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A B S T R A C T

The integration of increasing share of renewable based distributed generation in distribution networks brings
great challenges to voltage control. To address this issue, this paper presents a two-stage distributionally robust
chance-constrained receding horizon control algorithm. In the proposed method, the distributionally robust
chance-constrained reformulation of chance-constrained voltage control is derived, which is not only accurate,
but also computationally efficient. Rather than perfect knowledge about the uncertainty associated with
renewable generation, the proposed method only requires partial information of the underlying probability
distribution. In addition, the mechanical voltage regulation devices and the DG inverters are controlled in two
stages, considering their different characteristics in voltage control. By taking into account both the current
and forecasted renewable generation, the proposed method utilizes receding horizon control to determine the
control actions of voltage regulation devices. The effectiveness of the proposed method is demonstrated by
case studies on unbalanced IEEE-123 bus system.
1. Introduction

Nowadays, driven by the concern on depletion of fossil fuels and
environment protection, the renewable energy is playing an impor-
tant role in today’s energy pattern [1]. Integrating renewable-based
distributed generations (DGs), such as residential wind turbines or
rooftop photovoltaic panels, into distribution networks (DNs) is the
common way to utilize the renewables [2]. However, the proliferation
of renewable-based DGs brings severe operation challenges to DNs,
with voltage control being one of them [3,4].

The main purpose of voltage/var control (VVC) in distribution
networks (DNs) is to maintain the feeder voltages within allowed limits.
Conventionally, DN voltages are regulated by utility-owned mechan-
ical voltage control equipments, such as transformers with on-load
tap changer (OLTC), step voltage regulators (SVRs) and switchable
capacitor banks (CBs). However, the renewable generation is highly
stochastic and uncertain in nature, leading to increased variability of
feeder voltages that mechanical VVC devices may fail to handle [3].
Besides, regulating voltages under high-penetrated renewable scenario
requires more frequent switching operation, which reduces the lifespan

✩ This work is supported by China Scholarship Council and Department of Energy Technology, Aalborg University.
∗ Corresponding author.
E-mail address: zhf@energy.aau.dk (Z. Zhang).

of these mechanical devices. On the other hand, DGs are integrated into
DNs via fast-responding power electronics inverters. Thus, utilizing DG
inverters for voltage control is a promising solution for above issue.
The recent amended IEEE 1547 standard has allowed DGs to provide
voltage regulation capabilities [5].

In general, determining the optimal setpoints of VVC devices under
uncertainty is an instance of optimal power flow (OPF) tasks. Up to
now, various technical approaches have been explored to tackle this
problem, including stochastic programming (SP), robust optimization
(RO) and chance-constrained programming (CC). In SP, the uncertain
parameters are assumed to follow certain probability distribution (PD)
and described using a finite number of scenarios. The authors in [6]
proposed a multi-objective voltage control framework for DNs where
the uncertainties associated with renewable generation are modeled
by scenario methods. In [7], the uncertainty forecasting errors of
generation and load were assumed to follow Beta distribution and
normal distribution respectively. Similarly, voltage control problem
was formulated as a two-stage SP in [8] where mechanical VVC devices
and DG inverters were controlled in different timescales. However,
scenario-based SP is criticized to be computational demanding [9]. In
vailable online 23 August 2022
960-1481/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.renene.2022.08.086
Received 30 May 2022; Received in revised form 4 August 2022; Accepted 18 Aug
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ust 2022

http://www.elsevier.com/locate/renene
http://www.elsevier.com/locate/renene
mailto:zhf@energy.aau.dk
https://doi.org/10.1016/j.renene.2022.08.086
https://doi.org/10.1016/j.renene.2022.08.086
http://crossmark.crossref.org/dialog/?doi=10.1016/j.renene.2022.08.086&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Renewable Energy 198 (2022) 907–915Z. Zhang et al.
Nomenclature

Abbreviations

CB Capacitor banks
CC Chance-constrained programming
DG Distributed generation
DN Distribution network
DRCC Distributionally robust chance-constrained

optimization
LSC Lower stage controller
OLTC On-load tap changer
OPF Optimal power flow
PD Probability distribution
RHC Receding horizon control
RO Robust optimization
SP Stochastic programming
SVR Step voltage regulator
TDRC-RHC Two-stage distributionally robust chance-

constrained receding horizon voltage con-
trol

USC Upper stage controller
VVC Voltage/var control

Parameters

𝛽 Confidence parameter
𝛿tap, 𝛿c Constant difference between two consecu-

tive tap position of OLTC/CB
𝜖 Allowed violation probability
𝜔mec, 𝜔p Weighting factors for mechanical VVC

devices operation/power losses
𝑛c, 𝑛c Max/min CB tap position
𝑛tap, 𝑛tap Max/min OLTC tap position
𝑞inv, 𝑞inv Max/min DG inverter reactive power out-

put
𝑢, 𝑢 Upper/lower limit of voltage magnitude
𝛥𝑛c, 𝛥𝑛c Max/min ramping limit of CB tap position
𝛥𝑛tap, 𝛥𝑛tap Max/min ramping limit of OLTC tap posi-

tion
𝛥𝑞c CB reactive power output per step
𝑐tap, 𝑐c, 𝑐p Cost coefficients of OLTC and CB operation,

power losses
𝑀 Big number in big-M method
𝑁𝑘 Number of LSC control steps in 𝑇𝑐
𝑁𝑝 Prediction step
𝑁PV Dimension of uncertainties
𝑆inv Capability of DG inverter
𝑇𝑐 , 𝑡𝑐 Control period of upper/lower stage con-

troller
𝑢nom Squared nominal voltage value

Sets

 Ambiguity set
 Set of branches
 Set of buses

addition, the actual PD of uncertainty variables may deviate from the
pre-assumption or even hard to obtain in practice [10].

