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a b s t r a c t 

Explainable Artificial Intelligence (XAI) has in recent years become a well-suited framework to generate 

human understandable explanations of ‘black- box’ models. In this paper, a novel XAI visual explana- 

tion algorithm known as the Similarity Difference and Uniqueness (SIDU) method that can effectively 

localize entire object regions responsible for prediction is presented in full detail. The SIDU algorithm ro- 

bustness and effectiveness is analyzed through various computational and human subject experiments. In 

particular, the SIDU algorithm is assessed using three different types of evaluations (Application, Human 

and Functionally-Grounded) to demonstrate its superior performance. The robustness of SIDU is further 

studied in the presence of adversarial attack on ’black-box’ models to better understand its performance. 

Our code is available at: https://github.com/satyamahesh84/SIDU _ XAI _ CODE . 

© 2022 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

In recent years deep neural networks (DNN) have resulted in 

round-breaking performance in solving many complex and long- 

unning problems of artificial intelligence (AI). In particular, em- 

loying DNN architectures in tasks such as object detection [1] , 

mage classification [2] and medical imaging [3] has received great 

ttention within the AI research field. As a result, it is no surprise 

o observe that DNNs have become a favoring solution for any ap- 

lications involving big data analysis. As human dependency on 

hese solutions increase on a daily basis, it is crucial from both 

esearch and business standpoints to understand the underlying 

rocesses of DNNs that output a certain decision. As reported in 

ecent works [4,5] , such decisions result from the complex inner 

tacked layer of the DNN that are typically referred to as ‘black- 

ox’ model. The use of the term ‘black-box’ indicates how it is very 

hallenging to understand which inner features of the model are 

he major contributors to the accuracy of the output [6] . In such 

ases the term ‘black-box’ predictors is used to aid such compre- 

ension aspects. The interpretation ability of the ‘black-box’ DNN 

rovides transparent explanation and audit model output that is 
∗ Corresponding author. 
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rucial for sensitive domains such as medical or risk analysis [7,8] . 

onsequently, a new paradigm addressing explainability of these 

odels has emerged in AI research namely Explainable AI (XAI) [9] . 

AI attempts to provide further insight into the black-box models 

nd their internal interactions that enable humans to understand a 

achine-generated output. Furthermore, for end-users in sensitive 

omains, XAI gives the ability to interpret model features at the 

group level’ or ‘instance level’ of the input which results in gain- 

ng greater trust for validating the outcome of deployed AI mod- 

ls. Although, there is no standard consensus in the literature re- 

arding how to define a human-interpretable explanation method 

or the black-box model, a widely-adopted and popular approach 

s to form a visual saliency map of input data showing which parts 

f the input have influence on the final prediction. This is moti- 

ated by the fact that the visual explanation methods can align 

losely with human intuition. For instance, it is more straightfor- 

ard to the end-user in the medical domain to evaluate and com- 

are the visual saliency map on a medical image produced by a 

NNs model with those generated by actual clinicians. A number 

f visual explanation algorithms has been proposed among which 

ethods such as LIME [10] , GRAD-CAM [11] and RISE [12] are the 

ost used examples of this class. While each of these methods can 

e justifiable in one way or another, apart from challenges such as 

radient computation of DNN architecture (e.g., Grad-CAM) or vi- 

ualizing all the perturbations modes (e.g., RISE), the generated vi- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. An example of failure of saliency maps to capture entire object class ‘clock’. 
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ual explanation suffers from a lack of localizing the entire salient 

egions of an object, which is often required for higher classifica- 

ion scores. Following our prior identification of this research gap 

n the field, we further define it by proposing a new visual ex- 

lanation approach known as SIDU [13] to address issues relating 

o salient region localization. SIDU stands for ‘Similarity Difference 

nd Uniqueness’ method for estimating pixel saliency by extracting 

he last convolutional layer of the deep CNN model and creating 

he similarity differences and uniqueness masks that are eventu- 

lly combined to form a final map for generating the visual expla- 

ation for the prediction. We briefly showed by both quantitative 

nd qualitative analysis how SIDU can provide greater trust for the 

nd-user in sensitive domains. The algorithm provides improved 

ocalization of the object class being questioned (see, for example, 

ig. 1 d)). 

This results in gaining greater trust of human expert level to 

ely on the deep model. This paper aims at providing a more 

eneral framework of the SIDU method by presenting the pro- 

osed method in further details whilst exploring its characteristic 

ia various experimental studies. Concretely, the studies investigate 

IDU’s visual explanation through three main levels of evaluation 

s proposed in [14] . Since these evaluation methods have different 

ros and cons, the superior performance of the SIDU can be inves- 

igated at depth to provide a deeper level of insight. To the best 

f our knowledge, our comprehensive experiment studies of these 

ifferent evaluation levels are the first in the context of XAI. More- 

ver, the ability of the XAI method to generalize its explanations of 

he black-box in different deployment scenarios can establish fur- 

her trust. As evident in recent work, one example where black- 

ox models are subject to less generalization is the presence of 

dversarial attack especially in sensitive domains and wider scope 

f trust [15] . Therefore, we investigate how XAI can handle such 

otential threat and respectively guard against it. Our main contri- 

utions in this work can be summarized as follows: 

1. We provided step-by-step detailed explanations of the SIDU al- 

gorithm that from our investigation yielded a visual explanation 

map, which enabled localization of entire object classes from 

within an image of interest. 

2. We conducted three different types of experimental evaluations 

to thoroughly assess SIDU: these were coined as (1) ‘Human- 

Grounded’, (2) ‘Functionally-Grounded’, and (3) ‘Application- 

Grounded’ evaluations. Initially for (1) we conducted an inter- 

active experiment with eye-tracking non-expert subjects to de- 

velop a database containing natural image annotation. This was 

done to assess how closely human eye-fixation on natural im- 

ages can be matched to the visual salient map of SIDU to recog- 

nize the object class. In a similar setting, (3) was performed to 

assess the retinal quality assessment, and (2) was implemented 

alongside an automatic casual metrics [12] on two datasets 

with different characteristics. 

3. Robustness of SIDU’s explanation was analyzed in the presence 

of adversarial attacks to show how different noise levels can 
2 
affect the classification task of the black-box model as well as 

its explanation consistency. 

The rest of the paper is organized as follows. Section 2 presents 

tate-of-the art XAI methods, XAI evaluations methods, and adver- 

arial attacks. SIDU is explained in Section 3 with Section 4 hav- 

ng four subsections that are devoted to a particular evaluation 

f SIDU. In Section 4.1 , Functionally-Grounded evaluation is pre- 

ented. In Section 4.2 , Human-Grounded evaluation is applied and 

pplication-Grounded evaluation in Section 4.3 is used to assess 

IDU’s performance. In Section 4.4 , evaluation of SIDU with respect 

o adversarial attack is shown and lastly Section 5 concludes the 

tudy and discuss future work. 

