sequence of so-called univariate brushlet bases. We also
mention that the analysis later in the paper would have been much simplified if one
could have used localised orthonormal exponential basis. But, unfortunately, this
is not possible due to the Balian-Low theorem.

To keep the notation manageable, we consider only the bi-variate case in this
note, but the reader can verify that the basic idea behind the construction can be
adapted to the general multivariate case.
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UNCONDITIONAL BASES FOR HOMOGENEOUS α-MODULATION SPACES 3

2.1. Univariate brushlets. We begin by introducing brushlet in a univariate set-
ting. Each univariate brushlet basis is associated with a partition of the frequency
axis. The partition can be chosen with almost no restrictions, but in order to have
good properties of the associated basis we need to impose some growth conditions
on the partition. We have the following definition.

Definition 2.1. A family I of intervals is called a disjoint covering of R if it consists
of a countable set of pairwise disjoint half-open intervals I = [αI , α

′
I), αI < α′I , such

that ∪I∈II = R. If, furthermore, each interval in I has a unique adjacent interval in I
to the left and to the right, and there exists a constant A > 1 such that

A−1 ≤ |I|
|I ′|
≤ A, for all adjacent I, I ′ ∈ I, (1)

we call I a moderate disjoint covering of R.

Given a moderate disjoint covering I of R, assign to each interval I ∈ I a cutoff
radius εI > 0 at the left endpoint and a cutoff radius ε′I > 0 at the right endpoint,
satisfying 

(i) ε′I = εI′ whenever α′I = αI′

(ii) εI + ε′I ≤ |I|
(iii) εI ≥ c|I|,

(2)

with c > 0 independent of I .
We are now ready to define the brushlet system. For each I ∈ I, we will construct

a smooth bell function localized in a neighborhood of this interval. Take a non-
negative ramp function ρ ∈ C∞(R) satisfying

ρ(ξ) =

{
0 for ξ ≤ −1,
1 for ξ ≥ 1,

(3)

with the property that

ρ(ξ)2 + ρ(−ξ)2 = 1 for all ξ ∈ R. (4)

Define for each I = [αI , α
′
I) ∈ I the bell function

bI(ξ) := ρ

(
ξ − αI
εI

)
ρ

(
α′I − ξ
ε′I

)
. (5)

Notice that supp(bI) ⊂ [αI − εI , α′I + ε′I ] and bI(ξ) = 1 for ξ ∈ [αI + εI , α
′
I − ε′I ]. Now

the set of local cosine functions

ŵn,I(ξ) =

√
2

|I|
bI(ξ) cos

(
π
(
n+ 1

2

)ξ − αI
|I|

)
, n ∈ N0, I ∈ I, (6)

with N0 := N ∪ {0}, constitute an orthonormal basis for L2(R), see e.g. [2]. We call
the collection {wn,I : I ∈ I, n ∈ N0} a brushlet system. The brushlets also have an
explicit representation in the time domain. Define the set of central bell functions
{gI}I∈I by

ĝI(ξ) := ρ

(
|I|
εI
ξ

)
ρ

(
|I|
ε′I

(1− ξ)
)
, (7)
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4 MORTEN NIELSEN

such that bI(ξ) = ĝI
(
|I|−1(ξ − αI)

)
, and let for notational convenience

en,I :=
π
(
n+ 1

2

)
|I|

, I ∈ I, n ∈ N0.

Then,

wn,I(x) =

√
|I|
2
eiαIx

{
gI
(
|I|(x+ en,I)

)
+ gI

(
|I|(x− en,I)

)}
. (8)

By a straight forward calculation it can be verified (see [3]) that for r ≥ 1 there
exists a constant C := C(r) <∞, independent of I ∈ I, such that

|gI(x)| ≤ C(1 + |x|)−r. (9)

Thus a brushlet wn,I essentially consists of two well localized humps at the points
±en,I .

Given a bell function bI , define an operator PI : L2(R)→ L2(R) by

P̂If(ξ) := bI(ξ)
[
bI(ξ)f̂(ξ) + bI(2αI − ξ)f̂(2αI − ξ)− bI(2α′I − ξ)f̂(2α′I − ξ)

]
. (10)

It can be verified that PI is an orthogonal projection, mapping L2(R) onto

span{wn,I : n ∈ N0}.
In Section 2.2, we will need some of the finer properties of the operator given by
(10). Let us list properties here, and refer the reader to [13, Chap. 1] for a more
detailed discussion of the properties of local trigonometric bases.