RO treats the uncertainty variables with an interval uncertainty
set, and the optimal solution can be found under the worst-case
908
Variables

𝑝inv, 𝑞inv DG inverter real/reactive power output
𝑝l, 𝑞l Real/reactive power load consumption
𝑞c CB reactive power output
𝑝inv Forecasted real power output of DG in-

verter
𝜉 Uncertainty forecasting error
𝑛tap, 𝑛c Tap position of OLTC/CB
𝑝, 𝑞 Real/reactive power injection
𝑃loss Power losses
𝑢 Squared voltage magnitude
𝑧 Binary variable

scenario. In [11], a two-stage robust model was presented to dis-
patch real/reactive power in active DNs under wind power uncer-
tainty. Multi-objective robust voltage control models were reported to
minimize power losses in [12] and ensure the maximum renewable
power capture in [13]. Even though RO is a computationally efficient
alternative to SP, it often leads to over-conservative solutions [14].

Instead, the uncertainty constraints are guaranteed to be satisfied
above a specific probability level in CC. The difficulty in CC is that the
probability constraints cannot be solved straightforward. The common
way is to use scenario method by evaluating a large number of random
scenarios. For example, a CC-OPF was formulated in [15], wherein the
forecasting errors are assumed to follow normal distribution. A two-
stage chance-constrained approach was presented in [16] to address
voltage control problem under uncertainty. But the method in [16]
assumes that the uncertainties follow a specific probability distribution
and the scenario method used to evaluate the chance constraints are
not computational efficient. There are also other attempts to derive
tractable approximation of original CC problem, e.g., the work in [17]
established the linear expressions of chance constraint based on steady-
state security region, [18] used affine disturbance parameterization to
reformulate chance constraint into a second-order cone program to
rendering the problem solvable. However, the methods in [17,18] are
only valid if the underlying PD is normally distributed, which narrows
their application in practice.

The previous CC voltage control approaches are either computa-
tional expensive or relying on strong assumptions that may not hold in
practice. To address this issue, we propose a two-stage distributionally
robust chance-constrained receding horizon voltage control algorithm
(TDRC-RHC) in this paper, which is not only computational efficient
but also relying on reasonable assumption of the uncertainties. Com-
pared with the existing works in the area of DN voltage control, the
advantages of proposed method are summarized as follows:

• The distributionally robust chance-constrained (DRCC) reformu-
lation of CC voltage control in DNs is derived, in which the
uncertainties of renewable generation are represented by an am-
biguity set only require partial information of the underlying
PD.

• Compared with the commonly used scenario method, the DRCC
reformulation is exact and computationally efficient.

• The mechanical VVC devices and DG inverters with different
voltage control characteristics are controlled in two stages. The
control actions are determined using the idea of receding horizon
control (RHC) by comprehensively considering the current and
forecasted renewable generation.

• The performance of the proposed method is validated by case
studies on unbalanced DNs.
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Fig. 1. Topology of a typical radial DN.

Fig. 2. Branch model with on-load tap changer.

The remainder of this paper is organized as follows1: Section 2 in-
troduces modeling of unbalanced DNs. Section 3 formulates of the pro-
posed TDRC-RHC voltage control algorithm. Case studies are presented
in Section 4, followed by conclusions in Section 5.

2. Preliminaries

2.1. Multi-phase unbalanced DN model

As shown in Fig. 1, the topology of a typical radial DN is represented
by  = ( ,), where  ∶= {1,… , 𝑁} denotes set of buses while 
denotes set of branches. Bus indexed by 0 denotes the substation bus
and is assumed to be the reference bus. Without loss of generality, each
bus or branch is assumed to have all three phases, yet represented by
a 3 × 1 complex vector. For each bus 𝑖 ∈  , let 𝑉𝑖 ∶=

[

𝑉 𝑎
𝑖 𝑉 𝑏

𝑖 𝑉 𝑐
𝑖
]⊤

denote the three-phase voltages. For each branch (𝑖, 𝑗) ∈ , let 𝐼𝑖𝑗 ∶=
[

𝐼𝑎𝑖𝑗 𝐼𝑏𝑖𝑗 𝐼𝑐𝑖𝑗
]⊤

and 𝑆𝑖𝑗 ∶=
[

𝑆𝑎
𝑖𝑗 𝑆𝑏

𝑖𝑗 𝑆𝑐
𝑖𝑗

]⊤
denote its three-phase line

current and complex power flow, respectively.
As shown in Fig. 2, the three-phase power flow equation for each

branch including OLTC tap ratio 𝑡̃tap,𝑖𝑗 is governed by Ohm’s law,

𝑆𝑖𝑗 − diag
(

𝑧𝑖𝑗𝐼𝑖𝑗
)

𝐼∗𝑖𝑗 −
∑

𝑘∈𝑗

𝑆𝑗𝑘 = −𝑠̃𝑗 (1a)

𝑡tap,𝑖𝑗 ⊙ 𝑉𝑖 − 𝑧𝑖𝑗𝐼𝑖𝑗 = 𝑉𝑗 (1b)

where 𝑧𝑖𝑗 ∶= 𝑟̃𝑖𝑗+𝑗𝑥𝑖𝑗 ∈ C3×3 is 3×3 full symmetric impedance matrix of
branch (𝑖, 𝑗) and 𝑡̃tap,𝑖𝑗 = 1 + 𝑛tap,𝑖𝑗𝛥𝑡𝑎𝑝𝑖𝑗 with 𝑛tap,𝑖𝑗 is three-phase OLTC
tap position and 𝛥𝑡𝑎𝑝𝑖𝑗 is OLTC voltage change per step.

