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Minimising multi‑centre radiomics 
variability through image 
normalisation: a pilot study
Víctor M. Campello1*, Carlos Martín‑Isla1, Cristian Izquierdo1, Andrea Guala2,3, 
José F. Rodríguez Palomares2,3,4,5, David Viladés3,6, Martín L. Descalzo6, Mahir Karakas14, 
Ersin Çavuş7,8, Zahra Raisi‑Estabragh9,10, Steffen E. Petersen9,10,11,12, Sergio Escalera1,13, 
Santi Seguí1 & Karim Lekadir1

Radiomics is an emerging technique for the quantification of imaging data that has recently shown 
great promise for deeper phenotyping of cardiovascular disease. Thus far, the technique has been 
mostly applied in single-centre studies. However, one of the main difficulties in multi-centre 
imaging studies is the inherent variability of image characteristics due to centre differences. In this 
paper, a comprehensive analysis of radiomics variability under several image- and feature-based 
normalisation techniques was conducted using a multi-centre cardiovascular magnetic resonance 
dataset. 218 subjects divided into healthy (n = 112) and hypertrophic cardiomyopathy (n = 106, HCM) 
groups from five different centres were considered. First and second order texture radiomic features 
were extracted from three regions of interest, namely the left and right ventricular cavities and the 
left ventricular myocardium. Two methods were used to assess features’ variability. First, feature 
distributions were compared across centres to obtain a distribution similarity index. Second, two 
classification tasks were proposed to assess: (1) the amount of centre-related information encoded in 
normalised features (centre identification) and (2) the generalisation ability for a classification model 
when trained on these features (healthy versus HCM classification). The results showed that the 
feature-based harmonisation technique ComBat is able to remove the variability introduced by centre 
information from radiomic features, at the expense of slightly degrading classification performance. 
Piecewise linear histogram matching normalisation gave features with greater generalisation ability 
for classification ( balanced accuracy in between 0.78 ± 0.08 and 0.79 ± 0.09). Models trained with 
features from images without normalisation showed the worst performance overall ( balanced 
accuracy in between 0.45 ± 0.28 and 0.60 ± 0.22). In conclusion, centre-related information removal 
did not imply good generalisation ability for classification.

For the last decade, there has been a great amount of research devoted to identifying and improving quantitative 
image biomarkers for precise diagnosis, risk assessment and patient stratification for different pathologies. In 
particular, radiomics seems to be a promising technique to quantify image-derived biomarkers based on shape, 
intensity and higher-order texture patterns for a region of interest defined a priori, since it is able to characterise 
image patterns that are hardly visible to the naked eye.

These computer-extracted features have the potential to perform an exhaustive analysis of medical images as 
shown in the literature, predominantly in oncology1 but also more recently for neurodevelopmental disorders2 
or cardiovascular disease3. However, radiomic features have proven to be highly sensitive to changes in scanning 
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protocols and scanner manufacturers, resulting in a limited reproducibility4,5 (see also the exhaustive reviews 
by Yip and Aerts6 and by Traverso et al.7) and thus posing an important problem that needs to be solved before 
implementing these techniques in clinical practice. Despite this, the majority of previous research considered 
single-institution datasets, due in part to the difficulty in obtaining imaging studies from multiple centres. More 
recently, several works using multi-centre studies have assessed the robustness of this technique (see for example 
Raisi-Estabragh et al.8, for a test-retest study). A number of works have proposed harmonisation guidelines for 
computed tomography (CT) or positron emission tomography in multi-centre scenarios, while no guideline 
is available for magnetic resonance imaging (MRI), where the lack of a standard intensity grayscale—such as 
Hounsfield units in CT—poses further difficulty (see Da Ano et al.9 and references therein).

All previous multi-centre MRI radiomics studies focused either on brain or cancer imaging. Due to the lack 
of multi-centre cardiac imaging radiomics literature, a detailed introduction about brain and cancer imaging is 
presented. Two types of techniques are used to standardise features across institutions: image- and feature-based 
transformations.