Suppose I = [αI , α
′
I) and J = [αJ , α

′
J) are two adjacent compatible intervals (i.e.,

α′I = αJ and ε′I = εJ ). Then it holds true that

P̂If(ξ) + P̂Jf(ξ) = f̂(ξ), ξ ∈ [αI + εI , α
′
J − ε′J ], f ∈ L2(R). (11)

We can verify (11) using the fact that bI ≡ 1 on [αI + εI , α
′
I − ε′I ] and that bJ ≡ 1 on

[αJ + εJ , α
′
J − ε′J ], together with the fact that

supp
(
bI(·)bI(2αI − ·)

)
⊆ [αI − εI , αI + εI ]

and
supp

(
bI(·)bI(2α′I − ·)

)
⊆ [α′I − ε′I , α′I + ε′I ].

For ξ ∈ [α′I − ε′I , αJ + εJ ] we notice that

P̂If(ξ) + P̂Jf(ξ) = [b2
I(ξ) + b2

J(ξ)(ξ)]f̂(ξ)

+ bJ(ξ)bJ(2α′ − ξ)f̂(2α′ − ξ)− bI(ξ)bI(2α′ − ξ)f̂(2α′ − ξ). (12)

We can then conclude that (11) holds true using the following facts (see [13, Chap.
1])

bI(ξ) = bJ(2α′I − ξ), bJ(ξ) = bI(2α
′
J − ξ), for ξ ∈ [α′I − ε′I , αJ + εJ ],

and
b2
I(ξ) + b2

J(ξ) = 1, for ξ ∈ [αI + εI , α
′
J − ε′J ].

Moreover,
PI + PJ = PI∪J (13)

with the ε-values εI and ε′J for I ∪ J .
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Finally, for a rectangle Q = I × J ⊂ R2 with I = [αI , α
′
I) and J = [αJ , α

′
J), we

define PQ = PI ⊗ PJ . Clearly, PQ is a projection operator

PQ : L2(R2)→ span{wi,I ⊗ wj,J : i, j ∈ N0}.
Notice that,

PQ = bQ(D)
[
(Id +RαI −Rα′I

)⊗ (Id +RαJ −Rα′J
)
]
bQ(D), (14)

where
̂bQ(D)f := bQf̂ , (15)

with bQ := bI ⊗ bJ , and Raf(x) := ei2af(−x), x, a ∈ R. The corresponding orthonor-
mal tensor product basis of brushlets is given by

wn,Q := wn1,I ⊗ wn2,J , n = (n1, n2) ∈ N2
0.

2.2. Structured α-coverings and bi-variate brushlet systems. We now turn to the
task of creating bi-variate systems with a very specific time-frequency structure that
turns out to be well-adapted for the analysis of homogeneous α-modulation spaces.
We are going to fix 0 ≤ α < 1. In this section, α can be considered just a parameter
that can be used to ”tune” the specific time-frequency properties of the resulting
bi-variate system. We first consider the following subsets of the real axis, with end-
points that are compatible with standard univariate α-coverings, see [4],

Aj :=
[
− j

1
1−α , j

1
1−α
)
, j = 1, 2, . . .

For the low frequencies we will need the following subsets

Aj :=
[
− |j|−

1
1−α , |j|−

1
1−α
)
, j = −1,−2, . . .

We will need to create additional intervals for the final covering. For this we make
a further subdivision of [−j

1
1−α , j

1
1−α ] into 2j/r1 + 1 intervals, where r1 is chosen

sufficiently small and such that 2|j|/r1 = 2Nj ∈ 2N. We write

[−j
1

1−α , j
1

1−α ] = Ij,−Nj ∪ Ij,−Nj+1 ∪ · · · ∪ Ij,Nj ,
where Ij,n := [rj,n, rj,n+1], j = −Nj, . . . , Nj , and we impose the particular ”endpoint”-
choices rj,−Nj+1 = −(j − 1)

1
1−α and rj,Nj−1 = (j − 1)

1
1−α , i.e.,

Ij,−Nj = [−j
1

1−α ,−(j − 1)
1

1−α ] and Ij,Nj = [(j − 1)
1

1−α , j
1

1−α ]. (16)

This is done to ensure seamless ”gluing” later on when we create bi-variate systems.
We now repeat the process for [−|j|−

1
1−α , |j|−

1
1−α ], j ∈ {−1,−2, . . .}, and make a

division into into 2|j|/r1 + 1 intervals. We write, for j ∈ {−1,−2, . . .},

[−|j|−
1

1−α , |j|−
1

1−α ] = Ij,−Nj ∪ Ij,−Nj+1 ∪ · · · ∪ Ij,Nj ,
where Ij,n := [rj,n, rj,n+1], j = −Nj, . . . , Nj , and we again impose particular ”endpoint”-
choices rj,−Nj+1 = −(|j|+ 1)−

1
1−α and rj,Nj−1 = (|j|+ 1)−

1
1−α , i.e.,

Ij,−Nj = [−|j|−
1

1−α ,−(|j|+ 1)−
1

1−α ] and Ij,Nj = [(|j|+ 1)−
1

1−α , |j|−
1

1−α ]. (17)

For each interval I = [rj,s, rj,s+1], we associate a corresponding brushlet system
with left ε-value 1

100
|rj,s|α and right ε-value 1

100
|rj,s+1|α. The scaling factor 1

100
has

been chosen to ensure that (2) is satisfied.