To eliminate voltage angles, both sides in (1b) are multiplied by
their complex conjugates,

𝑡2tap,𝑖𝑗 ⊙ 𝑢̃𝑖 − 2Re
[

𝑉𝑖 ⊙
(

𝑧∗𝑖𝑗𝐼
∗
𝑖𝑗

)]

+
(

𝑧𝑖𝑗𝐼𝑖𝑗
)

⊙
(

𝑧∗𝑖𝑗𝐼
∗
𝑖𝑗

)

= 𝑢̃𝑗 (2)

where 𝑢̃𝑖 ∶=
[

|

|

|

𝑉 𝑎
𝑖
|

|

|

2
|

|

|

𝑉 𝑏
𝑖
|

|

|

2
|

|

|

𝑉 𝑐
𝑖
|

|

|

2
]⊤

represents the three-phase squared

voltage magnitude at bus 𝑖.

1 Boldface letters denote matrix or column vectors,
(

⋅̃
)

represents three-
phase variables, (⋅)⊤ for transposition, (⋅)∗ is complex conjugate and (⋅)H is
complex conjugate transposition, ⊗ denotes Kronecker product, ⊙ element-
wise multiplication. ℜ (⋅) and ℑ (⋅) represent the real/imaginary part of a
complex variable. 𝑰𝑁 denotes the 𝑁 ×𝑁 identity matrix. For variable 𝒙, ‖𝒙‖2
s its 2-norm while diag (𝒙) returns a 𝑁 × 𝑁 matrix with 𝒙 in its diagonal.
he abbreviations and notations are summarized in nomenclature and some
909

f them are explained the first time they appear. w
Given the fact that voltage magnitudes between phases are similar,
e have 𝑉𝑖 ≈ |

|

𝑉𝑖||𝜶, 𝜶 ∶=
[

1 𝛼 𝛼2
]⊤, 𝛼 = 𝑒−𝑗(2𝜋∕3). Also last term in (2)

s rather small and negligible, (2) can be approximated as [19],

2
tap,𝑖𝑗 ⊙ 𝑢̃𝑖 − 𝑢̃𝑗 = 2Re

[

diag
(

𝜶∗) 𝑧∗𝑖𝑗diag (𝜶)𝑆𝑖𝑗

]

(3)

q. (3) can be equivalent given as,

2
tap,𝑖𝑗 ⊙ 𝑢̃𝑖 − 𝑢̃𝑗 = 2

(

𝑟̂𝑖𝑗𝑃𝑖𝑗 + 𝑥̂𝑖𝑗𝑄̃𝑖𝑗

)

(4)

here

𝑟̂𝑖𝑗 = ℜ
(

𝜶𝜶H)⊙ 𝑟̃𝑖𝑗 +ℑ
(

𝜶𝜶H)⊙ 𝑥𝑖𝑗
̂ 𝑖𝑗 = ℜ

(

𝜶𝜶H)⊙ 𝑥𝑖𝑗 −ℑ
(

𝜶𝜶H)⊙ 𝑟̃𝑖𝑗

he term 𝑡̃2tap,𝑖𝑗 𝑢̃𝑖 makes the problem nonconvex, it can be linearized
s [20],

2
tap,𝑖𝑗 ⊙ 𝑢̃𝑖 =

(

1 + 2𝑛tap,𝑖𝑗 ⋅ 𝛥𝑡𝑎𝑝𝑖𝑗 + 𝑛2tap,𝑖𝑗 ⋅
(

𝛥𝑡𝑎𝑝𝑖𝑗
)2
)

⊙ 𝑢̃𝑖

≈ 𝑢̃𝑖 + 2𝑛tap,𝑖𝑗 ⋅ 𝛥𝑡𝑎𝑝𝑖𝑗 ⊙ 𝑢̃𝑖

≈ 𝑢̃𝑖 + 2𝑛tap,𝑖𝑗 ⋅ 𝛥𝑡𝑎𝑝𝑖𝑗 ⋅ 𝑢nom (5)

here 𝑢nom is the squared nominal voltage value.
Such approximation holds as 𝑛2tap,𝑖𝑗 ⋅

(

𝛥𝑡𝑎𝑝𝑖𝑗
)2 ≈ 0 and bus voltages

re around the reference during normal operation. Thus, the linear
pproximation of multi-phase branch flow model is expressed as,

𝑖̃𝑗 −
∑

𝑘∈𝑗

𝑃𝑗𝑘 = −𝑝𝑗 (6a)

̃𝑖𝑗 −
∑

𝑘∈𝑗

𝑄̃𝑗𝑘 = −𝑞𝑗 (6b)

𝑖 − 𝑢̃𝑗 = 2
(

𝑟̂𝑖𝑗𝑃𝑖𝑗 + 𝑥̂𝑖𝑗𝑄̃𝑖𝑗

)

− 2𝑛tap,𝑖𝑗𝛥𝑡𝑎𝑝𝑖𝑗𝑢nom (6c)

.2. Compact form representation of multi-phase DN model

For notational brevity, we introduce a matrix form representation of
ulti-phase DN model in this section. Firstly, squared voltage magni-

udes, real/reactive power injection in set  are collected into column
ectors 𝒖 ∶=

[

𝑢̃⊤1 ⋯ 𝑢̃⊤𝑁
]⊤, 𝒑 ∶=

[

𝑝⊤1 ⋯ 𝑝⊤𝑁
]⊤ and 𝒒 ∶=

[

𝑞⊤1 ⋯ 𝑞⊤𝑁
]⊤ ∈ R3𝑁 ,

espectively. Similarly, branch real/reactive power flow in set  and
ap positions of OLTC and CBs are collected into column vector 𝑷 , 𝑸,
tap and 𝒏c, respectively. Then, let 𝑮̄ ∶=