At the image level, the most common techniques are image intensity normalisation (mean subtraction and 
division by the standard deviation) or image intensity rescaling to a fixed range (usually from 0 to 1). Other 
more sophisticated techniques exist, such as bias field correction, isotropic resampling, histogram matching 
and piecewise linear histogram matching (PLHM). Finally, some techniques are inherently defined for brain 
imaging and were not considered in this study. Um et al. used T1-weighted MRI brain scans to assess radiomics 
variability across two different institutions after five image preprocessing techniques were applied, including 
global and region of interest (ROI) rescaling, bias correction, isotropic resampling and histogram matching5. 
They concluded that histogram matching is the best technique for reducing feature variability and successfully 
discriminate between different patient subgroups with glioblastoma. Isaksson et al. evaluated the effect of four 
normalisation techniques on classification performance to identify prostate cancer in T2-weighted MRI10. The 
normalisation method that resulted in the best classification accuracy was the PLHM transformation using 
intensities from healthy prostate as reference instead of the whole image to extract landmarks. Finally, Carré et al. 
standardised brain MRI studies using three different intensity normalisation techniques in order to find their 
effects on radiomics robustness, being image intensity normalisation the technique that yielded the best results11.

At the feature level, Chatterjee et al. improved the robustness of radiomics from images of primary uterine 
adenocarcinoma by applying feature normalisation for each institution dataset independently12. Orlhac et al., 
instead, used the empirical Bayes harmonisation method—also referred to as ComBat13—to remove inter-centre 
variability14. The transformed features resulted in a sensitivity increase for distinguishing between Gleason grades 
in prostate cancer studies and in similar distributions for features from brain scans for 1.5T and 3T machines.

In this work, a multi-centre cardiac MRI dataset was considered to analyse the effect of several image- 
and feature-based normalisation techniques over radiomic features variability and model generalisation across 
institutions.

Results
Feature variability.  Texture features variability showed a great disparity depending on the preprocessing 
method under consideration (see Fig. 1). For both the end-diastole (ED) and the end-systole (ES) frames, the 
percentage of features with similar distributions across institutions (Jensen–Shannon divergence, JSD, below 

Figure 1.   Percentage of first and second order features below the 0.01 JSD threshold for healthy subjects. 
Results are averaged over centre pairs and ROI and presented separately for ED and ES frames. Only features 
with square cross-correlation below 0.9 were considered. The black lines represent the standard deviation. O 
original images (without normalisation), R image intensity rescaling, N image intensity normalisation, HM 
histogram matching and PLHM piecewise linear histogram matching. An “R.” in front of a method means that it 
is applied at ROI level.
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0.01) was obtained after the removal of highly correlated features ( R2 ≥ 0.9 ). After this step, the amount of first/
second order ED (ES) features remaining were 7/38 (8/47) for LV, 9/48 (9/49) for MYO and 9/42 (8/47) for RV 
(the square correlation heatmaps are shown in Fig. S2 in the supplementary material). The highest percentage 
of features with similar distributions across institutions was obtained when applying ROI-based PLHM or ROI-
based rescaling as shown in Fig. 1 (with a maximum of 74% for first order features and of 66% for second order 
features). More specifically, these two methods showed a significant difference in distribution similarity for first 
order features when compared to other methods, and only ROI-based histogram matching showed comparable 
results for second order ED features (all tests with p-values below 0.01, Mann–Whitney U test).

In contrast, the proportion of features below the 0.01 JSD threshold was the lowest for the methods applied at 
the whole image level, except for rescaling, and for images without any normalisation (N, HM, PLHM and O in 
Fig. 1). No significant difference was found between these normalisation methods and original images for both 
ED and ES features (p-values greater than 0.01, Kruskal–Wallis test). The proportion of features below the given 
threshold was reduced to less than 51%, indicating that feature distributions were less similar for these methods. 
Additionally, the large standard deviation, represented by the black horizontal bars in Fig. 1, was associated to 
differences depending on the ROIs and, especially, on the centre pairs being compared (see Fig. S1 and S3 in the 
supplementary material for a detailed comparison of these factors).

The application of the ComBat harmonisation method had an averaging effect, reducing the proportion of 
features with similar distributions for the most robust methods in the previous paragraph and increasing it for 
the least robust methods, as shown in Fig. 2. Thus, smaller differences were found between methods after the 
application of ComBat. Specifically, no significant difference was found between four methods for ED features 
(R.R, R.N, R.PLHM and O in Fig. 2), and for three methods for ES features (R.R, R.N and R.PLHM in Fig. 2, 
p-values greater than 0.01, Kruskal–Wallis test).