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, 
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.  

The Version of Record is available online at: https://doi.org/10.1007/s00009-022-02001-w



6 MORTEN NIELSEN

We now consider the rectangular “annuli” given by

Aj = ALj ∪ ARj ∪ ATj ∪ ABj , j ∈ Z\{0},

with
ALj =

{
Ij,−Nj × Ij,n

}
−Nj≤n≤Nj

, ARj =
{
Ij,Nj × Ij,n

}
−Nj≤n≤Nj

and
ATj =

{
Ij,n × Ij,Nj

}
−Nj<n<Nj

, ABj =
{
Ij,n × Ij,−Nj

}
−Nj<n<Nj

.

For notational convenience, we put A0 := ∅. The following result confirms that one
can build orthonormal bi-variate brushlet bases based on the covering of R2 given
by the sets {Aj}.

Proposition 2.2. The system {wn,Q : n ∈ N2
0, Q ∈ Aj, j ∈ Z} forms an orthonormal basis

for L2(R2).

Proof. We first consider orthonormality. Let Sj := {wn,Q : Q ∈ Aj, n ∈ N2
0} and no-

tice that the functions in Sm and Sn have disjoint frequency support for |m− n| > 1
(except in the special case m = −1 and n = 1, which will be considered below).
Also notice, using the separable structure of the bi-variate brushlet functions, that
the particular compatible endpoint structure, see (16) and (17), imposed on the par-
titioning of the sets Aj ensures that Sm is orthogonal to Sm+1 for m < −1 and m ≥ 1,
and using the compatibility at the frequency one, we see that S−1 is orthogonal to
S1. Within each Sj , orthonormality follows directly from the separable structure
of the bi-variate brushlet system and the orthogonality of the respective univariate
brushlet systems.

We will now verify completeness of the system, where we first notice that for
f ∈ L2(R2), ∑

Q∈Aj ,j∈Z

P̂Qf(ξ),

is well-defined and converges pointwise as the support of each term in the sum
overlaps with at most eight other terms corresponding to adjacent rectangles. Next,
we notice that by repeated use of (13), for j > 1,∑

Q∈ALj

PQ = PIj,−Nj ⊗ PAj ,
∑
Q∈ARj

PQ = PIj,Nj ⊗ PAj ,

∑
Q∈ATj

PQ = PAj−1
⊗ PIj,Nj ,

∑
Q∈ABj

PQ = PAj−1
⊗ PIj,−Nj ,

So, in particular, again using (13),

PAj−1×Aj−1
+

∑
Q∈ATj ∪ATj

PQ = PAj−1×Aj .

Using a similar argument for ALj ∪ARj , and collecting terms, we may conclude that

PAj−1×Aj−1
+
∑
Q∈Aj

PQ = PAj×Aj , j > 1.
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Using a parallel argument, we may conclude that

PAj−1×Aj−1
+
∑
Q∈Aj

PQ = PAj×Aj , j ≤ −1.

Noting that A−1 = A1, it follows that∑
−N≤j≤N

∑
Q∈Aj

PQ = PAN×AN − PA−N−1×A−N−1
.

It thus follows easily that

lim
N→∞

∑
−N≤j≤N

∑
Q∈Aj

PQ = IdL2(R2),

in the strong operator topology. This completes the proof. �

Let us conclude this section by introducing some additional notation. Put

Qα :=
⋃
j∈Z

Aj.

For an arbitrary rectangle Q = I × J ∈ Qα, we let ξQ ∈ Q denote the mid-point of
Q. Put Q0 := [−1/2, 1/2]2, and note that

Q = δQ(Q0) + ξQ, (18)

where δQ := diag(|I|, |J |). This shows that Qα is a so-called structured covering in
the terminology of [1]. Notice also that the covering satisfies the geometric rule

|Q| � |ξQ|β(Q), β(Q) =

{
2α, Q ∈ ∪j>0Aj
2(2− α), Q ∈ ∪j<0Aj

. (19)

3. HOMOGENEOUS α-MODULATION SPACES

In this section we introduce α-modulation and α-TL spaces in the homogeneous
setting, an extension that was first considered in [1]. In the inhomogeneous setup
on the real line, an α-covering can easily be obtained from the knots ±nβ , n ∈ N,
taking β = 1/(1 − α) for 0 ≤ α < 1, while in the limiting (Besov) case α = 1,
we simply use dyadic knots ±2j , j ∈ N. Now, in the Besov case, we add the low
frequency knots ±2−j , j ∈ N, to obtain a full decomposition yielding homogeneous
Besov spaces. Notice that the low frequency knots can be considered the image
under ξ → 1/ξ of the high frequency knots. The idea is now to copy this process
for the α-covering obtaining low-frequency knots ±n−β , n ∈ N, that can be seen to
satisfy the geometric “rule” |n−β − (n + 1)−β| � n−β(2−α), while the high-frequency
knots satisfy |(n+ 1)β − nβ| � nαβ .

