

Aalborg Universitet

Distributed mining of convoys in large scale datasets

Orakzai, Faisal; Pedersen, Torben Bach; Calders, Toon

Published in:
Geoinformatica

DOI (link to publication from Publisher):
10.1007/s10707-020-00431-w

Creative Commons License
Unspecified

Publication date:
2021

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Orakzai, F., Pedersen, T. B., & Calders, T. (2021). Distributed mining of convoys in large scale datasets.
Geoinformatica, 25(2), 353-396. https://doi.org/10.1007/s10707-020-00431-w

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 20, 2024

https://doi.org/10.1007/s10707-020-00431-w
https://vbn.aau.dk/en/publications/78f40a8d-d9ec-4fcc-ba05-185490ad32bf
https://doi.org/10.1007/s10707-020-00431-w

Noname manuscript No.
(will be inserted by the editor)

Distributed Mining of Convoys in Large Scale
Datasets

Received: date / Accepted: date

Abstract Tremendous increase in the use of the mobile devices equipped with
the GPS and other location sensors has resulted in the generation of a huge
amount of movement data. In recent years, mining this data to understand the
collective mobility behavior of humans, animals and other objects has become
popular. Numerous mobility patterns, or their mining algorithms have been
proposed, each representing a specific movement behavior. Convoy pattern is
one such pattern which can be used to find groups of people moving together
in public transport or to prevent traffic jams. A convoy is a set of at least m
objects moving together for at least k consecutive time stamps where m and k
are user-defined parameters. Existing algorithms for detecting convoy patterns
do not scale to real-life dataset sizes. Therefore in this paper, we propose a
generic distributed convoy pattern mining algorithm called DCM and show
how such an algorithm can be implemented using the MapReduce framework.
We present a cost model for DCM and a detailed theoretical analysis backed by
experimental results. We show the effect of partition size on the performance
of DCM. The results from our experiments on different data-sets and hardware
setups, show that our distributed algorithm is scalable in terms of data size
and number of nodes, and more efficient than any existing sequential as well
as distributed convoy pattern mining algorithm, showing speed-ups of up to
16 times over SPARE, the state of the art distributed co-movement pattern

Faisal Orakzai
Université Libre de Bruxelles & Aalborg University
E-mail: ofaisal@ulb.ac.be & fmo@cs.aau.dk

Torben Bach Pedersen
Aalborg University
E-mail: tbp@cs.aau.dk

Toon Calders
University of Antwerp
E-mail: Toon.Calders@uantwerpen.be

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

2 Faisal Orakzai, Torben Bach Pedersen, Toon Calders

mining framework. DCM is thus able to process large datasets which SPARE
is unable to.

Keywords Spatio-temporal data mining · pattern · distributed · big data ·
MapReduce · cluster

1 Introduction

The increase in location data being generated by GPS equipped devices in the
last couple of years has attracted researchers towards the analysis of such data
for extraction of collective mobility behaviour. One pattern studied in this con-
text is the Convoy Pattern [14] which is useful in many application domains.
It can be used to find groups of people traveling together by public transport
or to determine potential candidates for carpooling etc. A convoy is a group of
at least m objects moving together for at least k time instants. These groups of
objects are found by performing density based clustering such as DBSCAN [8]
on object locations at each time instant followed by combining these clusters
over the time dimension into convoys. For mining convoy patterns, various
sequential algorithms [1, 13, 14, 25] have been proposed, however the existing
sequential algorithms have been tested only on small datasets which can easily
fit into memory and thus completely ignore data access optimizations.

The movement behaviour captured by variants of the convoy pattern, e.g.,
VCoDA proposed in [25] and evolving convoys proposed in [1], is context de-
pendent, e.g., [14] allows convoy objects to have a density connection to each
other through the objects that are not part of the convoy but [25] does not.
However, none of the algorithms proposed for mining convoy pattern is scal-
able enough to tackle large mobility datasets. For instance, the most efficient
convoy pattern mining algorithm out of the algorithms proposed in [14] took
100 seconds during an experimental run on a small dataset containing a cou-
ple of hours of movement of only 13 cattle. The huge sizes of current mobility
datasets and the limitations of existing sequential algorithms demand the de-
velopment of a parallel algorithm that can run on a set of loosely connected
machines (cluster) and can produce results faster.

The state of the art in convoy mining is the work in [9]. The authors pro-
pose a generic framework GCMP for mining co-movement patterns and its im-
plementation called the Star Partitioning and ApRiori Enumerator (SPARE)
framework. The experiments show huge performance gains over sequential al-
gorithms. SPARE considers the clustering phase of convoy mining as a pre-
processing phase and only on the second phase of the pipeline which involves
matching of the clusters to discover convoys. This approach doesn’t yield much
benefits because the part that is optimized is dominated by the clustering
phase, which is not optimized. Our algorithm provides an end-to-end opti-
mized solution for convoy mining from data partitioning to convoy discovery
which therefore outperforms SPARE by a great margin.

In this paper, we formalize the problem of mining convoy patterns in a dis-
tributed shared-nothing architecture and propose a generic Distributed Convoy

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

Distributed Mining of Convoys in Large Scale Datasets 3

Mining algorithm DCM. We implemented our proposed algorithm using the
Hadoop MapReduce framework, the open source implementation of Google’s
MapReduce [6] framework and the most widely used framework for parallel
processing of huge data sets. Experiments show that our algorithm is linearly
scalable in terms of number of machines and data size, and up to 16 times
faster than the state of the art distributed co-movement pattern mining al-
gorithm SPARE. DCMMR is able to process large datasets which SPARE is
unable to.

In our proposed algorithm, we use a divide and conquer strategy and dis-
tribute the workload to different machines (nodes) in the cluster. The se-
quential algorithm consists of two major operations, density-based clustering
and cluster matching. As density based clustering is the most expensive part
of convoy pattern mining, we focus on balancing its load among the various
nodes and are able to achieve ideal parallelism. However for cluster matching,
parallelism varies depending on the type of data and number of partitions. We
have seen the overall proportion of sequential execution time varying from 5%
to 15%. We partition the data on its temporal dimension. In each node, our
local convoy pattern mining algorithm DCMpart runs DBSCAN on a partition
and mines local convoys. The nodes then send the local convoys to a central
node where our merging algorithm DCMmerge combines them to produce a
global result. Our experiments show that the merging process is not expensive
and DCM achieves linear speedup with the number of nodes.

DCM is a shared-nothing distributed algorithm which can be run not only
on a cluster of machines but also on multi-core machines. On multi-core ma-
chines, multiple (Java) processes (mappers/reducers in MapReduce case) are
run in parallel, each having its own memory space and the ability to access
disks in parallel. Thus DCM is also a multi-core algorithm which does not
depend on shared memory like multi-threaded applications. Machines based
on the Non-Unified Memory Access (NUMA) architecture are examples of
scaling-up in which multiple cores are added to a single machine to achieve
parallelism. In this paper, we report DCM’s performance results on a multi-
node cluster as well as a NUMA based machine.

This journal paper significantly extends our previous conference paper [19]
which we

– formalize the distributed convoy pattern mining problem and propose a
novel generic distributed convoy pattern mining algorithm, DCM, that is
based on a divide and conquer strategy and is independent of any data
processing framework.

– present an implementation of DCM using the Hadoop MapReduce frame-
work which is called DCMMR.

The extensions are as follows:

– We present a detailed theoretical analysis and cost model of DCM (section
8) and conduct experiments to validate our findings.
– We model the effect of setting the number of partitions and show its

effect in relation to the data distribution and provide guidelines for

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

4 Faisal Orakzai, Torben Bach Pedersen, Toon Calders

choosing the partition size (section 8.2). We show through experiments
that a careless choice of partition sizes could slow down the algorithm
significantly.

– We model the effect of cluster utilization on DCM’s performance (sec-
tion 8.3).

– We validate our findings on different scaling strategies i.e. single machine,
scale-up (multi-NUMA node vertical scaling) and scale out (multiple ma-
chines) whereas previous work only considers multi-machine scale with Uni-
form Memory Access architecture (UMA) (appendix 9).

– We conduct extensive experimentation on much larger and more diverse
datasets using different user parameters on 3 different scaling strategies. We
compare DCM with the state of the art SPARE framework and show that
DCM is up to 16 times faster than SPARE on the Trucks and Brinkhoff
datasets. DCM successfully processes the TDrive dataset which SPARE
fails to do. (section 9.1-9.5).

– We conduct experiments to analyse the behaviour of DCM depending on
different factors that have an impact on DCM’s performance e.g. partition-
ing size, false convoys etc. (section 9.6).

The paper is structured as follows:

– Section 2 covers the related work.
– Section 3 formalizes the convoy mining problem.
– Section 4 explains the choice of data partitioning strategy.
– Sections 5 and 6 explain the DCM algorithm.
– Section 7 explains our MapReduce implementation of the DCM algorithm.
– Section 8 covers the theoretical analysis of DCM.
– Section 9 contains the experimental results.
– Section 10 contains the conclusion and future work.
– Appendix A discusses the NUMA architecture.

2 Related Work

A number of mobility patterns and their detection algorithms have been pro-
posed. One of the first such patterns is the flock pattern [10, 23]. A flock is
a group of objects moving together for a time period t within a disk with
user-specified radius r. Although flocks are a good way of identifying objects
moving in groups, the disk constraint limits its ability to represent objects
moving together either in a shape other than the disk or in a disk shape
greater than the size specified by the user. The choice of an appropriate size
for the disk itself is a challenging problem. [17] presents a scalable algorithm
for flock pattern mining called Bitmap Disk Filtering algorithm.

To avoid the size and shape constraints required by the flock pattern, Jeung
et al. have proposed the convoy pattern in [13, 14]. Unlike the flock pattern,
in a convoy pattern the objects which are density-connected to each other are
considered to be together. Two points are density-connected if the distance

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

Distributed Mining of Convoys in Large Scale Datasets 5

between them is less than a threshold r and at least one of the points has at
least minPts number of points with in a circle of radius r or if there is a chain
of points between them such that the distance between the consecutive points
is less than the threshold r and each point in the chain has at least a specified
number of points within a circle of radius r. This relieves the convoy pattern
of any restriction of size and shape.

Kalnis et al. [15] proposed the notion of moving cluster which is a sequence
of spatial clusters with a certain percentage θ of similarity between the clus-
ters of consecutive timestamps. A moving cluster maintains its identity while
objects join or leave, whereas in a convoy, the objects should be together
throughout the convoy’s lifespan. Jung et al. proposed another variation of
convoys in [1] called evolving convoys in which objects can join and leave dur-
ing the lifespan. Tang et al. [22] proposed a buddy based approach for finding
traveling companions from streaming trajectories. [18] offers an algorithm for
finding loosely coupled groups of people which could also be from different
clusters.

The primary reason for the poor performance of existing algorithms is the
cost complexity of the original DBSCAN which is O(n2) for each run where
n is the number of objects present at the corresponding time-stamp. The
DBSCAN algorithm issues a nearest neighborhood query for each point. Hence
3 hours of movement data of a million objects with a sampling frequency of 2
seconds, results in 540 million nearest neighborhood queries which may take
days to process on a PC. The cost complexity of DBSCAN can be reduced
to O(n log n) by using an indexing structure but indexing huge amounts of
data is expensive in terms of storage and maintenance. The memory cost of
DBSCAN is O(n). To speed up DBSCAN, a distance matrix of size (n2−n)/2
can be constructed in memory but this increases the required memory to
O(n2). Existing algorithms, e.g., CMC [13] and VCoDA [25] are plagued with
expensive clustering as clustering needs to be done for each timestamp thus
they cannot scale to huge datasets. Parallel DBSCAN algorithms [5,11,21] are
good for one large run but not suitable for many small DBSCAN runs.

