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Abstract

This thesis is concerned with model-based analysis and processing
of speech and audio signals, to which a number of scientific contri-
butions are made in the form of new mathematical models and new
methods for the processing of such signals. The thesis demonstrates
how a number of models can be used for modeling speech and au-
dio signals in different ways and for different purposes. It is shown
how the problem of estimating the parameters of these models can
be solved in a number of principled ways using methods such as
maximum likelihood, subspace methods, and sparse approximations,
whereby both very accurate and robust estimators that explicitly take
the properties of speech and audio signals and the presence of noise
into account are obtained. Among the parameter estimation problems
considered are those of fundamental frequency estimation, linear pre-
diction, source localization, and order selection, problems that have
many important applications in speech and audio processing, includ-
ing the analysis, coding, and enhancement of such signals. It is then
shown how such models can be integrated in filtering methods to
solve both signal enhancement and parameter estimation problems,
such as noise statistics estimation and fundamental frequency estima-
tion, and it is shown how these principles can be extended to multiple
channels to solve the problems of beamforming and source localiza-
tion. The results of the thesis as a whole demonstrate the benefits of
the model-based approach compared to the typically non-parametric
methods used in speech and audio processing, not only in terms of ob-
taining new and better methods but also advancing our understand-
ing of both speech and audio signals and the associated estimation
problems.

vii





Resumé

Denne afhandling omhandler model-baseret analyse og processering
af tale- og audiosignaler, hvortil en række vindenskabelige bridrag
ydes i form af nye matematiske modeller og metoder til processer-
ing af sådanne signaler. Afhandling demonstrerer hvordan en række
modeller kan bruges til at modellere tale- og audiosignaler i forskel-
lige sammenhænge. Det vises hvordan problemet at estimere parame-
trene af disse modeller kan løses på en række matematisk funderede
måder vha. af metoder såsom maksimum likelihood, underrums-
metoder, og sparse approksimationer. Herved opnås både meget præ-
cise samt robuste estimatorer, der eksplicit tager højde for egensk-
aberne ved tale- og audiosignaler og tilstedeværelsen af støj. Blandt
disse parameterestimeringsproblemer kan nævnes grundfrekvenses-
timering, lineær prædiktion, lokalisering samt orden-selektion, prob-
lemer der har mange vigtige anvendelser inden for tale- og audio-
processering, såsom signalanalyse, kodning og støjfjernelse. Dernæst
vises det, hvordan modellerne kan indarbejdes i filtreringsmetoder til
at løse både parameterestimerings- og støjfjernelsesproblemer, såsom
estimering af støjstatistikker og grundfrekvensestimering, og det vises
hvordan disse principper kan udvides til flere kanaler og anvendes
til at løse beamforming- og lokaliserings-problemer. Resultaterne i
afhandling som helhed viser fordelene ved den model-baserede til-
gang sammenlignet med de i tale- og audio-processing typisk an-
vendte ikke-parametriske metoder, ikke kun mht. udviklingen af nye
og bedre metoder men også at forbedre vores forståelse af både tale-
og audiosignaler og de dertil hørende estimeringsproblemer.
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Preface

This thesis is submitted to the Technical Faculty of IT and Design at Aalborg
University in fulfillment of the requirements for the degree doctor technices
(dr.techn.). The thesis is written in the form of a collection of papers and
a summary. None of the papers in this collection have appeared in a the-
sis written by me before. The summary presents my research as a whole and
places the papers included in the thesis, which are then to be seen as example
of my research, in a greater context. The selected papers are all journal pa-
pers, as these have been held to the highest standard of peer review. It should
be noted that since it is tradition and common practice in signal processing
to publish and present your work at conferences while also publishing a full
version in a journal papers, the journal papers in this thesis were, when they
were published, typically accompanied by a number of conferences papers
on the same topic. The papers have been selected for a number of reasons.
They are on different topics that represent my work broadly over the past
15 years, and they embody the spirit of my work. Finally, I feel a high de-
gree of intellectual ownership of the contents of these particular papers. To
complement the papers and complete the exposition, I will throughout the
summary make references to other papers that are co-authored by me but are
not included in the thesis.

The year 2020 marks 15 years since I defended my Ph.D. thesis and
changed the direction of my research, as I started my post-doctoral life, and
started down the path that I am still following today. In my Ph.D. studies, I
was fortunate to be able to work on audio coding. It was the topic I would
have picked, had I been in a position to freely select a topic, and a topic
that had fascinated me since I first encountered mp3 when I was still in high
school. Looking back, it may look like it was my destiny to work on audio
coding in my Ph.D., but it was largely due to coincidences. Similarly, the
topic that I would turn my attention to next was also because of a coinci-
dence. In 2003, Andreas Jakobsson was giving a course on spectral analysis
at Aalborg University that I was following and that is how I was introduced
to estimation theory. It dawned on me that here was something very general
that, if mastered, would enable one to study the mysteries of the universe,
explore sub-atomic particles, make fortunes in finance, or, more importantly,

xvii



solve important problems in speech and audio processing! Quickly, I came
to realize that here was a way of thinking that was a bit different from the
typical speech and audio research, which was then, and still is, often domi-
nated by heuristics, implicit assumptions, intuition, and perception, and that
there was bound to be a big potential for making scientific progress, not only
by deriving new solutions to engineering problem, but also by improving
our understanding of these problems. Thus, I decided that my future was in
estimation theory and its applications to speech and audio signals, and this
thesis is the result of 15 years of research on this topic. Andreas Jakobsson
would go on to become a big inspiration for me, and a personal friend, and
we have worked together ever since. In short, my research has, in one way or
another, revolved around answering the questions of how to model speech
and audio signals, how to estimate their parameters under adverse condi-
tions, and how to use these models for solving signal processing problems
such as filtering, classification, and localization.

One may reasonably ask: why write a thesis such as this one? There is no
requirement at Danish universities to write such a thesis, so surely writing
such a thesis must be a sign of some kind of academic madness. There are
several reasons for me writing this thesis, though. Firstly, it was for a long
time my ambition to write such a thesis. In fact, the book entitled Multi-Pitch
Estimation that I wrote more than ten years ago with Andreas Jakobsson af-
ter finishing my postdoc was intended as a starting point for such a thesis,
but as time went on and I became preoccupied with other (more?) impor-
tant things, it came to the point where I felt that the contents of that book
had become a bit dated and I also, perhaps more importantly, felt that it did
not fully demonstrate the potential behind the ideas that underlie my work.
Secondly, I feel that I have an important contribution to make with this the-
sis, an important story to tell. Indeed, as conferences and journals within all
branches of signal processing are being overwhelmed with one paper after
another about how deep learning can be applied to solve various problems
without really understanding neither the methods nor the problems, I believe
that it is important that we ask ourselves what we mean by science and what
standards our work should be held to. Is it enough to have good results?
For me, it was never just about the results. It was also about the approach,
the methodology, gaining a better of understanding both our tools and of the
world around us. Indeed, I believe that the papers in this thesis demonstrate
how a principled approach based on explicit signal models and assumptions
can be used to solve difficult engineering problems. Often, critics have at-
tacked our models and our assumptions saying that they are incorrect and
that the state of the art does not make this or that assumption. However,
even when our approach initially fails, it is due to the signal models and the
assumptions that we know where to look and how to improve our models
and methods. By contrast, it is difficult to improve on the non-parametric
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methods that are commonplace in speech and audio processing where the
assumptions are often implicit and not clear at all. In our work, we have seen
this time and time again, and it is this point that I would like to make with
this thesis.

I owe many people my sincere gratitude because the research reported
is thesis would not have been possible without them. First, I would like to
thank my mentor, Søren Holdt Jensen, who was a big influence on my early
research career. Next, I would like to thank my long-time collaborator An-
dreas Jakobsson for all the research we have done together, for his idealistic
nature and approach to research, and for being a generally positive influence
on my life. Jacob Benesty is another person whom I would like to thank
for our collaborations and for what he has done for me. I have the greatest
admiration for his imagination, his never-ending search for new mathemat-
ical ideas an principles and for his uncompromising pursuit of excellence. I
would also like to thank my various co-authors, particularly Marc Moonen
and Manohar Murthi, along with my former Ph.D. students Daniele Giaco-
bello and Sidsel Marie Nørholm who all contributed to this work. Special
thanks go to Jesper Rindom Jensen and Jesper Kjær Nielsen, with whom I
have worked closely now for many years and have made many important
contributions to our field. Their combination of good spirits, hard work, and
talent makes it a privilege to work with them! I would also like to thank some
people who did not contribute directly to this work, yet have been important
influences, namely Petra Stoica, Jingdong Chen, Richard Heusdens, Toon van
Waterschoot, Jesper Boldt, Barry Quinn, and Max Little.

Mads Græsbøll Christensen
Aalborg, September 15, 2020
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Summary

1 Introduction

Audio and speech processing, which is the topic of this thesis, has a rich
history with many important contributions that influence our daily lives and
define who we are and how we live. Modern inventions such as digital assis-
tants, hearing aids, internet telephony, multimedia streaming, smart phones,
etc., are all enabled by speech and audio processing. These inventions are
enabled by progress in the development of methods for solving the underly-
ing scientific problems of automatic speech recognition, speaker recognition,
compression, noise reduction, dereverberation, beamforming, localization,
source separation, etc. Speech and audio processing can, though, broadly be
characterized as being concerned with one or more of three tasks: analysis
(extracting information from signals), synthesis (generating signals), or trans-
formation (changing signals). To perform these tasks it is important that we
understand how signals are naturally generated by the source, e.g., as stand-
ing waves on a string, how they are propagated from a source to a receiver
through the air and reflected off surfaces, and how they are perceived by a
listener, imagined or real. The first and the second are studied in physics
and acoustics while the latter is studied in human sound perception and
cognition. Speech and audio processing thus draws upon knowledge from
several scientific disciplines to understand the problems we seek to solve.
Moreover, to actually analyse, synthesize or transform signals, we draw on
mathematics for inspiration on how this can be achieved. More specifically,
mathematical disciplines such as linear algebra, convex optimization, func-
tion analysis, statistics, and machine learning are the ones that we lean on
to solve these problems. Speech and audio processing is thus a melting pot
for a number of different scientific fields and disciplines, and time and time
again important fundamental new insights and methods are discovered in
this intersection between fields. Many of the unsolved problems of the field
are those that are ill-posed and often also nonlinear, meaning that there ei-
ther does not exist a solution to the problem in its most native form, and, if
there does, we do not known how to find it! An example of such a problem
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is source separation, which is the problem of finding the individual sources
of a mixture. When only a single observation, which is the sum of a num-
ber of sources, is available, it is not, without further knowledge, possible to
recover the individual sources. Indeed, such a problem has an infinite num-
ber of solutions even though only one or a few would be considered proper
solutions. In such cases, we must impose constraints on the problem to ob-
tain a meaningful solution. One way to do this, is to incorporate models
into the problem definition. This could be models of the sources, how they
are mixed, or how they propagate in space. Finding good models of speech
and audio signals is, however, difficult. While it is possible derive models
based on differential equations and boundary conditions in isolated, specific
cases, such as for specific musical instruments, this is generally not possible
for audio. The sources themselves are too diverse and too complex, and so
are the ways in which they can be modified by the acoustic environment.
They can degraded by background noise, changed by the reverberation of
the surroundings, or distorted by nonlinear phenomena. Moreover, even if
an exact model is known to hold, it may still be too complex to be of any
practical use. Instead, models that are well-known to be approximations to
nature are often used. Indeed, an approximate model may still prove good
enough to solve the problem at hand. Given a model, the next question is
how to estimate its parameters, and, depending on the nature of the parame-
ters, this may be relatively simple or very difficult. Speech and audio signals
are often recorded in adverse conditions, meaning that the signals of interest
are degraded by various phenomena, such as background noise and rever-
beration. In that case, statistical principles that explicitly take the presence of
these phenomena into account are preferable. Surprisingly, there are many
examples within speech and audio of methods that do not explicitly take the
presence of such degradations into account. Fortunately, there exists many
mathematically well-founded principles for parameter estimation, some ex-
amples being maximum likelihood, Bayesian, and subspace methods. Once
the parameters of the model have been found, a final question presents itself,
namely how to use the models and their parameters. An example would
be how to use a model of the signal of interest to perform noise reduction
or source localization. These are the questions that my work has revolved
around which also form the basis of this thesis. In summary, my work seeks
to answer the following questions:

What are good models of speech and audio signals recorded in adverse condi-
tions, how do we find their parameters, and how can we use them?