. Related work 

In this work, we follow three main research directions of XAI: 

) visual explanation methods developed to explain the black-box 

odel such as deep CNN, b) validity and evaluation of the gen- 

rated explanation by XAI methods and c) vulnerability of black- 

ox explanation method toward adversarial attacks. The literature 

f each direction is presented in the following subsections. 

.1. Visual explanation 

For an end-user, visual explanation methods makes it easier 

o understand the prediction output of the black-box model. One 

ommon approach to generate such a visualization is done via 

aliency maps [16,17] and such algorithms may be divided into 

he following three categories:‘back-propagation based’ methods, 

perturbation-based’ methods and ‘approximation-based’ methods. 

ack-propagation methods : back-propagation methods spread a fea- 

ure signal from an output neuron rearwards through the layers of 

 model to the input in a single pass; making them efficient. ‘Layer 

ise Relevance Propagation’ [18] and ‘DeCovNet’ [19] are exam- 

les of this category. Network weights and feature activation map 

f CNN model at a specific layer, e.g., CNN’s last layer, are con- 

idered as an effective saliency method for generating visual ex- 

lanation. Class Activation Mapping (CAM) [20] that visually high- 

ights the discriminative region of the image class prediction is an 

xample of this family. In addition, the gradient or its modified 

ersion in the back-propagation algorithm can be employed to vi- 

ualize the derivative of the CNN’s output w.r.t. to its input, e.g. 

uch as Grad-CAM [11] . An improved method to produce input im- 

ges that effectively activate a neuron was proposed in [21] . The 

ethod explored in this related work was focused upon generat- 

ng class-specific saliency maps by performing a gradient ascent in 

ixel space to reach a maxima. This synthesized image served as a 

lass-specific visualization that augmented comprehension of how 

 given CNN modeled a class. Perturbation-based methods : here, the 

nput is perturbed while keeping track of the resultant changes to 

he output. In some work, the change occurs at intermediate lay- 

rs of the model. The state-of-the-art RISE [12] algorithm belongs 
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o this category. Meaningful perturbations [22] optimized a spa- 

ial perturbation mask that maximally effects a model’s output to 

eveal a new image saliency model that sought to identify where 

n algorithm searches by finding out which regions of an im- 

ge most affected its output level when perturbed. Approximation- 

ased method : Methods of this class attempt to provide explanation 

o a complex black-box model by utilizing an easier-to-understand 

nd more interpretable model such as decision trees or linear re- 

ression. Apart from these simple models, a good example class 

hat is widely applied to visual input is the LIME algorithm [10] . 

he main idea behind this related approach was to sample single 

isual input (i.e., image patches), correlate to the predictor model 

nd subsequently identify its contribution toward the output class. 

he prediction results of each sample patch of the single image 

ere then weighted with respect to the highest class score re- 

pectively. Finally, these weightings were used to train a simple 

urrogate model that was used as a local explanation for the re- 

ult of the complex model. Furthermore, another related work ti- 

led DeepLift [23] evaluated the importance of each input neuron 

or a particular decision by approximating the instantaneous gra- 

ients (of the output with respect to the inputs) with discrete gra- 

ients. This obviated the need to train interpretable classifiers for 

xplaining each input-output relationship (as in LIME) for every 

est point.Inspired by the CAM method under the back-propagation 

ased visual saliency approach, our proposed visual explanation, 

IDU [13] utilized ’Similarity Difference’ and ’Uniqueness’ measures 

o score the importance of associated activation maps from the last 

onvolution layer of a CNN model. The proposed visual explana- 

ion algorithm is a gradient-free method that can effectively local- 

ze an entire salient region of the object of interest compared to 

he state-of-the-art XAI methods such as Grad-CAM and RISE. 

.2. Evaluation of explanation methods 

Since it is rather challenging to establish a unique and general- 

zed evaluation metric that can be applied to any task, authors in 

14] proposed three different types of evaluations to measure the 

ffectiveness of explanations. These are presented in the following. 

1. Application-Grounded evaluation : Application-Grounded evalua- 

tion includes carrying out human experiments within a real ap- 

plication. If the researcher has a concrete application in mind- 

such as teaming up with doctors on diagnosing patients with 

a specific disease-the best method to show that the design is 

effective is to assess it with respect to the task. A sound ex- 

perimental setup and knowing how to evaluate the quality of 

the elucidation are needed. This approach is based upon how 

well a human can expound how the same (machine) decision 

is reached as output. Human expert level evaluation is neces- 

sary for those end-users who may have less confidence in the 

prediction model (e.g., clinician). 

2. Human-Grounded evaluation : Human-Grounded evalua- 

tion involves conducting basic human-subject experiments 

that,substantiate the core of target application. This method is 

appealing when experiments involving the target community 

are difficult. The evaluations can be completed with laypersons, 

thus creating a greater subject pool and cutting down expenses, 

since we do not have to pay highly trained domain experts. 

3. Functionally-Grounded evaluation : This method utilizes numeric 

metrics or proxies such as ‘local fidelity’ to evaluate explana- 

tions across different applications. The main advantage of this 

evaluation is that it is free from human bias that effectively 

saves time and resources. Most of the state-of-art methods fall 

into this category [19,22] . For example, the authors in [12] pro- 

posed casual metrics insertion and deletion , which are indepen- 
dent of humans to evaluate the faithfulness of the XAI methods. i

3 
.3. Adversarial attacks 

In the context of XAI, adversarial attack generators can be di- 

ided into ‘white-box’ attacks and ‘black- box’ attacks. The Fast 

radient Sign Method (FGSM) [24] and Projected Gradient Descent 

PGD) [25] algorithms are well-known examples of a white-box at- 

ack where small amount of noise is added to an image that is not 

isually detectable by the end user. In the case of black-box at- 

acks, the adversarial attack happens through various mechanisms 

o fool the model’s classifier and alter its outcome. The majority 

f the proposed approaches in this class are based on perturb- 

ng the model input either globally or locally. For instance, Deep- 

ool [26] attack can be characterized by performing pixel-wise 

erturbation of an image while an adversarial patch attempts to 

hange the pixel values in a specific region of an image. In general, 

he ability of changing a model’s output via small input perturba- 

ions makes the XAI explanation methods challenging and less re- 

iable. Thus, to establish greater trust, it is essential for the XAI al- 

orithms to only be effective but also robust against an adversarial 

ttack at the same time [15] . Analyzing how the black-box expla- 

ation (like SIDU) can effectively handle such a potential problem 

elps the end-user to guard against a possible disastrous outcome 

rom the classifier when adversarial attack is presented. 