[

𝒈0 𝑮⊤]⊤ ∈ {0,±1}(𝑁+1)×𝑁

enote the incidence matrix of , which is defined as: 𝑮̄𝑖𝑙 = 1 if branch
starts at bus 𝑖 whereas 𝑮̄𝑖𝑙 = −1 if branch 𝑙 ends at bus 𝑖, otherwise
̄ 𝑖𝑙 = 0 [21]. 𝒈⊤0 is the first row of 𝑮̄ and 𝑮 is the remaining submatrix.
efine block diagonal matrix 𝑹̂ ∶= diag

({

𝑅̂𝓁
})

∈ R3𝑁×3𝑁 with 𝓁_th
iagonal element equals to 𝒓̂𝑖𝑗 of the 𝓁_th branch ∈ , the same is with
̂ ∶= diag

({

𝑋̂𝓁
})

∈ R3𝑁×3𝑁 . Extending the incidence matrix of  into
hree phases by

̄ ∶= 𝑮̄⊗ 𝑰3 (7)

he compact form of (6a)–(6c) can be represented by

−𝑨𝑷 = −𝒑 (8a)

−𝑨𝑸 = −𝒒 (8b)
[

𝒂0 𝑨⊤]
[

𝒖0
𝒖

]

= 2
(

𝑹̂𝑷 + 𝑿̂𝑸
)

− 2𝑢nom𝒏tap ⊙ 𝛥𝒕𝒂𝒑 (8c)

ubstituting (8a) and (8b) into (8c) to obtain,

= 2
(

𝑫𝑟𝒑 +𝑫𝑥𝒒
)

− 2𝑢nom𝒏tap ⊙ 𝛥𝒕𝒂𝒑 −𝑨−⊤𝒂0𝒖0 (9)

−⊤ ̂ −1 −⊤ ̂ −1
here 𝑫𝑟 ∶= 𝑨 𝑹𝑨 and 𝑫𝑥 = 𝑨 𝑿𝑨
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Fig. 3. Schematic diagram of the proposed TDRC-RHC.

. Formulation of the proposed algorithm

In this section, we introduce the details of the proposed TDRC-RHC
oltage control algorithm. The diagram of the proposed algorithm is
llustrated in Fig. 3. As shown in Fig. 3, there are mainly two parts in
he proposed algorithm, the two-stage voltage controller based on RHC
nd the DRCC reformulation of chance constraint.

.1. Two-stage voltage controller

The response speed of mechanical VVC devices is usually ranging
rom several seconds to minutes, which is not fast enough to ac-
ommodate the voltage variation caused by fluctuation of renewable
eneration [8]. In addition, the frequent switching operation could
ramatically reduce their lifetime. On the other hand, the fast-response
G inverters(response speed in millisecond) can provide reactive power

o support feeder voltages. Considering the different characteristics of
VC devices, the proposed algorithm is decomposed into two stages.
he slow-response mechanical VVC equipments, OLTC transformer and
Bs, are controlled in the upper stage with a longer control period 𝑇𝑐 of

1 h to regulate the overall voltage profile whereas the reactive power
outputs of fast-response DG inverters are dispatched in the lower stage
with a shorter control period 𝑡𝑐 of 15-min in response to fast voltage
variations. The control period of upper stage and lower stage are chosen
based on the time period of SCADA system and advanced metering
infrastructure (AMI) in some real practices [22,23], as well as recom-
mendations from relevant guideline and literature [8,24]. In the whole
control period, DG inverters keep operating at maximum power point
tracking (MPPT) mode to capture maximum active power [25,26].

3.1.1. Upper stage controller
The main purpose of upper stage controller(USC) is to maintain

the bus voltages in the allowed range and to reduce the number of
operation of mechanical VVC devices to prolong their lifetime. Also,
adjusting the DG inverter reactive power outputs has strong impact on
network power losses [27], so power losses minimize are also consid-
ered in USC. When determining the control actions of VVC devices,
the idea of RHC is used to improve the algorithm performance by
taking into account not only the current renewable generation, but
also its predicted value over a chosen future time horizon. Thus, the
mathematical formulation of USC at time instant 𝑡 is given as,

min
𝒏tap ,𝒏c ,𝒒inv

𝑡+𝑁𝑝−1
∑

𝑘=𝑡

⎡

⎢

⎢

⎢

⎢

⎢

𝜔mec
(

𝑐tap‖𝒏tap (𝑘) − 𝒏tap (𝑘 − 1) ‖2
+ 𝑐c‖𝒏c (𝑘) − 𝒏c (𝑘 − 1) ‖2

)

+𝜔p

𝑡+𝑁𝑘−1
∑

𝑐p𝑃loss (𝑖)

⎤

⎥

⎥

⎥

⎥

⎥

(10a)
910

⎣ 𝑖=𝑡 ⎦
subject to,

𝒖 (𝑘) = 2
(

𝑫𝑟𝒑 (𝑘) +𝑫𝑥𝒒 (𝑘)
)

− 2𝑢nom𝒏tap (𝑘)⊙ 𝛥𝒕𝒂𝒑 −𝑨−⊤𝒂0𝒖0 (10b)

𝒑 (𝑘) = 𝒑inv (𝑘) − 𝒑l (𝑘) (10c)

𝒒 (𝑘) = 𝒒inv (𝑘) + 𝒒c (𝑘) − 𝒒l (𝑘) (10d)

𝒑inv (𝑘) = 𝒑inv (𝑘) + 𝝃 (𝑘) (10e)

inv
(𝑘) ⩽ 𝒒inv (𝑘) ⩽ 𝒒inv (𝑘) (10f)