The algorithms CuTS, CuTS+ and CuTS* [14] try to reduce the cost of
DBSCAN by reducing the number of objects n in each run using a filter-and-
refine paradigm. In the first phase, each object’s trajectory is simplified by
reducing the number of time-location pairs using the Douglas-Peucker algo-
rithm (DP) [7]. The simplified trajectories are then partitioned into pieces each
corresponding to a time duration λ. For each time duration λ, the pieces(sub-
trajectories) are clustered using the DBSCAN algorithm. This step reduces the
dataset to only those object trajectories which have the potential to form con-
voys. In the second step, the CMC algorithm is applied on the reduced dataset.
Although this method has proven faster in previously discussed methods, the
cost of trajectory simplification is O(T 2Nt) where T is the number of points
in a trajectory and Nt is the number of trajectories in the dataset. Using tra-
jectory simplification also disallows us from using the same indexing structure
as that of DBSCAN. The index for DBSCAN is based on location whereas the
index required for trajectory simplification is based on object identity. The

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

6 Faisal Orakzai, Torben Bach Pedersen, Toon Calders

fact that the trajectory simplification process cannot use the existing spatial
index constructed for DBSCAN, has completely been ignored as the implicit
assumption is that the data fits in memory and disk seeks are not performed.
This assumption renders these algorithms inappropriate for huge data sizes
as our experiments demonstrate. Finding the right combination of parameters
for CuTs family, for it to give acceptable performance is very hard and may
involve multiple expensive iterations with no guarantee of success.

Yoon et al. [25], discovered that the convoy mining algorithms proposed by
Jeung et al. [14] have serious problems with accuracy and recall. They refer
to the convoy pattern proposed by Jeung et al. as partially connected convoy
pattern and propose a contextually different version of the convoy pattern
called Valid Convoy. They present a corrected version of CMC algorithm called
PCCD (Partially Connected Convoy Discovery). As CuTs family of algorithms
is based on CMC, they also have serious accuracy issues.

In [9], the authors propose a generic framework GCMP is proposed for
mining co-movement patterns. The authors propose two parallel implementa-
tions of GCMP framework using Apache Spark as an underlying platform, a
baseline implementation and a more optimal one called the Star Partitioning
and ApRiori Enumerator (SPARE) framework. The experiments show huge
performance gains over sequential algorithms. In both implementations, there
are two stages of mapreduce jobs connected in a pipeline manner. The first
stage deals with spatial clustering of objects in each timestamp (which they
call a snapshot), which can be seen as a preprocessing step for the subse-
quent pattern mining phase. In particular, for the first stage, the timestamp
is treated as the key in the map phase and objects within the same snapshot
are clustered (DBSCAN or disk-based clustering) in the reduce phase. Finally,
the reducers output clusters of objects in each snapshot, represented by a list
of key-value pairs. The clusters are then provided to the second phase of the
pipeline as input in which patterns are mined from the clusters. For convoy
mining, the first phase is the most expensive one, however, the baseline im-
plementation and SPARE both focus only on the second phase of the pipeline
and consider the first phase as the a preprocessing phase. This approach leads
to larger overall convoy mining execution times.

Our previous paper [20] presents a comparison of different data partitioning
strategies for distributed convoy mining and [19] proposes a distributed/parallel
convoy mining algorithm DCM which can process larger data sizes. The pre-
sented algorithm is generic and platform/framework independent. The per-
formance achieved by the algorithm enables mining of convoy patterns in real
world scenarios with huge data sizes. However, our experiments found that the
performance of the algorithm varies significantly between different parameter
settings for the same dataset. While operating on large datasets, for which
the distributed algorithm has specifically been designed, one cannot afford to
have multiple runs of the algorithm to find the parameters which give accept-
able performance. There does not exist a detailed theoretical analysis of the
algorithm that could support building performance models for optimal execu-
tion of the algorithm in real-world scenarios. Also, the existing work considers

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

Distributed Mining of Convoys in Large Scale Datasets 7

only UMA architectures with a focus on multi-machine scalability. The algo-
rithm has not been validated for multi-core, multi-processor performance and
in case of NUMA architectures, multi-node performance. This leaves out a big
chunk of small, medium and large enterprises which either prefer multi-node
NUMA based scale-out or use powerful multi-core/multi-processor NUMA ma-
chines for fulfilling their analytical needs. In this paper, we tackle both of the
above mentioned problems. We present a detailed theoretical analysis of the
algorithm backed by experimental results, that allows the user to make an
informed decisions regarding the choice of partition sizes which we have iden-
tified as the single most influential parameter for the algorithm’s performance.
We also show its effects on the cluster utilization. We validate the performance
of the algorithm on multi-core and multi-processor scale-out as well as multi-
node scale-out on NUMA architectures. Additionally, we perform experiments
on even larger and more diverse datasets as compared to the ones used in the
previous work, including real-world and synthetics datasets, to test the algo-
rithm’s effectiveness in real-world scenarios. We additionally compare DCM
with the state of the art SPARE framework to show the efficiency and perfor-
mance gain achieved by DCM over SPARE.

3 Convoy Mining

Before we explain the convoy pattern, it is necessary to understand the concept
of density connection [8]. Consider a point p in a set of points S and a distance
threshold ε. The ε-neighborhood of point p can be defined as B(p, ε) = {q ∈
S|d(p, q) ≤ ε} where d(p, q) represents the distance between two points. Given
a point p, a distance threshold ε and an integer m, a point q is said to be directly
density reachable from p if q ∈ B(p, ε) and |B(p, ε)| ≥ m. If there exists a chain
of points p1, p2, . . . , pn such that pi+1 is directly density reachable from pi, pn
is said to be density reachable from p1. Based on the previously defined terms,
we can now define the notion of density connected.

Definition 1 (Density-Connected) Given a set of points S, a point p ∈ S
is density-connected to a point q ∈ S with respect to ε and m if there exists a
point x ∈ S such that both p and q are density-reachable from x.

Density-connection is a way of defining togetherness which is free of the
size and shape constraints of the flock pattern.

A trajectory of length n can be represented as follows:

{(x1, y1, t), (x2, y2, t+ 1), ..., (xn, yn, t+ n− 1)}

Conceptually, a movement dataset consists of a set of trajectories repre-
senting the movement of different objects. Generally, an object can have many
trajectories, each representing a particular trip but sometimes all the trajec-
tories corresponding to an object are joined together such that each object
has only one trajectory that represents its complete movement history. In this

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

8 Faisal Orakzai, Torben Bach Pedersen, Toon Calders

x

y

t

1

2

3

o1 o2 o3 o4 o5

c1-1 c1-2

c2-1
c2-2

c3-1 c3-2

Fig. 1 Convoy Openness

paper, we do not assume any such abstraction and take movement data in its
raw form as it arrives from location sensors.

At a physical level, movement data is stored in a 4-column table with
schema < oid, x, y, t > where oid is the object id, x and y represent the
location in two dimensions, and t is the time instant at which the object was
at that location. The trajectory of an object o can be extracted from this data
by retrieving all the tuples with oid = o and ordering them by time column
t. A set of all density connected objects at a time instant is called a snapshot
cluster c.

Definition 2 (Snapshot Cluster) Given an integer m and distance thresh-
old ξ, a set c of density connected points at time instant t w.r.t ξ is called
a snapshot cluster if |c| ≥ m, all p ∈ c are mutually density connected and
@r /∈ c that is density reachable from any point in c.

In Figure 1, for m = 3, clusters c1−1, c2−1 and c3−1 are snapshot clusters
as they are sets of density connected points with size ≥ m. A trajectory is the
movement trace of an object and contains all the points (x, y) traversed by the
object in the order of traversal. Each point has a time t associated with it. In
other words, a trajectory can be described as a temporal version of a line. A
snapshot clusters at a time tx can be found by querying all tuples with t = tx
to retrieve all objects present at time tx and their locations, and performing
density based clustering. Jeung et al. define a convoy query as follows:

Definition 3 (Convoy Query) Given a set of trajectories of N objects, a
distance threshold ξ, an integer m, and an integer lifetime k, the convoy query
returns all possible groups of objects, so that each group consists of a (maxi-
mal) set of density-connected objects with respect to ξ and m during at least k
consecutive time points.

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

Distributed Mining of Convoys in Large Scale Datasets 9

Using the above definition, a convoy can be defined as:

Definition 4 Convoy Given a set of objects O, a convoy v is a pair (O, [ts, te])
such that |O| ≥ m, te − ts + 1 ≥ k and for all ts ≤ t ≤ te, O is density con-
nected at time t. Furthermore, v cannot be further extended, that is: for all
x /∈ O, (O ∪{x}, [ts, te]), (O, [ts− 1, te]), (O, [ts, te + 1]) do not satisfy this con-
straint.

In Figure 1, the set of objects O = {o1, o2, o3} forms a convoy with m = 3
and k = 3 which can be represented as (O, [1, 3]). To define a convoy in terms
of snapshot clusters, we can say that it is a set of at least m objects present
in the same snapshot cluster for k consecutive timestamps. A single snapshot
cluster can be considered as a convoy with k = 1.

Table 1 Summary of Notation

Symbol Meaning
v A convoy
V The set of all convoys

V (P) The set of convoys in partition P
ts(x) Start time of a convoy or a partition
te(x) End time of a convoy or a partition

ct−i ith snapshot cluster at time instant t
Ct A set of all snapshot clusters at time t
DB Whole dataset
TDB Time interval of DB i.e. [ts(DB), te(DB)]

Pi ith partition of DB

Ti Time interval of ith partition i.e. [ts(Pi), te(Pi)]
N Number of partitions

VC(P) The set of closed convoys in partition P
VL(P) The set of left-open convoys in partition P
vL A left-open convoy P

VR(P) The set of right-open convoys in partition P
VLR(P) A set of left-right-open convoys in partition P
Vpart(P) Output of DCMpart from partition P
Vglobal Global convoy result
V x,y A set of convoys with m = x and k = y

4 Partitioning Strategies

In [20], we analyze different partitioning strategies for convoy pattern mining.
Table 2 shows the comparison of the partitioning strategies with respect to the
different properties which impact the performance of distributed algorithms.
As it can be seen, temporal partitioning strategy is more suitable to distributed
convoy mining.