It must be stressed that there is a symbiotic relationship between these
three questions concerning the models, the estimators, and their use. In an-
swering the question above for different kinds of signals and for different
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purposes, this thesis seeks to demonstrate the merits of the model-based ap-
proach to solving problems in speech and audio processing. Accordingly, the
summary of the thesis is structured in the following way. First, signal model-
ing will be discussed and signal models of particular importance to this thesis
will be presented. This is followed by an overview of parameter estimation
methods for speech and audio signals, after which model-based filtering will
be discussed. The last part serves to demonstrate how the model-based ap-
proach can be used in speech and audio processing to solve problems, in this
case filtering, in a principled way and to demonstrate what can be achieved
with signal models even if they are not always correct. Throughout all this,
the contributions of this thesis and related work by the author will be high-
lighted. Finally, in the conclusion, a paper-wise summary of the contributions
will be given and discussed before giving directions for future research.

2 Signal Modeling

In relation to signal models, such as those considered in this thesis, an in-
teresting question is what exactly constitutes a good model. A good model,
one could argue, is one that fits the observed data well. A model that ac-
curately captures how the underlying physics that generated the signal is
arguably also a good one. However, as George Box famously wrote, all mod-
els are wrong, but some are useful [1], and this applies very much to modeling
of speech and audio signals. As previously mentioned, speech and audio
signals are generally too complex to find exact models, e.g., by solving differ-
ential equations (something that can be done in some fields of engineering).
What matters then is that the models capture the relevant aspects, which in
turn depends on the application in question. The linear prediction model of
speech is a good example of this [2]. It has clear physical meaning but it is
well-known to be wrong, as it ignores the properties of voiced speech and the
presence of the nasal cavity (see, e.g., [3]), yet it proves tremendously useful
in many applications [2]. Another example is the models used in source sep-
aration which are frequently too poor to be used as fully generative models
but accurate enough that a Wiener filter that can be used to estimate differ-
ent sources from the observed signal. It is not enough that the model fits the
data well, however. It is well-known that more complex models will gener-
ally fit noisy data better than simpler ones, even if the data was generated by
a simple model. This is easy to explain using the polynomial model. A high-
order polynomial can always fit the data better than a low-order polynomial
model, since the low-order polynomial is contained in the higher-order poly-
nomial. The parsimony principle, also known as Occam’s razor, states that
the simplest model that can be used to explain some phenomenon should be
preferred over more complex ones. Although, this sounds like an appealing
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idea, it is actually quite difficult to implement. In the context of signal mod-
eling, the underlying problem is that of model selection or order selection
in the case that we are choosing between subsets of the same model, which
is a notoriously difficult problem to which many different approaches have
been proposed over the years, e.g., [4–7]. It is also an extremely important
problem, however. Sparsity is another way of incorporating or enforcing sim-
plicity in a model. By imposing that a linear model only has a few non-zero
coefficients, we obtain a simple model. Finally, for many purposes it is also
desirable that that the model is physically meaningful, meaning that the pa-
rameters can be related to the physics that generated the signal. The absence
of such meaning or interpretability is by many considered a huge problem
for the models obtained in deep learning, although efforts have been made
to address this also in speech and audio processing [8, 9].

While models are common in some fields of science and engineering, they
are quite rare in speech and audio processing and most state-of-the-art meth-
ods are based on vague models. For example, most speech enhancement
methods based on optimal filtering characterize both the signal of interest
and the noise using second-order statistics, and many noise statistics estima-
tors rely on proper initialization to form an initial model of the noise from
which speech presence is then detected [10–12]. Similarly, beamforming and
localization methods for microphone arrays frequently make use of propa-
gation models but rarely make use of any more detailed knowledge about
the signals than their second-order statistics [13]. There are some examples,
of such models in speech and audio, though. Classical examples include si-
nusoidal models [14], which are sometimes used for problems such as time-
and pitch-scale modification [15] and source coding [16], source-filter models,
which formed the basis of early speech coders and have been used for speech
analysis and transformation, and physical models of musical instruments are
frequently used for synthesis. It might be argued that methods based on
non-negative matrix factorization (NMF), which have found many uses in
speech and audio processing (e.g., [17–20]), also fall into this category, and
there might be some merit to this argument, but the vast majority of these
methods impose rather vague assumptions and structure on the dictionaries
and activation matrices that the so-obtained models lack physical meaning,
much like the codebook-based methods based on vector quantization that
have frequently been employed with much success in speech processing (see,
e.g., [21]). Moreover, they are typically not parametric. The lack of fully gen-
erative, parametric signal models in speech and audio processing could be
interpreted as a lack of faith in the correctness of such models. Indeed, the
usage of parametric models is often met with some skepticism.
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2.1 Basic Model and Assumptions

We will now introduce the basic signal models that are used through-
out the thesis. The observed signal, to be analysed or processed, is de-
noted by x(n) for n = 0, 1, . . . , N − 1 and consists of a signal of inter-
est s(n) in background noise w(n). Define a vector containing M con-
secutive samples of the observed signal, termed a snapshot, as x(n) =

[x(n) x(n + 1) · · · x(n + M− 1)]T where ·T denotes the transpose and simi-
larly for s(n) and w(n). The models in this thesis can generally be described
by the following equation:

x(n) = s(n) + w(n) (1)

= Z(n)a + w(n), (2)

where Z(n) is an M× L matrix whose columns are used to model the sig-
nal, a is a coefficient vector of length L, and w(n) is an additive noise
vector of length M. Depending on the context, these quantities may all
be real or complex in this thesis. Let E {·} denote the expectation opera-
tor. Then, the covariance matrix of x(n) is defined as Rx = E

{
x(n)xH(n)

}
(and similarly for other quantities) where ·H denotes the Hermitian trans-
pose. With the definition of a snapshot x(n) above, it means that we can
form a collection of N − M + 1 snapshots {x(n)}N−M+1

n=0 with M ≤ N from
N observations of x(n). From these snapshots, the covariance matrices
for x(n) can be estimated using the sample covariance matrix estimate as
R̂x = 1/(N −M + 1)∑N−1

n=M−1 x(n)xH(n). When the time index n of the ob-
served signal is not of interest, we shall use the following shorthand notation:
x = x(0), Z = Z(0), and w = w(0). For the case that Z(n) is given, the model
is also known as the linear model while if its columns are given by some non-
linear unknown parameters, ξ, the model is nonlinear. We refer to the model
in (2) as being parametric, as it is determined via parameters, namely a and
ξ, which combined form the parameter vector θ. Moreover, when the model,
or parts thereof, is further described in terms of statistical properties, such as
the probability density function (pdf), it is also statistical. This would be the
case, for example, if the noise is assumed to be zero-mean Gaussian1 in which
case it is characterized by the covariance matrix Rw, i.e., w(n) ∼ N (0, Rw). If
the term Z(n)a is considered deterministic, the observed signal is distributed
as x(n) ∼ N (Z(n)a, Rw). Concerning the noise term w(n) some further
comments are in order, as it is frequently misunderstood. From the previous
discussion, it should be clear that Z(n)a represent what may be thought of as
a deterministic part of the model in (2). Then w(n) represents anything that
is stochastic. Indeed, this would include observation noise, which is gener-
ally considered a nuisance to be dealt with, but it may also represent other

1The notation x ∼ N (µ, R) means that x is Gaussian distributed with mean µ and covariance
matrix R.
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stochastic parts of the signal, including some that may be of interest. For
example, speech signals include both voiced speech and unvoiced speech.
While voiced speech due to its periodic nature may, as we shall see, be mod-
eled with Z(n)a, unvoiced speech cannot due to its stochastic nature. Then,
w(n) may represent an integral part of the speech signal, the unvoiced signal.
Similar observations hold for many signals produced by musical instruments.
The model in (2) is a fully generative in that given parameters a and ξ, the
signal of interest, s(n), can be generated.

2.2 Sinusoidal Models

We will now introduce and discuss some models of particular interest and
relevance to this thesis. Indeed, these are the models that the papers in this
thesis are based on. A general model which can be encountered throughout
many fields of science and engineering, where it is perhaps the most com-
monly used regression model, is the polynomial model2 where the matrix Z
is given by:

Z(n) =


zn

1 zn
2 · · · zn

L
zn+1

1 zn+1
2 · · · zn+1

L
...

...
...

zn+M−1
1 zn+M−1

2 · · · zn+M−1
L

 . (3)

For this model, the linear parameters, a, are then the coefficients of the poly-
nomial while the nonlinear parameters, ξ, are {zl}L

l=1. Several of the models
considered herein are special cases of this model. Indeed, a model that is
used in the papers in this thesis, particularly in [A], is the sinusoidal model
where zl = ejωl , i.e., zl is constrained to lie on the unit circle. In that case the
matrix Z(n) is given by

Z(n) =


ejω1n ejω2n · · · ejωLn

ejω1(n+1) ejω2(n+1) · · · ejωL(n+1)

...
...

...
ejω1(n+M−1) ejω2(n+M−1) · · · ejωL(n+M−1)

 . (4)

It is now a matrix containing complex exponential functions having frequen-
cies {ωl}L

l=1, which then define ξ, and the corresponding vector a comprising
the linear parameters is given by

a =
[
A1ejφ1 A2ejφ2 · · · ALejφL

]
, (5)

which, in words, is formed from the real and positive amplitudes {Al}L
l=1

and phases {φl}L
l=1 with 0 ≤ φl < 2π. When x(n) is real, the frequen-

2The term model polynomial model is perhaps more commonly associated with the special
case Z = Z(0), but for the sake of the discussion here, the more general form is preferred.
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cies and complex amplitudes occur in complex-conjugate pairs. The sinu-
soidal model has a long history in speech and audio processing where it
can be used in many problems and in a wide range of applications, includ-
ing speech coding [16], speech analysis [22], audio coding [23–25], time- and
pitch-scale modification [14], music synthesis and modification [26,27], inter-
polation/extrapolation [28–30], enhancement [31], and separation [32].

The model in (4) is more general than it may seem at first sight, as the
Fourier transform matrix, F ∈ CM×M, can be seen to be a special case of this
model. More specifically, if we define F = Z with L = M and ωl = 2π l−1

M for
l = 1, . . . , M− 1, then FHx(n) is the discrete Fourier transform of the snapshot
x(n) and the entries in the vector a then form the complex spectrum of x(n)
evaluated in frequencies ωl = 2π l−1

L for l = 1, . . . , M − 1. This means that
the model in (2) also can be used to represent short-time Fourier transform
(STFT) based modeling and processing of signals (see also [33]).

A particularly important special case of this model that much of the work
in this thesis has been devoted to is the harmonic model, which is a good
model of signals that are periodic or approximately so. In this model, which
is studied in papers [B], [C], and [G], the frequencies are all integral multiples
of a fundamental frequency, ω0, i.e., ωl = ω0l, meaning that there is only one
nonlinear parameter in ξ for this model. For a complex signal x(n) ∈ CM,
the matrix Z(n) is then given by

Z(n) =


ejω0n ejω02n · · · ejω0Ln

ejω0(n+1) ejω02(n+1) · · · ejω0L(n+1)

...
...

...
ejω0(n+M−1) ejω02(n+M−1) · · · ejω0L(n+M−1)

 . (6)

This thesis makes several contributions to modeling of speech and audio sig-
nals using the harmonic model in (6). In [C], it is demonstrated how the har-
monic model can be used to derive a number of exact methods for estimating
the fundamental frequency of periodic signals, where exact here means that
no approximations (such as asymptotic approximations assuming infinite or
large N) are used. This way, it is possible to estimate low fundamental fre-
quencies in noisy signals, an otherwise difficult problem, and it is possible to
take the real nature of speech and audio signals into account. This clearly
demonstrates the merits of the model-based approach, as non-parametric
methods have a difficult time dealing with these problems. In other work,
it has been shown how this model can be extended to multiple channels in
several ways. In [G] (and [34]) it is shown how it can be used in uniform lin-
ear arrays, in [35] how it can be used for multi-channel pitch estimation in a
general setting, for example allowing for different SNRs in different channels,
and in [36] how it can be used for estimation of fundamental frequencies in
stereophonic mixtures by exploiting panning laws. This work was later ex-
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tended to allow for separation and re-panning of individual sources [37].
Also, [38] shows how the harmonic model can be extended to the multi-
pitch case where multiple periodic signals, termed sources, are present at the
same time and how the corresponding covariance matrix model looks. The
paper also demonstrates how difficult it actually is to model such signals,
particularly due to model order, which can be different for different sources.
Finally, [B], [C], and [G] demonstrate that the harmonic model is amenable to
different kinds of optimal filtering that exploit the model and its properties
explicitly.