. SIDU: proposed method 

Recent XAI methods have shown that deeper representations in 

NN models illustrate higher-level visual features [5] . A recent ap- 

roach titled as Grad-CAM [11] interprets the importance of each 

euron responsible for a decision of interest by computing the gra- 

ient information from the last convolutional layer of the CNN. 

lternatively, the authors in [12] proposed a method titled RISE, 

hich finds the effect of selectively inserting or deleting parts of 

he input ( perturbation-based ) in the CNN model’s output predic- 

ion. This perturbation-based method has been found to provide 

ncreased accuracy of visual explanation saliency maps compared 

o gradient based methods, However these methods fail to visu- 

lize all the perturbations in order to determine which one char- 

cterizes the best desired explanation. Furthermore, the visual ex- 

lanations generated by both the gradient-based and perturbation 

xplanations methods failed to localize the entire salient regions of 

n object class responsible for higher classification scores. 

To overcome the challenges of the most recent state-of-the art 

ethods we proposed a XAI method that consequently provides 

etter explanation method for any given CNN model. The pro- 

osed method takes the last convolution layer for generating the 

asks. From these masks Similarity Difference and Uniqueness 

cores are computed to get the explanation of the CNN model de- 

ision acronymed in therefore denoted SIDU. An overview of the 

roposed method is presented in Fig. 2 . Our method is composed 

f three steps, First we extract the last convolution layer of the 

NN to generate the feature image mask using the last convolu- 

ion layer of the given model. Second, we compute the similarity 

ifferences for each mask with respect to a predicted class and fi- 

ally we compute the weights of each mask and combine them 

nto a final map that shows the explanation of the prediction. Each 

tep is described in the following Sections 3.1 –3.3 . Note that, the 

NN model used is the same for all steps. 

.1. Step1: generating feature activation image masks 

To provide a visual explanation of the predicted output of a 

NN model F , we first generate feature activation image masks 

rom the last convolution layers. For any deep CNN model F , we 

onsider the last convolution layers of size n × n × N where ′ n ′ 
s the size of that convolution layer and 

′ N 

′ is the total number 
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Fig. 2. Block diagram of SIDU. The CNN model F is same of all the steps. 

Fig. 3. The procedure of generating feature image masks from last layer activation’s of CNN model F . The total numbers of masks generated are equal to the size of last 

convolution layer of CNN model F . We have shown some of the feature activation image masks A c 
i =1 , 500 

in the Figure. Note that the CNN model F used is same for all the 

steps. 
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P
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d

f features activation f of class c, i.e., f 
c = [ f c 

1 
, . . . . f c 

N 
] . For exam-

le, if the CNN model F has the last convolution layers of size 

 × 7 × 2042 , the total feature activations we can generate is 2042 

f size 7 × 7 . Therefore, the activation masks are generated upon 

mage class explanation. Each feature activation map f c 
i 

is then 

onverted into a binary mask B c 
i 

by thresholding each value and 

s given by 

 

c 
i =1 .N = f c i =1 .N > τ (1) 

here τ is the threshold. In our experiments we use τ = 0 . 5 . Note

hat we found experimentally that choosing different threshold 

alues in the mask binarization step has almost no effect on gener- 

ting the final explanation heatmap of the input image. The binary 

ask B c 
i 

is then up-sampled by applying bi-linear interpolation for 

 given input image I with size of W idth × Height . Next, the up- 

amples binary mask M 

c 
i 

will have values between [0,1] and it is 

o longer binary. The up-sampled binary masks are also known as 

eature activation masks and is shown in Fig. 3 . Finally, point-wise 

ultiplication is performed between the feature activation mask 

Up-sampled binary mask) M 

c 
i 

and input image I to calculate the 

eature activation image mask A 

i 
c and is represented as 

 

c = F (I � M 

c ) , (2) 
i i 

4 
here F is an CNN model, A 

c 
i 

is the feature activation image mask 

f feature map f c 
i 

and i = 1 , . . . .N. The procedure of generating fea-

ure activation image masks is shown in Fig. 3 where we illustrate 

ome of the feature activation image masks from the total number 

f masks N. The feature activation image masks A 

c of object class 

are used to get prediction scores which is explained in detail in 

he following Section 3.2 

.2. Step2: computing feature importance weights using similarity 

ifferences and uniqueness 

The total number of feature activation image masks is depen- 

ent on the number of activations in the last convolution layer of 

he CNN model. Let the last convolution layer of the CNN model F 

e of size n × n × N. The total number of feature activation image 

asks will be N. Next, we compute probability prediction scores 

or all the feature activation image masks A 

c of object class c, i.e., 

 

c = [ A 

c 
1 
, . . . .A 

c 
N 

] individually using the same CNN model F used for

enerating the feature activation image masks. The probability pre- 

iction score of the feature activation image mask A 

c 
i 

is defined as 

 

c 
i 

and the probability prediction score for the given input image I

s defined as P c org . The prediction scores vector size will be depen- 

ent on the total number of classes use to train the CNN model. 
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Fig. 4. The prediction score vectors for each individual feature activation image mask A c 
i 

and the original image I are computed from the CNN model F . These prediction 

score vectors are used for computing Similarity Differences and Uniqueness, and finally the dot product is calculated to get the feature importance weights. Note that the 

CNN model F is the same for all the steps. 
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I

.g., If the CNN model is trained on the ImageNet dataset, which 

as a total of 10 0 0 object classes, then the size of the predictions

core vector P c 
i 

of the each individual feature image mask A 

c 
i 

will 

e 1 × 10 0 0 , where i = 1 . . . N. Fig. 4 on page 12, illustrates the pro-

edure of computing the predictions scores vector. 