Inspired by these considerations, we define a general hybrid weight h̃α : R2 → R+

by h̃α(ξ) := ρ(ξ)h1(ξ) + (1− ρ(ξ))h2(ξ), where ρ : R2 → R+ is a smooth function that
satisfies

ρ(x) :=

{
1, |x| ≤ 2

3

0, |x| ≥ 4
3

,

h1(ξ) = |ξ|2−α and h2(ξ) = |ξ|α.
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We now introduce the notion of an α-covering.

Definition 3.1. A countable set Q of subsets Q ⊂ R2\{0} is called an admissible
covering if R2\{0} = ∪Q∈QQ and there exists n0 <∞ such that

#{Q′ ∈ Q : Q ∩Q′ 6= ∅} ≤ n0

for all Q ∈ Q. Let

rQ = sup{r ∈ R+ : B(cr, r) ⊂ Q for some cr ∈ R2},
RQ = inf{R ∈ R+ : Q ⊂ B(cR, R) for some cR ∈ R2}

denote, respectively, the radius of the inscribed and circumscribed disc of Q ∈ Q.
An admissible covering is called a homogeneous α-covering, 0 ≤ α ≤ 1, of R2

if |Q|1/2 � h̃α(ξ) (uniformly) for all x ∈ Q and for all Q ∈ Q, and there exists a
constant K ≥ 1 such that RQ/rQ ≤ K for all Q ∈ Q.

We have already noticed that the covering Qα satisfies, for Q ∈ Qα,

|Q|1/2 � h̃α(ξ), (uniformly) for all ξ ∈ Q. (20)

It is also straightforward to verify that the inscribed/circumscribed disc condition is
satisfies as the rectangles in Qα have eccentricity close to one, so we may pick rQ �
RQ � |Q|1/2, uniformly in Q ∈ Qα. We conclude that Qα is indeed a homogeneous
α-covering. It was proven in [1, Lemma 2.8] that the weight h̃α is moderate relative
to Qα in the sense that there exists a constant R > 0 depending only on Qα such
that for Q ∈ Qα

R−1 ≤ h̃α(x)

h̃α(y)
≤ R, x, y ∈ Q.. (21)

In order to define smoothness spaces adapted to α-coverings, we need to consider
an associated slightly expanded α-covering defined by the sets

Qe := δQ([−0.6, 0.6]2) + ξQ, Q ∈ Qα,

where ξQ and δQ are defined in (18). The only important characteristic of the num-
ber 0.6 in this context is that it is slightly larger than 1/2. It is proven in [1, Propo-
sition 2.5] that one can create two bounded partitions of unity (BAPUs) of smooth
functions {ϕQ}Q∈Qα and {ϕ̃Q}Q∈Qα satisfying supp(ϕQ) ⊆ Qe,∑

Q∈Qα
ϕQ(ξ) =

∑
Q∈Qα

ϕ̃Q(ξ) = 1, ξ ∈ R2\{0},

and ϕ̃Q(x) = 1 for x ∈ supp(ϕQ), Q ∈ Qα. Moreover, one can ensure that the
sequences {ϕQ} and {ϕ̃Q} act as bounded multiplier sequences on certain vector-
valued Lp-spaces as stated in Proposition A.2. We will not discuss this rather techni-
cal issue here, but instead refer the reader to the discussion in [1,6], and henceforth
assume that {ϕQ} and {ϕ̃Q} both are constructed such that they satisfy the multi-
plier condition needed for Proposition A.2 for any 0 < p <∞ and 0 < q ≤ ∞.

We can now define the homogeneous (anisotropic) T-L type spaces and the de-
composition spaces. We let S ′\P denote the class of tempered distributions modulo
polynomials defined on R2.
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Definition 3.2. Let h̃α be a hybrid weight for Qα. Let {ϕj}j∈J be a corresponding
BAPU and set ϕj(D)f := F−1(ϕjFf).

• For s ∈ R, 0 < p < ∞ and 0 < q ≤ ∞, we define the (anisotropic) homoge-
neous Triebel-Lizorkin space Ḟ s,α

p,q (R2) as the set all f ∈ S ′\P satisfying

‖f‖Ḟ s,αp,q (R2) :=

∥∥∥∥∥∥
(∑
Q∈Qα

|h̃α(ξQ)sϕQ(D)f |q
)1/q

∥∥∥∥∥∥
Lp

<∞.

• For s ∈ R, 0 < p ≤ ∞ and 0 < q < ∞ we define the (anisotropic) homoge-
neous decomposition space Ṁ s,α

p,q (R2) as the set of all f ∈ S ′\P satisfying

‖f‖Ṁs,α
p,q (R2) =

(∑
Q∈Qα

∥∥∥h̃(ξQ)sϕQ(D)f
∥∥∥q
Lp

)1/q

<∞,

with the usual modification if q =∞.