Among all feature families, Gray Level Size Zone Matrix (GLSZM), Gray Level Run Length Matrix (GLRLM) 
and Gray Level Dependence Matrix (GLDM) presented the highest dissimilarities among distributions after the 
application of ROI-based PLHM normalisation in general, as demonstrated by the greater JSD values in Table 1. 
Gray Level Co-occurrence Matrix (GLCM) and first order features obtained the best similarity scores. As noted 
above, the JSD was averaged over all family of features to an approximate value of 0.011 after the application of 
ComBat. The features found with the most dissimilar distributions (standard deviation of the JSD distribution 
greater than 0.01) in both cardiac time frames, ED and ES, prior to the application of ComBat were zone vari-
ance, large area emphasis and large area low gray level emphasis (GLSZM), kurtosis (1st order) and gray level 
non-uniformity (GLDM). Some examples of the effects of ComBat and PLHM over the different distributions 
per centre are presented in Fig. S4 in the supplementary material.

Centre identification.  When assessing the centre information encoded in the extracted features, second 
order texture features carried more information in general than first order features, as demonstrated by the 
differences in balanced accuracy for classifiers trained with healthy subjects in Fig. 3 (orange and blue boxes). 
Features from original images (without normalisation) were the most discriminative features with testing accu-
racy above 0.87 (± 0.07–0.11) for the three ROIs under consideration and for both feature types, first order and 
texture features. When comparing normalisation techniques at whole image level, no clear method showed a 

Figure 2.   Percentage of first and second order features below the 0.01 JSD threshold for healthy subjects after 
the application of the feature-based harmonisation tool ComBat. Results are averaged over centre pairs and 
ROI and presented separately for ED and ES frames. Only features with square cross-correlation below 0.9 
were considered. The black lines represent the standard deviation. O original images (without normalisation), 
R image intensity rescaling, N image intensity normalisation, HM histogram matching and PLHM: piecewise 
linear histogram matching. An “R.” in front of a method means that it is applied at ROI level.
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greater reduction in the centre information consistently across ROIs and feature types. (Fig. 3, orange and blue 
boxes in the top row).

When normalisation was applied at ROI level, larger differences appeared depending on the method and the 
ROI under consideration (Fig. 3, orange and blue boxes in the bottom row). Regarding methods that did not use 
ComBat, ROI-based PLHM consistently reduced the ability of models to infer the centre of origin for each sample 

Table 1.   Mean and standard deviation (in parenthesis) for JSD for distributions of features obtained after 
the application of R.PLHM normalisation on healthy patients. Results are presented separately for ED and ES 
frames and for each feature family before and after the application of ComBat harmonisation. Only features 
with square cross-correlation below 0.9 were considered. Values are averaged over ROI. Numbers in blue stand 
for non-significant differences in the JSD distributions when compared to first order features according to the 
Mann–Whitney U test at the 0.01 level.

Family

Without combat With combat

ED ES ED ES

1st order 0.009 (0.009) 0.008 (0.007) 0.012 (0.011) 0.011 (0.008)

GLCM  0.008 (0.007)  0.009 (0.009)  0.013 (0.012)  0.012 (0.013)

GLDM 0.011 (0.010) 0.010 (0.008)  0.013 (0.013)  0.011 (0.010)

GLRLM 0.012 (0.011) 0.010 (0.007)  0.011 (0.010)  0.011 (0.009)

GLSZM 0.011 (0.011) 0.011 (0.010)  0.013 (0.012)  0.011 (0.010)

Figure 3.   Balanced accuracy of random forest models when predicting the centre of origin of healthy subjects 
for first and second order texture features before and after the application of ComBat harmonisation. The row 
above corresponds to image preprocessing techniques applied at the whole image level, while in the row below 
they are applied at the ROI level. O original images (without normalisation), R image intensity rescaling, N 
image intensity normalisation, HM histogram matching, PLHM piecewise linear histogram matching. An “R.” in 
front of a method means that it is applied at ROI level.
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for first order features extracted from LV and MYO, and for second order features from LV, achieving the lowest 
performance (p-values below 0.01, Mann–Whitney U test). For the RV, however, three methods (R.R, R.HM 
and R.PLHM) showed comparable accuracy (p-value greater than 0.01, Kruskal–Wallis test). Finally, ComBat 
harmonisation was able to remove centre information from features almost entirely for most normalisation 
techniques and original images, as shown by the red and green boxes in Fig. 3.