− 𝒒
inv

(𝑘) = 𝒒inv (𝑘) =
√

𝑺2
inv −

(

𝒑inv (𝑘)
)2 (10g)

𝑃loss (𝑘) =
∑

(𝑖,𝑗)∈,𝜙∈{𝑎,𝑏,𝑐}
𝑟̂𝜙𝑖𝑗

(

𝑃 𝜙
𝑖𝑗 (𝑘)

)2
+
(

𝑄𝜙
𝑖𝑗 (𝑘)

)2

𝑢nom
(10h)

P
(

𝒖 ⩽ 𝒖 (𝑘) ⩽ 𝒖
)

⩾ 1 − 𝜖 (10i)

𝒏tap ⩽ 𝒏tap (𝑘) ⩽ 𝒏tap (10j)

𝛥𝒏tap ⩽ 𝒏tap (𝑘) − 𝒏tap (𝑘 − 1) ⩽ 𝛥𝒏tap (10k)

𝒒c (𝑘) = 𝒏c (𝑘) ⋅ 𝛥𝑞c (10l)

c ⩽ 𝒏c (𝑘) ⩽ 𝒏c (10m)

𝛥𝑛c ⩽ 𝒏c (𝑘) − 𝒏c (𝑘 − 1) ⩽ 𝛥𝑛c (10n)

𝑁𝑘 = 𝑇𝑐∕𝑡𝑐 (10o)

where (10b)–(10i) is the power flow constraints with (10i) representing
the CC voltage constraint, 𝜖 is the allowed violation probability. (10j)–
(10k) and (10l)–(10n) are operation constraints for OLTC transformer
and CB, respectively. (10f)–(10g) are DG inverter operation constraints.
𝑁𝑝 is the prediction step. 𝑐tap, 𝑐c and 𝑐p are cost coefficients for OLTC,
CB operation and power losses. 𝜔mec and 𝜔p are weighting factors
for mechanical VVC equipments operation and power losses, respec-
tively. The weighting factors can be determined by analytical hierarchy
process method according to the preference of decision makers [28].

The bilinear terms in (10b) and (10l) can be linearized by big-M
method [16],

𝑛tap = 𝑛tap + 𝛿tap

𝑚tap
∑

𝑘=0
2𝑘𝑧tap, 𝑧tap ∈ {0, 1} (11a)

tap + 𝛿tap

𝑚tap
∑

𝑘=0
2𝑘𝑧tap ⩽ 𝑛tap (11b)

𝑐 = 𝛥𝑡𝑎𝑝𝑢nom, 𝑤tap = 𝑧tap𝑐 (11c)

𝑐 −𝑀
(

1 − 𝑧tap
)

⩽ 𝑤tap ⩽ 𝑐 +𝑀
(

1 − 𝑧tap
)

(11d)

−𝑀𝑧tap ⩽ 𝑤tap ⩽ 𝑀𝑧tap (11e)

𝑛c = 𝑛c + 𝛿c
𝑚c
∑

𝑘=0
2𝑘𝑧c, 𝑧c ∈ {0, 1} (11f)

c + 𝛿c
𝑚c
∑

𝑘=0
2𝑘𝑧c ⩽ 𝑛c (11g)

𝑤c = 𝑧c𝛥𝑞c (11h)

𝛥𝑞c −𝑀
(

1 − 𝑧c
)

⩽ 𝑤c ⩽ 𝛥𝑞c +𝑀
(

1 − 𝑧c
)

(11i)

−𝑀𝑧c ⩽ 𝑤c ⩽ 𝑀𝑧c (11j)

The USC is optimized at the beginning of an hour, the input is the
network real/reactive load consumption 𝒑l (𝑘) and 𝒒l (𝑘), the forecasting
renewable generation 𝒑inv (𝑘) and the uncertainty forecasting errors 𝝃 (𝑡)
for the future 𝑁𝑝 steps. The output of USC is the tap positions of OLTC
transformer 𝒏𝑡𝑎𝑝

(

𝑇𝑐
)

and CBs 𝒏𝑐
(

𝑇𝑐
)

for the whole hour, as well as the
DG inverters reactive power outputs 𝒒inv

(

𝑡c
)

for the first 15 min of an
hour.

3.1.2. Lower stage controller
The lower stage controller(LSC) receives tap positions of mechanical
VVC devices from USC, then determines the DG inverters reactive
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Fig. 5. Solar profile.

power dispatch for the rest 45-min of an hour. The main objective
of LSC is to minimize the network power losses and regulate the
bus voltages in the allowed limits by dispatching the reactive power
outputs of DG inverters. So the optimization problem of LSC at time 𝑡
is formulated as,

min
𝒒inv

𝑃loss (𝑡) (12a)

ubject to

(𝑡) = 2
(

𝑫𝑟𝒑 (𝑡) +𝑫𝑥𝒒 (𝑡)
)

− 2𝑢nom𝒏tap
(

𝑇c
)

⊙ 𝛥𝒕𝒂𝒑 −𝑨−⊤𝒂0𝒖0 (12b)

𝒑 (𝑡) = 𝒑inv (𝑡) − 𝒑l (𝑡) (12c)

𝒒 (𝑡) = 𝒒inv (𝑡) + 𝒒c
(

𝑇c
)

− 𝒒l (𝑡) (12d)

𝒑inv (𝑡) = 𝒑inv (𝑡) + 𝝃 (𝑡) (12e)

inv
(𝑡) ⩽ 𝒒inv (𝑡) ⩽ 𝒒inv (t) (12f)