It can be verified that Ḟ s,α
p,q (R2) and Ṁ s,α

p,q (R2) are quasi-Banach spaces if 0 < p < 1
or 0 < q < 1, and they are Banach spaces when 1 ≤ p, q < ∞. The particular space
does not (up to norm equivalence) depend on the choice of ρ in the definition of
h̃α nor does it depend on the particular choice of sample frequencies ξQ as long as
ξQ ∈ Q, see the moderation condition (21), and it does not depend on the particular
choice of BAPU, see [1, 6]. In particular, {ϕ̃Q}Q will generate the same spaces up
to norm equivalence. We mention that it is possible to consider other reservoirs
of distributions than S ′\P to build the function spaces, see Voigtlaender [24] for
further details.

Let us recall that class S0 := S0(R2), which is the closed subspace of the Schwartz
class S(R2), is defined by

S0 =

{
f ∈ S(R2) :

∫
f(x) · xα dx = 0 for all α ∈ N2

0

}
.

It can be proved that Ḟ s,α
p,q (R2) [Ṁ s,α

p,q (R2)] satisfy

S0 ↪→ Ṁ s,α
p,q (R2) ↪→ S ′\P , S0 ↪→ Ḟ s,α

p,q (R2) ↪→ S ′\P ,

see [1]. Moreover, if p, q <∞, S0 is dense in M s,α
p,q (R2).

3.1. A characterization of Ḟ s,α
p,q (R2). We claim that the spaces Ḟ s,α

p,q (R2) [Ṁ s,α
p,q (R2)]

can be completely characterized using the brushlet system build onQα. In this note,
we focus on proving this claim for the Triebel-Lizorkin type spaces Ḟ s,α

p,q (R2) spaces.
For the many of the proofs in this Section, we will call on results on vector-valued
multiplies that can be found in Appendix A. The modulation spaces Ṁ s,α

p,q (R2) are
easier to handle due to their (simpler) structure, and the reader can verify that the
results and proofs presented in [18] can be adapted to this homogeneous setup.

For Q = I × J ∈ ∪jAj , we defined an associated dilation matrix by δQ :=
diag(|I|, |J |). We define for n ∈ N2

0,

U(Q, n) =
{
y ∈ R2 : δQy − π(n+ a) ∈ B(0, 1)

}
, (22)
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where a := [1
2
, 1

2
]T . It is easy to verify there exists L < ∞ so that uniformly in

x and Q,
∑

n χU(Q,n)(x) ≤ L. One may also verify that for n, n′ ∈ N2
0, U(Q, n′) =

U(Q, n) + πδ−1
Q (n′ − n).

We can now prove that the canonical coefficient operator is bounded on F s
p,q(h,w).

Lemma 3.3. Let {TQ = δQ · +ξQ}Q∈Qα be the family of invertible affine transforma-
tions associated with Qα in (18). Suppose s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞.
Then

‖Ssq (f)‖Lp ≤ C‖f‖Ḟ s,αp,q , f ∈ Ḟ s,α
p,q (R2),

where

Ssq (f) :=

(∑
Q

∑
n∈N2

0

(h̃α(ξQ)s|〈f, wn,Q〉A||Q|1/2χU(Q,n))
q

)1/p

, (23)

with U(Q, n) given in (22).

Remark 3.4. Using the observation in (20), we also have

Ssq (·) �
(∑

Q

∑
n∈N2

0

(h̃α(ξQ)s+1|〈 · , wn,Q〉A|χU(Q,n))
q

)1/p

.

Proof. Take f ∈ F s,α
p,q (R2) and fix Q ∈ Qα. We write the cosine term in Eq. (6) as a

sum of complex exponentials, and we take a tensor product to create wn,Q . This
process creates a bi-variate function with four ”humps”, and, as it turns out, we
will consequently need four terms to control the inner product 〈f, wn,Q〉. We first
obtain the estimate

|〈f, wn,Q〉| ≤

√
2

|Q|

4∑
j=1

∣∣(bQ(D)f)(vj)
∣∣,

with bQ(D) defined in (15), v1 := πδ−1
Q (n + a), v2 := −v1, v3 := ṽ1, v4 := ṽ2, where

for a vector v = [v1, v2]T , we let ṽ := [v1,−v2]T . Notice, if U(Q, n) ∩ U(Q, n′) 6= ∅
and u ∈ U(Q, n), v ∈ U(Q, n′) then |u − v| ≤ c|Q|−1/2 for some c > 0 independent
of Q. Using the observations about the sets U(Q, n) above, and defining the linear
maps Rj : R2 → R2, j = 1, . . . , 4, by R1 := Id, R2 := −R1, R3u := ũ, u ∈ R2, and
R4 := −R3, we obtain