When models were trained only with HCM patients, the general behavior between methods observed for 
healthy subjects was reproduced, but the accuracy for identifying the centre was reduced for all methods prior 
to using ComBat harmonisation. See Fig. S5 in the supplementary material, for more details.

Generalisation.  With regards to the patient classification task into healthy and hypertrophic cardiomyo-
pathy (HCM) groups in unseen centres (see (Fig. 4), models trained with features from original images (with-
out normalisation) showed the worst performance. With regards to models trained with features from images 
normalised at whole image level (Fig. 4, upper row), N and PLHM methods were significantly better than other 
methods and performed similarly when trained with studies from Vall d’Hebron, while PLHM was significantly 
better when trained with studies from Sagrada Familia (all p-values below 0.01, Mann–Whitney U test, after the 
Bonferroni correction for multiple comparison).

When images underwent ROI-based normalisation, ROI-based rescaling and ROI-based normalisation per-
formed on par and significantly better than other models when trained with Vall d’Hebron studies (p-values 
below 0.01, Mann–Whitney U test), while no method was significantly better than others when trained with 
studies from Sagrada Familia (p-value greater than 0.01, Kruskal–Wallis test).

The application of ComBat reduced the accuracy slightly in general, but the difference was only significant 
for rescaling, ROI-based normalisation and ROI-based histogram matching when training with Vall d’Hebron 

Figure 4.   Balanced accuracy of random forest models on unseen centres for classification of HCM versus 
healthy patients. All models were trained with a combination of first and second order texture features from 
all ROIs. The first column corresponds to models trained with features extracted from Vall d’Hebron studies, 
while models in the second column were trained with features from Sagrada Familia studies. The row above 
corresponds to image preprocessing techniques applied at the whole image level, while in the row below they 
are applied at the ROI level. HCM hypertrophic cardiomyopathy, O original images (without normalisation), R 
image intensity rescaling, N image intensity normalisation, HM histogram matching, PLHM piecewise linear 
histogram matching. An “R.” in front of a method means that it is applied at ROI level.
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studies, and for whole image and ROI-based histogram matching and ROI-based PLHM when training with 
studies from Sagrada Familia (p-values below 0.01, Mann–Whitney U test, after Bonferroni correction for mul-
tiple comparison).

For both types of models, trained with Vall d’Hebron and Sagrada Familia studies, the best accuracy was 
obtained when using features extracted after applying the PLHM transformation and without ComBat harmo-
nisation: 78.3%± 8.4 and 79.2%± 8.8 , respectively.

In more detail, for models trained with features from Vall d’Hebron studies, the highest accuracy was 0.783 
(median: 0.792 [0.745, 0.845]), obtained after PLHM without the application of ComBat. When ComBat har-
monisation was used, the highest accuracy was obtained after the application of the same image normalisation 
technique but was reduced to 0.771 (median: 0.775 [0.694, 0.826]). For models trained with features from Sagrada 
Familia studies, the best accuracies were again obtained for PLHM and were 0.783 (median: 0.792 [0.728, 0.850]) 
and 0.762 (median: 0.762 [0.712, 0.811]) before and after the application of ComBat harmonisation, respectively. 
For these models, features mostly from the myocardium (MYO) were among the most important features for the 
model prediction according to the Gini importance15. The top 20 most important features contained mean and 
median intensity, kurtosis and skewness (1st order), joint average and autocorrelation (GLCM) and run length 
non-uniformity and long run high gray level emphasis (GLRLM).

When comparing the accuracy between validation (same institution) and testing (unseen institutions) sets, 
models that obtained the highest accuracy on validation generalised worse to new unseen centres (Fig. 5). 
Importantly, models trained with features from ROI-based normalisation methods showed relatively similar 
generalisation performance among them, even though some suffered from overfitting. Within normalisation 
methods at the whole image level, features extracted after PLHM obtained the best testing accuracy despite their 
lower performance in validation when compared to other techniques.