2.3 Properties of Sinusoidal Models

We will now proceed to explore some interesting properties of the sinusoidal
models. For the sinusoidal model (4) and the harmonic model (6), the model
in (2) can be written in a number of ways that prove useful in different con-
texts:

x(n) = Z(n)a + w(n) (7)

x(n) = ZD(n)a + w(n) (8)

x(n) = Za(n) + w(n), (9)

where D(n) = diag
([

ejω1n ejω2n · · · ejωLn]) is a diagonal matrix that accounts
for the time-shift associated with n. Some interesting observations can be
made from these ways of writing the model. As can be seen, the time-varying
nature of the model, i.e., the dependency on the time index n can be taken
into account in several ways. We can think of it as being part of the matrix
Z(n). However, due to the structure of the model, we can also think of the
complex amplitudes as being time-varying with a(n) = D(n)a or the depen-
dency can be explained by D(n). As we shall see throughout this thesis, each
of these have their own merits and applications. Often, it is useful to charac-
terize the observed signal using its covariance matrix. For the model in (9),
assuming that the signal of interest s(n) and the noise w(n) are uncorrelated,
the covariance matrix can be shown to be [39]

Rx = ZE
{

a(n)aH(n)
}

ZH + E
{

w(n)wH(n)
}

(10)

= ZPZH + Rw, (11)

which is called the covariance matrix model. ZPZH is the covariance matrix
of s(n), i.e., Rs = ZPZH and Rw is the covariance matrix of the noise w(n).
Meanwhile, P is the covariance matrix of the amplitudes, which can be shown
to be (under certain conditions, see [B])

P = diag
([

A2
1 · · · A2

L

])
. (12)
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Concerning (11) and (12) some remarks are in order. This model was orig-
inally developed in the context of array signal processing where the ampli-
tudes represent the signal of interest, while Z matrix represents a propagation
model (see, e.g., [40,41]. This means that what is here considered a paramet-
ric model for the signal of interest, is actually not considered a parametric
model in array signal processing. Moreover, this also raises some questions
about the validity of the model, because ZPZH is derived based on the am-
plitudes being stochastic whereas these would be considered deterministic
for models such as the harmonic model, and this is particularly so when
seen as a sequence of snapshots x(n), x(n + 1), . . ., where the complex ampli-
tudes, assuming that the observed signal is stationary, would be completely
predictable. However, as shown in [B], the covariance matrix holds asymp-
totically also for deterministic signals.

A useful property of the sinusoidal and harmonic models in (4) and (6),
respectively, is that the columns of Z ∈ CM×L are asymptotically orthogonal,
i.e., we have that

lim
M→∞

1
M

ZHZ = IL. (13)

Another property is based on the observation that the covariance matrix of a
time series, say Rx ∈ RM×M, which exhibits a Toeplitz structure, is asymp-
totically equivalent to a circulant matrix [42]. This in turn means that such
covariance matrices, for large M, can be diagonalized approximately by the
Fourier transform matrix, F ∈ CM×M, i.e.,

lim
M→∞

1√
M
‖Rx −

1
M

FΓxFH‖F = 0, (14)

where ‖ · ‖F denotes the Frobenius norm, F ∈ CM×M is defined as in (4)
with F = Z for L = M and ωl = 2π l−1

L for l = 1, . . . , M − 1, and
Γx = diag ([Px(ω1) Px(ω1) · · · Px(ωM)]) where Px(ω) is the power spectral
density3 (psd) of x(n).

From the approximation above, it follows that for the model in (4), where
Z is generated from the frequencies {ωl}L

l=1, we have that

1
M

ZHRxZ ≈ diag ([Px(ω1) Px(ω2) · · · Px(ωM)]) , (15)

that is, the result is given by the psd of x(n) evaluated in the frequencies
{ωl}L

l=1. The same arguments can be applied to ZHR−1
x Z where the result is

then given by the reciprocal of the psd of x(n).

3The psd of x(n) is here defined as Px(ω) = ∑∞
τ=−∞ rxx(τ)e−jωτ with rxx(τ) = E{x(n)x∗(n−

τ)} which is consistent with our definition of Rx. For different definitions of psds and a discus-
sion thereof, we refer the interested reader to [43].
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2.4 Harmonic Chirp Model

A major criticism of the harmonic model, and the sinusoidal model, is that
they are based on the assumption that the signal of interest is stationary for
n = 0, . . . , N − 1. Speech and audio signals are inherently non-stationary.
In speech, the pitch is a piece-wise smooth but continuously varying phe-
nomenon while in music, the pitch may be more stationary, but glissando,
vibrato, etc. render it non-stationary, as the frequency is continuously time-
varying in these cases. In addition to this, the envelope of the signal of
interest is also often time-varying. In fact, the envelope is an important part
of the timbre of musical instruments [44]. To deal with this, speech and au-
dio signal are analyzed over short segments. Speech is typically processed in
segments of 20–30 ms while some types of music analysis uses much longer
segments. While there is an abundance of models for analyzing and model-
ing non-stationary phenomena of both speech and audio signals in different
contexts, often in the form of polynomial phase/amplitude models [45–48],
AM-FM decompositions [49–51], or time-frequency analysis [52, 53], compa-
rably few have focused on the problem in relation to fundamental frequency
estimation [54, 55].

To investigate the need for taking such non-stationary phenomena into
account explicitly and understanding its effects on fundamental frequency
estimation, the harmonic chirp model was proposed in [56] which then led
to [D] and [E]. Unlike the polynomial phase and amplitude models that have
been proposed, or the chirp sinusoidal model [57], this model introduces only
a minimum of new parameters, namely a linear change to the fundamental
frequency within a segment. More specifically, the fundamental frequency is
modeled as ω0(n) = ω0 + α0n where α0 is the normalized fundamental chirp
rate, which means that ξ is now comprised of ω0 and α0. This model leads to
a (continuous) model of the instantaneous phase of the lth harmonic which is
φl(n) = 1

2 lα0n2 + lω0n + φl . This leads to the following model for the matrix
Z ∈ ZM×L with N = M:

ZT =


1 ej( 1

2 α0+ω0) · · · ej( 1
2 α0(N−1)2+ω0(N−1))

1 ej( 1
2 2α0+2ω0) · · · ej( 1

2 α02(N−1)2+2ω0(N−1))

...
...

...
1 ej( 1

2 Lα0+Lω0) · · · ej( 1
2 α0L(N−1)2+Lω0(N−1))

 . (16)

It should be noted that unlike the previously considered models, this model
does not lead to a simple decoupling of the time-dependency in (8), and in
this sense the model is more complex and difficult to deal with. As a con-
sequence, no simple covariance matrix model exists for the harmonic chirp
model. This also nicely illustrates the point made earlier, namely that while
complex models are good in the sense of describing the observations and
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even the physics well, it may be difficult or even impossible to derive fast
estimators and perform processing, such as filtering, on them. Papers [D]
and [E] show how the harmonic chirp model takes non-stationary nature
of voiced speech into account can be used for improved and robust speech
analysis and for model-based noise reduction, respectively. In later work, a
fast estimator for finding the parameters of the harmonic chirp model was
proposed in [58]. The harmonic chirp model, and its close relative [57], are
examples of models where we encounter a somewhat peculiar phenomenon,
namely that the otherwise seemingly unimportant choice of time reference is
important. As shown in [57], the choice of starting and end point actually
affects the accuracy at which it is possible to estimate the model parameters.
More specifically, the minimum error is obtain for a time indices symmetric
around zero. Moreover, the choice of starting and end points also affects the
correlation between the errors of the different parameters.

2.5 Linear Prediction

Another model that is ubiquitous in speech processing is that of linear pre-
diction. In the linear prediction model, which in the statistical literature
more commonly is referred to as the auto-regressive (AR) model, a sam-
ple of the observed signal is modeled as a linear combination of past sam-
ples plus an excitation which is often modeled as white Gaussian noise, i.e.,
x(n) = ∑L

l=1 al x(n − l) + w(n). This model can also be cast in the form of
(2) where a ∈ RL then contains the real linear prediction coefficients {a}L

l=1
and the noise w(n) is then the excitation. While often used as a parametric
spectral estimator, the linear prediction model can also be interpreted as a
generative model wherein the signal w(n) excites an all-pole filter to pro-
duce the observation x(n). The linear prediction model and related models
been extensively used for speech coding, speech analysis, speech recognition,
etc. It is interesting to note that despite its widespread use, there are many
well-documented problems with the linear prediction model (see [2, 59]) and
the most commonly used estimators for finding the coefficients, which are
typically least squares methods or variants thereof [43]. In [F], sparse linear
prediction is proposed with the aim of overcoming the problems associated
with traditional linear prediction in connection with speech signals. In sparse
linear prediction, the model is as follows:x(N1)

...
x(N2)


︸ ︷︷ ︸

x∈RM

=

x(N1 − 1) · · · x(N1 − L)
...

...
x(N2 − 1) · · · x(N2 − L)


︸ ︷︷ ︸

Z∈RM×L

a1
...

aL


︸ ︷︷ ︸
a∈RL

+

w(N1)
...

w(N2)


︸ ︷︷ ︸

w∈RM

. (17)

where N1 and N2 are the starting and end points with M = N2 − N1 + 1, re-
spectively, which can then be chosen differently, whereby different methods
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are obtained [43]. Typically, x(n) is assumed to be zero outside an interval,
e.g., for n < 0 or n > N − 1. Where w is assumed to be Gaussian distributed
in traditional linear prediction, it is assumed to be sparse in sparse linear
prediction, meaning that w only has a few large values whose magnitude is
large while the rest are zero or small. A way of implementing this idea is via
the assumption that w is Laplace distributed which leads to tractable estima-
tion problems that can be solved using convex optimization. Furthermore,
the notion that the predictor itself, i.e. the vector a, can also be sparse was
also proposed in [F]. This is the case, for example, for voiced speech where
long-term correlations exist due to the pitch, and this correlation can be cap-
tured by a high-order but sparse predictor. These ideas lead to problems
that can be solved with convex optimization at a much higher complexity
than Levinson-Durbin algorithm which is used for solving thee traditional
linear prediction problem (see, e.g., [43]). However, in follow-up work, no-
tably [60,61], it has been shown how these problems can be solved efficiently
with specialized algorithms. In later works, sparse Bayesian learning has also
been investigated [62, 63]. Another issue is that, unlike certain forms of tra-
ditional linear prediction, the stability of the corresponding auto-regressive
filter is not guaranteed in sparse linear prediction, but, as shown in [64], this
can be solved in a number of ways. It should be noted that since w here plays
the role of excitation, it does not account for additive, background noise in
this case. To do this, a more complicated model is needed, namely a state-
space model.

The linear prediction model also has a clear physical and, in the case of
speech, physiological interpretation. It can be interpreted as the lungs and
vocal folds producing the signal w(n) which is then filtered by the vocal
tract. It is interesting to note that while early speech coders, such as LPC-
10 [65], were very much thought of as model-based, later speech coders,
such as CELP [65], are really just waveform approximating coders with little
resemblance of a physical model (see, e.g., [66]). This point of view has been
confirmed by recent developments, where after decades of little progress,
deep learning has proven to lead to big improvements in coding gain in
predictive coding at low bit-rates [67, 68]. In these applications, the predictor
is a essentially a nonlinear one, which means that there is no simple source-
filter interpretation, only a mathematical, abstract, nonlinear mechanism for
predicting speech samples from past samples.

3 Parameter Estimation

Having discussed some models of speech and audio signals, including also
the models of interest to this thesis, the next question is how to estimate their
parameters. Parameter estimation is, generally speaking, the art of estimating
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a number of parameters from a number of observations, which are typically
degraded in some way, for example by additive noise. Common parameter
estimation problems in speech and audio processing include the estimation
of pitch, relative transfer functions, direction-of-arrivals, frequencies, auto-
regressive and moving average parameters, activation matrices, speech pres-
ence probability, noise statistics, etc. (see, e.g., [69]). This thesis is, however,
primarily concerned with the models presented in Subsection 2.2, namely the
harmonic model, the harmonic chirp model, and the linear prediction model.
Concerning the sinusoidal model, the estimation of whose parameters is a
classical problem in signal processing, there exists a vast body of work (see,
e.g., [43, 70]), and we will refrain from any further discussion of this, except
when relevant to the estimation problems considered in this thesis.