∣∣(bQ(D)f)(v1)
∣∣ ≤ sup

y∈U(Q,n)

∣∣(bQ(D)f)(y)
∣∣ ≤ sup

u∈B(0,c|Q|−1/2)

∣∣(bQ(D)f)(R1x− u)
∣∣,∣∣(bQ(D)f)(v2)

∣∣ ≤ sup
y∈U(Q,−n−2a)

∣∣(bQ(D)f)(y)
∣∣ ≤ sup

u∈B(0,c|Q|−1/2)

∣∣(bQ(D)f)(R2x− u)
∣∣,∣∣(bQ(D)f)(v3)

∣∣ ≤ sup
y∈U(Q,ñ+e2)

∣∣(bQ(D)f)(y)
∣∣ ≤ sup

u∈B(0,c|Q|−1/2)

∣∣(bQ(D)f)(R3x− u)
∣∣,∣∣(bQ(D)f)(v4)

∣∣ ≤ sup
y∈U(Q,−ñ−e1)

∣∣(bQ(D)f)(y)
∣∣ ≤ sup

u∈B(0,c|Q|−1/2)

∣∣(bQ(D)f)(R4x− u)
∣∣.

We now estimate the inner sum in Ssq (f) to obtain,∑
n∈N2

0

(|〈f, wn,Q〉||Q|1/2χU(Q,n)(x))q
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≤ C
∑
n∈N2

0

4∑
j=1

(|(bQ(D)f)(vj)|χQ(k,n)(x))q

≤ C

4∑
j=1

sup
u∈B(0,c|Q|−1/2)

(
〈δQu〉−2/r|(bQ(D)f)(Rjx− u)|

)q · 〈δQu〉2q/r
≤ C

4∑
j=1

(
sup
u∈R2

〈δ>Qu〉−2/r|(bQ(D)f)(Rjx− u)|
)q

≤ C
4∑
j=1

(bQ(D)f)∗(2/r, c|Q|1/2;Rjx)q.

Recall that supp( ̂bQ(D)f) ⊂ TQ([−0.6, 0.6]2), so by Proposition A.1, Proposition A.2,
and the estimate above,

‖Ssq (f)‖Lp ≤ C

∥∥∥∥(∑
Q

(h̃α(ξQ)sq
4∑
j=1

(bQ(D)f)∗(2/r, c|Q|1/2;Rjx))q
)1/p∥∥∥∥

Lp

≤ C ′
4∑
j=1

∥∥∥∥(∑
Q

(h̃α(ξQ)sq(bQ(D)f)∗(2/r, c|Q|1/2;Rjx))q
)1/p∥∥∥∥

Lp

≤ 4C ′
∥∥∥∥(∑

Q

(h̃α(ξQ)sq(bQ(D)f)∗(2/r, c|Q|1/2;x))q
)1/p∥∥∥∥

Lp

= 4C ′
∥∥∥∥(∑

Q

(h̃α(ξQ)sq(bQ(D)ϕ̃Q(D)f)∗(2/r, c|Q|1/2;x))q
)1/p∥∥∥∥

Lp

≤ C ′′
∥∥∥∥(∑

Q

(h̃α(ξQ)sq(ϕ̃Q(D)f)(x))q
)1/p∥∥∥∥

Lp

= C ′′‖f‖Ḟ s,αp,q .

�

Inspired by Lemma 3.3, we define the sequence space ḟ s,αp,q := ḟ s,αp,q (R2) for s ∈ R,
0 < p <∞, and 0 < q ≤ ∞ , as the set of sequences {sQ,n}Q∈Q,n∈Zd ⊂ C satisfying

‖{sQ,n}‖ḟs,αp,q :=

∥∥∥∥{h̃α(ξQ)s|Q|1/2
(∑
n∈Zd
|sQ,n|qχU(Q,n)

)1/q
}
k

∥∥∥∥
Lp(`q)

<∞,

where the Lp(`q)-norm is defined for a sequence f = {fj}j∈N of measurable func-
tions by

‖f‖Lp(`q) :=
∥∥(∑

j∈N

|fj|q
)1/q∥∥

Lp(R2)
,

see also Appendix A. Lemma 3.3 provides us with a bounded coefficient operator
C : F s,α

p,q → f s,αp,q given by

Cf = {〈f, wn,Q〉}Q∈Qα,n∈N2
0
. (24)
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Moreover, the fact that {wn,Q} is an orthonormal basis shows that the only consis-
tent definition of a reconstruction operator is given by

R : {sQ,n}Q,n →
∑
Q,n

sQ,nwn,Q. (25)

Using Lemma A.3 we now verify that R : f s,αp,q → F s,α
p,q is also a bounded operator.