Once the predictions scores vectors are computed for all feature 

ctivation image masks and original input image, we then compute 

imilarity differences between each input feature activation image 

ask prediction score P c 
i 

and prediction score P c org of the original 

nput image I. The similarity difference between these two vec- 

ors gives the relevance of feature activation image mask with re- 

pect to the original input image. The intuition behind computing 

he relevance of a feature map is to measure how the prediction 

hanges if the feature is not known, i.e., the similarity difference 

etween prediction scores. The relevance value of the feature ac- 

ivation image mask will be high if it is similar to the predicted 

lass but the relevance value will be low if dissimilar. The Similar- 

ty Difference measure between the prediction vector of the orig- 

nal input image I, P c org and the i th feature activation image mask 

rediction, P c 
i 

is given by 

D 

c 
i = exp 

(−‖ P c org − P c 
i 
‖ 

2 σ 2 

)
(3) 

here σ is an controlling parameter. It should be noted from 

q. (3) that P c 
i 

is the prediction vectors for the feature activation 

mage mask A 

c 
i 

generated from the last convolution layer of CNN 

odel F . This is illustrated in Fig. 4 . Moreover, the Similarity mea-

ure in Eq. (3) is inspired by Gaussian kernel function which is 

 suitable metrics for weighting observations as opposed to Eu- 

lidean distance. The kernel function decreases with distance and 

ies between zero and one. For Euclidean distance, however, the 

alue increases with distance and provides only an absolute dif- 

erence between two vectors. After computing the similarity dif- 

erence measure, we also computed a uniqueness measure U 

c be- 

ween the feature activation image masks prediction score vectors. 

t is one of the most popular assumptions that the image regions 

hich stand out from the other regions grab our attention in cer- 

ain aspects. Therefore the region should be labeled as a highly 

alient region. We therefore evaluate how different each respective 

eature mask is from all other feature masks constituting an image. 

he reason behind this is to suppress the false regions with low 

eights and highlight the actual regions which are responsible for 

redictionswith higher weights. The uniqueness measure for the i th 
5 
eature image mask of object class c, U 

c 
i 

, is defined as 

 

c 
i = 

N ∑ 

j=1 

‖ P c i − P c j ‖ , i = 1 , 2 , . . . , N (4) 

here N is the total number of feature activation image masks. 

inally, the weight of each feature importance W 

c 
i 

is computed as 

he dot product of the Similarity Difference SD 

c 
i 

and Uniqueness 

easure U 

c 
i 

where 

 

c 
i = SD 

c 
i · U 

c 
i , (5) 

here SD 

c 
i 
, U 

c 
i 

are the Similarity Difference and Uniqueness values 

or the feature activation image mask A 

c 
i 

of the object class c. The 

otal number of feature importance weights will be as size of total 

umber of masks N. The feature importance weight will be high 

or the feature which has more influence in predicting the actual 

lass object c and low for the feature with low influence. 

.3. Step3: visual explanations for the prediction 

To get the visual explanation (saliency map) of the predicted 

utput class c of a CNN model F , we then performed a weighted 

um between feature activation mask M 

c 
i 

and the corresponding 

eature importance weights W 

c 
i 

, where the weights are computed 

y Eq. (5) . The visual explanation map is in the form of a heatmap

saliency map) and is represented as S c and is shown in Fig. 5 on

age 14. The visual explanation map S c is also known as the class 

iscriminative localization map. Thus, the visual explanation of the 

redicted class c is given by 

 c = 

1 

N 

N ∑ 

i =1 

W 

c 
i · M 

c 
i (6) 

he weighted combinations of feature activation masks to calculate 

he final visual explanation (saliency map) of the prediction of the 

lass is illustrated in Fig. 5 . 

In summary, to explain the decision of the predicted class c

isually, we first generated the N feature activation masks (up- 

ampled binary masks) from the last convolution layer of the deep 

NN model F which has N number of feature activation maps of 

ize n × n . We then perform point wise multiplication between 

ach generated up-sampled binary mask M i and the input image 

to calculate feature activation image mask. Next, we compute 
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Fig. 5. Visual explanation for the prediction. The visual explanation is a weighted linear combinations of feature activation masks for the prediction of the class. 

Fig. 6. Visual comparison of explanation maps generated for the natural images classes ‘Bird’,‘Borzoi dog’, ‘Spoonbill’, ‘Goose’, and ‘Harp’ predicted by CNN model. 
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imilarity Differences SD 

c 
i 

and uniqueness measure U 

c 
i 

using pre- 

ictions scores of feature activation image mask A i . Feature im- 

ortance weights W i of each feature activation image mask A i is 

omputed by the dot product of SD 

c 
i 

and U 

c 
i 

. Finally, the visual ex- 

lanation S c of a given input image is obtained by calculating a 

eighted sum of feature activation image masks A i as stated in 

q. (6) . Furthermore an example of visual comparison of explana- 

ion maps generated for the natural images classes is illustrated in 

ig. 6 on page 15. 
6 
. Evaluation 

In this section we evaluate the performance of SIDU. We con- 

ucted a comprehensive set of experiments to study the correla- 

ion of the visual explanation with the model prediction to eval- 

ate the faithfulness. SIDU is evaluated using all three categories 

f evaluations as previously detailed herein [14] , i.e., functionally 

rounded, application grounded, and human grounded. The evalu- 

tion results were compared with the most recent state-of-the art 
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Fig. 7. Evaluation using insertion and deletion casual metrics AUC is computed. (a) original image (b) SIDU explanation map (c) the deletion metric; this being where the 

salient pixels are gradually removed from the image for decreasing the importance,and the probability of the class ‘spoonbill’ as predicted by the CNN model is plotted with 

respect to the removed pixels Area Under Curve (AUC) is computed in (d). (e) insertion metric; this being where the salient pixels are gradually inserted to the image for 

increasing the importance, and the probability of the class ‘spoonbill’ predicted by the CNN model is plotted with respect to the inserted pixels and AUC is computed in (f). 
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Table 1 

Comparision of XAI methods using ResNet-50 and VGG-16 on ImageNet validation 

set. All values in the table has the unit of Area Under Curve (AUC). 

Resnet-50 [29] VGG-16 [30] 

XAI Methods Insertion ↑ Deletion ↓ Insertion ↑ Deletion ↓ 
RISE [12] 0.63571 0.13505 0.47113 0.1313 

GRAD-CAM [11] O.62863 0.15399 0.41720 0.15486 

SIDU 0.65801 0.13424 0.49419 0.1309 

Table 2 

Comparison of XAI methods on RFIQA dataset using trained ResNet-50 model. 

METHODS Insertion ↑ Deletion ↓ 
RISE [12] 0.75231 0.59632 

GRAD-CAM [11] 0.91303 0.43061 

SIDU 0.87883 0.47818 
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ethods namely RISE [12] and GRAD-CAM [11] . A good explana- 

ion method not only provides an appropriate explanation for the 

rediction but also it should be robust against adversarial noise. 

o this end, the proposed method is evaluated on adversarial sam- 

les and compared with the most recent state-of-the-art meth- 

ds RISE [12] and GRAD-CAM [11] . The experimental evaluation 

f faithfulness of the SIDU model on the above mentioned eval- 

ation categories and effect of adversarial noise are described in 

ections 4.1 , 4.2 , 4.3 and 4.4 , respectively. 