Figure 5.   Balanced accuracy of random forest models on the validation set (same domain) versus the testing 
set (unseen centres) for classification of HCM versus healthy patients. Results are presented without ComBat 
harmonisation. All models were trained with a combination of first and second order texture features from 
all ROIs. The first column corresponds to models trained with features extracted from Vall d’Hebron studies, 
while models in the second column were trained with features from Sagrada Familia studies. The row above 
corresponds to image preprocessing techniques applied at the whole image level, while in the row below they 
are applied at the ROI level. HCM hypertrophic cardiomyopathy, O original images (without normalisation), R 
image intensity rescaling, N image intensity normalisation, HM histogram matching, PLHM piecewise linear 
histogram matching. An “R.” in front of a method means that it is applied at ROI level.
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Discussion
Radiomic features are promising biomarkers for better disease characterisation. However, their variability across 
centres makes it difficult to establish reproducible biomarkers based on them6. In this study, a comprehensive 
analysis was carried out to assess feature variability across centres as well as model generalisation for a classifi-
cation task after the application of several image normalisation techniques and a feature-based harmonisation 
technique (ComBat).

Based on the results presented, ROI-based PLHM is a good normalisation technique to preserve similar fea-
ture distributions across domains (see Fig. 1) and to reduce the amount of centre-related information encoded in 
radiomic features compared to original images (see Fig. 3). In brain MRI literature, however, the transformations 
that yielded less feature variability and more similar distributions were histogram matching and image intensity 
normalisation5,11, although Um et al. did not consider PLHM in their work.

At feature normalisation level, ComBat satisfactorily removed centre-related information to the point that 
models were not able to discriminate between features depending on the institution of origin of each scan. As 
a drawback, the final feature distributions at different centres were less similar than before the application of 
ComBat according to the JSD.

With regards to generalisation ability, models trained with features from original images resulted in poor 
performance for differentiation of healthy subjects from HCM patients in unseen centres, highlighting the 
importance of normalisation techniques for multi-centre studies. Models trained with features extracted after 
PLHM normalisation obtained the highest accuracy. In this method, average landmarks are obtained for a refer-
ence population, while for histogram matching the reference was only one subject. This could explain why these 
methods showed differences in performance despite relying on the same principle, since defining a template 
using only one subject could introduce unwanted bias in the analysis. Moreover, the selection of a particular 
population or subject as reference template in these methods may affect the results, especially for histogram 
matching (see Figs. S6 and S7 in the supplementary material).

Importantly, successful centre-related information removal from radiomic features does not imply greater 
generalisation ability. In fact, ROI-based PLHM and ComBat harmonisation methods were not among the best 
generalisation techniques for the HCM classification task (Fig. 4, bottom row). When compared with the brain 
MRI literature, Orlhac et al. did find an improvement in sensitivity for differentiating between low and high 
risk patient groups when using ComBat harmonisation, although the authors did not compare different image 
normalisation techniques14. Lastly, the model trained after PLHM, which showed the best generalisation ability, 
obtained medium performance on the validation set signalling a reduction in overfitting. The most important 
features for this model were predominantly features from the MYO, which made sense for the classification task 
at hand, since HCM is most evident when looking at the myocardium.

This work presents several limitations. First, the dataset was not perfectly balanced across the five centres 
and the population was not controlled by age, sex, body size, or myocardial volume, which could result in dis-
similarities across feature distributions. However, no significant differences were found under a Mann–Whitney 
U test in the volumes of the different ROIs between centres.

The choice of HCM classification as a metric for generalisation has some drawbacks, since the heart suffers 
morphological changes and some texture features are known to be correlated with the shape16. This could con-
tribute to overestimating the generalisation ability. The inclusion of other pathologies that greatly affect the myo-
cardium, such as myocarditis or infarction, would potentially result in a less biased generalisation loss estimation.

Finally, according to the Imaging Biomarker Standardization Initiative, ISBI, second order features from 
different texture matrices may be modelled better with different intensity discretisation levels (e.g. GLSZM are 
better characterised for low discretisation levels while it is the opposite for GLCM)17. In this work, the same 
discretisation level was used for all features.

Conclusions
In summary, this study showed that centre-related information removal does not imply good generalisation 
ability for classification. ComBat harmonisation was able to remove centre-related information from radiomic 
features satisfactorily, while showing limited generalisation ability. PLHM normalisation resulted in the best 
generalisable model for classification of healthy subjects from HCM patients. The choice of reference template 
when performing histogram matching may affect the results. PLHM was robust against a change of reference 
population. Finally, the radiomic features from GLSZM, GLDM and GLRLM families showed greater variability 
than first order and GLCM features. Further studies with a larger sample size are needed in order to replicate the 
results presented and to assess the effect of different biological covariates.

