

# **Aalborg Universitet**

## Glass-Based Electrodes for Lithium/Sodium-Ion Batteries

An invited talk Yue, Yuanzheng

Creative Commons License Unspecified

Publication date: 2022

Document Version Other version

Link to publication from Aalborg University

Citation for published version (APA):

Yue, Y. (2022). *Glass-Based Electrodes for Lithium/Sodium-Ion Batteries: An invited talk*. Abstract from 2022 Fall Meeting of the European Materials Research Society, Warsaw, Poland.

### General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
  You may freely distribute the URL identifying the publication in the public portal -

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

## Glass-Based Electrodes for Lithium/Sodium-Ion Batteries

### Yuanzheng Yue

Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark

There are many ways to enhance the performances of Li-ion batteries (LIBs). In recent years, substantial effort has been made in developing both electrodes and electrolyte for high-performance LIBs. However, there is still a huge room for LIBs to be further developed to keep up with the accelerating evolution of energy technology during the current green transition. Five years ago, we proposed the order/disorder engineering concept to improve the electrochemical properties of electrodes for LIBs [1,2]. This concept here refers to four aspects: 1) Designing a glass system that can undergo partial disorder-to-order transition during charge/discharge; 2) Generating micro/nano crystals in glass, i.e., fabricating glass-ceramics; 3) Making crystals electrochemically active by amorphization; 4) Transforming glass into high potential state through charging/discharging. In this context, I present four case studies to demonstrate the enhancing effect of order/disorder engineering on electrochemical performances of electrodes. **First**, the vanadium-tellurite (VT) glasses were synthesized as LIB anode materials. It was found that nanocrystals formed in VT glass anode during charge/discharge cycling, leading to enhancement of both cycling stability and electronic/ionic conductivities [2]. **Second**, NaFePO<sub>4</sub> with maricite structure, which is electrochemically inactive for sodium-ion storage, was amorphized as cathode for NIBs by ballmilling. The induced disorder caused much improved sodium storage with an initial capacity of 115 mA h g<sup>-1</sup> at 1 C and enhanced cycling stability [3]. **Third**, the Al-metal-organic framework (Al-MOF)/graphene composite was synthesized as LIB anode [4]. It was found that lithiation/delithiation induced an order-disorder transition in Al-MOF. This transition resulted in a capacity increase from 60 to 400 mA h g<sup>-1</sup> at the current density of 100 mA g<sup>-1</sup>. **Fourth**, we invented the first MOF glass anode for LIBs, which exhibited two-fold enhancement of the specific capacity after 1000 cycles of charging/discharging [5]. Such glass anode exhibited much higher lithium storage capacity (306 mA h g<sup>-1</sup> at 2 A g<sup>-1</sup>) than the crystalline anode. The microscopic mechanism of such capacity enhancement has been revealed by structural analyses [5]. The above findings suggest that glass is a promising material for developing superior LIBs and NIBs.

### References

- [1] Y. Z. Yue, A plenary talk at 3rd International Conference on Nanoenergy and Nanosystems, Beijing, China, October 21-23, 2017.
- [2] Y. F. Zhang, P. X. Wang, T. Zheng, D. M. Li, G. D. Li, Y. Z. Yue, *Nano Energy* 49 (2018) 596-602.
- [3] F. Y. Xiong, Q. Y. An, L. X. Xia, Y. Zhao, L. Q. Mai, H. Z. Tao, Y. Z. Yue, *Nano Energy* 57 (2019) 608-615.
- [4] C. W. Gao, P. X. Wang, Z. Y. Wang, S. K. Kær, Y. F. Zhang, Y. Z. Yue, *Nano Energy* 65 (2019) 104032.
- [5] C. W. Gao, Z. J. Jiang, S. B. Qi, P. X. Wang, L. R. Jensen, M. Johansen, C. K. Christensen, Y. F. Zhang, D. B. Ravnsbæk, Y. Z. Yue, *Adv. Mater.* 34 (2022) 2110048.