.1. Functionally-Grounded evaluation 

To preform the Functionally-Grounded evaluation we choose 

he two automatic causal metrics insertion and deletion as proposed 

y Petsiuk et al. [12] . The deletion metric deletes the saliency region 

n the image which is responsible for higher classification scores 

nd forces the CNN model to change its decision. This metric es- 

imates the decrease in the probability classification scores, when 

ore pixels are removed from the saliency region. With the dele- 

ion metric, the good explanation shows a sharp drop in the pre- 

icted score and area under the probability curve will be lower. 

hereas, the insertion metric measures the probability increase of 

he predicted score. As more pixels are inserted in the image, a 

igher Area Under Curve (AUC) rate can be achieved (i.e., effec- 

iveness of explanation model at a greater level). The procedure of 

omputing AUC using insertion and deletion is illustrated in Fig. 7 

n page 17. These metrics were selected since they are indepen- 

ent of human subjects, bias free and hence increase transparency 

hen evaluating the XAI methods. 

In order to evaluate the performance of the SIDU explana- 

ion method we choose two datasets with different characteristics, 

amely- The ImageNet [27] dataset of Natural Images with 10 0 0 

lasses. We used 20 0 0 images randomly collected from the Ima- 

eNet validation dataset. The other is a Retinal Fundus Image Qual- 

ty Assessment (RFIQA) dataset from the medical domain consist- 

ng of 9945 images with two levels of quality, ’Good’ and ’Bad’. The 

etinal images were collected from a large number of patients with 

etinal diseases [28] . 

We conducted two experiments for evaluating the faithfulness 

f the proposed explanation method. The first experiment is per- 

ormed on the ImageNet validation dataset where we randomly 

elected 20 0 0 images from the ImageNet dataset. To do a fair 

valuation, we choose two existing standard CNN models, ResNet- 

0 [29] and VGG-16 [30] that had been pre-trained on the Im- 

geNet dataset [27] . Table 1 summarizes the results obtained on 

esNet-50 for the proposed method and compares it to the most 

ecent works RISE [12] and GRAD-CAM [11] . It was observed that 

he proposed method achieved improved performance for both 
7 
etrics, followed by RISE [12] and GRAD-CAM [11] . Table 1 sum- 

arizes the results obtained on the VGG-16 model for the pro- 

osed method and compares it to most recent works RISE [12] and 

RAD-CAM [11] where it can be identified that proposed method, 

IDU achieved best performance. From the Table 1 , we can observe 

hat the values are better for ResNet-50 than VGG-16 for all the 

AI methods, which suggests that ResNet-50 is a better classifica- 

ion model than VGG-16. Qualitative examples are shown in Fig. 6 . 

n our proposed method, the generated masks come from the last 

eature activation maps of the CNN model, due to this the final 

xplanation map will localize the entire region of interest (object 

lass). 

We also conducted a second experiment on the Medical Im- 

ge dataset which has totally different characteristics. We trained 

he existing ResNet-50 [29] with an additional two FC layers and 

oftmax layer on the RFIQA dataset [28] . The CNN model achieve 

4% accuracy. The proposed explanation method uses the trained 

odel for explaining the prediction of the RFIQA test subset with 

028 images. The evaluated results of the proposed method and 

ISE [12] and GRAD-CAM [11] are summarized in Table 2 . We can 

bserve that the GRAD-CAM achieves slightly higher AUC for in- 

ertion and lower AUC for deletion followed by SIDU. RISE [12] has 

hown least performance in both metrics, This can be explained 

y the fact that the RISE method generates N number of ran- 

om masks and the weights predicted for these masks give higher 

eights to false regions which makes the final map of RISE noisy. 

he visual explanations of the proposed method (SIDU) and the 

ISE [12] , GRAD-CAM [11] methods on the RFIQA test dataset are 

hown in Fig. 10 (b)–(d). 
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.2. Human-Grounded evaluation 

Human-Grounded evaluation is most appropriate when one 

ims at testing a general notions of an explanation quality. There- 

ore, for generic applications in the AI domain, such as object de- 

ection and object recognition, it might be sufficient to inspect a 

egree to which a non-expert human can understand the cause 

f a decision generated by a black-box model. One excellent way 

o measure and compare the correlation of visual explanation be- 

ween a human subject and the black-box is to use an eye tracker 

hat records the non-expert subject’s fixations within interactive 

est settings. This approach is chosen because of its similarity to 

AI methods, visual explanations. Both generate heatmaps repre- 

enting salient areas of an object in an image. 

An eye-tracker was used for gathering eye tracking data from 

uman subjects to gain an understanding of visual perception [31] . 

he study using eye tracking data for understanding human vi- 

ual attention is useful and has received great attention by UX 

esearchers [32] . For example, the authors in [33] conducted an 

xperimental study and gathered data ‘human attention’ in Visual 

uestion Answering (VQA) to interpret where the humans choose 

o look to answer the questions regarding the images. The authors 

n [34] established mouse-tracking approach to accurately collect- 

ng attention maps via collecting a large-amount of attention an- 

otations for MS COCO on Amazon Mechanical Turk (AMT). In [35] , 

ecordings of subjects’ eye-fixations in relation to body parts were 

sed to investigate which body parts of virtual characters are most 

ooked at in scenes containing duplicate characters or clones. How- 

ver, all these experimental studies have used eye tracking to un- 

erstand the human visual attention for different types of prob- 

ems. 

In our study, we investigated how non-expert subjects gener- 

ted explanations via the eye-tracker, compared with those of gen- 

rated by XAI visual explanation methods across natural images for 

ecognizing object class. To this end, we follow the data collection 

rotocol discussed in detail in the next Section 4.2.1 . 

.2.1. Database of eye tracking data 

We randomly sampled 100 images from 10 different classes of 

he ImageNet [27] benchmark validation dataset. All the collected 

mages are RGB and are resized to 224 × 224 pixels. 

.2.2. Data collection protocol 

In order to collect eye-fixation, 5 human subjects participated 

n an interactive test procedure using Tobii-X120 eye-tracker in the 

ollowing main steps: 

1. The subject was seated in front of a computer-sized screen 

where the eye-tracker is ready to record the visual fixations and 

the system is calibrated. 

2. Each image from the dataset was shown in a random order 

for 3 seconds and corresponding fixations of the subject were 

recorded. 