Material and methods
Data and feature extraction.  A subset of 218 cardiac magnetic resonance studies from the Multi-Centre, 
Multi-Vendor and Multi-Disease Cardiac Image Segmentation Challenge (M &Ms) dataset was considered18. 
In particular, healthy subjects as well as patients with hypertrophic cardiomyopathy (HCM) were selected from 
the five available centres. The exact distribution across the five centres is presented in Table 2. All the scanners 
considered had a field strength of 1.5T and the averaged in-plane resolution ranged from 0.85 to 1.45 mm. More 
detailed information about the scanners used can be found in Table 3.

Each study consisted of a short-axis cine cardiac magnetic resonance volume. Segmentations of three anatomi-
cal ROIs, the left and right ventricle cavities (LV and RV, respectively) and the left ventricle myocardium (MYO), 
were provided for two temporal phases, ES and ED. The delineations were revised to follow the same Standard 
Operating Procedure to avoid the introduction of further bias due to inter-observer variability.
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Radiomic features were extracted using the PyRadiomics library19, version 3.0.1. Prior to the extraction, 
all images were resized to match the same spatial resolution of 1× 1 mm2 , since radiomic features have been 
shown to intrinsically depend on voxel size and on the number of voxels16. Fixed bin widths of 25 and 0.05 were 
used during feature extraction for images before and after normalisation, respectively. This resulted in a good 
balance between number of bins and computing requirements. The number of bins after normalisation ranged 
between 20 and 80, depending on the intensity values for each ROI. Only images without normalisation gave a 
large variability in terms of number of bins (from 14 to 570).

A total of 100 features were extracted per ROI. They include shape features and first and second order texture 
features. In this work, only texture features were used, since shape depends only on the ROI segmentation and 
not on the image intensity. First order texture features refer to commonly used statistical metrics to describe 
the histogram of intensity values such as mean, minimum, maximum, kurtosis, skewness, entropy and energy, 
among others. Second order texture features are statistical measures extracted from the four texture matrices 
considered in this library: Gray Level Co-occurrence Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM), 
Gray Level Run Length Matrix (GLRLM) and Gray Level Dependence Matrix (GLDM). These features account 
for different details in the spatial coarseness, variability, heterogeneity and symmetry of textures. A complete list 
of the features considered is included in the supplementary material.

Normalisation techniques.  Four normalisation techniques were considered at the image level:

•	 R: image intensity rescaling to the range 0–1,
•	 N: image intensity normalisation (mean subtraction and division by the standard deviation),
•	 HM: histogram matching using scikit-image20, version 0.17.2,
•	 PLHM: piecewise linear histogram matching21, also referred to as Nyúl–Udupa normalisation.

For the histogram matching transformation, an image intensity histogram is interpolated so that it matches 
a template histogram. In this work, a subject was selected visually from Sagrada Familia as the template after 
ensuring that the image did not present artifacts. For the PLHM transformation, the code implementation by 
Reinhold et al.22 was employed. In this case, a batch of images from one centre was needed to obtain the averaged 
histogram deciles (landmarks) that were then used as reference for the transformation of new image histograms. 
The landmarks were computed for studies from Sagrada Familia. All transformations were applied both to the 
whole image and at ROI level, independently. Data from Sagrada Familia were used as reference, since it was the 
centre with the greatest number of scans.

Regarding feature-based normalisation techniques, the empirical Bayes harmonisation method proposed by 
Johnson and Rabinovic (ComBat) was considered13,23. This method assumes that the contributions to the final 
feature values can be separated in biological covariates (e.g., pathology) and centre effects (e.g., different scan 
manufacturers). Then, the empirical Bayes method is used to estimate the distributions for these terms from 
original data and adjust the final feature values to remove centre effects. The ComBat method is robust against 
outliers and does not need large sample sizes for each centre batch, which makes it a good option for the current 
study. However, feature distributions are assumed to follow normal distributions for each centre separately, a 
requirement not always satisfied by the data. For this reason, a quantile transformation (scikit-learn24, version 
0.23.2) had to be applied to all radiomic features for each institution independently before ComBat could be 
used (we used 20 as number of quantiles). The Python implementation of ComBat by Fortin et al.23, available 
at github.com/Jfortin1/ComBatHarmonization, was used. Five batches were used during the harmonisation 
process, one for each centre. A parametric adjustment was chosen for fitting the batch effect parameters13, and 

Table 2.   Distribution of diseases per centre considered in the analysis.