There exists many different methodologies for estimating parameters, in-
cluding deterministic least squares, maximum likelihood, variational Bayes,
sampling methods, sparse approximation methods, etc., some of which share
commonalities or even coincide in special cases. While many of these have
been explored in the context of speech and audio processing, e.g., [71–74],
the predominant methodology continues to be least squares and variations
thereof with some departures, in certain areas, into stochastic processes and
minimum mean squared error. Very often, the underlying cost functions are
implicit and estimators are essentially asserted and not derived from any fun-
damental principle or analyzed analytically. Example of this are widely used
pitch estimators such as YIN [75], RAPT [76], PEFAC [55], SWIPE [77] which
are all so-called non-parametric methods (in [78] and [79] it is shown how
a number of these methods relate). Similar observations hold for the much-
used localization methods GCC-PHAT and SRP-PHAT [80,81], the good per-
formance of which were later explained in [82] (see also [33]). As we shall see,
when combining signal models and explicit assumptions with principled and
statistical ways of solving problems, solutions are obtained whose properties
can be analyzed and understood and whose weaknesses can be mitigated
without resorting to guessing and trial-and-error. A notable exception to the
above is the work on NMF which has led to important progress within speech
and audio signals over the past two decades, particularly within source sep-
aration [83]. Indeed, that work has benefited from a statistical and principled
way of solving estimation and modeling problems and has contributed sig-
nificantly to the development of new methods for processing of speech and
audio processing also outside of source separation. It is worth noting that in
early work on NMF, the problem was seen as a deterministic matrix factor-
ization problem, a way of looking at the problem that is highly problematic
for speech and audio processing since spectrograms, to which these methods
were applied, are not additive in a deterministic sense. However, this was
later resolved by casting the factorization problems as statistical modeling
and estimation problems [84].
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3.1 Cramér-Rao Lower Bound

In terms of the signal model in (2), the associated parameter estimation prob-
lem can be defined formally as that of estimating the parameter vector θ,
comprising both linear parameters a and nonlinear parameters ξ, from the
observations x(n) for n = 0, . . . , N − 1, i.e., the observation vector x with
M = N. Formally, an estimator can be defined as a function f (·) : RN → RK,
which is typically achieved via a cost function which is minimized or maxi-
mized, and the argument for this is achieved is then the estimate. For exam-
ple, given the cost function J(·), an estimate of θ from x ∈ RN would then be
θ̂ = f (x) = arg maxθ J(θ).

Returning to the model in (2), an interesting question is how accurately
we can find its parameters, θ, and how the performance depends on the
characteristics of the noise and even of the parameters characterizing the
signal of interest. The Cramér-Rao lower bound (CRLB) (see, e.g., [43, 85])
is a very useful bound on the accuracy at which it is possible to estimate
parameters from which much can often be learned about the problem at
hand. There exists bounds that are able to predict more complex phenomena,
such as the Barankin bound [86], which can predict threshold behavior, but
those tend to be much more difficult to determine. The mean squared error
(MSE) between an estimate θ̂i and the true value θi, which is the ith element
of the vector θ ∈ RK, is given by

MSE = E
{(

θi − θ̂i
)2
}

(18)

=
(
θi − E

{
θ̂i
})2

+ E
{(

θ̂i − E
{

θ̂i
})2
}

. (19)

As can be seen, the MSE can be decomposed into a bias term and a variance
term, where var(θ̂i) = E{

(
θ̂i − E{θ̂i}

)2} is then the variance. An estimate is
unbiased if E

{
θ̂i
}
= θi ∀θi, and the difference, if such exists, is referred to as

the bias. It should be noted that this condition applies to all possible values
of the parameter, and it is thus a quite strong requirement. Then, it can be
seen that for an unbiased estimator MSE = var(θ̂i) which is minimized by
minimizing the variance. The CRLB for the parameter in question, which
applies to all such unbiased estimators, is then given by

var(θ̂i) ≥
[
I−1(θ)

]
ii

, (20)

where I(θ) is the Fisher Information Matrix (FIM), which is defined as

[I(θ)]il = −E
{

∂2 ln p(x; θ)

∂θi∂θl

}
, (21)

with ln p(x; θ) being the log-likelihood function for x ∈ RN . The CRLB exists
when the log-likelihood satisfies the regularity condition E

{
∂ ln p(x;θ)

∂θ

}
= 0
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for all θ (see [85]). An estimator that can be shown to attain this bound can
then be claimed to be optimal, and such an estimator is said to be efficient.
Interestingly, it can be shown that the CRLB for a parameter of a model can
only get larger, not smaller, as more parameters are added to the model [87].
This is yet another argument for preferring simple models over more complex
ones, particularly under adverse conditions with low SNRs. Consider the
case of the model in (2) with Gaussian distributed noise with covariance
matix Rw, the observed signal x ∈ RN is distributed as x ∼ N (Za, Rw). In
that case, the likelihood function is given by

p(x; θ) =
1√

(2π)M det (Rw)
e−

1
2 (x−Za)TR−1

w (x−Za), (22)

where det(·) denotes the determinant. The log-likelihood function is then
given by

ln p(x; θ) = −1
2

ln (2π)M − 1
2

ln det (Rw)−
1
2
(x− Za)T R−1

w (x− Za) . (23)

Then, it can be shown that the entries in the FIM are given by the following
expression, which is known as Slepian-Bangs formula [88]:

[I(θ)]il =
[

∂Za
∂θi

]T
R−1

w

[
∂Za
∂θj

]
+

1
2

trace

{
R−1

w
∂Rw

∂θi
R−1

w
∂Rw

∂θj

}
. (24)

For the case that the noise covariance matrix, Rw does not depend on any of
the parameters in θ, which is the case for the way we defined the parame-
ters of interest in connection with the model in (2), the second term is zero.
It should be remarked, however, that while the assumption of known noise
statistics is common, and practical, in some fields, it is generally not very
useful in speech and audio due to the time-varying nature of such signals.
For this reason, substantial research in speech and audio have over the past
couple of decades been devoted to the problem of estimating noise statistics
even in the presence of the signal of interest. The CRLB has been determined
for many different signal models including the sinusoidal model, the har-
monic model, and the auto-regressive model all based on the assumption of
the noise being Gaussian (see, e.g., [43, 85]). Often, asymptotic approxima-
tions assuming a large number of samples, N, are exploited in deriving these
bounds in which case they are only approximate. More accurate bounds can
be determined numerically, but while such bounds are still useful as a bench-
mark in simulations, they tend to shed little or no light on how performance
depends on various factors, and so it is difficult to analyze and understand
the parameter estimation problem at hand.
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3.2 Linear Least Squares Estimators

Returning to the problem of how to actually estimate parameters, the maxi-
mum likelihood estimator (MLE) is probably the most commonly used esti-
mator in all of signal processing, and there are many good reasons for this.
Firstly, its properties are well-understood [85] and, secondly, very often it
proves to be tractable for estimation problems of interest and sometimes it
even leads to simple estimators that have fast implementations. In MLE, the
parameters that maximize the likelihood function, or rather the log-likelihood
function, are chosen as the estimates, i.e.,

θ̂ = arg max
θ

ln p(x; θ). (25)

The maximum likelihood estimator is asymptotically optimal (under some
technical conditions [85]), meaning that for sufficiently large N, the estimates
are unbiased and achieve the CRLB, and are distributed as

θ− θ̂ ∼ N (0, I−1(θ)). (26)

For the case of the model in (2) with Gaussian distributed noise with co-
variance matix Rw, the observed signal x ∈ RN is, as before, distributed as
x ∼ N (Za, Rw), i.e., the likelihood function is given by (22) and the log-
likelihood is given by (23). When the noise covariance matrix, Rw, is known,
and has full rank the maximum likelihood estimator can be seen to be

θ̂ = arg min
θ

(x− Za)H R−1
w (x− Za) , (27)

which is equivalent to weighted (nonlinear) least squares (WLS). While it
may appear straightforward to use (27) to solve estimation problems, this is
typically only the case for linear parameters, such as a, while the nonlinear
parameters that characterize the columns of Z are more difficult to estimate.
For example, in the case of the sinusoidal model in (4), the estimation of the
linear parameters reduces to linear (weighted) least squares, i.e.,

â =
(

ZHR−1
w Z

)−1
ZHR−1

w x. (28)

Concerning the specifics of estimating the complex amplitudes of the sinu-
soidal model in (4), we refer the interested reader to [89, 90]. The principles
discussed therein also apply to the haromnic model in (6) (see [78]). Another
problem that can be solved using (28) is that of estimating the coefficients
of the linear prediction model in (17), or, equivalently the parameters of the
auto-regressive model. In that model, the noise, w(n), is called the excita-
tion and is assumed to be white and Gaussian distributed, i.e., we have that
Rw = σ2

wIM. In that case, (28) reduces to â =
(
ZHZ

)−1 ZHx and depend-
ing on the choice of N1 and N2 in (17) different methods from the literature
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can be obtained [43]. For N1 = 1 and N2 = N + L we obtain the autocor-
relation method and for N1 = L + 1 and N2 = N the covariance method is
obtained. In the former case, the parameters can then be estimated using
the Levinson-Durbin algorithm due to the Toeplitz structure of Z. It should,
though, be remarked that the so-obtained estimates are only conditional (or
approximate) maximum likelihood estimates due to the memory effects of
the recursive filters [91].

Interestingly, the optimal distribution in (26), and thus the CRLB, is
actually useful for deriving estimators, including also estimators that can
be claimed to be maximum likelihood estimators, for problems where a
reparametrization of the problem is used, i.e., where the parameters of in-
terest are expressed in terms of other parameters that are then estimated
from the observed signal. Using the CRLB, the asymptotic variance of MLE
estimates, and possibly also correlations between different parameter errors,
are known and can the be weighted appropriately to obtain an optimal esti-
mate [92]. As an example of how this can be used, consider the following.
Given unconstrained parameter estimates θ ∈ RK obtained using a MLE, we
wish to map these estimates to a subset C ⊂ RK. Then, the estimation er-
rors are distributed according to (26), and the mapping can be performed as
follows:

θ̃ = arg min
θ∈C

(
θ̂− θ

)T I(θ)
(
θ̂− θ

)
. (29)

A difficulty is then that the weighting in using this principle is that the FIM
may depend on the true and unknown parameters in θ but for sufficiently
high N its estimate θ̂ can be used instead based on continuity arguments [93].
In [94] it was demonstrated how this principle can be used for vector quan-
tization based speech and audio processing in cases where parametrizations
are commonly used, as in source separation and speech enhancement.

The principle can also be used for reparametrization of an estimation
problem involving a linear transformation. As an example of this, consider
the case where θ = Aθ′ with A ∈ RK×K′ and θ′ ∈ RK′ for K′ ≤ K. Then,
given θ ∈ RK, I(θ), and A it is possible to solve for θ′. The principles in-
volved in this are also known as the invariance principle and the extended
invariance principles, depending on whether the transformation relating the
parameters is invertible or not. In [95] it was shown how this principle
can be used for fundamental frequency estimation, which was further ex-
plored in [C]. More specifically, define a vector containing the parameter es-
timates of the sinusoidal model as θ =

[
ω1 A1 φ1 · · · ωL AL φL

]T ∈
R3L and a vector containing the parameters of the harmonic model as
θ′ =

[
ω0 A1 φ1 · · · AL φL

]T ∈ R2L+1. Then, there exists a matrix
S ∈ R3L×2L+1 such that the two vectors can be related as θ = Sθ′ (see [C]).
Then, θ′ can be estimated as θ̂ =

(
STI(θ)S

)−1 STI(θ)θ provided that S has
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full rank. This method is representative of a class of methods for fundamental
frequency estimation, termed harmonic fitting, that employ similar two-stage
procedures, only this is based on an optimal weighting of the estimates.

3.3 Nonlinear Least Squares Estimators

Unlike the problem of estimating amplitudes and linear prediction coeffi-
cients, the problem of estimating frequencies is nonlinear and is well-known
to be very difficult to solve [43], particularly without intimate knowledge of
the problem at hand. More specifically, the problem of estimating the fre-
quencies {ωl}L

l=1 of the model in (4) using (27) is nonlinear and the cost
function is multi-modal and there exists no good way to solve it directly [43].
Instead, approximate solutions, based on for example the periodogram, are
used, or iterative methods that solve for one component at the time are em-
ployed [96, 97]. It is then perhaps not surprising that many of the parameter
estimation problems that the scientific community continues to work on are
those involving nonlinear parameters, such as angles, frequencies, and damp-
ing factors. Concerning the estimation of such onlinear parameters, it should
also be remarked that estimators tend to exhibit so-called threshold behavior
for such problems. This refers to the phenomenon that below a certain SNR
or number of samples, N, the estimator will essentially break down and pro-
duce meaningless estimates [85]. Hence, a big issue in finding good methods
for estimating nonlinear parameters is at which point this behavior occurs. In
fact, this may be a much bigger issue in practice than whether an estimator is
efficient, or merely consistent, when dealing with speech and audio signals,
where the SNRs are often very poor and the number of samples low! For
example, it is sometimes argued that because subspace and optimal filter-
ing methods are not statistically efficient for the analysis of time-series4, they
are not worthwhile investigating, but if they work at lower SNRs and N or
are more robust to model-mismatch, interference, etc., then they may still be
useful in adverse conditions.