3. We divided all 100 images into 4 equally sized data blocks with 

a break between each experiment in order to reduce the burden 

on each subject. We further add a cross-fixation image between 

two stimuli to reset the visionary fixation on the screen while 

changing from one image to the next. 

4. The participants were shown random images from the collected 

dataset and then asked the question, what kind of object class 

is presented in the image. 

5. The eye-fixations of each individual participant were automat- 

ically recorded via the eye- tracker when the participant looks 

at the image for recognizing the object class. 

6. After all 5 participants’ fixations were collected, an aggregated 

heatmaps was generated by convolving a Gaussian filter across 
8 
each user’s fixation for each image- see, Fig. 8 on page 21. The 

resulting heatmaps highlight the salient regions of each object 

class that often attracted attention of all subjects in the exper- 

iment and hence can be used to compare with the heatmaps 

produced by the XAI explanation algorithms. 

.2.3. Comparison metrics 

To evaluate the models with human fixations using only one 

etric is not enough to achieve a valid and reliable outcome [36] . 

e used three metrics to compare the XAI and eye-tracker gen- 

rated heatmaps [37] : These are (1) Area Under ROC Curve (AUC), 

2) Kullback-Leibler Divergence (KL) and (3) Spearmans Correlation 

oefficient metric (SCC) metrics. The use of multiple metrics en- 

ures that the discussion about the results is as independent as 

ossible from the choice of metrics. The results of the different 

valuation measures are not necessarily the same, but when two 

etrics show similarities, then claims of robustness can be argued 

rom a stronger position. 

1. Area under ROC Curve (AUC): The Receiver Operating Character- 

istics (ROC) is one of the commonly used metric for assessing 

the degree of similarity of two saliency maps. It is represented 

in the form of a graphical plot which describes the trade-off

between true and false positives at different thresholds [37] . 

A fraction of true positives from the total actual positives are 

plotted against the false positives’ fraction out of the total ac- 

tual negatives to create the ROC. This is denoted as TPR, repre- 

senting the true positive rate, and FPR that indicates the false 

positive rate. The rates are examined at different threshold val- 

ues. If a TPR value of 1 is achieved at 0 FPR, the prediction 

method is good. These values will yield a point in the ROC 

space’s upper left corner and correspond to a near-perfect clas- 

sification. Conversely, when the guess is completely random, it 

will generate a point along a diagonal line starting at the left 

bottom and going up towards the top right corner. If the di- 

agonal divides the ROC space while and points above the di- 

agonal, this represents good classification results. Such results 

are considered better than random results. On the other hand, 

the line below is a sign of poor results, which is even worse 

than getting random results. The Area Under Curve (AUC) is the 

method used to measure the ROC curve’s performance. The AUC 

is equal to the probability of a classifier ranking a randomly 

selected positive instance, which is usually higher than a ran- 

domly selected negative instance, assuming that the positive 

ranks higher than a negative. To compute the AUC, XAI visual 

explanation heatmaps are treated as fixations’ binary classifiers 

at numerous threshold values or value sets. The true and false 

positive rates are measured under each binary classified or level 

set to sweep out the ROC curve. 

2. Kullback-Leibler Divergence (KL-DIV): The Kullback-Leibler Diver- 

gence is an metric, which is used to measure dissimilarity be- 

tween two probability density functions [37] . For evaluating 

the XAI methods, eye-fixation maps and the visual explanation 

maps produced by the model are used for the distributions. 

F M represents the heatmaps probability distribution from eye- 

tracking data, and EM indicates the visual explanation maps 

probability distribution. These probability distributions are nor- 

malized and they are given by : 

E M(x ) = 

E M(x ) ∑ X 
x =1 E M(x ) + ε

, (7) 

F M(x ) = 

F M(x ) ∑ X 
x =1 F M(x ) + ε

, (8) 

where X is the number of pixels and ε is a regularization con- 

stant to avoid division by zero. The KL-DIV measure is com- 
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Fig. 8. Examples of Eye-tracking data collection from humans for recognizing the given object classes ‘Model T and ‘Armadillo’. 

Table 3 

saliency maps of XAI methods with eye fixation maps. 

METHODS mean KL-DIV ↓ mean SCC ↑ mean AUC ↑ 
RISE [12] 8.4384 0.1967 0.6385 

GRAD-CAM [11] 9.7892 0.2711 0.6828 

SIDU 4.3027 0.3314 0.7708 
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Table 4 

Expert level evaluation of XAI methods on medical RFIQA dataset. 

METHODS Expert I Expert II 

RISE [12] (Method I) 0.02 0.05 

SIDU (Method II) 0.84 0.93 

BOTH 0.14 0.02 
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puted between these two distributions to know whether the vi- 

sual explanation map which is computed from the XAI method 

matches human fixations. It is a non-linear measure and gener- 

ally varies in ranges from zero to infinity. If the KL-DIV measure 

between EM and F M is lower, then the EM maps have better 

approximation of the human eye-fixation F M. 

3. Spearmans Correlation Coefficient (SCC): Spearman’s correlation 

is a non-parametric measure that analyses how well the rela- 

tionship between two variables can be described using a mono- 

tonic function [38] . It is a statistical method used mainly for 

measuring the correlation or dependency between two vari- 

ables. This metric varies between the values of −1 and 1, where 

a score of −1 , represents no correlation. The SCC between two 

variables will be high when observations have a similar (with a 

correlation close to 1) rank between the two variables, and low 

when observations have a dissimilar rank (with a correlation 

close to −1 ) between the two variables [38] . 

It is an appropriate measure for both continuous and discrete 

ordinal variables [38] . F M represents the heat map from eye 

tracking data, whereas EM is the visual explanation map. The 

SCC between the two random variable maps, F M and EM is 

given by : 

SC C (EM, F M) = 

cov (EM, F M) 

σ (EM) × σ (F M) 
, (9) 

where cov (EM, F M) is the covariance of EM and F M , σ (EM ) and

σ (F M) are the standard deviations of EM and F M respectively. 