Let DB be the complete set of movement data, N be the number of
computational nodes available. Let ts(DB) = t0 < t1 < t2 · · · < tN−1 <
tN = te(DB). The time coherent partitioning of DB based on the split points

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

10 Faisal Orakzai, Torben Bach Pedersen, Toon Calders

Table 2 Partitioning Strategies Comparison

Properties Object Spatial Temporal
Data Exchange Too High Too High Low
Data Redundancy variable High No
Partitioning Cost O(n) O(n) No
Disk Seeks High High No
Data Ordering No No Yes

t0, . . . , tN is defined as: DB = P1 ∪ · · · ∪ PN where: Pi = {(oid, x, y, t) ∈
DB |ti−1 < t ≤ ti}. Here, ts(Pi) and te(Pi) denote the start and end time of
the partition Pi. Notice that:

ts(Pi) = ti−1 + 1 te(Pi) = ti

ts(P1) = ts(DB) te(PN) = te(DB)

The timespan Ti of partition Pi for i = 1 . . . N is defined as:

Ti = [ts(Pi), te(Pi)]

As in an embarrassingly parallel job, the total execution time is deter-
mined by the execution time of the slowest node [24], data should be equally
distributed in all partitions so that any one partition does not take signifi-
cantly longer time to process and hence act as a bottleneck. For uniformly
distributed data over time, partitions with equal number of time-stamps can
be created with timespan:

Ti =

[⌈
|TDB |
N

∗ (i− 1)

⌉
+ 1,

⌈
|TDB |
N

∗ i
⌉]

For the skewed datasets with imbalanced distribution of data over time,
equal partitions over time is suboptimal. For such datasets, different partition-
ing strategies have been proposed in [4,12,16]. Some distributed data process-
ing platforms implement their own partitioning strategy, e.g., MapReduce [6]
partitions the data based on HDFS block size which ensures equal data size
for each of its processing unit (Mapper).

As shown in table.2 temporal partitioning ensures no data exchange for
local convoy pattern mining where as low data exchange in the global merging
phase. As the data is temporally sorted naturally, there are no partitioning
costs. The blocks in a distributed file system such as HDFS can be taken
as partitions. Temporal partitioning also follows the co-location principle in
both the phases of convoy pattern mining i.e. clustering (as all the locations
for a timestamp exist on one node) and merging (as data is naturally sorted
temporally and temporally adjacent clusters are required to be merged).

If we consider running DBSCAN on a partition only without considering
the correctness of the result with respect to the whole dataset, the cost of
DBSCAN on spatially partitioned data is lesser than the cost on a temporally

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

Distributed Mining of Convoys in Large Scale Datasets 11

partitioned data. However, the result of its execution on a temporally parti-
tioned data will be correct as if the algorithm was run on a non-partitioned
data. Therefore the overall cost of execution of DBSCAN on a spatially parti-
tioned data is higher than on temporally partitioned data.

5 Local Convoy Mining DCMpart

Convoy pattern mining on individual partitions using existing algorithms can-
not produce an accurate global result unless information from neighboring
partitions is provided. For instance, in another example, if a convoy spans
three partitions P5 − P7 such that the parts of the convoy in partitions P5

and P7 have lifetime less than k, a convoy pattern mining algorithm will not
be able to find its parts in partitions P5 and P7 and only discover part of the
convoy in P6. Similarly, if we are mining for convoys of length 6 and there
exists a convoy which spans two partitions Pi and Pi+1 such that in both the
partitions the lifetime of the convoy is 3, the convoy will not be detected in
the individual partitions.

In this section we propose the DCMpart (Distributed Convoy Mining over
Partitions) algorithm which takes care of the problems mentioned above that
arise in a shared-nothing architecture. DCMpart is an extension of the CMC
(Coherent Moving Cluster) Algorithm [14] by Jeung et al. and the PCCD (Par-
tially Connected Convoy Discovery) algorithm [25] by Yoon et al. which pro-
poses some corrections to the former for accurate convoy discovery. It runs on
individual partitions P and produces local candidate convoys Vpart which are
then merged with the local convoys produced by other instances of DCMpart

running on different partitions to produce the global convoys Vglobal. The set
of local convoys is the union of four types of convoy sets:

Vpart(P) = DCM part(P) = VC(P) ∪ VL(P) ∪ VR(P) ∪ VLR(P)

We define each of the local convoy sets in the following; using the notation:
V m,k(P) representing a set of convoys in partition P with minimum number
of objects m and minimum lifetime k.

5.1 Closed Convoys: VC

VC is the set of local convoys with life >= k that have no chances of extending
to other partitions hence they do not take part in the merge process and are
directly added to the global convoy result Vglobal. Such convoys do not touch
partition boundaries with the exception, if it is the dataset boundary. VC can
be written as:

V m,k
C (P) =

{
v ∈ V (P)

∣∣∣∣ (ts(v) 6= ts(P) ∨ ts(v) = ts(DB))
∧(te(v) 6= te(P) ∨ te(v) = te(DB))

}

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

12 Faisal Orakzai, Torben Bach Pedersen, Toon Calders

For cases where the timespan of a partition is less than or equal to k + 1,
VC is an empty set, hence:

|VC(Pi)|

{
= 0 if |Ti| ≤ k + 1

≥ 0 if |Ti| ≥ k + 2

This is because all convoys with life ≥ k will touch the partition boundary
and may extend to the neighboring partition. Therefore such convoys are not
considered as locally closed. Figure 2 shows closed convoys in blue color.

vC

vL

vLR

vR

ts(DB)=ts(P1) te(P3)=te(DB)

P1 P2 P3

te(P1) ts(P2) te(P2) ts(P3)

t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Fig. 2 Convoy Openness

5.2 Left-Open Convoys: VL

VL is the set of convoys that are closed from the right but have chances of
getting extended to the left. While partitioning the data on the temporal
domain, for ease of comprehension and visualization, we consider the time
moving from left to right. A left-open convoy vL ∈ Pi lies at the left edge
of partition Pi. The life-time of such convoys can be less than k but after
merging them with right-open convoys from Pi−1, they may get extended and
their extended life-time may satisfy k. In the first partition P1 of DB , VL = φ
holds true as convoys cannot extend beyond the left edge of the first partition.
The convoy set VL can be written as follows:

VL(P) =

v ∈ V m,1(P)

∣∣∣∣∣∣
ts(v) = ts(P)

∧(te(v) 6= te(P) ∨ te(v) = te(DB))
∧ts(P) 6= ts(DB)

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

Distributed Mining of Convoys in Large Scale Datasets 13

V m,1 is a set of all convoys with parameter m as that of the convoy query but
k = 1. A snapshot cluster c at time t is also a convoy with a lifetime of 1 and
lifespan of [t, t]. Figure 2 shows left-open convoys in orange color.

5.3 Right-Open Convoys: VR

The convoy set VR contains all the convoys which are closed from the left but
open from the right. Similar to VL(P), the set of right-open convoys is defined
as:

VR(P) =

v ∈ V m,1(P)

∣∣∣∣∣∣
te(v) = te(P)

∧(ts(v) 6= ts(P) ∨ ts(v) = ts(DB))
∧te(P) 6= te(DB)

The green convoys in Figure 2 are right-open convoys.

5.4 Left-Right-Open Convoys: VLR

The local convoy set VLR contains all the convoys in the partition which are
open at both ends. As discussed before, the first partition P1 and the last
partition PN cannot have left-open and right-open convoys respectively, and
implies VLR(P1) = VLR(PN) = φ. The set VLR can be written as:

VLR(P) =

v ∈ V m,1(P)

∣∣∣∣∣∣∣∣
ts(v) = ts(P)
∧te(v) = te(P)
∧ts(P) 6= ts(DB)
∧te(P) 6= te(DB)

The brown convoy in Figure 2 is a left-right-open convoy.

5.5 Convoy Types Disjointness

The types of partial convoys described above are mutually exclusive; i.e, a
convoy cannot be left-open and right-open at the same time. However, we can
identify each convoy with its type by using two relaxed openness properties
which are the same as above properties but are not mutually exclusive; right-
open∗ and left-open∗. The * denotes relaxed properties. If a convoy is left-open∗

and right-open∗ at the same time, it is a right-left-open convoy. Using relaxed
properties for identification of the types makes the convoy mining algorithm
simpler and more intuitive.

A relaxed local left-open∗ convoy set is defined as follows:

VL∗(P) =

{
v ∈ V m,1(P)

∣∣∣∣ ts(v) = ts(P)
∧ts(P) 6= ts(DB)

}
(1)

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

14 Faisal Orakzai, Torben Bach Pedersen, Toon Calders

Likewise, a relaxed right-open∗ convoy set is written as:

VR∗(P) =

{
v ∈ V m,1(P)

∣∣∣∣ te(v) = te(P)
∧te(P) 6= te(DB)

}
(2)

It is easy to see that;

VL(P) = V ∗L (P) \ V ∗R(P)

VR(P) = V ∗R(P) \ V ∗L (P)

VLR(P) = V ∗L (P) ∩ V ∗R(P)

5.6 The Algorithm DCMpart

Algorithm 1 shows the pseudo-code of the DCMpart algorithm. Note that mul-
tiple instances of DCMpart can run on a node if it hosts multiple partitions. As
a snapshot cluster is also a convoy with a lifetime of 1, we use identical stor-
age structures for convoys and clusters. We use Figure 3 to illustrate different
parts of the algorithm considering m = 2 and k = 2.

x

y

t1 2 3
o1
o2

o3

c1-1 c2-1
c3 c4

o4

4

c1-2 c2-2

v1
v2
v3

o5

c5-1

5

c5-2

Pi Pi+1Pi-1

o6

v4

Fig. 3 Illustration for DCMpart

For each partition, DCMpart reads the data starting from the start time
of the partition. For each time-stamp, it retrieves all the objects and clusters
them using DBSCAN algorithm (line 3). In Figure 3, for t = 1, the cluster
set C contains clusters c1−1 (light blue) and c1−2 (orange). We initialize each
cluster in the list of clusters C discovered by DBSCAN (lines 4-8) and mark
them as left-open∗ if they satisfy the conditions of (1) (lines 7-8).

Convoy set V contains all the candidate convoys discovered until time-
stamp t− 1. We match all the convoys in V with all the clusters in C to find
the convoys which extend to the current time t (lines 9-22). As in our example,
we are still at the first time-stamp, the set V will be empty and the algorithm
will continue at line 23. Each of the clusters c1−1 and c1−2 will be added to

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

Distributed Mining of Convoys in Large Scale Datasets 15

the convoy set Vnext as candidate convoys. Vnext is a set which contains all
candidate convoys which have a potential of extending in the next iteration.
Vnext is taken forward to the next iteration as V . In the example, at the end of
the first iteration, Vnext = {v1 = (o[1,3], [1, 1]), v2 = (o[4,5], [1, 1])}. For brevity,
we denote individual candidate convoys by vO[s,e] where s, e and O are the start
time, end time and the set of objects of the convoy respectively. In the next
iteration, for t = 2, new clusters c2−1 (light blue) and c2−2 (orange) are found
which are initialized and checked for left-open∗.

The convoys in set V are called candidate convoys as they are not maximal
yet. Each candidate convoy in V is matched with each newly discovered cluster
in C by intersection. In our example, both v1,2,3[1,1] and v4,5[1,1] are elements of V

at time t = 2 and are matched to c2−1 and c2−2. At time t − 1, if there is
a convoy v ∈ V such that |v| ≥ m and at time t, at-least m of its objects
still form a cluster, the convoy is said to have extended (lines 12-13). In other
words, a convoy v at time t − 1 is said to have extended if the intersection
between this convoy and any cluster at time t is greater than or equal to m.

In our example, the size of the intersection between v1,2,3[1,1] and c2−1 is 3

which is greater than 2, hence the convoy gets extended and becomes v1,2,3[1,2]

(line 14). The end time of the extended convoy is updated to the current
time t = 2. The left-open∗ property of a convoy is carried on to the extended
convoy. The extended convoys are added to the set Vnext to match them further
in the next iteration. Addition to Vnext is done through the update method
(Algorithm 2) which ensures that all convoys in Vnext are maximal.