Centre

Creu Blanca Dexeus Sagrada Familia
Universitätsklinikum Hamburg-
Eppendorf Vall d’Hebron

TotalCanon General Electric Philips Philips Siemens

Healthy 14 11 33 32 22 112

HCM 15 5 37 14 25 106

Table 3.   Average specifications for the studies acquired in the five different centres.

Centre Vendor Model In-plane resolution (mm) Slice thickness (mm) Number of slices Intensities  range

Vall d’Hebron Siemens Magnetom Avanto 1.32 9.2 12 0–1193

Sagrada Familia Philips Achieva 1.20 9.9 10 0–357

Universitätsklinikum Hamburg-Eppendorf Philips Achieva 1.45 9.9 11 0–3725

Dexeus General Electric Signa Excite 1.36 10 12 0–3030

Creu Blanca Canon Vantage Orian 0.85 10 13 0–14,442
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the alignment was performed over a virtual reference frame instead of over one of the five batches. No covariates 
were used along with ComBat harmonisation.

Variability assessment.  Radiomics variability across centres was assessed by computing the Jensen–Shan-
non divergence (JSD) between pairs of feature distributions obtained for healthy subjects within the different 
ROIs. The HCM pathological group was not considered in this analysis since the possible existence of different 
HCM sub-groups could introduce uncontrolled bias to the results. Moreover, in order to avoid redundancy of 
features in the results, a prior sequential feature selection step was conducted to remove features that showed 
a square cross correlation coefficient greater or equal than 0.9 with any previous feature following the ordering 
provided by PyRadiomics (see Table S1 in the supplementary material). The JSD gives a positive measure of how 
similar two distributions are, with 0 the value obtained when the two distributions are identical. A threshold 
of 0.01 JSD was selected based on the median of the overall distribution as the relative point where changes in 
feature proportions were to be assessed.

Then, in order to analyse model generalisation, two tasks were proposed. First, the amount of centre-encoded 
information after the application of each normalisation technique was measured by training Random Forest (RF) 
models to identify the source centre for each feature set. The hypothesis was that features with less information 
about their centre of origin should be more difficult to differentiate and thus, more similar between centres, 
enhancing the generalisation. Secondly, model generalisation was assessed directly by training RF models for 
patient classification into healthy or HCM groups, for each normalisation technique. RF were chosen over other 
techniques due to their simplicity to train and their effectiveness to model non-linear relations between input 
and output. For all cases, a random seed was fixed before training each model to make the results reproducible.

For the centre identification task, models were trained either with first order or second order features as input 
variables for each ROI separately (LV, MYO and RV). A five-fold cross-validation was used for obtaining an esti-
mate of the average classification accuracy with reduced bias. Notably, in this case, a lower accuracy represents 
that features carry less centre information.

For the patient classification task, models were trained with a combination of first and second order features 
from all three ROIs, so that RF was able to select the most predictive features during training. Five runs of the 
same cross-validation scheme were considered in this case (five different random seeds), since the variability in 
models was higher and the accuracy estimates showed greater bias. In particular, these models were trained with 
features from only one dataset (Vall d’Hebron ( n = 38 ) or Sagrada Familia n = 56 , as these centres had a greater 
number of samples) and tested on the other four. No feature selection was conducted prior to model training. 
The most important features for the best performing models were obtained with the mean impurity decrease 
method15, also called Gini importance. For these models, a greater accuracy represents better generalisation. All 
models were assessed with balanced accuracy, given the imbalanced nature of the dataset.

Ethics.  All patients signed the informed consent, the study protocol was approved by the Ethical Commit-
tee for Clinical Research for each institution involved, and it follows the ethical guidelines of the Declaration of 
Helsinki.

Data availibility
The datasets analysed in this study can be found openly at the M &Ms Challenge webpage: ub.edu/mnms.
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