−𝒒
inv

(𝑡) = 𝒒inv (𝑡) =
√

𝑺2
inv −

(

𝒑inv (𝑡)
)2 (12g)

loss (𝑡) =
∑

(𝑖,𝑗)∈,𝜙∈{𝑎,𝑏,𝑐}
𝑟̂𝜙𝑖𝑗

(

𝑃 𝜙
𝑖𝑗 (𝑡)

)2
+
(

𝑄𝜙
𝑖𝑗 (𝑡)

)2

𝑢nom
(12h)

(

𝒖 ⩽ 𝒖 (𝑡) ⩽ 𝒖
)

⩾ 1 − 𝜖 (12i)

The input of LSC is the network real/reactive load consumption
l (𝑡) and 𝒒l (𝑡), the tap positions of OLTC transformer 𝒏tap

(

𝑇𝑐
)

and CBs
(

𝑇
)

from USC as well as the forecasting renewable generation 𝒑 𝑡
911

c 𝑐 inv ( ) 
nd the uncertainty forecasting errors 𝝃 (𝑡). The output of LSC is DG
nverters reactive power outputs 𝒒inv

(

𝑡c
)

for the current 15-min control
eriod.

.2. Chance constraint scenario method

The probability constraint in (10i) cannot be solved directly. The
ommonly used way in previous studies is to transform the probability
onstraint into hard constraint via scenario method. The authors in [29]
roved that if the number of randomly generated samples of the
ncertain parameters is above a lower bound, then the resulted solution
s exact for the original CC problem with a certain confidence level.
or mixed integer problem whose continuous relaxation is convex and
nteger variable lies in the set {0, 1}, the number of samples needs to
enerate is given as [16],

𝑙
𝑛−1
∑

𝑖=0

(

𝑁
𝑖

)

𝜖𝑖 (1 − 𝜖)𝑁−𝑖 ⩽ 𝛽 (13)

here 𝑛 is the number of continuous variable and 𝑙 is the number of
inary variables. 𝛽 ∈ (0, 1) is the confidence parameter describing the
riginal chance constraint can be guaranteed with confidence level at
east 1 − 𝛽.

.3. DRCC reformulation of chance constraint

The scenario method is known to be computational demanding,
specially for increasing number of uncertain variables. In addition,
he true PD of uncertainty variables may deviate from the assumed
ne or such PD may not even be accessible in reality. To overcome
his issue, we introduce the DRCC reformulation of the original chance-
onstrained problem in this section, which is not only accurate but also
omputational efficient. Rather than assumption of perfect knowledge
f the PD, the forecasting errors of renewable generation are repre-
ented by an ambiguity set which requires only the first-order and
econd-order moments in our method. The moment-based ambiguity
et  defined with mean(first-order moment) and covariance matrix
second-order moment) is given as [30],

=
{

P ∈
(

R𝑁PV
)

,E 𝝃 = 0,E
(

𝝃𝝃⊤
)

= Σ
}

(14)
P ( ) P
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Fig. 6. Load profile.

Fig. 7. Performance with different prediction steps.

Fig. 8. Voltage in deterministic optimization.

Fig. 9. Voltage in TDRC-RHC optimization.

here
(

R𝑁PV
)

denotes the set of all PDs on R𝑁PV , 𝑁PV is the dimension
f 𝝃. Σ is the semi-definite covariance matrix(Σ ⪰ 0).

To start with, we recall Eq. (9) and applying it over two consecutive
ime instances, the voltage difference 𝛥𝒖(𝑡) ∶= 𝒖(𝑡) − 𝒖(𝑡 − 1) can be

represented as,

𝛥𝒖 (𝑡) = 2
(

𝑫𝑟𝛥𝒑 (𝑡) +𝑫𝑥𝛥𝒒 (𝑡)
)

− 2𝑢nom𝛥𝒏tap (𝑡)⊙ 𝛥𝒕𝒂𝒑 (15)

where vectors 𝛥𝒑 (𝑡), 𝛥𝒒 (𝑡) and 𝛥𝒏tap (𝑡) are the difference of real/
reactive power injection and OLTC tap positions between two time
instances. From (15) we can see that 𝑫 and 𝑫 can be viewed as
912

𝑟 𝑥
voltage sensitivity with respect to the network real/reactive power
injections.

To derive the tractable reformulation of the original chance-
constrained problem, we have the following assumptions:

(1) The forecasted renewable generation is accurate and the forecast-
ing errors 𝝃 are small. This assumption is reasonable as modern
weather forecasting tools perform well in short-term forecast-
ing [31].

(2) The real system operation status is close to the forecasted op-
eration point(𝝃 = 0), the system forecasting operation point is
denoted as 𝒚0.

(3) The impact of uncertainties on the network constraints can be
modeled as the first order Taylor polynomial around the fore-
casting operation point, this assumption is reasonable considering
the forecasting errors are sufficient small compared with the
renewable generation.

Based on above assumptions, the bus voltages considering the uncertain
forecasting errors can be represented as,

𝒖 ≈ 𝒖0 + (𝜕𝒖∕𝜕𝝃)𝝃 (16)

Clearly, the expectation and variance of 𝒖 are 𝐸 (𝒖) = 𝒖0 and Var (𝒖) =
(𝜕𝒖∕𝜕𝝃) Var(𝝃)(𝜕𝒖∕𝜕𝝃)⊤.

Define 𝜕𝒖∕𝜕𝝃 ∶= 𝜞 , from (10b) (10e) (15) we get,

= (𝜕𝒖∕𝜕𝒑)(𝜕𝒑∕𝜕𝝃) (17)

𝒖∕𝜕𝒑 = 2𝑫𝑟, 𝜕𝒑∕𝜕𝝃 = 𝑰𝑁PV
(18)

To obtain the DRCC reformulation of the original chance constraint, the
upper bound voltage constraint P

(

𝒖𝑖 ⩽ 𝒖
)

⩾ 1 − 𝜖 is expressed by,

𝛩
(

𝒖𝑖 ⩽ 𝒖
)

⩾ 1 − 𝜖 (19)

where 𝛩 (⋅) denotes the worst case cumulative distribution function in
mbiguity set .