If a convoy is a subset of the cluster we are matching it with, it is said to
have been absorbed in the cluster (line 18). In Figure 3, at time t = 3, the
orange convoy v3,4[1,2] is a subset of the green cluster c3−2, it is absorbed in the

cluster. An absorbed convoy is a subset of its extended version; therefore it is
discarded. A non-absorbed convoy acts as an independent convoy if it satisfies
the lifetime constraint k.

In Figure 3 at time t = 3, the light blue convoy does not get absorbed in the
green cluster c3 and satisfies the length constraint k; hence it is added to the
result Vpart. If a non-absorbed convoy does not satisfy the length constraint
k but is left-open∗, it is still added to the result because it may extend to
the partition Pi−1 and satisfy k. Similarly, non-absorbed clusters are added to
Vnext as they may extend to the next time-stamp to form a convoy (lines 23-
24). At time t = 3, the green cluster c3 is an unabsorbed cluster as it is not
a subset to any of the convoys (orange and light blue) from previous time-
stamp t = 2. After the last iteration, the convoy set V contains all candidate
convoys that may extend to the next partition Pi+1. They are checked for the
right-open∗ property and are made part of the result Vpart (lines 26-28).

6 Global Merge with DCMmerge

After local convoy pattern mining on each partition, the local results are sent
to a single node for merging. For ease of description, we call it the central

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

16 Faisal Orakzai, Torben Bach Pedersen, Toon Calders

Algorithm 1 DMCpart

Require: Partition P , Convoy size parameter m, Convoy lifetime k, Distance threshold ε
Ensure: Local Convoy Set Vpart
1: V ← φ;Vpart ← φ
2: for each time t ∈ [ts(P), te(P)] (in ascending order) do
3: Vnext ← φ; Ot ← P (t) ; C ← DBSCAN(Ot, ε,m)
4: for each cluster c ∈ C do
5: c.matched ← false; c.absorbed ← false;
6: c.lifetime ← [t, t]
7: if ts(c) = ts(P) and ts(P) 6= ts(DB) then
8: c.leftOpen∗ ← true;

9: for each candidate convoy v ∈ V do
10: v.extended ← false; v.absorbed ← false
11: for each snapshot cluster c ∈ C do
12: if |c ∩ v| ≥ m then
13: v.extended ← true; c.matched ← true
14: vext ← c ∩ v
15: vext.lifeTime ← [v.startTime , t]
16: vext.leftOpen∗ ← v.leftOpen∗

17: Vnext ← update(Vnext, vext)
18: if v ⊆ c then v.absorbed ← true

19: if c ⊆ v then c.absorbed ← true

20: if v.absorbed = false then
21: if v.leftOpen∗ = true or v.lifetime ≥ k then
22: Vpart ← Vpart ∪ {v}
23: for each c ∈ C do
24: if c.absorbed = false then Vnext ← Vnext ∪ {c}
25: V ← Vnext;

26: for each candidate convoy v ∈ V do
27: if te(P) 6= te(DB) then v.rightOpen∗ = true

28: Vpart ← Vpart ∪ {v}
29: return Vpart

Algorithm 2 update
Require: Set of convoys V , Convoy to add vnew

Ensure: Updated convoy set V
1: for each candidate convoy v ∈ V do
2: if v ⊆ vnew then V ← V − v
3: V ← V ∪ vnew

4: return V

node. The local convoy set received at the central node can be written as:

Vlocal = ∪Ni=1Vpart(Pi)

The merging algorithm runs a customized matching process on candidate
convoys to form true global convoys. The merge happens at the partition
boundaries. We chose te(Pi) as the partition boundary between Pi and Pi+1

and call it merge-time. The set of all merge time-stamps MT is:

MT = {te(P1), te(P2), . . . te(PN−1)}

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

Distributed Mining of Convoys in Large Scale Datasets 17

Starting with the lowest merge-time, at each merge-time mti, all the right-
open∗ convoys VR∗ of partition Pi are matched with the left-open∗ convoys
VL∗ of the partition Pi+1. The merge-time of a convoy is given as follows:

mt(v) =

{
ts(v)− 1 if v ∈ VL ∨ v ∈ VLR

te(v) if v ∈ VR

}
A left-right-open convoy can be merged to its right or left. As we perform

the merging in an ascending order with respect to time a left-right-open convoy
will first be merged at its left partition boundary and then at the right. After
getting merged at the left, it gets closed from the left and becomes a right-open
convoy. As the closed convoys do not have any mt, we use −1 as their mt.

Algorithm 3 shows the pseudo-code of the global merge algorithm. The
algorithm takes as input a set of local convoys Vlocal and the convoy mining
parameters m and k. Unlike the DCMpart algorithm in which we conduct the
matching process for each time instant of the partition, we run the matching
process for each mt. On line 2, the sets are initialized to be empty. Vglobal is the
result set of the global merge algorithm, VL∗ and VR∗ represent the left-open∗

and right-open∗ convoy sets, respectively, that must be merged together in each
iteration, and VRnext∗ denotes the set of right-open∗ convoys that we want to
take to the next iteration of the matching process. After sorting, it becomes
less costly to retrieve convoys with respect to their merge time in ascending
order. As the set Vlocal also contains the closed convoys, they come on top of
the set because we consider mt of closed convoys to be -1. Closed convoys do
not need to go through the matching process so we extract them from local
convoy set Vlocal and put them in the result set Vglobal (line 3). Corresponding
to each mt in MT , we retrieve all convoys from Vlocal, group the right-open
convoys into VR∗ whereas the left-open and left-right-open convoys into VL∗
and match them. Checking for the left-open∗ property first ensures that all
left-open and left-right-open convoys land in to VL∗ (lines 7-8).

Each convoy v1 from VR is matched with each convoy v2 from VL∗. If
their intersection is greater or equal to m, v1 is considered as extended and
a new extended convoy is formed whose start time is equal to the start time
of the right-open∗ convoy v1 and end time is equal to the end time of the
left-open∗ convoy v2 (lines 11-15). The extended convoy vext inherits the left-
open∗ property from v1 and the right-open∗ property from v2 (lines 7-8). If in
a merge operation, one of the convoys is a left-right-open convoy, the resulting
convoy will always be a right-open convoy.

If the extended convoy vext is right-open∗, we put it in VRnext∗ so that we
can take it to the next iteration and match it with left-open∗ convoys of the
next partition boundary (line 19). If it is not right-open, it is a closed convoy
and cannot be further extended. If its lifetime is greater than the minimum
required lifetime k, we put it in the result set Vglobal otherwise we discard it
(lines 20-22). Each time we update a convoy set, we use the function update
to make sure that the convoy set contains only maximal convoys (it does not
contain any sub-convoys). If the convoy v1 is a subset of v2, it is considered
as absorbed which means that v1 cannot act as an independent convoy but

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

18 Faisal Orakzai, Torben Bach Pedersen, Toon Calders

Algorithm 3 DCMmerge

Require: Set of local convoys Vlocal, Partition boundaries TB , Convoy size parameter m,
Convoy lifetime k

Ensure: Global convoy set Vglobal
1: sort(Vlocal,merge-time)
2: Vglobal ← φ; VL∗ ← φ; VR∗ ← φ; VRnext∗ ← φ
3: Vglobal ← Vglobal ∪ Vlocal(−1)
4: for each partition boundary t ∈ TB do
5: V ← Vlocal(t)
6: for each convoy v ∈ V do
7: if v.leftOpen∗ then VL∗ ← VL∗ ∪ {v}
8: if v.rightOpen∗ then VR∗ ← VR ∗ ∪{v}
9: for each convoy v1 ∈ VR∗ do

10: for each convoy v2 ∈ VL∗ do
11: if v1 ∩ v2 ≥ m then
12: v1.extended ← true
13: vext ← v1 ∩ v2
14: vext.startTime ← v1.startTime
15: vext.endTime ← v2.endTime
16: vext.leftOpen∗ ← v1.leftOpen∗

17: vext.rightOpen∗ ← v2.rightOpen∗

18: if vext.rightOpen∗ then
19: VRnext∗ ← update(VRnext∗, vext)
20: else if vext.lifetime ≥ k then
21: vext.closed ← true
22: Vglobal ← update(Vglobal, vext)

23: if v1 ⊆ v2 then v1.absorbed ← true

24: if v2 ⊆ v1 then v2.absorbed ← true

25: if v1.absorbed = false and v1.lifetime ≥ k then
26: v1.closed ← true
27: Vglobal ← update(Vglobal, v1)

28: for each convoy v2 ∈ VL∗ do
29: if v2.absorbed = false then
30: if v2.rightOpen∗ then
31: v2.leftOpen∗ ← false
32: VRnext∗ ← update(VRnext∗, v2)
33: else if v2.lifetime ≥ k then
34: v2.closed ← true
35: Vglobal ← update(Vglobal, v2)

36: VR∗ ← VRnext∗; VL∗ ← φ

37: return Vglobal

becomes part of the extended bigger convoy that results from the intersection
between v1 and v2 (line 23). If the convoy v1 does not get absorbed in the
extended convoy and it fulfills the minimum lifetime condition k, we close it
and put it in the result set Vglobal using the update method (line 25-27). After
the end of each matching iteration, we check the status of each convoy v2 part
of VL∗.

If a convoy v2 has not been absorbed into the extended convoy, it can act
as an independent convoy. If it is right-open∗, it is a left-right-open convoy so
we put it in VRnext∗ so that it can be further extended in the next iteration

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

Distributed Mining of Convoys in Large Scale Datasets 19

(lines 29-32). If it is not right-open∗, we check if it satisfies the minimum
lifetime condition for a convoy. If yes, we make it part of the result set Vglobal
otherwise we discard it (lines 33-35). After this, we prepare the sets VR∗ and
VL∗ for the next iteration. Note that no left-open∗ convoys are carried to the
next iteration. This is because all absorbed or non-absorbed left-open∗ convoys
become left-closed.

7 The Hadoop Implementation (DCMMR)

In this section we present the MapReduce-based implementation DCMMR for
distributed convoy pattern mining which is based on our generic DCM algo-
rithm proposed in the previous section. We use the MapReduce framework
that is part of Apache Hadoop. DCMMR consists of two phases, the Map and
the Reduce phase. In the Map phase, DCMMR runs DCMpart; whereas in the
reduce phase, it runs DCMmerge, the global merge algorithm. Each instance
of the Mapper runs on a single partition which is determined by the block
size of the input data. The MapReduce framework splits files based on size
without considering the content of the file. As DCMMR requires time coherent
partitioning in which the data corresponding to one time-stamp is not split
between partitions, we implement a custom InputFormat and RecordReader
to ensure it. In Hadoop MapReduce framework, an InputFormat describes
how to read data from a file whereas a RecordReader does the actual ground
work of reading the data and providing it to the Mappers. The parameters
m, k, e, ts(DB) and te(DB) are passed to the Mappers through MapReduce
Job Configuration.

Our input dataset consists of a text file in which each line is a quadruple
< oid, x, y, t >. This file is stored in HDFS (Hadoop Distributed File System).
HDFS divides the file into blocks and distributes them all over the cluster.
Each block is processed by a Mapper which runs DCMpart on it. Hadoop
reads each block using our custom InputFormat and RecordReader and calls
the Map function for each line of the data block. The Map function collects
the tuples for a each timestamp and performs density-based clustering. The
resulting clusters are used to perform local convoy pattern mining as they
become available. When the whole block has been read and local convoy mining
has been performed, DCMpart transmits the set of local convoys to the reducer.