The principle of maximum likelihood estimation can be, and has been,
applied to the models considered in this thesis. For the specific problem
of estimating the fundamental frequency of the harmonic model in (6), the
estimator in (27) reduces to the following:

ω̂0 = arg max
ω0

xHR−1
w Z

(
ZHR−1

w Z
)−1

ZHR−1
w x. (30)

This estimator is exact, as no approximations have been used. Moreover,
it explicitly takes the presence of colored noise into account. For the case of
white noise, i.e., Rw = σ2

wIM, the estimator reduces to the following estimator,

4More specifically, they require that M < N which in turn leads to a loss of optimality.
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which is termed the nonlinear least squares (NLS) estimator:

ω̂0 = arg max
ω0

xHZ
(

ZHZ
)−1

ZHx. (31)

This estimator is considered in [C] for the problem of estimating low funda-
mental frequencies using the harmonic model (6) where it is shown to have
excellent performance. Moreover, an estimator based on this principle is also
proposed in [D] for the harmonic chirp model, which is more complicated
than for the harmonic model, as it comprises an additional nonlinear param-
eter.

By employing an asymptotic approximations in (13) and (14) in the es-
timator (30), we obtain the approximate nonlinear weighted least squares
estimator for the colored noise case:

ω̂0 = arg max
ω0

L

∑
l=1
|X(ω0l)|2/|W(ω0l)|2. (32)

where X(ω) = ∑N−1
n=0 x(n)e−jωn, and similarly for W(ω), are periodogram

estimates of the corresponding psds. When the noise is white, the estima-
tor reduces to ω̂0 = arg maxω0 ∑L

l=1 |X(ω0l)|2 which called the approximate
nonlinear least squares (ANLS) method and is equivalent to the classical har-
monic summation method first proposed in [98]. This simplified estimator
is considered as the foundation for multi-pitch estimation in [38], where also
an iterative method based on the expectation maximization algorithm [99] is
proposed. This idea is similar to the one of [100], only that was based on a
comb filter, which cannot be statistically optimal due to the memory of the
filters.

The history of nonlinear least squares frequency estimation based on the
harmonic model goes back at least to [101] and has also been investigated
in [72, 102]. Despite having been known for a long time and having ex-
cellent performance, these estimators never found widespread use in the
speech and audio community. The most likely explanation for this is that
the computational complexity involved in solving (30) or (31) has been pro-
hibitive for most applications. Moreover, the complications associated with
also having to find the number of harmonics, a problem that does not oc-
cur directly in non-parametric methods, has probably also deterred many
from using them. Recently, however, it has been shown that the exact esti-
mator in (30) can be solved efficiently by exploiting the Hankel-plus-Toeplitz
structure of this problem [103], which result in a complexity comparable to
that of harmonic summation. When combined with a hidden Markov model
(HMM) that exploits the smooth development of the fundamental frequency
over time, state-of-the-art performance and robustness is obtained [104]. The
remaining only remaining issue with maximum likelihood fundamental fre-
quency estimation is how to best deal with colored noise. While solving for
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the fundamental frequency using (30) appears straightforward in this case,
the main problems are that the noise statistics are unknown Rw and that no
fast implementation is known for this case, as the principle of [103] does not
apply. To mitigate this, [D] proposes to use pre-whitening based on noise
trackers such as [105–107]. Other options include iterative methods such
as [108] and order-recursive decompositions [78, 109] and NMF-based adap-
tive prewhitening [110].

3.4 Subspace-based Estimators

The class of subspace methods is based on the following principles. We will
here consider the form x(n) = Za(n)+w(n) of the model (9) with x(n) ∈ RM

and M < N, for which the covariance matrix then is given by (11). For the
case where the noise is white, i.e., Rw = σ2

wIM, where the covariance matrix
reduces to a scaled diagonal matrix, the covariance matrix model becomes

Rx =ZPZH + σ2
wIM, (33)

where ZPZH has rank L < M and P = diag
(
[ A2

1 · · · A2
L ]
)
. When the noise

is not white, pre-whitening can be applied, as for the case of the maximum
likelihood estimator [111]. Let Rx = UΛUH be the eigenvalue decomposition
(EVD) of the Rx, and let the matrices SL and GL, whose columns span spaces
which are termed the signal and noise subspaces, respectively, be formed as

SL =
[

u1 · · · uL
]

(34)

GL =
[

uL+1 · · · uM
]

, (35)

i.e., SL is formed from the eigenvectors uk corresponding to the L largest
eigenvalues while GL is formed from the eigenvectors uk corresponding to
the M− L smallest ones. Since the covariance matrix is Hermitian, its eigen-
vectors are orthogonal, so we have that SH

L GL = 0. Then it can be shown that
R (SL) = R (Z) (where R(·) denotes the range) and that R (Z) ⊥ R (GL),
i.e., that columns of the matrix Z generated by the nonlinear parameters ξ
are orthogonal to all the columns of GL. This can be exploited to obtain es-
timates. More specifically, by measuring the angles between subspaces [112],
we can obtain an estimate of the nonlinear parameters as

ξ̂ = arg min
ξ
‖Z
(

ZHZ
)−1

ZHGLGH
L ‖2

F. (36)

This maximizes the sum of cosine to the angles between the subspaces R(Z)
and R(GL) squared [A]. For the case where the columns of Z are orthogo-
nal, or approximately so, and are generated by individual parameters in ξ,
the cost function in (36) decouples into L independent minimizations [78].
This is the case, for example, for the sinusoidal model in (4) but not for the
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harmonic model. For both the sinusoidal model (4) and the harmonic model
(6), the expression in (36) can be simplified by applying the asymptotic ap-
proximation ZHZ ≈ MIL and noticing that the product ZHGL for different
parameters can be computed using fast Fourier transforms (FFTs). The prin-
ciple of subspace orthogonality can be used for estimating the fundamental
frequency, as first shown in [113]. This work was later extended to the multi-
pitch case in [38] and refined further in paper [C]. Concerning the estimation
of the eigenvectors, which is often the dominant source of computational
complexity for these methods, subspace trackers can be used for efficient,
time-recursive computation of these [114–119].

As shown in [113] and [A], it is also possible to use the principle for esti-
mating the model order, L, using the principle of angles between subspaces.
In that case, however, the criterion in (36) must be modified to as follows.
Since the dimensions of both Z and GL depend on the model order, L, it is
nontrivial to measure and compare the angles between two subspaces. How-
ever, averaging instead over the cosine to the principal angles squared, we
obtain the following measure, which was first proposed in [A] and used for
fundamental frequency estimation in [78]:

{ξ̂, L̂} = arg min
ξ,L

1
MT
‖Z
(

ZHZ
)−1

ZHGLGH
L ‖2

F, (37)

where T = min{L, M− L}. As previously mentioned, there exists quite a few
different approaches to model order selection. Classical examples of this are
the minimum description length [4], Akaike’s information criterion [5, 120],
the Bayesian information criterion [121], and hybrid methods based on the g-
prior [122]. The difficulty in several of these is that it might be quite difficult,
depending on the model, to determine the appropriate penalty-term. For
sinusoidal and polynomial models, dedicated works include [123–126]. In
the context of subspace methods, it is worth noting that [6] expressed the
order estimation problem for certain models in terms of the eigenvalues of the
covariance matrix (see also [127]), and that in [128] a criterion for estimating
the model order based on the shift-invariance principle was derived.

Another related subspace method is the ESPRIT method [129], which ex-
ploits the shift-invariance property of the matrix Z that some models, such
as the sinusoidal model, exhibit. It was shown [C] (and initially in [130]) that
it is possible to exploit this property for the estimation of the fundamental
frequency. Define the matrices Z and Z from Z as

Z = [ IM−1 0 ]Z and Z = [ 0 IM−1 ]Z. (38)

Similarly, we obtain SL and SL from SL. For the two matrices, Z from Z, we
have that Z = ZD with

D = diag
([

ejω0 · · · ejω0L
])

, (39)
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due the the shift-invariance of the model. Also, since the columns of the
matrices SL and Z span the same space, it follows that they can be related
as SL = ZQ where Q ∈ CL×L is an invertible matrix. Then we have that
SL = SLΣ with Σ = Q−1DQ. This can be used for estimating frequencies by
first finding the eigenvectors in SL from an estimate of the covariance matrix,
from which SL and SL can be computed, and then finding an estimate Σ̂ of
Σ using least squares or total least squares. Then, the matrix D contains the
eigenvalues of Σ̂ from which the frequencies can be found [43, 129]. To use
the principle for estimation of the fundamental frequency is, however, more
complicated but can be achieved as follows: Let Σ̂ = CD̂C−1 denote the em-
pirical EVD of Σ̂ and let the entries in D̂ and the corresponding eigenvectors
be sorted such that ω̂1 < . . . < ω̂L and D̂ = diag

([
ejω̂1 · · · ejω̂L

])
. Then the

fundamental frequency can be estimated as

ω̂0 = arg min
ω0
‖SLC− SLCD‖2

F, (40)

where the matrix D is constructed from the candidate fundamental frequency
using (39). Once the EVDs have been performed, this results in a very simple
estimator with a very smooth cost function [130]. As we have seen, thus both
the shift-invariance property and the subspace orthogonality principle can be
used for estimating not only the fundamental frequency but also the model
order without resorting to statistical principles. It is interesting to note that
while subspace methods, such as MUSIC [127] (see also [131]), ESPRIT [129],
unitary ESPRIT [132], and weighted subspace fitting [133] are well-known
in communications and other fields where they have been applied to many
problems, they are much less frequently used in speech and audio. One pos-
sible explanation for this may be that, as mentioned earlier, background noise
in speech and audio signals are rarely white and most often non-stationary,
which makes it difficult to apply the principles of subspace methods in prac-
tice. Another possible explanation is that when these subspace methods were
first invented, they were applied to array signal processing problems. Com-
pared to speech and audio signals, such problems tend to have a much lower
dimensionality, so applying these principles to speech and audio processing
may simply have been impractical at the time.

3.5 Sparsity-based Estimators

Much progress has been made in signal processing in the past couple of
decades based on the ideas of sparse approximations, which can be traced
back to early work such as matching pursuit [134] and basis pursuit [135].
These actually made an early impact in speech and audio processing, with
pioneering work such as [136] and [137] being early examples, and were
only picked up much later by others in the general signal processing com-
munity. Curiously, the ideas of exploiting sparsity can be traced quite far
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back in speech and audio processing, and some of the algorithms for sparse
approximations are identical to algorithms that had been known for a long
time [138]. These ideas can be applied to the models and estimation problems
considered herein, as will be described next. As before, consider the general
complex model of the signal x ∈ CN given by

x = Za + w. (41)

In the terminology of sparse approximations, Z ∈ CN×L is referred to as
the dictionary with each column being a so-called atom and a ∈ CL as the
coefficients. Unlike the cases considered so far, the dictionary, Z, is typically a
fat matrix with L ≥ N in sparse approximations, and very often L� N. The
idea is then to model x using only as few columns of Z as possible, meaning
that a should contain only a few non-zero coefficients. Basis pursuit [135]
achieves this by casting the problem as the following convex optimization
problem:

minimize
a

‖a‖1 s.t. Za = x, (42)

where ‖ · ‖1 denotes the 1-norm. For the case of real quantities, this problem
can be shown to be a linear programming problem while for the complex
case considered here, it is a second-order cone programming problem. The
relation to the problems considered herein is then that the dictionary, Z, may
be populated with all the possible models, for example the complex exponen-
tial functions of the sinusoidal model, with Z being defined as (4) only with
ωl = 2π l−1

L for l = 1, . . . , L and L � N, and then a sparse coefficient vector,
a, corresponds to selecting a few of those. As can be seen, the application of
these principles to spectral analysis is relative straightforward.