Let 𝐞𝑖 denote the 𝑖th column of the identity matrix, then the variance
f 𝒖𝑖 is given as ‖

‖

‖

𝐞⊤𝑖 𝜞𝜮1∕2‖
‖

‖2
. Hence the DRCC reformulation of (19) is

iven as,
(

𝒖 − 𝒖0,𝑖
)

∕‖𝐞⊤𝑖 ΓΣ
1∕2

‖2 ⩾ 𝛩−1
 (1 − 𝜖) (20)

where 𝛩−1
 (1 − 𝜖) is the inverse cumulative distribution function. For

ambiguity set with known mean and covariance [32],

𝛩
−1(1 − 𝜖) ∶=

√

(1 − 𝜖)∕𝜖 (21)

ubstituting (21) into (20) to get,

0,𝑖 ⩽ 𝒖 −
√

(1 − 𝜖)∕𝜖‖𝐞⊤𝑖 ΓΣ
1∕2

‖2 (22)

imilarly, the lower bound voltage constraint P
(

𝒖𝑖 ⩾ 𝒖
)

⩾ 1 − 𝜖 can be
also reformulated in the same way. Thus the DRCC reformulation of
voltage constraint (10i) (12i) is given as,

𝒖𝑖 ⩽ 𝒖 − 𝝀𝑖 (23a)

𝒖𝑖 ⩾ 𝒖 + 𝝀𝑖 (23b)

𝝀𝑖 =
√

(1 − 𝜖)∕𝜖‖𝐞⊤𝑖 ΓΣ
1∕2

‖2 (23c)

The term 𝝀𝑖 introduces a safety margin on the original voltage con-
straints against the uncertainty, 𝝀𝑖 increases with 𝜖 decreasing, which
means that the safety margin will become larger when smaller violation
probability is allowed. The inequality in (23a)–(23c) is deterministic in
nature which is efficient to compute.

To better illustrate the proposed method, the overall process in
TDRC-RHC is summarized in Algorithm 1
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Fig. 10. Voltage constraint in TDRC-RHC.
a

Fig. 11. OLTC tap positions.

Fig. 12. CB tap positions.

Algorithm 1 The proposed TDRC-RHC

Require: Network parameters including incidence matrix 𝑨, block
diagonal matrix 𝑹̂ and 𝑿̂. Real/reactive load consumption 𝒑l and 𝒒l,
forecasting renewable generation 𝒑inv, ambiguity set  of forecasting
errors 𝝃
for 𝑇c=1,...,𝑇c,max do

USC ← 𝒑l, 𝒒l, 𝒑inv, 𝝃 for the future 𝑁𝑝 steps
Calculate 𝒏tap

(

𝑇𝑐
)

, 𝒏c
(

𝑇𝑐
)

and 𝒒inv according to Eq. (10)(11)(23)
Send 𝒏tap

(

𝑇𝑐
)

and 𝒏c
(

𝑇𝑐
)

to LSC
for 𝑡c=1,...,𝑁𝑘 do

LSC ← 𝒏tap
(

𝑇𝑐
)

,𝒏c
(

𝑇𝑐
)

LSC ← 𝒑l, 𝒒l, 𝒑inv, 𝝃
Calculate 𝒒inv

(

𝑡c
)

according to Eq. (12)(23)
end for

end for
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4. Case study

4.1. System configuration

In this section, the performance of the proposed TDRC-RHC is
verified on unbalanced IEEE-123 bus system, network parameters can
be found in [33]. Simulations are developed in MATLAB r2020b with
YALMIP Toolbox on an ordinary computer running Win10 with 3.9 GHz
CPU and 32G RAM. The two-stage optimization problem is solved by
Gurobi solver [34].

In the studies system, the locations of DG inverters and CBs are
shown in Fig. 4. The capacity of DG inverters is 200 kW while the
capacity of CBs is 300 kVar with 6 tap positions, each step corresponds
to a step length of 50 kVar. The OLTC is operated in the range of
±5% with 20 tap positions, each step corresponds to a step length of
0.005 pu. The daily solar and load profile are obtained from Pecan
Street [35] and NREL Data Center [36], respectively, which are shown
in Figs. 5 and 6. The mean of ambiguity set  is the forecasting
errors of solar power and is assumed to be zero, forecasting errors
are independent so that the covariance matrix Σ is diagonal. The cost
coefficient of power losses is chosen as 0.08 $/kWh while the cost
coefficients of OLTC and CB operation are set as 1.40 $ and 0.24 $
per step [37].

4.2. Verification of prediction

One of the key advantages of the proposed TDRC-RHC is the ca-
pability of considering both the present and forecasted DG inverter
generation to improve the performance. To demonstrate this, the total
operation cost in 24-h simulation with prediction steps varying from
0 to 12 are summarized in Fig. 7. Initially, the cost is 132.32$ when
only the current generation of DG inverters is considered. This number
decreases to 107.53$ when the prediction step increasing to 6, which is
a fairly improvement of 18.73% of the initial value. The number shows
marginally difference when further extending the prediction horizon in
this case.

4.3. Performance of TDRC-RHC

To illustrate the effectiveness of introducing chance constraint, 500
random Monto-Carlo samples are generated to observe the difference
between deterministic optimization and the proposed TDRC-RHC. In
deterministic optimization [8,38], the real renewable generation is
assumed to strictly follow the forecasting value, the forecasting errors 𝝃
re not taken into account, that is 𝒑inv = 𝒑inv in (10e) (12e). In addition,

the voltage constraint in (10i) (12i) is changed into hard constraints,
e.g. 𝒖 ⩽ 𝒖 ⩽ 𝒖.
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Fig. 13. DG reactive power outputs.
Table 1
TDRC-RHC and deterministic.