DCMpart transmits each convoy in the form of a < key, value > pair in
which the key is the merge time mt(v) of the convoy being transmitted. We
use merge time of a convoy as its key to use the sorting function of MapReduce
instead of sorting convoys in the reducer. As local convoy mining on different
partitions will produce convoys with different merge times, Hadoop will fire up
different reducers for each group of convoys with the same merge time. We do
not want this because DCMMR requires a single instance of DCMmerge to run.
To solve this problem, we implemented a custom partitioner to make sure that
all convoys landed in a single reducer. In addition to that we also implemented
a custom grouping comparator so that all local convoys are grouped together

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

20 Faisal Orakzai, Torben Bach Pedersen, Toon Calders

and are passed to DCMmerge running in the reducer in a single call. The
value is a tuple of the form < lo∗(v), ro∗(v), ts(v), te(v), O(v) > where lo∗(v)
and ro∗(v) are left-open∗ and right-open∗ properties of the convoy v being
transmitted. In the Reduce phase, DCMmerge is executed as-is except for the
sorting of convoys because the convoys it receives are already sorted by the
Hadoop.

8 Theoretical Analysis of DCMMR

In this section, we detail the cost model of DCM and model the effect of
setting the number of partitions and cluster utilization on the performance of
DCMMR.

8.1 Cost Complexity

The cost λ of the algorithm can be broken down as:

λ = λ(DCMpart) + λ(S) + λ(DCMmerge)

The temporal cost of DCMpart on a single partition is the sum of cost of
clustering and matching in that partition. The clustering cost of a partition
is the sum of cost of clustering at each timestamp in that partition. Let n
be the total number of points in the dataset and T be the number of total
timestamps. Assuming balanced distribution over time, the number of points
in a timestamp can be written as n/T . As the cost of optimized DBSCAN
algorithm is O(n log(n)), the cost of clustering points λt(Cl) corresponding to

a single timestamp is O
(n
T

log
n

T

)
.

If there are p partitions of data, the number of timestamps in a partition
can be written as T/p. Thus the total cost of clustering in a partition is:

λP (Cl) = O
(
n

T
log(

n

T
) ∗ T

p

)
= O

(
n

p
log(

n

T
)

)
Let nc be the number of clusters detected at each timestamp. In the match-

ing process, each cluster of timestamp t is matched to each cluster of times-
tamp t + 1. Thus the cost of matching between clusters of two consecutive
timestamps is n2c . We assume that after matching the clusters of two consec-
utive timestamps, the number of partial convoys satisfying m is also equal to
nc. Thus the cost of matching λP (M) in a single partition can be written as
O(n2c(T/p− 1)).

DCMmerge operates on open convoys sorted by their merge-time. It is easy
to note that the number of merge times is always p − 1. As p is generally
not a huge number, the domain of sorting is much smaller than the range
and we can use bucket sort with the cost of O(n). Let’s say, on average, a
partition emits the same number of left-open∗ and right-open∗ convoys equal

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

Distributed Mining of Convoys in Large Scale Datasets 21

to o, the cost of sorting λ(S)(which can be done in parallel) can be written
as O (2o(p− 2) + 2o) = O (2o(p− 1)). After sorting, DCMmerge has to merge
the open convoys at their merge-time. The cost of merging λ(DCMmerge) can
be written as O(o2(p− 1)). The total cost of DCM can be written as:

O
(
n

p
log(

n

T
) + n2c(

T

p
− 1) + 2o(p− 1) + o2(p− 1)

)
We have seen from observation and experiments that o ≈ nc and T � p. For
simplicity assuming that p− 1 ≈ p and T/p− 1 ≈ T/p , we can write the total
cost as:

λ(DCM) = O
(
nlog(n/T) + n2cT

p
+ p(n2c + 2nc)

)
(3)

The first term in the equation above is the cost of the parallel part of DCM
i.e. clustering and matching, whereas the last term represents the sequential
part. For a constant n and T when p→∞, the run time is dominated by the
sequential part i.e. DCMmerge. As n � p and T � nc, the parallel part of
the algorithm is far greater than the sequential part consuming approximately
90% of the total runtime. The fact that the merge phase represents a smaller
part of the total execution time justifies why we do not further parallelize
the merge phase. Parallelizing the merge phase further, involves the use of
multiple merge processes, each merging the output of a subset of DCMpart

processes and then using a singleDCMmerge process to merge the output of the
intermediate DCMmerge processes. Note that there is also the cost of starting
multiple intermediate DCMmerge processes which is generally significant in
the current big data processing systems most of which are based on YARN
(Yet Another Resource Negotiator)1.

8.2 Effect of Partition Size

By default, DCM∗MR uses a block size of 128 MBs as partition size, which is
Hadoop’s default HDFS Block size. The partition size can also be specified
by the user by passing it as a parameter to DCM∗MR. In the datasets we used
for the experiments, one partition holds the data corresponding to multiple
timestamps which is what DCM∗MR expects. We call the data corresponding to
a single timestamp a time-block (tb). Depending on the dataset being used, it
could be the case that the time-blocks are bigger than the partition size i.e. a
partition is not large enough to hold a time-block. This happens if the number
of objects per timestamp is too large to be contained in the default partition
size or if the user chooses a smaller partition size for execution. The size of
a time-block can vary through out a dataset depending upon the number of
objects active at different timestamps.

Figure 4 shows the effect of partition size on the processing times and Table
3 shows the ownership of time-blocks and partition processing times. The boxes

1https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

22 Faisal Orakzai, Torben Bach Pedersen, Toon Calders

Table 3 Time-block ownership and partition execution times

Partition Time-blocks Execution Time
1 tb(t1), tb(t2), tb(t3) 2+1+2
2 tb(t1), tb(t2) 2+1
3 tb(t1) 2
4 tb(t1) 2

Table 4 Time-Block Ownership for Figure 5

Time-Block Owned By
tb(t1) P1

tb(t2) P4

tb(t3) P6

in blue color represent the time-blocks corresponding to timestamps t1, t2 and
t3 respectively. The time in the bracket denotes the time needed to process
the data. In the figure, the smallest time-block corresponds to t2 which can be
denoted as tb(t2). The orange boxes represent 4 partitions of different sizes. A
time-block belongs to the partition in which it starts. Reducing the partition
size from P1 to P3 reduces the processing time of the partition but choosing a
partition size smaller than the size of P3 does not reduce the processing time
further as a time-block cannot be divided. Choosing a partition size smaller
than P3 won’t change the processing time of the partition.

Figure 5 shows a worst case scenario where the partition size is smaller
than the smallest time-block. There are 9 partitions and only 3 time-blocks. To
process this data, 9 instances of DCMpart / Hadoop Mappers will be launched,
each responsible for processing a single partition. For DCM∗MR to produce
accurate results, a time-block should not be divided between partitions. Recall
that a time-block belongs to the partition where it appears the first time. Table
4 shows the ownership of time-blocks by partitions for Figure 5. The rest of the
partitions do not own any time-block. Instances of DCMpart simply parse the
data corresponding to these partitions but do not find any time-block starting

Fig. 4 Effect of Partition size

Fig. 5 Partition size smaller than minimum time data block

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

Distributed Mining of Convoys in Large Scale Datasets 23

in the corresponding partition data. These DCMpart instances only cause an IO
penalty. Let costIO be the penalty caused by a single non time-block owning
DCMpart instance, N t be the total number of time-blocks, cost(Pi) be the
cost of processing a partition Pi, N

c be the number of cores, Np be the total
number of partitions, Np∗ be the time-block owning partitions and Np′ be
the total number of partitions not owning a time block, then the cost of Map
phase execution can be written as:

cost(MapPhase) ∼=
Np∗∑
i=1

cost(P ∗i) + cost(P ′) ∗Np′ (4)

where cost(P ′) = costIO(P ′). Note that Np = Np∗ + Np′ . Normally Np′

is expected to be zero or negligible but when the number of partitions are
increased, it tends to increase. In all cases, Np∗ ≤ N t. When the specified
partition size is less than the minimum time-block size, the number of time-
block owning partitions becomes equal to the number of time-blocks. Hence:

Np∗

{
= N t if |P | ≤ min(|tb(ti)|∀i ∈ [1, N t])

< N t otherwise

When Np is increased, Np∗ increases as well until it becomes constant. In
the beginning the increase is sharp, whereas, in the end, just before becoming
a constant, the increase is gentle. The variation in the increase of Np∗ depends
on the distribution of time-block sizes. The increase in Np∗ means that the
size of each time-block owning partition |P ∗| decreases, thus reducing the
average Map processing time. The increase inNp′ after Np∗ becoming constant
is directly proportional to the increase in Np and drags the average Map
execution time (MET) gently to costIO. Thus it can be written as:

lim
Np′→∞

costavg(Map) = cost(P ′) = costIO

Figure 4 explains the effect of reduction in partition size over MET for time-
block owning Mappers/instances of DCMpart. It can be seen in Table 3 that
MET decreases by the decrease in partition size however when |P | ≤ |tb(t1)|,
MET becomes constant which is the case for P3 and P4.

In case a partition size equivalent to P1 is chosen, an instance of DCMpart

will process the whole data corresponding to t1, t2 and t3 even though the
last part of t3 block does not belong to P1. Similarly, DCMpart responsible for
processing P2 will process the blocks of t1 and t2 even though the block of t2
does not belong to P2 completely. Thus the time to process partition P2 will
be 3 seconds. If we reduce the size of the partition further i.e. equivalent to P3,
the processing time will be 2 seconds. Notice that if we reduce the partition
size further as in case of P4, the processing time will not change as the instance
of DCMpart responsible for P4 will process the complete t1 block. Keeping in
view the size of partition P4, we can see that multiple partitions of same size
can fit in the t1 block thus t1 block will be assigned to multiple partitions but

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

24 Faisal Orakzai, Torben Bach Pedersen, Toon Calders

only one instance of DCMpart will process it. The rest of the instances will
simply not process any data there as there is no time-block starting in the
partitions allotted to them.

An increase in the number of splits also causes RET to increase linearly.
This is because the number of intermediate open convoys increases as the
number of time-block owning splits/partitions increase. In addition to causing
extra network traffic, it leads to the Reducer processing more data. As the
matching of the intermediate convoys is performed in a single Reducer, the
total execution time of the algorithm also increases linearly with RET. This
gives us an important insight about the choice of the partition size. Bigger the
partition size, lesser the sequential part i.e higher the parallel part. But if the
chosen partition size is increased such that:

|DB|
|P |

≤ N c

where |DB| is the size of the complete dataset, the cluster will become under
utilized as either one core will have less data to process or there will be less
partitions to process than the number of cores available. Therefore the ideal
choice of partition size is:

|P | = |DB|
N c

8.3 Cluster Utilization

Another important aspect of DCM∗MR execution is its cluster utilization. Fig-
ure 6 shows the theoretical cluster utilization in the Map phase if Hadoop’s
default partitioning strategy (split size) is kept. The cluster utilization has
been calculated as following:

util =
Np/N c

dNp/N ce

If the number of partitions are larger than the number of cores available, the
Mappers are run in phases. For example, if there are 6 partitions to process
and 4 cores available, the processing will be done in two phases. In the first
phase, 4 Mappers will be launched (1 Mapper per core) which will process the
first 4 partitions. When any of the Mappers finishes and releases the occupied
core, a new Mapper is launched to process one of the remaining partitions.
Let us assume that it takes an equal amount of time to process a partition. In
the first phase, 4 Mappers will finish at the same time, releasing all 4 cores.
Now there are 4 cores available but only 2 partitions left. Therefore 2 Mappers
will be launched utilizing only 2 out of 4 cores. Thus the cluster utilization in
the second phase will be 0.5 or 50%. The overall cluster utilization in the Map

phase according to the above formula will be: 6/4
d6/4e = 1.5

2 = 0.75. This suggests

that to have full theoretical cluster utilization, the number of partitions should
be a multiple of the number of cores available i.e. Np mod N c = 0.