Although conceptually simple and intuitive, there are multiple problems
with using (42) for sparse approximations. First, the 1-norm is not a good
measure of sparsity (although it does produce results that are optimal also in
the sense of sparsity in some cases), and, second, the problem in (42) ignores
the presence of noise. Much of the early work on sparse approximation was
based on convex optimization and considered the problem as a deterministic
one, which made the connection to estimation theory and statistical interpre-
tations unclear. Yet such a connection clearly exists. For example, matching
pursuit [134] is based on an iterative minimization of the 2-norm of the resid-
ual, which means that it can be thought of as an approximate nonlinear least
squares method, and it is thus an approximate maximum likelihood method
for white Gaussian noise, as was noted in [139]. Many early methods for
sparse approximations rely on oracle information, such as noise variance, to
implement, for example, a threshold on the coefficients on a to achieve spar-
sity and to take the presence of noise into account [140], and this complicates
their application to speech and audio signals. An alternative definition of the
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sparse approximation problem that explicitly takes the presence of noise into
account is the following, which is referred to as basis pursuit denoising:

minimize
a

‖a‖1 s.t. ‖x− Za‖2 ≤ ε, (43)

where ‖ · ‖2 is the 2-norm. As can be seen, this also relies on information
concerning the noise, w, via the constraint ε. A method closely related to
this way of posing the sparse approximation problem is the Lasso, which
was originally proposed in [141] and later developed further in [142–144],
wherein a fitting criterion is combined with a penalty that promotes sparsity,
i.e.,

minimize
a

‖x− Za‖2
2 + λ‖a‖1, (44)

where λ ≥ 0 is then used to control the level of sparsity. It can be inter-
preted in several ways. In relation to (43), it can be seen as a Lagrange
multiplier related to the constraint. Then, (44) is simply the Lagragian as-
sociated with (43). Another possible interpretation is that the term λ‖a‖1
implements a prior, in this case a Laplacian prior, on the entries in the vector
a while ‖x− Za‖2

2 is the likelihood, and the estimator in (44) is then a max-
imum a posteriori estimator. This relation also makes it clear how colored
noise should be taken into account in the estimation process, as the relation
to maximum likelihood estimation is now clear.

While the application of these principles to the sinusoidal model is rela-
tively straightforward, their application to the harmonic model is more dif-
ficult, as the dictionary would need to contain a multitude of possible har-
monic models, corresponding to different fundamental frequencies. In that
case, simply promoting sparsity in the associated coefficient vector is insuf-
ficient. Instead, it is necessary to introduce the principle of block-sparsity to
solve this problem [145]. This way of posing the problem naturally extends
to the case of multi-pitch estimation [146–148], and it has also been applied
to the harmonic chirp model [149]. However, it also limits us to a finite set
of possible fundamental frequencies, but this has also been addressed in the
context of the harmonic model [150]. There was an early attempt at using
sparse approximations with the harmonic model in the harmonic matching
pursuit [151]. Interestingly, this algorithm is mathematically quite closely re-
lated to the EM-based algorithm proposed in [38], only no re-estimation is
used and different signal estimates are used in the process. However, the
algorithm in [151] does not take an unknown number of harmonics into ac-
count and thus only works for very simple signals.

The principles of sparse approximation can also be applied to the linear
prediction model in a number of ways, as first proposed in [F]. Let x, Z, a, and
w now be defined as in (17). Recall that in the traditional linear prediction
model, the excitation, w is assumed to be Gaussian distributed, which causes
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many problems, particularly for voiced speech where the excitation is better
modeled as a pulse train. Over the years, many different approaches and
heuristics have been proposed solve these problems, e.g., [59, 152]. Suppose
instead that w is instead Laplace distributed, then the problem of estimating
the linear prediction coefficients is given by

â = arg min
a
‖x− Za‖1. (45)

Then, this leads to an estimate of w given by ŵ = x− Zâ that is closer to
being sparse than that of the traditional linear prediction wherein the 2-norm
is minimized. Therefore, this method is called sparse linear prediction. This
idea can be traced back to [153]. Indeed, as shown in [F], this approach solves
several of the problems associated with the traditional linear prediction, such
as the dependency of the estimates â on pitch and time-shifts. It should
be stressed that the formulation in (45) is different from those of traditional
sparse approximation methods wherein the coefficient vector, a, is sparse.
Rather it is here in the fitting criterion that sparsity is promoted and the
dictionary is generated from the signal itself. It is, though, also possible to
exploit sparsity in the coefficient vector in connection with linear prediction,
as we will see next. Speech coders based on linear prediction frequently
employ two predictors: a short-term predictor that captures the effect of the
vocal tract and a long-term predictor that captures the effect of the pitch (see,
e.g., [154]). However, it is also possible combine these two predictors which
results in a high-order, but sparse, linear predictor. This idea, combined with
the sparse linear prediction in (45), leads to the following generalized sparse
linear prediction problem:

â = arg min
a
‖x− Za‖p

p + λ‖a‖q
q. (46)

As before, the parameter λ ≥ 0 controls the tradeoff between the fitting
term and the penalty term, while p and q determine in which sense these
should be minimized. For p = 2 and q = 1 we obtain the Lasso while for
p = 1 and λ = 0 we obtain the sparse linear prediction of (45). To obtain the
aforementioned high-order sparse linear predictor, we can select p = 2, q = 1,
and λ > 0. It is interesting to note the similarities between (46) and statistical
methods for model selection (see, e.g., [7]), as both feature a fitting term and a
penalty term. More sophisticated predictors, such as those obtained with (45)
or (46), often come at the cost of added computational complexity, and this is
also the case here. In [60,61], dedicated real-time solvers exploiting the matrix
structures for the different sparse linear prediction problems were proposed,
and in [64] it was shown how to modify the optimization problems to ensure
stable filters, e.g., via additional constraints on a. So, the two reasons for
not using the sparse linear prediction, namely the stability and complexity
issues, have been solved. Interestingly, sparse linear prediction has found
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some uses in speech dereverberation [155, 156], an unsolved problem that
continues cause problems in hands-free communication and distant speech
recognition.

In connection with coding, a different interpretation of the sparse linear
prediction than the estimation theoretical one exists. Given that the speech in
some speech coders is reconstructed using sparse patterns in the excitation,
such as regular-pulse excitation [157] and multi-pulse excitation [158], the
optimal predictor for this problem is then, arguably, not one that minimizes
the 2-norm, as in traditional linear prediction, but one that takes the sparse
nature of the excitation in the decoder into account. For an overview of such
speech coders and their history, we refer the interested reader to [65].

Finally, it should be remarked that over the past couple of decades an
abundance of different methods for sparse approximations in different con-
texts have been proposed, aside from those already mentioned here, in-
cluding orthogonal matching pursuit [159], sparse Bayesian learning [160],
subspace pursuit [161], and the re-weighted 1-norm and 2-norm methods
[162, 163]. New applications of these principles to speech and audio con-
tinue to emerge, including beamforming [164, 165]. Important advances
have also been made that put sparse approximations on firmer mathematical
ground. Principles such as sparse Bayesian learning [160] and the horseshoe
prior [166] appear to be particularly promising and capable of overcoming
the problems of earlier methods, such as the selection of the appropriate reg-
ularization constant and the crude measures of sparsity employed in some
methods.

4 Model-based Filtering

Linear filtering is one of the most used tools of signal processing practitioners
and academics alike. In relation to the problems considered in this thesis, it
is also the predominant way of enhancing and separating signals. Optimal
filtering, as understood in the context of stochastic signals, is the foundation
on which echo/noise cancellation, noise reduction, source separation, and
beamforming are built (see, e.g., [167]). In these problems, optimal filters,
which can be either adaptive or static (e.g., [168]), are derived as solutions to
optimization problems stated in terms of signal statistics, such as the mini-
mization of the MSE or the maximization of the output power of a filter. In
most of these applications of linear filters, the involved signals are charac-
terized in terms of their second-order statistics, such as covariance matrices,
power spectral densities, or coherence matrices. As such, they employ what
may be characterized as vague models of the involved signals. In contrast,
we will here show how the parametric signal models considered so far can
be incorporated into optimal filtering.
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The Wiener filter and its extensions remain the de facto standard for signal
enhancement, despite it being a certain special case of a more general class
of filters (see [169]). In source separation, for example, the frequency-domain
Wiener filter (or some variation thereof) is typically used [13]. Multi-channel
enhancement methods often employ a multi-channel Wiener filter [170–172],
or features some combination of a beamformer and a postfilter, a construc-
tion which is equivalent to the multi-channel Wiener when a minimum vari-
ance distortionless response (MVDR) beamformer and a Wiener filter are
used [173]. It is interesting to note that much of the research in speech en-
hancement over the past couple of decades has focused on the problem of
determining the statistics required by the optimal filters, something that is
typically achieved via noise trackers [105–107, 174], although model-based
methods, which tend to perform better for non-stationary noise types and in
the presence of multiple speakers, also have been proposed [175–179].

In the preceding sections, we have discussed models of speech and audio
signals and how to find the parameters of these models in adverse conditions,
and we will now turn our attention to how these models, and the knowledge
gained from them, can be used for processing of signals. By incorporating
signal models in the processing of signals, we are essentially infusing our
domain knowledge about the problem at hand into the problem definition
and its solution. In doing this, we will focus on how this can be done in
linear filtering for noise reduction and beamforming, although the principle,
of course, holds more generally, and can be applied to a wealth of problems
(e.g., [180, 181]). Aside from the models discussed in this thesis, it should be
remarked that another type of model-based optimal filtering that, although
interesting, will not be discussed further here, is the Kalman filter, which
via its state equation enables the incorporation of certain models in optimal
filtering (see, e.g., [72, 177, 182–184] for some examples of this).

4.1 Classical Optimal Filtering

Before going into details about more sophisticated methods and model-based
filtering, we will first review classical optimal filtering methodology for noise
reduction on which the majority of contemporary methods is still based. Con-
sider the general model of the observed signal x(n) ∈ RM defined as

x(n) = s(n) + w(n), (47)

where s(n) is the signal of interest and w(n) the noise, which are assumed
to be statistically independent. Moreover, all signals are assumed to be zero-
mean. Then, the purpose in noise reduction is to design a filter h ∈ RM that
when applied to the input signal produces as its output, y(n), an estimate of
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s(n), i.e.,

y(n) = hHx(n) (48)

= hHs(n) + hHw(n). (49)

In estimation theoretical terms, linear filtering belongs to the class of linear
estimators, where it is the special case concerned with estimation from an
ordered set of samples using a linear combination of those samples (see,
e.g., [85]). As can be seen from (49), the linear filter affects the signal of
interest, s(n), and the noise, w(n). Ideally, we would like for the filter to
attenuate the noise while leaving the signal of interest unchanged, but these
two requirements are often at odds with each other, and noise reduction
comes at the cost of signal distortion. Noise reduction is then the art of
finding a compromise between these two conflicting demands. For example,
a filter can be designed by minimizing the MSE between the output of the
filter, y(n), and the signal of interest s(n), i.e.,

MSE = E
{
(s(n)− y(n))2

}
(50)

= var(s(n)) + hHRxh− 2hHρ, (51)

where Rx is the covariance matrix of x(n) and ρ = E {s(n)x(n)} is the cross-
correlation between s(n) and x(n). The solution that minimizes this MSE is
the well-known Wiener filter [167] which is given by

h? = R−1
x ρ. (52)

Observe that s(n) = sH(n)i1 where im is the mth column of the identity
matrix IM ∈ RM×M and that ρ = E {s(n)s(n)} due to independence. From
this it can easily be seen that the cross-correlation in (52), ρ, can be expressed
as ρ = Rsi1 where Rs = E

{
s(n)sH(n)

}
. To obtain the ubiquitous frequency-

domain formulation of the Wiener filter, the asymptotic approximation in
(14), can be used, i.e.,

FHh? = FHR−1
x Rsi1 (53)

≈ Γ−1
x Γs1M (54)

=

[
Ps(ω1)

Px(ω1)

Ps(ω2)

Px(ω2)
· · · Ps(ωM)

Px(ωM)

]T
. (55)

It should be stressed that there is only generally equivalence between the
frequency- and time-domain Wiener filters in the case of either infinitely long
filters or periodic signals having certain periods. Due to the Wiener filter
being based on the MSE between the signal of interest and the output of the
filter, it offers what is essentially a pre-determined tradeoff between signal
distortion and noise reduction [169].
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Since we have that Rx = Rs +Rw, the time- and frequency-domain Wiener
filters in (52) and (55) can be computed in a number of equivalent ways,
depending on what quantities can most easily be estimated in a given context.
An estimate R̂x of Rx can be obtained from the observed signal but then
either Rs or Rw has to be estimated in some other way, and typically Rw is
estimated. Indeed, much of the research on noise reduction in the past two
decades has essentially focused on finding the involved signal statistics, most
often the statistics of the noise [11, 105, 106, 185], but there are also methods
that estimate both speech and noise statistics jointly [175]. The model-based
approach can also be used for solving this problem, which is particularly
useful for non-stationary noise [186]. For example, the covariance matrix
model in (11) can be used to express Rs in terms of the model and thus
parametrizes the unknown covariance matrix of the signal of interest, i.e.,

Rx = Rs + Rw (56)

= ZPZH + Rw. (57)

Then, the estimate R̂s = ZPZH of Rs can then either be used directly to
compute an optimal filter based on estimates of the nonlinear parameters
ξ characterizing the columns of Z and the amplitudes a, such as the Wiener
filter in (52), or it can be used to estimate the noise covariance matrix as R̂w =
R̂x −ZPZH . However, there are many more ways in which the signal models
and their estimators can be exploited in connection with linear filtering for
noise reduction (see, e.g., [187]), some of which will be explored next.