Cost/$ Power losses/kWh OLTC/times CB/times

Deterministic 132.32 1348.59 13 26
TDRC-RHC 135.22 1390.74 13 24

The bus voltages of deterministic optimization at 10:00 is shown
n Fig. 8. In Fig. 8, voltage violation happens in 268 scenarios, about
3.8% of the total scenarios. The most severe voltage violations happen
n bus 66, 71 and 94. However, the voltage profiles are regulated into
llowed range with the proposed TDRC-RHC as shown in Fig. 9.

The reason for the difference in Figs. 8 and 9 is that the proposed
DRC-RHC can guarantee the bus voltages within allowed limits in
resence of uncertainties by introducing a safe margin. In this case,
he reformulated voltage constraint is shown in Fig. 10 (to save space,
e only list DG node here). It is slightly narrower than the original
oltage hard constraint and different buses may have different voltage
imits, while all the buses have the same voltage limit in deterministic
ptimization. The reformulated voltage constraint leads to different
ptimization results. We next show the results of VVC devices in
hese two methods as in Figs. 11–13. The tap positions of mechanical
evices in these two methods are similar, the difference is that the
ap positions of T1 Phase b in the proposed TDRC-RHC is slightly
ower than that in deterministic optimization. As shown in Fig. 13, the
eactive power outputs of most DG inverters are similar, except those
ocated at bus 66, 71 and 94 absorb apparently more reactive power in
he proposed TDRC-RHC. This is the main reason resulting in different
oltage profiles between Figs. 8 and 9

To get a better overview of the two methods, the objective func-
ions in deterministic optimization and the proposed TDRC-RHC are
ummarized in Table 1. Compared with deterministic optimization, the
ower losses and total operation cost in TDRC-RHC increase by 3.21%
nd 2.19%, respectively. This means that introducing chance constraint
an guarantee the operation security, but the tightened voltage con-
traint makes the optimization result conservative thus increases cost.
owever, the cost increase is minimal and acceptable.

.4. Comparison with scenario methods

Finally, we compare the performance of proposed TDRC-RHC and
he scenario-based CC method. In scenario-based method, certain num-
er of realization of uncertainty is generated. Then Monto-Carlo sim-
lation is performed to determine the voltage probability distribution
914

unction around the forecasted point 𝒖0,𝑖. After that, the upper (1 − 𝜖)
Table 2
Probability violation in TDRC-RHC.

𝜖 = 0.01 𝜖 = 0.02 𝜖 = 0.05

𝜎 = 0.05 0.011 0.016 0.036
𝜎 = 0.1 0.012 0.017 0.038
𝜎 = 0.2 0.013 0.018 0.049

Table 3
Probability violation in scenario method.

𝜖 = 0.01 𝜖 = 0.02 𝜖 = 0.05

𝜎 = 0.05 0.011 0.016 0.036
𝜎 = 0.1 0.013 0.017 0.040
𝜎 = 0.2 0.014 0.019 0.050

and lower (𝜖) quantiles of the distribution can be determined. The safety
margin in scenario method can be given as,

𝝀max,𝑖 = 𝒖1−𝜖𝑖 − 𝒖0,𝑖 (24a)

𝝀min,𝑖 = 𝒖0,𝑖 − 𝒖𝜖𝑖 (24b)

After the results of the TDRC-RHC and scenario method are obtained,
we use 10 000 Monto-Carlo samples to verify the real violation proba-
bility in both methods. The maximum observed violation probability in
two method is shown in Tables 2 and 3, respectively. From two tables,
we can see the observed violation probability in two methods follows
the pre-assumed one, also the results obtained in the proposed method
are close to that in the scenario method, proving the accuracy of the
proposed TDRC-RHC.

Finally the computation burden in two method is compared in this
section. To this end, the minimum sample size in scenario approach
needs to be determined. The allowed violation value of 𝜖 is set as 0.02
while the confidence parameter is chosen as 10−4, this corresponding to
a prescribed sample size of 𝑁 = 6323 samples. Due to the large number
of scenarios involved, the totally CPU time for solving USC is 4213 s
and 821 s for LSC in scenario method. However, it only takes 0.92 s to
solve USC problem and 0.15 s to solve LSC in the proposed TDRC-RHC,
demonstrating the superiority of the proposed method.

5. Conclusion

This paper proposed a two-stage distributionally robust chance-
constrained receding horizon voltage control method to address the
voltage control problem in distribution networks caused by high pene-
tration of renewable generation. By taking into the forecasting renew-
able generation into consideration, the proposed method can achieve

an improvement of 18.73% using the idea of receding horizon control.
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Case studies on IEEE-123 bus systems show that the proposed method
are robust to uncertainty renewable generation, whereas the voltage
violation happens under more than 50% scenarios in deterministic
optimization. In addition, the proposed method can significantly reduce
the computation burden (e.g. 0.92 s to solve USC and 0.15 s for LSC
whereas these figures in scenario method are 4231 s and 821 s) while
guarantee the accuracy at the same time.

Currently ambiguity set defined by first and second moment is used
to model the forecasting errors of renewable generation, however, the
higher order moment information is ignored. In addition, the moment-
based ambiguity set covers all the probability distributions sharing the
known moment information, there might be the possibility of contain-
ing some unrealistic distributions that make the solution conservative.
In future work, modeling uncertainty forecasting errors by combined
ambiguity set or data-driven method to overcome above limitations will
be explored.
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