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

Distributed Mining of Convoys in Large Scale Datasets 25

Fig. 6 Theoretical Cluster Utilization using Data Based Partitioning

8.4 Discussion on the Choice of Framework

DCM is a generic algorithm and does not depend on any framework. One can
use Spark,MapReduce, Tez or Flink for its implementation. We used MapRe-
duce as an implementation framework. DCM is an algorithm based on a divide
and conquer strategy that maps naturally to the map-reduce framework with
a relatively low number of map tasks and one reduce task. DCM is only one
iteration of map-reduce so overhead of the framework is minimal; almost all
time is spent on the algorithm itself, not on the framework, so the choice of
the framework is right. The choice of framework, however, is not essential as
the amount of overhead of the framework is minimal.

Apache Spark is a distributed data processing framework which performs
better than Hadoop MapReduce framework on iterative jobs because of the
following reason. Hadoop MapReduce persists the result of each Map and
Reduce phase on disk for fault-tolerance purposes so that if an any iteration,
the MapReduce job fails, it could restart from the result of the last iteration
already persisted on disk. This helps in preventing the restart of the job from
scratch. Spark however uses Resident Distributed Dataset (RDD) [28] which
is an in-memory data structure that maintains the lineage information of all
the operations applied to it and has the ability to recompute the lost part of
the dataset in case of a fault/failure. DCM is not an iterative algorithm and
reads the input data only once and writes the intermediate data to the disk
which is only up to 3% more than the actual true result as shown in Figure
23. Another point to note here is that SPARE uses Spark and the experiments
show that DCM is faster than SPARE even when using a framework that is
considered slower than Spark.

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

26 Faisal Orakzai, Torben Bach Pedersen, Toon Calders

9 Experimental Evaluation

Experiments were performed using the MapReduce implementation of our
generic distributed convoy pattern mining algorithm, DCMMR. We compared
our algorithm with an optimized implementation of the single instance al-
gorithm PCCD which we call PCCD∗ using a KD-Tree index for DBSCAN
and the original implementation of the SPARE framework from its authors.
For a fair comparison, we considered DCMMRagainst SPARE for gain calcu-

lation, i.e. Gain = T (SPARE)
T (DCMMR)

where T () represents the execution time of the

algorithm. In terms of implementation, SPARE has the advantage of being
implemented in Apache Spark which is an in-memory computation engine.
DCMMRhas been implemented in the Hadoop MapReduce framework which
uses disk to persist the intermediate results thus making it significantly slow
compared to Apache Spark. Our experiments differ with the experiments in [9]
as they consider the costlier clustering phase as a pre-processing step and do
not include its execution time in the total execution time of the SPARE frame-
work.

9.1 Infrastructure

For the experiments, three different hardware setups were used, each for single
instance, scale-up (NUMA Architecture) and scale-out experiments. Following
are the details of each setup.

9.1.1 Hardware Setup A (Single Instance)

For single machine multi-core experiments, a machine with a quad core In-
tel(R) Core(TM) i7-4700MQ processor with 2.4GHz frequency was used. The
machine had 16GB RAM and a SCSI Solid State Drive. It ran a 64-bit Linux
Mint 17.3 Rosa distribution with Linux 3.19.0-32-generic (x86 64) kernel. All
the algorithms were run on Java(TM) SE Runtime Environment (build 1.8.0
101-b13) using the Java HotSpot(TM) 64-Bit Server VM (build 25.101-b13,
mixed mode) implementation. The figures for the experiments conducted on
this setup are marked with ”(A)”.

9.1.2 Hardware Setup B (Scale-up)

For the scale-up set of experiments (NUMA based), we used a machine with 4
AMD Opteron(tm) 6376 processors running at 2.3 GHz. Each processor had 16
cores equally divided between 2 NUMA nodes. Thus the machine had 8 NUMA
nodes, each node containing 8 cores making the machine’s total core count to
be 64. The machine had 512GB of RAM. It ran a 64-bit Ubuntu 14.04.3 LTS
distribution with Linux 3.19.0-32-generic (x86 64) kernel. All the algorithms
were run on Java(TM) SE Runtime Environment (build 1.8.0 101-b13) using
the Java HotSpot(TM) 64-Bit Server VM (build 25.101-b13, mixed mode)

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

Distributed Mining of Convoys in Large Scale Datasets 27

implementation. The figures for the experiments conducted on this setup are
marked with ”(B)”.

9.1.3 Hardware Setup C (Scale-out)

We set up a cluster of 24 machines for the first set of experiments using a
non-NUMA architecture. Each machine had 4GB RAM, a Core 2 Duo E8400
processor running at 3GHz and a 160GB SATA drive. It ran a 64-bit Ubuntu
14.04.3 LTS distribution with Linux 3.19.0-32-generic (x86 64) kernel. All the
algorithms were run on Java(TM) SE Runtime Environment (build 1.8.0 101-
b13) using the Java HotSpot(TM) 64-Bit Server VM (build 25.101-b13, mixed
mode) implementation. The figures for the experiments conducted on this
setup are marked with ”(C)”.

9.2 Data Preparation and Parameter Setting

Following datasets were used for the experiments:

9.2.1 Trucks Dataset

The trucks2 dataset consists of 276 trajectories of 50 trucks delivering concrete
to several construction places around Athens metropolitan area in Greece.
The locations in latitude and longitude were sampled approximately every 30
seconds for 33 days. To make the experiments compatible with the experiments
performed on the trucks dataset in the previous papers [13, 14, 25], a single
day’s of a truck’s movement was considered as a trajectory of a truck. The
next day’s trajectory of the same truck was considered as a different truck’s
trajectory to increase the number of objects in the dataset and hence, to find
more convoys. For experiments comparing existing sequential algorithms, we
used m = 3, k = 180 and e = 0.0006 as used in the original convoy paper [14].

9.2.2 T-Drive Taxi Dataset

3,4 This dataset [26, 27] contains the GPS trajectories of 10,357 taxis during
the period of Feb. 2 to Feb. 8, 2008 within Beijing. The total number of points
in this dataset is about 15 million (29 million after interpolation) and the
total distance of the trajectories reaches to 9 million kilometers. The average
sampling interval is about 177 seconds with a distance of about 623 meters.

2http://chorochronos.datastories.org/
3http://research.microsoft.com/apps/pubs/?id=152883
4https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/User_

guide_T-drive.pdf

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

28 Faisal Orakzai, Torben Bach Pedersen, Toon Calders

Table 5 Brinkhoff Dataset Properties

Property Value Property Value
MaxTime 25000 data space height 26915
ObjBegin 5000 number of nodes 6105
ObjTime 100 number of edges 7035
ExtObjBegin 100 maximum time 25000
ExtObjTime 2 moving objects 2505000
data space width 23572 points 122014762

Table 6 Datasets used for data-scalability experiments

Objects
(million)

Points
(million)

Time Duration
(min)

2 120 33.4
2.5 150 41.5
3 180 49.8

3.5 210 58.2
6.5 384 101.9

9.2.3 Brinkhoff Generator’s Dataset

For performance comparison on synthetic datasets, we used the well-known
Brinkhoff Generator [2,3] which can generate network based traffic data based
on a real-world dataset and user specified parameters using simulation. It
is open-source and publicly available. Table 5 shows different properties of
the generated Brinkhoff dataset. The Brinkhoff generator does not support
parameters large enough to generate millions of points as required by us for
scalability tests. For instance, it does not accept to generate a dataset with
more than 1000 time units or more than 5000 cars. Hence, we had to modify
the source code to enable it to accept large parameters and generate meta
data with each generated dataset. Table 6 shows the properties of the datasets
used for the scalability experiments.

9.3 Results: Single Machine Experiments (Hardware Setup A)

To compare the performance of DCMMR with other algorithms on a single
machine, we conducted experiments to see the behaviour of each algorithm
with the increase in the number of cores allocated to the algorithms. The
experiments were conducted on each of the datasets mentioned in section 9.2.
Figure 7 shows that PCCD∗ being single threaded shows little change in the
execution time with the increase in the number of cores. DCMMR, although
being a distributed algorithm is unable to show performance increase with
the increasing number of cores because the size of the trucks dataset is small
and most of the execution time is spent in the setup of the distributed job
rather than the actual processing of the dataset. SPARE shows a sensitive
behaviour towards the number of cores. Regardless of the size of the dataset,
the complexity of the SPARE algorithm makes it resource hungry which results

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

Distributed Mining of Convoys in Large Scale Datasets 29

in performance improvement when more CPUs are provided. Overall, PCCD∗

performs the best on the smaller Trucks dataset.

Fig. 7 (A) Execution times for Trucks
dataset

Fig. 8 (A) Execution times for TDrive
dataset. SPARE did not finish in 3 hours

On the TDrive dataset (Figure 8), PCCD∗ performs best with up to 5 cores
after which DCMMR surpasses it in performance. Even though the SPARE
framework improves performance with more cores, shows higher execution
times compared to DCMMR and PCCD∗ . PCCD∗ was unable to success-
fully process the Brinkhoff dataset (Figure 9) because of its big size. DCMMR

and SPARE both show a linear decrease in runtime with the increase in core
count, however, DCMMR shows better performance as well as scalability than
SPARE.

Fig. 9 (A) Execution times for Brinkhoff
dataset

Fig. 10 (A) DCMMR gain over SPARE

Figure 10 shows the performance gain DCMMR shows over the SPARE
framework on a logarithmic scale. It can be seen that even though DCMMR

performs better than SPARE on the trucks dataset, the performance gain
decreases with the increase in the core count. This is the result of the increase
in SPARE’s performance with the core count. On the Brinkhoff and TDrive
datasets, DCMMR shows a linear increase in the performance gain with more
cores, achieving higher gains over the TDrive dataset. DCMMR shows gains
up to 16 times over SPARE on the TDrive dataset. DCMMR is also able to
process large datasets which SPARE fails to do.

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

30 Faisal Orakzai, Torben Bach Pedersen, Toon Calders

9.4 Results: Scale-up Experiments (Hardware Setup B)

This set of experiments was performed to compare the scale-up behaviour of
only DCMMR and SPARE. PCCD∗ was excluded as it being a single threaded
algorithm, shows little sensitivity in the scaling experiments. It can be seen
in Figures 11 and 13 that both DCMMR and SPARE show linear decrease in
runtime with core count, however, DCMMR shows lower execution times and
better scale-up performance. On the TDrive dataset (Figure 12), SPARE was
unable to finish successfully. Figure 14 shows that DCMMR’s gain over SPARE
increases with more cores because of its better scale-up properties. DCMMR

shows more than 4 times better performance than the SPARE framework.