.2.4. Comparing SIDU and state-of-art methods with human 

ttention for recognizing the object classes 

In this experiment, we use the Imagenet images eye-tracking 

ata recordings described in Section 4.2.1 to generate and evaluate 

he explanation by the XAI algorithms. To this end, we first gen- 

rate ground truth heatmaps by applying Gaussian distributions 

n human expert eye-fixations. These heatmaps are then used to 

ompare with the XAI heatmaps. AUC, SCC and KL-DIV evaluation 

etrics are used to evaluate the performance. We finally calcu- 

ate the mean of AUC, SCC and KL-DIV of all the images in the 

ataset. Table 3 summarizes the results obtained by SIDU and the 

wo different state-of-the art XAI methods RISE [12] and GRAD- 

AM [11] on our proposed imageNet eye-tracking data. We can ob- 

erve that, SIDU outperforms GRAD-CAM and RISE in all the three 

etrics. Therefore, we can conclude that SIDU explanations are a 

loser match with the human explanations (heatmaps) for recog- 

izing the object class. This is further illustrated by example image 

xplanation in Fig. 9 on page 25. 
9 
.3. Application-Grounded evaluation 

Application-Grounded evaluation involves conducting experi- 

ents within a real application to assess the trust of the black-box 

odels. We choose an medical case as a test application where 

e use the task of retinal fundus image quality assessment [28] . 

he application is used for screening for retinal diseases, where 

oor-quality retinal images do not allow an accurate medical di- 

gnosis. Generally, in sensitive domains such as clinical settings, 

he domain experts (here clinicians) are skeptical in supporting ex- 

lanations generated by AI diagnostic tools in cases involving high 

isk. 

In our experimental setup at a local hospital, two ophthalmol- 

gists participated in testing to evaluate which visual explanation 

esulted in more trust and further aligns with actual physical ex- 

mination performed in the clinic. This experiment assesses the ef- 

ectiveness of the proposed method in terms of localizing the exact 

egion for predicting the retinal fundus image quality with respect 

o state-of-the-art methods. Here, the generated visual explanation 

eatmaps in the RISE algorithm were used for comparison. We fol- 

ow the similar setting as discussed in [11] , i.e., using both the 

roposed SIDU method and the RISE method, visual explanation 

eatmaps of 100 retinal fundus images for two classes of ‘Good’ 

nd ‘Bad’ quality were recorded. The explanation methods used the 

rained model as described in Section 4.1 for explaining the predic- 

ion of the retina fundus images. Neither of the ophthalmologists 

ad prior knowledge about any explanation model presented to 

hem. The two explanations methods are labelled as either method 

 or method II to participants involved in experiments. The partic- 

pants can opt for “both” methods if they feel that both explana- 

ions are rather similar. Therefore, each ophthalmologist will have 

hree different options for every test image. Once the ophthalmol- 

gist determined which method better localizes the regions of in- 

erest (good/bad quality regions) for each image, we then calcu- 

ated the relative frequency of each outcome per total retinal fun- 

us image. Table 4 on page 27 summarizes the results of the two 

ethods evaluated by the experts (with an ophthalmologists). We 

bserved that, in the case of the first ophthalmologist, the RISE 

xplanation map was selected with the relative frequency of 0.02, 

he proposed method, SIDU with 0.84 and 0.14 being the same. For 

he second ophthalmologist, the relative frequencies are 0.05, 0.93 

nd 0.02, respectively. Therefore, the experiments conclude that, 

he proposed method gains greater trust from both ophthalmol- 

gists and the visual explanations in Fig. 10 further supports this 

laim. 
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Fig. 9. Comparison of XAI methods visual explanation of object classes from top to bottom ‘model T’, ‘armadillo’, ‘acorn’, ‘canoe’ and ‘kuvasz’ with human visual explanation 

(heatmaps). The generated heatmaps in 3rd, 4th and 5th columns by the SIDU, GRAD-CAM and RISE demonstrate how the visual explanation methods are closely aligned 

with of human. 
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.4. Effect of adversarial noise on XAI methods 

Despite the success in many applications of AI, recent studies 

nd that Deep Learning is against well designed input samples 

now as adversarial examples poses a major challenge [15] . Ad- 

ersarial examples are carefully perturbed versions of the original 

ata that successfully fool a classifier. In the image domain, for ex- 

mple, adversarial examples are images that have no visual differ- 

nce from natural images, but that lead to different classification 

esults. How resilient different XAI algorithms are towards adver- 

arial examples is a largely overlooked topic. In this subsection we 

herefore investigate exactly that. 

To perform this experiment, we choose one the most success- 

ul white box attacks, namely, gradient based attacks. Fast Gra- 

ient Sign Method (FGSM) [24] and Projected Gradient Descent 

PGD) [25] are the examples of such attacks. PGD is an iterative 

pplication of FGSM such that the process of PGD is more complex 

nd time consuming. Therefore, the Fast Gradient Sign Method 
10 
FGSM) was selected because of its simplicity and effectiveness. 

he adversarial image is generated using FGSM by adding noise 

o an original image. The direction of this noise is the same as the 

radient of the cost with respect to the input data. The amount of 

oise can be controlled by a coefficient, ε. By applying this coef- 

cient properly, it will change the model predictions and it is un- 

etectable to a human observer. Fig. 11 shows the different levels 

f FGSM adversarial noise added to an original image. Two differ- 

nt experiments were conducted using adversarial noise to demon- 

trate the effectiveness of SIDU, compared to the state-of-the-art 

ethods RISE and GRAD-CAM. The experiments are described in 

he following. 

.4.1. How do XAI method visual explanations heatmaps of 

dversarial examples deviate from human eye-fixation heatmaps? 

In this experiment, we analysed how robust the XAI meth- 

ds are against an adversarial attack in terms of generating re- 

iable explanations. Reliable visual explanations are defined in 
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Fig. 10. The visual explanation of Good (Top) / Bad (Bottom) quality eye fundus images < (B), (C), (D) > from RFIQA dataset by RISE, GRAD-CAM and the SIDU method 

with ResNet50 as the base network. In the real scenario, the doctors observed the visibility of the optical disc and macular regions in a good quality image (1st image, 1st 

row) corresponding to the region highlighted in the visual explanation heatmap of the proposed method. The bad quality image (2nd image, 2nd row) is due to the shadow 

which is observed near to the center of the image (optical disc), i.e., exactly the region highlighted by the proposed method. 

Fig. 11. Example of a natural image ‘Flamingo’ in its original form and also with three different levels of FGSM noise, together with the corresponding predictions ‘American 

egret’, ‘Nematode’ and ‘Nematode’. 

Table 5 

Visual explanation heatmaps from adversarial noise ε with eye fixation heatmaps. 