4.2 Model-based Optimal Filtering

Distortionless optimal filter designs have a rich history in both beamforming
and spectral analysis [188–190] but are rare in speech and audio processing,
except for in beamformers. A way to exploit the model of the observed signal
directly in the design of optimal filters will be explored next. As it turns out,
such filters can be used for both noise reduction and parameter estimation
when combined with signal models. Recall that the filtered observed signal
in (49) can be expressed also in terms of the model as

y(n) = hHZ(n)a + hHw(n). (58)

To obtain a distortionless estimate that minimizes the detrimental effect of
the filter on the signal of interest, we can impose the constraint hHZ(n) =
iT
1 Z(n) [B]. More generally, however, we can obtain an estimate of an arbitrary

sample of s(n) by appropriately selecting the corresponding constraint as
hHZ(n) = iT

mZ(n) where im is the mth column of the identity matrix IM ∈
RM×M, as this then leads to y(n) being an estimate of sample s(n + m −
1). Aside from this constraint, we must choose an objective function to be
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minimized (or maximized) to find an optimal filter. Assuming independence
between s(n) and w(n), the output power of the filter can be expressed as

hHRxh = hHRsh + hHRwh. (59)

Clearly, from (59) we observe that to attenuate the noise, we must minimize
the power of the term hHw(n), which is equal to hHRwh. Yet, at the same
time, it makes sense to instead minimize the output power of the filters, i.e.,
maximize hHRxh, as the filters are already distortionless. Indeed, as shown
in [190] for a related problem, the solutions (i.e., the resulting filters) are
identical for the two problems. This means that in finding the optimal filter
for noise reduction, we can simply use Rx, which is directly available, and
do not have to solve the somewhat complicated problem of estimating Rw.
However, for clarity we will proceed to use Rw in what follows. We can pose
the optimal filter design problem as the following quadratic optimization
problem with linear constraints [B]:

minimize
h

hHRwh s.t. ZH(n)h = ZH(n)im, (60)

which has the well-known solution [191]

h? = R−1
w Z(n)

(
ZH(n)R−1

w Z(n)
)−1

ZH(n)im. (61)

The above filter design is an example of what can be achieved with a model-
based approach. We can now use this filter for different purposes. For noise
reduction the filter in (61) is not only distortionless–it is also optimal, in the
sense of maximizing the output SNR, as hHRwh is minimized. It should be
noted that the filter is only truly distortionless given perfect knowledge of
the matrix Z(n). In the presence of noise, estimation errors will lead to Z(n)
not being known perfectly, which, in turn, will lead to distortion of the signal
of interest. In that case, the equivalence between using Rx and Rs no longer
holds. Also, it should be noted that for the case that L = M, the solution to
the filter design problem is trivial. The constraint above can be implemented
using the principle of the generalized sidelobe canceller [192], which has
found many uses in speech and audio processing (e.g., [193, 194]), whereby
the solution can be found using standard adaptive filtering algorithms.

Meanwhile, to estimate the nonlinear parameters of the matrix Z(n) using
such optimal filters, we insert the solution (61), with Rw replaced by Rx, into
hHRxh and then maximize the output power, i.e.,

ξ̂ = arg max
ξ

iH
mZ(n)

(
ZH(n)R−1

x Z(n)
)−1

ZH(n)im. (62)

For the case where m = 1 and n = 0 we have that for the models in (4) and
(6) the constraint reduces to ZHh = 1L with 1L = [ 1 · · · 1 ]T ∈ RL. In that
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case, the estimator above reduces to

ξ̂ = arg max
ξ

1H
L

(
ZHR−1

x Z
)−1

1L. (63)

This principle has been used for a number of estimation problems, such as
spectral analysis, amplitude estimation, direction-of-arrival estimation, prob-
lems which all have similar models (see, e.g., [43]). Several contributions
have been made in this thesis based on the principle of optimal filtering for
parameter estimation. An estimator of the fundamental frequency based on
optimal filtering was first proposed in [38]. This was later explored in more
detail in [78, 94] and [C]. Moreover, in [195] it was shown how the struc-
ture of the model and the involved matrices can be exploited to obtain a fast
implementation.

The filter design above can also be modified to obtain an estimate of the
entire vector s(n) ∈ RM using a filter matrix H ∈ RM×M as

y(n) = HHZ(n)a + HHw(n). (64)

In that case, the output power is given by Tr
{

HHRwH
}

. It then follows that
for the filter to be distortionless, it must satisfy HHZ(n) = Z(n) which leads
to the following optimization problem:

minimize
H

Tr
{

HHRwH
}

s.t. ZH(n)H = ZH(n). (65)

The optimal filter matrix is then given by

H? = R−1
w Z(n)

(
ZH(n)R−1

w Z(n)
)−1

ZH(n). (66)

As we can see, we can, given perfect knowledge of the matrix Z(n), extract
a distortionless estimate of the entire speech vector, s(n) based on the model
Z(n). At this point it should be stressed that in the derivation of this optimal
filter, we did not exploit any knowledge of the structure of the model in Z(n),
which means that the principle is quite general and holds for many models.

In speech and audio applications, we, as already mentioned, have the
problem that the noise statistics, Rw, are unknown. While various methods
have been proposed over the years to estimate these, an alternative is to in-
tegrate it into the design of the filer based on the sinusoidal model in (4),
which then also applies to the harmonic model in (6). This idea is based on
the APES filter, which originated in spectral estimation. Simply put, the idea
is that we would like to design the filter h for the signal model in (4) for
n = 0 under the constraint that hHZ = iT

1 Z where the output of the filter
should then resemble a sum of sinusoids. This is achieved by minimizing the
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MSE between the output of the filter and a sum of sinusoids having unknown
parameters, i.e.,

MSE =
1

N −M + 1

N−1

∑
n=M−1

∣∣∣∣∣y(n)− L

∑
l=1

alejωl n

∣∣∣∣∣
2

(67)

=
1

N −M + 1

N−1

∑
n=M−1

|hHx(n)− aHψ(n)|2, (68)

with ψ(n) = ZT(n)i1 =
[

ejω1n · · · ejωLn ]T . Solving for the amplitudes that
minimize the MSE yields â = Ω−1Ψxh, where

Ψx =
1

N −M + 1

N−1

∑
n=M−1

ψ(n)xH(n) (69)

Ω =
1

N −M + 1

N−1

∑
n=M−1

ψ(n)ψH(n). (70)

Inserting these into (68) along with the amplitude estimates, and observing
that R̂x = 1/(N − M + 1)∑N−1

n=M−1 x(n)xH(n), we obtain the following ex-
pression for the MSE:

MSE = hH
(

R̂x −ΨH
x Ω−1Ψx

)
h. (71)

From this we see that with this approach, we estimate the noise statistics, Rw,
implicitly as

R̂w = R̂x −ΨH
x Ω−1Ψx. (72)

An optimal filter can now be obtained by minimizing the MSE in (71) subject
to the aforementioned constraint hHZ(n) = iT

1 Z(n), i.e.,

minimize
h

hHR̂wh s.t. ZH(n)h = ZH(n)i1, (73)

where R̂w then is the particular estimate of the noise covariance matrix in (72).
As before, the solution is given by h? = R−1

w Z(n)(ZH(n)R−1
w Z(n))−1ZH(n)i1.

There are a number of interesting special cases of the optimal filters ob-
tained with this approach, as shown in [B]. Approximating Ω with I,
for example, yields the usual noise covariance matrix estimate based on
the noise covariance matrix model (11). Capon-like filters can also be
obtained by using R̂x instead, which results in the optimal filter h? =
R̂−1

x Z(n)(ZH(n)R̂−1
x Z(n))−1ZH(n)i1. Meanwhile assuming that the noise is

white, i.e., R̂x = σ2
wIM, yields h? = Z(n)(ZH(n)Z(n))−1(n)ZH(n)i1. Noting

that limM→∞ MZ(n)(ZH(n)Z(n))−1 = Z(n), we get h? = 1/MZ(n)ZH(n)i1,
in which case the filters reduce to simply the Fourier basis. When n = 0
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the filters are furthers simplified as ZH(0)i1 = 1L. The filters discussed here
also apply to the harmonic model in (6), as we then have that ωl = ω0l.
In that case, the resulting filters are essentially comb filters, a classical type
of filter for processing speech and audio signals in many different applica-
tions [100, 196–200]. However, unlike their classical precursors, these filters
are adaptive, meaning that they adapt to the observed signal and, thereby,
the background noise and any interferences, and they are optimal. These
filters have many possible uses in in speech and audio processing, as shown
in papers [B], [D], and [E]. While it is not surprising that the filter designs
considered here apply to the harmonic model, it is perhaps more surprising
that, as those papers show, they apply to the harmonic chirp model (16) as
well [E].

A concern in these methods is the robustness to model mismatch. It is
well-known from the literature that, for example, the Capon beamformer
exhibits problems for coherent signals, a situation that occurs frequently
in speech and audio signals whenever reverberation is present, and when
there are errors in the steering vector [201, 202]. To solve this, a number of
robust beamformer designs have been proposed over the years, e.g. [203].
In [204, 205], it was shown that these methods also work well for speech
and audio signals and increase the robustness of frequency-domain adaptive
beamformers. It remains to be investigated, however, whether similar ap-
proaches can be taken in the time-domain described here, where problems
may also occur for model mismatch, for example, when the harmonics are
not exact integral multiples of the fundamental [206], but the transferal of the
aforementioned principles to these methods is non-trivial, not least due to
the much higher dimensionality of time-domain filtering problems.

4.3 Subspace-based Optimal Filtering

As we have seen, subspace methods and optimal filtering methods can be
used for parameter estimation and both can also be used for noise reduc-
tion with early pioneering work on subspace methods for enhancement be-
ing [207,208]. The two methodologies have their origins in different commu-
nities and are based on different methodologies. They were for a long time,
at least by some, considered unrelated, competing methodologies (see, e.g.,
the description in [209]), although an early attempt at explaining subspace
methods in terms of filtering was given in [210]. The variable span filter-
ing framework introduced in [211] unifies the two methodologies based on
ideas dating back at least to [212, 213]. This leads to a framework wherein it
is possible to trade off signal distortion for noise reduction, and vice versa,
while making use of the knowledge gained via the model in (2). Classical
subspace methods for noise reduction rely on models similar to those of the
covariance matrix in (11) wherein the noise is assumed to be white. Colored
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noise can then be accounted for using pre-whitening or using joint diagonal-
ization [208,214]. The variable span filter framework uses the latter approach.
Recall the model of x(n) ∈ RM

x(n) = s(n) + w(n) (74)

= Za(n) + w(n), (75)

where Z ∈ CM×L and a(n) ∈ CL. Assuming that the signal of interest and
the noise are uncorrelated, we have that Rx = Rs + Rw. The covariance
matrix of the signal of interest, Rs = ZPZH , is here assumed to have rank
L ≤ M, which holds, e.g., for the models in (4) and (6) for a distinct set
of frequencies and a non-zero fundamental frequency, resptively, while the
noise covariance matrix Rw is assumed to have rank M. The case where the
noise covariance matrix is rank deficient is treated in [111]. We now seek to
design an optimal filter to estimate s(n). The variable span filters are based
on the principle of joint diagonalization, which will now briefly be presented.
The covariance matrices Rs and Rw can be jointly diagonalized by the full-
rank matrix B ∈ CM×M, i.e.,

BHRsB = Λ, (76)

BHRwB = IM, (77)

where Λ is a diagonal matrix containing the real, non-negative elements
{λi}M

i=1 on the diagonal. These are assumed to be sorted in descending or-
der, i.e., as λ1 ≥ · · · ≥ λL > λL+1 = · · · = λM = 0. The matrix B contains
the corresponding eigenvectors b1, . . . , bM. These can also be seen to be the
eigenvectors of R−1

w Rs, which, in other words, means that we also have that
R−1

w RsB = BΛ. Furthermore, the covariance matrix of the observed signal,
Rx, can also be diagonalized by B, i.e., BHRxB = Λ + IM. Let the matrix B be
partitioned as B = [ B′Q B′′Q ] where

B′Q =
[

b1 b2 · · · bQ
]