Lemma 3.5. Suppose 0 ≤ α < 1, s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞. Then for any
finite sequence {sQ,n}Q,n, we have∥∥∥∑

Q,n

sQ,nwn,Q

∥∥∥
Ḟ s,αp,q
≤ C‖{sQ,n}‖ḟs,αp,q .

Proof. Let {ϕQ}Q∈Q be the BAPU associated with Qα. Using the structure given by
(6), and Proposition A.2, we get∥∥∥∑

Q,n

sQ,nwn,Q

∥∥∥
Ḟ s,αp,q

=
∥∥∥{w(ξQ)sϕQ(D)

(∑
Q′,n

sQ′,nwQ′,n

)}
Q

∥∥∥
Lp(`q)

≤ C
∥∥∥{h̃α(ξQ)s

∑
Q′∈N(Q)

∑
n

sQ′,nwQ′,n

}
k

∥∥∥
Lp(`q)

,

where N(Q) = {Q′ ∈ Q : supp(ϕQ) ∩ supp(bQ′) 6= ∅}. It follows from [1, Lemma 2.8]
that #N(Q) is uniformly bounded, and since h̃α is a moderate weight, see (21), we
obtain∥∥∥{h̃α(ξQ)s

∑
Q′∈N(Q)

∑
n

sQ′,nwQ′,n

}
Q

∥∥∥
Lp(`q)

≤ C

∥∥∥∥(∑
Q′

(
w(ξQ′)

s
∑
n

|sQ′,n||wQ′,n|
)q)1/q∥∥∥∥

Lp

.

Fix 0 < r < min(1, p, q). Then Lemma A.3 and the Fefferman-Stein maximal in-
equality (26) yields∥∥∥{h̃α(ξQ)s

∑
n

|sQ,n||ηQ,n|
}
Q

∥∥∥
Lp(`q)

≤ C
∥∥∥{h̃α(ξQ)s|Q|1/2

4∑
`=1

Mr

(∑
n

|sQ,n|χU(Q,n)

)
(R`·)

}
Q

∥∥∥
Lp(`q)

≤ C ′
∥∥∥{h̃α(ξQ)s|Q|1/2

∑
n

|sQ,n|χU(Q,n)

}
Q

∥∥∥
Lp(`q)

,

where we used the (quasi-)triangle inequality and straightforward substitutions in
the integrals. The result now follows since the sum over n is locally finite with a
uniform bound on the number of non-zero terms, which implies that(∑

n

|sk,n|χU(Q,n)

)q
�
∑
n

|sQ,n|qχU(Q,n),

uniformly in Q. �

We now use Lemma 3.3 and Lemma 3.5 to obtain the main result of this paper,
that {wn,Q} forms captures the norm of Ḟ s,α

p,q , and forms an unconditional basis for
Ḟ s,α
p,q in the Banach space case.
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Theorem 3.6. Let s ∈ R, 0 < p, q <∞. Then we have the norm characterization

‖f‖Ḟ s,αp,q � ‖S
s
q (f)‖Lp ,

with Ssq (f) given by (23). Moreover, for 1 ≤ p, q < ∞, {wn,Q} forms an unconditional
basis for Ssq (f).

Proof. The norm characterization follows at once by combining Lemma 3.3 and
Lemma 3.5. The claim that the system forms an unconditional basis when 1 ≤ p, q <

∞ follows easily from the fact that Ḟ s,α
p,q is a Banach space, and that finite expansions

in {wn,Q} have uniquely determined coefficients giving us a norm characterization
of such expansions using the Lp-norm of Ssq (·). �

We conclude with a few remarks on Theorem 3.6.
a. A result similar to Theorem 3.6, but with a much simplified proof, holds true

for the homogeneous α-modulation spaces Ṁ s,α
p,q (R2). For this case, one can

follow the approach in [1, 18].
b. The norm characterisation obtained in Theorem 3.6 may appear similar to

the characterisation obtained for tight frames in [1, Theorem 7.5], but one
should notice the important additional fact that {wn,Q} forms an uncondi-
tional basis. This fact has significant implications for, e.g., n-term nonlinear
approximation from {wn,Q}, where the linear independence will allow one
to prove inverse estimates of Bernstein type. Inverse estimates are currently
out of reach for the redundant frames considered in [1], see the discussion of
this problem in [20]. Approximation properties of {wn,Q}will be considered
in a future work.

APPENDIX A. SOME TECHNICAL RESULTS

This appendix contains some results on vector-valued maximal functions needed
for the analysis of the α-TL spaces.

For 0 < r <∞, the Hardy-Littlewood maximal function is defined by

Mru(x) := sup
t>0

(
1

|B(x, t)|

∫
B(x,t)

|u(y)|rdy
)1/r

, u ∈ Lr,loc(R2).

For 0 < p, q ≤ ∞, and a sequence f = {fj}j∈N of Lp(R2) functions, we define the
norm

‖f‖Lp(`q) :=
∥∥(∑

j∈N

|fj|q
)1/q∥∥

Lp(R2)
.