ε = 0 . 007 ε = 0 . 5 ε = 0 . 1 

XAI Methods mean KL-DIV mean SCC mean AUC mean KL-DIV mean SCC mean AUC mean KL-DIV mean SCC mean AUC 

RISE [12] 8.0547 0.2121 0.6526 9.3305 0.1995 0.6380 9.1246 0.2068 0.6461 

GRAD-CAM [11] 10.3257 0.2530 0.6719 11.6447 0.2229 0.6431 12.3077 0.2112 0.6281 

SIDU 4.3785 0.3309 0.7689 4.8492 0.2929 0.7397 4.2239 0.2817 0.7364 
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a  
erms of resemblance to the human eye-fixation heatmaps. To con- 

uct this experiments we choose the same pre-trained ResNet- 

0 model used in Section 4.1 . We first applied the FGSM noise 

ith different epsilon levels to the dataset of 100 images collected 

rom Imagenet validation set as described in Section 4.2.1 . We 

hoose three different optimal noise coefficients between 0 and 1, 

ith the chosen valued being are ε = 0 . 007 , ε = 0 . 05 and ε = 0 . 1 .

hese values were considered optimal because they are sufficient 

nough to pass unnoticeable by the human eye. We extracted the 

isual explanations heatmaps using the proposed method SIDU, 

ISE [12] and GRAD-CAM [11] . The heatmaps generated by SIDU, 

ISE and GRAD-CAM methods were finally compared with human 

enerated visual explanations using the eye-tracker as described 

n Section 4.2.1 using the three evaluation metrics AUC, SCC and 

L-DIV. Table 5 on page 30, summarizes the mean AUC, SCC and 

L-DIV results. From the table it can be observed that SIDU out- 

erforms GRAD-CAM and RISE for different levels of adversarial 

oise with all the three evaluation metrics. We also observe that, 

he performance of XAI methods decrease with all the three met- 

ics with the increase in adversarial noise to the original images. 
11 
rom this it can concluded that the proposed method (SIDU) has 

igher robustness to adversarial noise than RISE or GRAD-CAM, as 

s visually evident in the Fig. 12 . We see that SIDU localizes the 

ntire actual object class after adding the three different levels of 

dversarial noise, whereas the other methods completely loose the 

ctual object class localization after adding the noise. 

.4.2. How do visual explanation maps from adversarial examples 

eviate from original visual explanation maps? 

In this experiment, we analyse how the visual explanation from 

dversarial noise added examples of XAI methods deviate from the 

riginal images visual explanation maps. To conduct this experi- 

ents we choose the same pre-trained ResNet-50 model used in 

ection 4.1 . We first applied the FGSM noise with different ep- 

ilon levels to the dataset of 100 images collected from Imagenet 

alidation set as described in Section 4.2.1 . We choose one noise 

evel ε = 0 . 1 for these experiments. We extract the visual explana- 

ions heatmaps using the proposed method (SIDU), RISE [12] and 

RAD-CAM [11] as applied to the original images without noise 

nd with noise ε = 0 . 1 . The heatmaps generated by SIDU, RISE and
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Fig. 12. Comparison of XAI visual explanation with different levels of FGSM noise with human visual explanation (heatmaps). The generated heatmaps on adversarial noise 

levels ε = 0 . 007 , 0 . 5 , 0 . 1 . in 3rd, 4th and 5th columns by the GRAD-CAM, RISE and SIDU, respectively. (a) Original Image (b) Eye-tracker (c) ε = 0 (d) ε = 0 . 007 (e) ε = 0 . 05 

(f) ε = 0 . 1 . 

Table 6 

Visual explanation heatmaps from adversarial examples and their deviation from 

original visual explanation heatmaps. 

METHODS mean KL-DIV ↓ mean SCC ↑ mean AUC ↑ 
RISE [12] 9.6665 0.2385 0.6133 

GRAD-CAM [11] 10.0077 0.4061 0.6875 

SIDU 2.4924 0.6488 0.8347 
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RAD-CAM methods are finally compared with the original image 

isual explanations to see adversarial noise added images are de- 

iated from the original ones by using the three evaluation met- 

ics AUC, SCC and KL-DIV. Table 6 summarizes the mean AUC, SCC 

nd KL-DIV results obtained by the XAI methods. From the table 

e can observe that, SIDU outperforms GRAD-CAM and RISE for 

ll the three evaluation metrics. From Fig. 12 , it can be observed 

hat the propose method(SIDU) doesn’t deviate in its localizing of 

he object class that is responsible for the prediction. Therefore, 

rom these two adversarial noise experiments it can be concluded 

hat the proposed method exhibits higher robust against adversar- 

al noise. 

. Conclusion and future work 

In this work, a novel method titled ’Similarity Difference 

nd Uniqueness’ method is proposed for explaining the CNN 

odel.Specifically, the investigations were of visual predictions in 

 form of heatmap through feature activation maps of the last con- 

olution layers in the model. The proposed method is independent 

f gradients and can effectively localize entire object classes in an 

mage which is responsible for the CNN prediction. The new expla- 

ation approach helps in gaining more trust in prediction results 

f the CNN model by providing further insights to the end-user in 
12 
ensitive-domains. The effectiveness of our method was validated 

y conducting three different XAI evaluations methods. These were 

1) Application-Grounded (invoking human experts trust in medi- 

al domain), (2) Functionally-Grounded (using an automated causal 

etrics independent of humans) and (3) Human-Grounded evalu- 

tion. For the Human-Grounded evaluation, we proposed a frame- 

ork for evaluating explainable AI (XAI) methods using an eye- 

racker. The framework is designed specifically for evaluating XAI 

ethods using non-experts to understand the human visual per- 

eption for recognizing the given object class and compared it with 

isual explanations of standard well-known CNN models on natu- 

al images. Experiments on adversarial examples were also con- 

ucted. Results identify our proposed method outperforms com- 

ared to state-of-the-art methods. Although comprehensive experi- 

ental studies for evaluating XAI methods were conducted, we ac- 

nowledge that the experiments involving an eye-tracker are lim- 

ted only to single-object classification of ten classes. This is due 

o the fact that there are various methodological challenges associ- 

ted with eye-tracking (e.g., subject training, hardware calibration, 

tc) that makes it difficult to access subjects who are willing to 

articipate in data collection for several different scenarios. How- 

ver, we believe that by demonstrating the great potential of gen- 

rating valid and reliable explanation via user interaction with an 

ye-tracker, holds a great value for the research community. Fu- 

ure work involves extending SIDU to spatio-temporal CNN models 

o provide visual explanations for video applications tasks such as 

ideo classification and action recognition. Further more, exploring 

he possibility of extending our method to explain decisions made 

y other neural network architectures (e.g., LSTM), Vision Trans- 

ormers and in other domains (e.g., Natural Language Processing). 

e also aim to extend our eye-tracking experimental evaluation 

n multi-object classification tasks in the future work. Our code is 

vailable at: https://github.com/satyamahesh84/SIDU _ XAI _ CODE . 

https://github.com/satyamahesh84/SIDU_XAI_CODE
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