To achieve the desired performance of DCM on NUMA architecture, we
had to do some fine tuning on the NUMA machine. Following are the recom-
mendations for achieving acceptable scalability and performance out of the
DCM algorithm while running on a NUMA machine.

– Make sure the OS has NUMA support enabled.
– Use the JVM with NUMA support.
– Use Linux croups for process isolation.
– Use CPU affinity to prevent the ping-pong effect of moving the process

between different CPU.

Fig. 11 (B) Execution times for the Trucks
dataset

Fig. 12 (B) Execution times for the TDrive
dataset. SPARE did not finish in 3 hours

9.5 Results: Scale-out Experiments (Hardware Setup C)

The scale-out experiments were performed using the YARN framework for
resource allocation and scheduling. As it can be seen in Figures 15, 16 and 17,
DCMMR outperformed SPARE on all datasets and node counts. SPARE was
not able to finish on TDrive dataset (Figure. 16). Both SPARE and DCMMR

showed linear scalability when run on more nodes. In Figure 18, we can see
that DCMMR is up 16 times faster runtime than the SPARE framework.

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

Distributed Mining of Convoys in Large Scale Datasets 31

Fig. 13 (B) Execution times for the
Brinkhoff dataset

Fig. 14 (B) DCMMR gain over SPARE

Fig. 15 (C) Execution times for the Trucks
dataset

Fig. 16 (C) Execution times for the TDrive
dataset (SPARE didn’t finish in 3 hours)

Fig. 17 (C) Execution times for the
Brinkhoff dataset

Fig. 18 (C) DCMMR gain over SPARE.
SPARE didn’t finish on TDrive.

9.6 Results: Experiments DCMMR Analysis

In this set of experiments, we analyze different properties of DCMMR’s per-
formance. We also compare it with the baseline sequential algorithm PCCD∗.
The experiments are performed on hardware setup B to exclude the effects of
the network IO and measure DCM’s parallelism behaviour.

Data Scalability: Figure 19 and 20 show the performance of DCMMR with
respect to the sequential algorithm PCCD∗ from experiments run on cluster
B. The properties of the datasets of the different scales used are shown in

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

32 Faisal Orakzai, Torben Bach Pedersen, Toon Calders

Table 6. In Figure 19, the x-axis denotes the number of cores used for the
experiments whereas the y-axis denotes the speedup (speedup percentage with
respect to ideal speedup). As it can be seen, DCMMR achieves linear speedup
when increasing the number of cores. DCMMR achieves a speedup of up to 13.5
on 16 cores. The performance of DCMMR increases with bigger data sizes. This
is because the relative share of Hadoop job setup time in the total execution
time becomes less significant for long execution times.

Fig. 19 DCMMR Speedup w.r.t Sequential
Algorithm (B)

Fig. 20 DCMMR Speedup Percentage w.r.t
Theoretical Maximum (B)

Fig. 21 DCMMR Data Scalability Experiment on Brinkhoff Generator’s Datasets

In Figure 20, we can see that the speedup drops to 85 percent of the ideal
on 16 cores for scale-13. It is interesting to note that the drop in speedup
is smaller for larger data sizes which means that the relative performance of
DCM∗MR increases for larger input data sizes. Figure 21 shows the perfor-
mance of DCM∗MR with the increase in the input data size on setup C. It can
be seen that DCM∗MR gives linear scalability with the increase in the data size.

Core-Scalability in NUMA Architecture:

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

Distributed Mining of Convoys in Large Scale Datasets 33

Table 7 Mapping of MapReduce terms to DCM

MapReduce Terms DCM Terms
MET (Map Execution Time) DCMpart execution time
RET (Reduce Execution Time) DCMmerge execution time
split partition

Figure 20 shows that the speedup decreases with more cores and drops to
approx 83.5 percent on 16 cores. It can be seen that the speedup is almost
ideal up to 4 cores after which it starts decreasing. This decrease can be ex-
plained with the help of Figure 22. Figure 22 shows that the average Hadoop
Mapper Execution Time (MET) increases with more cores. This is caused by
the overhead of the NUMA memory controller in coordinating memory access
involving multiple cores. The experiment was limited to one machine to iso-
late the experiments from the network overhead. On the machine, we use one
core per NUMA node in an attempt to minimize the effect of resource sharing
among the cores in a NUMA node. Note that in each of the experiments, the
exact same partitions were processed by the Mappers.

Intermediate False Positive Convoys: Figure 23 shows the percentage of
false positive candidate convoys transmitted by DCMpart during our first set
of experiments. It can be clearly seen that the percentage of false local convoys
is around 3 percent which is not high when compared to the total number of
global convoys. For scales 1 and 10, there are no false positives. This is be-
cause the input data fits in a single HDFS block and are thus not partitioned.
Therefore a single DCMpart instance runs on the whole input data, producing
only closed convoys.

Fig. 22 Effect of increase in the number of
cores on avg MET (B)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 0 100 200 300 400 500 600 700 800F
a

ls
e

 C
o

n
v
o

y
s
 (

%
)

Scale

Fig. 23 DCMMR Extra Candidate Convoys

Effect of Partition Size: Table 7 shows the mapping between some terms
in the MapReduce domain to our algorithmic terms. We use these terms in-
terchangeably depending on the context.

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

34 Faisal Orakzai, Torben Bach Pedersen, Toon Calders

Figures 24, 25 and 26 show the effect of increasing the number of partitions
(splits) of input data or in other words, decreasing the partition sizes, on
execution times. Figure 24 shows that the average Hadoop Mapper (DCMpart)
execution time decreases when the partitions become smaller (more number
of splits). The decrease is sharp for the number of splits up to 150 and then
it becomes gentle. It is obvious to have lower Map execution time for smaller
partitions however the effect is almost negligible when we move from 200 splits
to 450 splits. To understand that, we need to look into how DCM∗MR treats
different partition sizes.

Fig. 24 Effect of Increase in Splits on Aver-
age Map Execution Times (B)

Fig. 25 Effect of Increase in Splits on Re-
duce Execution Times (B)

Figure 25 shows the effect of increase in the number of splits on Reducer
execution time (RET). As it can be seen, RET increases linearly with the
increase in the number of splits. The number of intermediate open convoys in-
creases with the increase in the number of time-block owning splits/partitions.
This causes the Reducer to process more data. As DCM∗MR runs DCMmerge in
the Reducer which is the sequential part of the algorithm, the total execution
time of the algorithm also increases linearly with RET. This is obvious from
the Figure 26.

Fig. 26 Effect of No. of Splits on Total Ex-
ecution Time for Figure 4 (B)

Fig. 27 Effect of No. of Splits on Sequential
Part of DCM∗

MR(B)

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

Distributed Mining of Convoys in Large Scale Datasets 35

Figure 27 shows the proportion of the sequential part of DCM∗MR with the
increase in the number of partitions. The percentage of the sequential part on
32 cores grows from over 9% for 32 splits to 89% for 447 splits. The higher
the number of splits, more data the Reducer will have to process, thus making
the sequential part of the algorithm larger. Hence, ideal number of partitions
is approx N c and idea partition size is |DB|/N c as shown in section 8.

Job Setup Costs: Figure 19 shows that the speedup is higher for larger data
sizes. One reason for higher speed up is that with the increase in data size, the
proportion of job setup cost with respect to the total execution time becomes
smaller. Job setup cost involves job submission to the Hadoop cluster, starting
up the Application Master JVM, resource negotiation with YARN’s Resource
Manager and starting up of YARN Container JVMs for task execution on each
physical machine etc. Job setup cost is almost constant for each job running
on the same number of cores and machines.

Job Running Costs: In addition to job set up costs, YARN incurs some
costs for running the job as well. When the job is setup, the Node Manager
executes the Mapper tasks in the YARN containers alloted for the job. When a
Mapper finishes and a new Mapper needs to be executed, the same container
cannot be used. The existing container is shut down and a new container
JVM is launched. This process is repeated for each partition. Earlier versions
of Hadoop, i.e., version 1.* supported JVM reuse which helped in reducing the
running costs of a job. This feature is unfortunately not available in Hadoop
version 2.* using YARN. Therefore, to reduce the job running costs, the num-
ber of partitions should be equal to the number of available cores. This way,
there will be one Mapper per core which will be executed by one YARN con-
tainer saving multiple JVMs starting costs.

MET Distribution: Figure 28 shows the spread and groupings of METs for
different number of cores when Hadoop’s default partition/split size is used.
We can see that not only the METs are widely spread over time but they are
also not part of a single cluster. These results are also true for custom split
sizes and depend on the distribution of time-blocks within partitions and the
distribution of points between time-blocks. We can clearly see an unbalanced
cost distribution between Mappers. Even though the DCM algorithm has nice
parallelization properties, skewness in the data or bad partitioning can badly
affect the performance of the algorithm. We also see a comparatively very
small MET which is an outlier and represents the processing time of the last
partition (HDFS block) which is smaller than the rest of the partitions (HDFS
blocks).

Figure 29 shows the histogram of METs which somewhat resemble with
a normal distribution. The mean and standard deviation of the distributions
increases with the increase in the number of cores. This increase is a strong
evidence of decrease in the performance of NUMA nodes because of memory
sharing/context switching and inter node memory IO bottlenecks when more

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

36 Faisal Orakzai, Torben Bach Pedersen, Toon Calders

cores are used.

Fig. 28 Map Execution Times Clusters (B)

Fig. 29 Histogram for Map Execution Times (B)

Factors Affecting Speedup: The execution time of DCMMR and DCM∗MR

running on a 4 nodes cluster is 3.6 times lower than its execution time on a
single node. There are certain factors which prevent DCMMR from giving N
times performance increase with N nodes which we analyze in the following.

Partial Parallelization: DCMMR parallelizes density based clustering and a
major part of convoy mining but the final merge is performed on a single

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

Distributed Mining of Convoys in Large Scale Datasets 37

node achieving parallelization of around 90% , i.e., around 90% of the time
is taken by Map phase which executes in parallel.

Partial Cluster Utilization: When the number of partitions p is not a multiple
of the number of nodes N , the cluster is underutilized, e.g., for p = 25 and
N = 24, processing the first 24 partitions will fully utilize the cluster after
which the last partition will be processed with a utilization factor of 1/24
thus reducing the overall speedup.

Network Costs: DCMMR needs to collect the local results of DCMpart from
cluster nodes over the network, the cost of which is significantly higher
than the cost of memory IO utilized by PCCD∗.

Disk IO: Unlike PCCD∗’s in-memory computations, the Hadoop writes the
output of each Map and Reduce phase to disk. Disk IO is many times
more expensive than memory IO and affects the performance of DCMMR.
Disk IO costs include the costs of disk seeks, scans, serialization and de-
serialization operations.

Sorting Costs: The output of the Mappers is partitioned and sorted in the
shuffle phase. DCMmerge needs the input local convoys to be sorted with
respect to the merge time of convoys. Shuffle in Hadoop is a costly process
with cost complexity of O(nlog(n)).

10 Conclusion and Future Work

Convoy pattern mining is computationally expensive and existing algorithms
do not scale up to the huge amounts of movement data. In this paper we
propose a generic, framework independent, and highly scalable distributed
convoy pattern mining algorithm called DCM (Distributed Convoy Mining)
which outperforms existing algorithms by a high margin. We choose temporal
partitioning over spatial partitioning because of its merits for convoy pattern
mining. We performed detailed theoretical analysis of the DCM algorithm
and various factors affecting it. We modeled the effect of number of parti-
tions/partition size and showed that a bad choice of the number of partitions
can result in low cluster utilization and severely harm the performance of the
parallel part of the algorithm thus affecting the overall run-time.