Where there is no risk of ambiguity we will abuse notation and write ‖fk‖Lp(`q)

instead of ‖{fk}k‖Lp(`q).
The vector-valued Fefferman-Stein maximal inequality gives the estimate (see

[22, Chapters I&II])
‖{Mrfj}‖Lp(`q) ≤ CB‖{fj}‖Lp(`q) (26)

for r < q ≤ ∞ and r < p <∞, CB := CB(r, p, q).
For Ω = {Ωn} a sequence of compact subsets of R2, we let

LΩ
p (`q) := {{fn}n∈N ∈ Lp(`q) | supp(f̂n) ⊆ Ωn, ∀n}.
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For ξ ∈ R2, we let 〈ξ〉 := (1 + |ξ|2)1/2. Let u(x) be a continuous function on R2. We
define, for a,R > 0,

u∗(a,R;x) := sup
y∈R2

〈y〉−a|u(x− y/R)|, x ∈ R2.

The following is a variation on Peetre’s maximal estimate in a vector-valued set-
ting.

Proposition A.1. Suppose 0 < p < ∞ and 0 < q ≤ ∞, and let Ω = {TkC}k∈N be a
sequence of compact subsets of R2 generated by a family {Tk = tkId ·+ξk}k∈N of invertible
affine transformations on R2, with C a fixed compact subset of R2. If 0 < r < min(p, q),
then there exists a constant K such that∥∥∥∥{(fk)

∗(2/r, tk; ·)
}∥∥∥∥

Lp(`q)

≤ K‖{fk}‖Lp(`q), (27)

for all f ∈ LΩ
p (`q), where f = {fk}k∈N.

Finally, we need the following vector-valued multiplier result. For s ∈ R+, we let

‖f‖Hs
2

:=

(∫
|F−1f(x)|2〈x〉2sdx

)1/2

denote the Sobolev norm.

Proposition A.2. Suppose 0 < p < ∞ and 0 < q ≤ ∞, and let Ω = {TkC}k∈N be a
sequence of compact subsets of R2 generated by a family {Tk = tkId ·+ξk}k∈N of invertible
affine transformations on R2, with C a fixed compact subset of R2. Assume {ψj}j∈N is a
sequence of functions satisfying ψj ∈ Hs

2 for some s > ν
2

+ ν
min(p,q)

. Then there exists a
constant C <∞ such that

‖{ψk(D)fk}‖Lp(`q) ≤ C sup
j
‖ψj(Tj·)‖Hs

2
· ‖{fk}‖Lp(`q)

for all {fk}k∈N ∈ LΩ
p (`q).

The following Lemma was used in the proof of Lemma 3.5.

Lemma A.3. Let 0 < r ≤ 1. There exists a constant C such that for any sequence
{sQ,n}Q,n we have

∑
n

|sQ,n||wn,Q|(x) ≤ C|Q|1/2
4∑
`=1

Mr

(∑
n

|sQ,n|χU(Q,n)

)
(R`x).

Proof. From (9) we have that

|wn,Q(x)| ≤ CN |Q|1/2
4∑
`=1

(
1 +

∣∣R`δQx− π(n+ a)
∣∣)−N , (28)

for any N > 0, with CN independent of Q, where we use the same notation as in
the proof of Lemma 3.5. Fix N > 2/r. We can, without loss of generality, suppose
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x ∈ U(Q,0). For j ∈ N, we let Aj = {n ∈ N2
0 : 2j−1 < |π(n + a)| ≤ 2j}. Notice that

∪n∈AjU(Q, n) is a bounded set contained in the ball B(0, c2j+1|Q|−1/2). Now,∑
n∈Aj

|sQ,n|
(
1 +

∣∣δQx−π(n+ a)
∣∣)−N

≤ C2−jN
∑
n∈Aj

|sQ,n|

≤ C2−jN
(∑
n∈Aj

|sQ,n|r
)1/r

≤ C2−jN |Q|1/r
(∫ ∑

n∈Aj

|sQ,n|rχU(Q,n)(y) dy

)1/r

≤ CL1−r2−jN |Q|1/r
(∫

B(0,c2j+1|Q|−1/2)

(∑
n∈Aj

|sQ,n|χU(Q,n)(y)
)r
dy

)1/r

≤ C ′2−j(N−2/r)Mr

(∑
n∈N2

0

|sQ,n|χU(Q,n)

)
(x).

We now perform the summation over j ∈ N0 to obtain∑
n∈N2

0

|sQ,n|
(
1 +

∣∣δQx− π(n+ a)
∣∣)−N ≤ CMr

(∑
n∈N2

0

|sQ,n|χU(Q,n)

)
(x).

We then use the substitutions x = R`z, ` = 1, . . . , 4, to cover all four terms on the
RHS of (28), where we use the fact that R` and δQ commute. �
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