We implement our generic algorithm in the Hadoop MapReduce frame-
work and using the KD-Tree index for speeding up the clustering phase. We
test our algorithm extensively on the real-world and synthetic datasets with
sizes varying from a few million records up to 384 million records and num-
ber of objects varying from a couple of hundreds to 6.5 million. The results
show that DCMMR can process large datasets which cannot be processed by
SPARE which is the state of the art co-movement pattern mining framework.
For other datasets DCMMR outperforms SPARE and shows gains of up to 16
times. We validate the high performance and scalability of our algorithm w.r.t
both the cluster and dataset sizes. We analyze the performance of DCM on
NUMA architecture machines and show that the performance of individual
cores decrease with an increase in NUMA network utilization, thus, decreas-

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

38 Faisal Orakzai, Torben Bach Pedersen, Toon Calders

ing the scalability of DCM. We show the effect of the partition size on the
sequential part as well as the total execution time of the algorithm.

In the future, we would like to design a convoy mining algorithm that
works with spatial as well as a hybrid spatio-temporal partitioning strategy.
For the high density datasets in which billions of points correspond to a single
timestamp, spatial partitioning can be of help. We would also like to test the
performance of DCM on other frameworks, e.g., Apache Flink and Apache
Spark.

References

1. Aung, H.H., Tan, K.L.: Discovery of evolving convoys. In: International Conference on
Scientific and Statistical Database Management, pp. 196–213. Springer (2010)

2. Brinkhoff, T.: Generating network-based moving objects. In: Scientific and Statistical
Database Management, 2000. Proceedings. 12th International Conference on, pp. 253–
255. IEEE (2000)

3. Brinkhoff, T.: A framework for generating network-based moving objects. GeoInformat-
ica 6(2), 153–180 (2002)

4. Chen, T.S., Chang, C.Y.: Skewed data partition and alignment techniques for compiling
programs on distributed memory multicomputers. The Journal of Supercomputing
21(2), 191–211 (2002)

5. Dai, B.R., Lin, I., et al.: Efficient map/reduce-based dbscan algorithm with optimized
data partition. In: Cloud Computing (CLOUD), 2012 IEEE 5th International Confer-
ence on, pp. 59–66. IEEE (2012)

6. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Com-
munications of the ACM 51(1), 107–113 (2008)

7. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. Cartographica: The International
Journal for Geographic Information and Geovisualization 10(2), 112–122 (1973)

8. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In: Kdd, vol. 96, pp. 226–231
(1996)

9. Fan, Q., Zhang, D., Wu, H., Tan, K.L.: A general and parallel platform for mining co-
movement patterns over large-scale trajectories. Proceedings of the VLDB Endowment
10(4), 313–324 (2016)

10. Gudmundsson, J., van Kreveld, M.: Computing longest duration flocks in trajectory
data. In: Proceedings of the 14th annual ACM international symposium on Advances
in geographic information systems, pp. 35–42. ACM (2006)

11. He, Y., Tan, H., Luo, W., Feng, S., Fan, J.: Mr-dbscan: a scalable mapreduce-based
dbscan algorithm for heavily skewed data. Frontiers of Computer Science 8(1), 83–99
(2014)

12. Hua, K.A., Lee, C.: Handling data skew in multiprocessor database computers using
partition tuning. In: VLDB, pp. 525–535. Citeseer (1991)

13. Jeung, H., Shen, H.T., Zhou, X.: Convoy queries in spatio-temporal databases. In: 2008
IEEE 24th International Conference on Data Engineering, pp. 1457–1459. IEEE (2008)

14. Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in
trajectory databases. Proceedings of the VLDB Endowment 1(1), 1068–1080 (2008)

15. Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal
data. In: International Symposium on Spatial and Temporal Databases, pp. 364–381.
Springer (2005)

16. Kwon, Y., Ren, K., Balazinska, M., Howe, B., Rolia, J.: Managing skew in hadoop.
IEEE Data Eng. Bull. 36(1), 24–33 (2013)

17. Lacerda, T., Fernandes, S.: Scalable real-time flock detection. In: Global Communica-
tions Conference (GLOBECOM), 2016 IEEE, pp. 1–7. IEEE (2016)

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

39

18. Naserian, E., Wang, X., Xu, X., Dong, Y.: Discovery of loose travelling companion pat-
terns from human trajectories. In: High Performance Computing and Communications;
IEEE 14th International Conference on Smart City; IEEE 2nd International Conference
on Data Science and Systems (HPCC/SmartCity/DSS), 2016 IEEE 18th International
Conference on, pp. 1238–1245. IEEE (2016)

19. Orakzai, F., Calders, T., Pedersen, T.B.: Distributed convoy pattern mining. 17th IEEE
International Conference on Mobile Data Management. (2016)

20. Orakzai, F., Devogele, T., Calders, T.: Towards distributed convoy pattern mining.
In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in
Geographic Information Systems, GIS ’15, pp. 50:1–50:4. ACM, New York, NY, USA
(2015). DOI 10.1145/2820783.2820840. URL http://doi.acm.org/10.1145/2820783.

2820840

21. Patwary, M.M.A., Palsetia, D., Agrawal, A., Liao, W.k., Manne, F., Choudhary, A.: A
new scalable parallel dbscan algorithm using the disjoint-set data structure. In: High
Performance Computing, Networking, Storage and Analysis (SC), 2012 International
Conference for, pp. 1–11. IEEE (2012)

22. Tang, L.A., Zheng, Y., Yuan, J., Han, J., Leung, A., Hung, C.C., Peng, W.C.: On
discovery of traveling companions from streaming trajectories. In: Data Engineering
(ICDE), 2012 IEEE 28th International Conference on, pp. 186–197. IEEE (2012)

23. Vieira, M.R., Bakalov, P., Tsotras, V.J.: On-line discovery of flock patterns in spatio-
temporal data. In: Proceedings of the 17th ACM SIGSPATIAL international conference
on advances in geographic information systems, pp. 286–295. ACM (2009)

24. Wang, D., Joshi, G., Wornell, G.: Efficient task replication for fast response times in
parallel computation. In: ACM SIGMETRICS Performance Evaluation Review, vol. 42,
pp. 599–600. ACM (2014)

25. Yoon, H., Shahabi, C.: Accurate discovery of valid convoys from moving object trajec-
tories. In: ICDM workshops, pp. 636–643 (2009)

26. Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical world.
In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pp. 316–324. ACM (2011)

27. Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-drive: driving
directions based on taxi trajectories. In: Proceedings of the 18th SIGSPATIAL Inter-
national conference on advances in geographic information systems, pp. 99–108. ACM
(2010)

28. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.J.,
Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In: Proceedings of the 9th USENIX conference on Net-
worked Systems Design and Implementation, pp. 2–2. USENIX Association (2012)

Appendices
A Scalability on the NUMA Architecture

NUMA (Non Uniform Memory Access) systems are low-cost multi-processor platforms that
support large numbers of processors on a single board. Faster CPUS are generally con-
strained by the memory bandwidth under memory-intensive workload. Symmetric multi-
processing (SMP) systems use a shared bus to connect processors, thus, many processors
have to compete for memory bandwidth. The NUMA architecture solves this problem by
connecting several low-end processor nodes each having its own cache and memory, using a
high-speed connection. Each node has a memory controller which allows it to use memory
on all other nodes in addition to its own memory, thus abstracting the memory as a single
image. When a processor requests data from a memory location that does not exist in its
local memory, the data is transfered over the NUMA connection, which is slower than the
connection between the processor and its local memory. Thus, memory access time is not
uniform and varies depending upon if the access is local or remote.

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

40

In NUMA systems, cache coherence problem occurs when two or more processors access
the same shared data. If one processor modifies its copy of the data, the copies of this data in
the cache of other processors will become stale. ccNUMA (cache coherent NUMA) machines
ensure that a processor accessing a memory location receives the most up-to-date version of
the data. Cache coherence can be ensured either in software or hardware, however software
approaches tend to be slower than the hardware ones.

We analysed the performance of DCMMR on AMD Opteron based NUMA machines.
Figure 30 shows the architecture of the AMD Opteron 6300 series processors. The processor
has two NUMA nodes connected with a HyperTransport bus. Each node has 8 cores. The
cores are arranged in 4 pairs such that each pair shares a Floating Point Unit (FPU) and
an L2 cache of 2MB. The pairs are connected to each other by the Crossbar Switch which
connects to the HT bus through an HT interface. Each node has its own memory controller
with 2 channels. Each channel supports memory up to 32 GB.

Fig. 30 AMD Opteron 6300 series Processor Architecture5

Figure 31 shows the architecture of the AMD Opteron 6300 series quad-processor cc-
NUMA system which we used for one set of our experiments. The system consists of 4
AMD Opteron 6376 processors (Figure 30) interconnected through HT buses. The system
has 512 GB of memory (128 GB per processor, 64 GB per NUMA node). If a processor
core is the first one to request a memory page, it is mapped to the memory of the node to
which the core belongs (first touch policy). A NUMA aware OS tries to keep the threads
running always in the same core pair because they share the same L2 cache. Moving a thread
to another core-pair will cause a performance degradation because of cache invalidation. A
thread gets further performance hit if it is moved to another node because it needs to get
data from a remote node’s memory. Therefore using multiple cores for running a process
using context switching although increases the performance but the increase might not be
linear depending upon the location of the core the process is moved to.

If an algorithm accesses all of its data from the memory, ccNUMA increases memory
bandwidth at a ratio effectively the same as the number of NUMA nodes. In our case, it
is expected to have 8 times the memory bandwidth of an SMP machine but it does not
necessarily mean that the performance of an algorithm will scale linearly with increase in
the number of cores because of the performance bottlenecks explained above. The following
steps are required from a NUMA-aware OS for optimal NUMA performance:

5http://beagle.ci.uchicago.edu/technical-specification

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

41

– Processes should be scheduled on cores as close as possible to the memory that contains
its data.

– OS should maintain a queue per node
– Memory allocation for a process should be in the memory of a single node
– All child processes should be scheduled on the same node during the lifetime of the

parent process

The two most common policies supported by the Linux kernel are NODE LOCAL and
INTERLEAVE 6,7. In NODE LOCAL mode, an allocation occurs from the memory node local to
where the code is currently executing where as in the INTERLEAVE mode, allocation occurs
round-robin. The INTERLEAVE policy is used to distribute memory accesses for data structures
that may be accessed from multiple processors in the system in order to have an even load
on the interconnect and the memory of each node.

The memory management policies of the OS work best for the general cases and not for
a specific application with a different memory access behaviour. When the memory load of a
NUMA system increases, its memory management overhead increases, thus resulting in the
overall degraded performance. Therefore the best approach is to have an application do the
management itself. Hadoop runs in Java Virtual Machines (JVMs) which come with support
for NUMA but Hadoop itself is not NUMA aware. Thus, an algorithm running on Hadoop
on a NUMA system shows lower scalability in terms of number of cores when compared to
its execution on a cluster of SMP machines with the same number of cores.

Fig. 31 AMD Opteron 6300 series Multi-node Architecture

6http://queue.acm.org/detail.cfm?id=2513149
7https://www.kernel.org/doc/Documentation/vm/numa memory policy.txt

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at: https://doi.org/10.1007/s10707-020-00431-w