(78)

B′′Q =
[

bQ+1 bQ+2 · · · bM
]

. (79)

We remark that when we select Q = L, we have that B′′HL s(n) = 0. The idea
of the variable span filters is to express a filter as a linear combination of the
Q first columns of B, i.e.,

h = B′Qa′Q, (80)

where a′Q ∈ CQ then can be found in different ways to yield different so-
lutions in terms of output SNR and signal distortion. More specifically, the
variable span linear filters are of the following form:

h =
Q

∑
q=1

bqbH
q

µ + λq
Rsi1, (81)
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where µ ≥ 0 is a Lagrange multiplier, often treated as a user parameter to
be chosen by itself, that controls the tradeoff between noise reduction and
signal distortion. Interestingly, the variable span filters can be related to the
model-based filter designs considered in Subsection 4.2. Observe that for the
sinusoidal and harmonic models in (4) and (6), respectively, the variable span
filters can also be expressed as

h =
Q

∑
q=1

bqbH
q

µ + λq
ZPZi1, (82)

by using the covariance matrix model (11). Recall that distortionless filter for
the signal model in (75) is given by (61) for which we consider the case where
we wish to estimate the first sample s(n) of the vector s(n). The inverse noise
covariance matrix, R−1

w , can be expressed using B as R−1
w = BBH . In that

case, the model-based optimal filter in (61) can be written as

h = BBHZ
(

ZHBBHZ
)−1

ZHi1. (83)

Next, observe that this optimal filter can be expressed in terms of B′Q with
Q = L due to B′′HL Z = 0. Moreover, since the matrix ZHB′L is both square and
invertible, the above can be rewritten as

BBHZ
(

ZHBBHZ
)−1

ZHi1 = B′LB′HL Z
(

B′HL Z
)−1 (

ZHB′L
)−1

ZHi1 (84)

= B′L
(

ZHB′L
)−1

ZHi1. (85)

We can simplify this further by using the covariance matrix model, i.e.,
Rs = ZPZH , due to which we have that B′HL ZPZHB′L = Λ′ where Λ′ =
diag ([λ1 · · · λL]) contains the L nonzero eigenvalues in Λ. From this we
can conclude that

(
ZHB′L

)−1
= Λ′−1B′HL ZP and thus

B′L
(

ZHB′L
)−1

ZHi1 = B′LΛ′−1B′HL ZPZHi1 (86)

=
L

∑
q=1

bqbH
q

λq
ZPZi1, (87)

which demonstrates that the filter design in (61) is equivalent to that of (82)
for Q = L and µ = 0, a filter which is sometimes referred to as the MVDR
filter. Moreover, the aforementioned equivalence between using Rx and Rw

in (61) can also easily be proven in a similar fashion, only B (Λ + IM)−1 BH

should be inserted into (61) instead of BBH . As has been shown, a clear
connection exists between the model-based and the subspace-based optimal
filtering approaches. However, while the variable span linear filters require
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that the joint diagonalization of Rs and Rw be computed, which in turn re-
quires that either of those matrices be estimated somehow, the model-based
optimal filtering only requires that the parameters characterizing Z, which
for the case of the harmonic model (6) is only the fundamental frequency, be
found.

Besides from this case, which is of particular importance to this thesis, a
number of other classical filter designs are special cases of the variable span
filters as shown in [211, 215]: for example, with Q = M and µ = 1 we ob-
tain the Wiener filter, while for Q = 1 we obtain the maximum SNR filter.
For Q ≤ L and µ = 0 we obtain minimum distortion filters, and for Q ≥ L
and µ ≥ 0 we get tradeoff filters. As can be seen, the variable span filters
thus not only contain a number of classical filter designs as special cases,
but a continuum of solutions that have different properties in terms of sig-
nal distortion and noise reduction capabilities. The variable span filters can
be applied equally well to spatial filtering problems and in the frequency do-
main [215] (see also [216]). More importantly, however, it is possible to bound
and relate the performance of the different filter designs in the variable span
filter framework in terms of output SNR and signal distortion. For exam-
ple, the maximum SNR filter achieves the highest possible output SNR but
also incurs the most distortion on the signal of interest. It should, though,
be remarked that there are multiple ways to arrive at these filter. For exam-
ple, in [217] similar filters are obtained via a low-rank approximation of the
covariance matrix of the observed signal.

4.4 Multi-Channel Model-based Filtering

Much of the progress within speech and audio processing in recent years,
both in terms of research and the development of new technology, has been
achieved via the use of microphone arrays, which with the availability of
cheap, small microphones, such as MEMS microphones, can now been found
in many devices. It is interesting to note that in array signal processing for
speech and audio signals, propagation models are commonplace but signal
models, such as those considered in this thesis, are rare (see, e.g., [13]). In-
deed, signals are most often characterized simply via second-order statistics
[171,182,218–222], and often only spatial statistics are used [202,204,223,224].
As we shall see, however, using signal models not only makes it possible
to exploit knowledge about the signal of interest in, e.g., localization or
beamforming, the models considered herein are actually well-suited for this.
There are many ways in which these models can be used in filtering in a
multi-channel setting either for the purposes of reducing noise or separating
sources or for estimating parameters. We will now present some of these.
Let subscript k = 1, . . . , K denote the kth channel, and consider the following
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multi-channel model:

xk(n) = hk(n) ∗ s(n) + wk(n). (88)

Here, s(n) is the signal of interest, hk(n) is the impulse response describing
the propagation of the signal s(n) from its origin to microphone k, and wk(n)
is channel-specific noise. A simple yet effective model that can account for
several effects is the following, which is based on (8) with xk(n) ∈ CM:

xk(n) = ZD(n− τk)ak + wk(n). (89)

In this model, the effect of the impulse response, hk(n), on the signal of
interest, s(n) is modeled as a channel-dependent delay, τk, that explains the
propagation time from the source to microphone k, and channel-dependent
complex amplitudes, ak, which account for the filtering effect of the air on
the signal of interest. Recall that for the sinusoidal model the matrix D(n) is
given by D(n) = diag

([
ejω1n ejω2n · · · ejωLn]) and thus

D(n− τk) =


ejω1(n−τk) 0 · · · 0

0 ejω2(n−τk) · · · 0
...

...
. . .

...
0 0 · · · ejωL(n−τk)

 . (90)

The model in (89) is accurate for large N and when s(n) is stationary over the
N samples, as the effect of the convolution in (88) is then simply that the com-
plex amplitudes of the model are changed for each channel. In this model,
the channel-dependency is then explained purely in the matrix D(n) and the
complex amplitudes, ak, meaning that the nonlinear part of the model, Z,
is shared across channels. Since the noise in the model can be different for
different channels, it can easily account for different SNRs, etc. For the har-
monic model in the form of the model in (89), it is possible to derive the MLE
to estimate the ω0 jointly across all channels, while estimating the delay, τk,
and complex amplitudes, ak for each channel k. It is also easy to constrain
the model to share complex amplitudes across channels, i.e., ak = a∀k, and
to incorporate different array structures in the delays such that these are de-
termined by a single DOA. Moreover, as shown in [225], it is also possible to
incorporate near-field models into the model and to estimate its parameters
and to account for reverberation, to some extent [226]. The principles can also
be used to design a directional binaural fundamental frequency estimator for
hearing aids that estimates the fundamental frequency of a source coming
from the nose direction of the user [177].

Next, we will exemplify what can achieved using the model-based ap-
proach based on [G], wherein the problem of joint fundamental frequency
and localization is considered and its potential explored. In other words, we
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will now consider the case where ωl = ω0l. A special case of the model
in (89) is when the signal of interest is purely delayed across channels, i.e.,
xk(n) = s(n − τk) + wk(n), as is the case in far-field conditions and ane-
choic environments. Moreover, for a uniform linear array with microphones
k = 1, . . . , K placed ∆ apart, the delays between microphone k and 1 of
the observed signal (when microphone 1 is used as reference) is given by
τk =

∆ sin ϕ
c (k− 1) with ϕ being the DOA and c the propagation speed. From

this, we can define the spatial frequency as ωs = ω0 fs
∆ sin ϕ

c with fs being the
sampling frequency. The observed signal for channel k can now be expressed
as xk(n) = ∑L

l=1 alejω0lne−jωsl(k−1) + wk(n). The observed signal collected in
snapshots of M samples and aggregated across channels can be organized in
a matrix X(n) ∈ CK×M defined as

X(n) =

x1(n) · · · x1(n−M + 1)
...

. . .
...

xK(n) · · · xK(n−M + 1)

 . (91)

Defining ik as the kth column of IK, the observed signal in the matrix in (91)
can be related to the model in (89) as iT

k X(n) = xT
k (n) with ak = a∀k, i.e.,

XT(n)ik = ZD(n− τk)a + wk(n). (92)

Introducing γl(n) = alejω0ln, which can be identified as the individual el-
ements of the vector resulting from the matrix-vector product D(n)a, the
matrix in (91) can be modeled as

X(n) =
L

∑
l=1

γl(n)zs(ωsl)zT
t (ω0l) + W(n), (93)

where the noise term W(n) ∈ CK×M is defined similarly as X(n) in (91) and
zt(ω0l) and zs(ωsl) are temporal and spatial model vectors defined as

zt(ω0l) =
[
1 e−jω0l · · · e−jω0l(M−1)

]T
(94)

and
zs(ωsl) =

[
1 e−jωsl · · · e−jωsl(P−1)

]T
, (95)

respectively. Defining x̄(n) = vec{X(n)} where vec{·} is the vectorization
operator that stacks the columns of the argument, and similarly for w̄(n), the
model can be written as

x̄(n) =
L

∑
l=1

γl(n)z̄l + w̄(n), (96)
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where z̄l is the vectorized version of the spatio-temporal model, i.e.,

z̄l =vec{zs(ωsl)zT
t (ω0l)} (97)

=zs(ωsl)⊗ zt(ω0l), (98)

which, as can be seen, can also be expressed using the Kronecker product,
⊗. Next, consider the problem of designing an optimal vectorized spatio-
temporal filter h̄ ∈ CKM to be applied to x̄(n). From the optimal filter
designs considered earlier, we see that by imposing constraints on an op-
timal filter, we can extract the signal of interest in a distortionless manner
while attenuating noise and interference as much as possible. To do this
for the multi-channel model, we observe from the model in (96) that if we
impose the constraint h̄H z̄l = 1∀l, the harmonics having fundamental fre-
quency ω0 impinging on the array from an angle of ϕ will pass undistorted

as h̄H
(

∑L
l=1 γl(n)z̄l

)
= s(n). Define R̄x as the covariance matrix of x̄(n), then

associated optimal filter design problem can be cast as the following:

minimize
h̄

h̄HR̄xh̄ s.t. z̄H
l (n)h̄ = 1 (99)

for l = 1, . . . , L. (100)

Defining the matrix Z̄ =
[
z̄1 · · · z̄L

]
, comprising the vectorized harmonic

components, the constraint can be expressed compactly as Z̄Hh̄ = 1L, and
the solution to the above optimization problem is given by:

h̄? = R̄−1
x Z̄

(
ZHR̄−1

x Z̄
)−1

1L. (101)

This requires that the inverse of the matrix R̄x exists, which is satisfied for
N + 1 ≥ M(K + 1) when the sample covariance matrix estimate is computed
from the vectorized observed signal x̄k(n) [G]. The filter in (101), which op-
erates jointly in time and space, can then be used for joint estimation of the
fundamental frequency, ω0, and the angle, ϕ, by applying the optimal filter
to the observed signal and then maximize the output power. This yields the
following estimator:

{ω̂0, ϕ̂} = arg max
ω0,ϕ

1T
L

(
ZHR̄−1

x Z̄
)T

1L. (102)

As shown in [G], joint estimation of the fundamental frequency and angle
lead to an estimator that is more robust than estimating the parameter se-
quentially, as is often done. Moreover, estimators built on this principle are
typically also robust to noise and interference. Other works that have ex-
plored similar ideas, but in different ways and contexts, include [227–231]
which involve joint pitch estimation and localization while [232] explores the
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related idea of performing localization while modeling the signal of interest
using an auto-regressive model. General multi-channel pitch estimators that
do not exploit array geometry are a rarity, and only a few examples can be
found in the literature [35, 233, 234].

The optimal filter in (101) can also be used for beamforming, in which
case the covariance matrix of the observed signal, R̄x, should be replaced by
the covariance matrix of the vectorized noise, i.e., R̄w. Various simplifications
and special cases of the optimal filter design can also be obtained, similarly
to the single-channel case. For example, certain noise distributions can be
assumed, or asymptotic approximations can be used to simplify the filters.
Interestingly, it is also possible to derive a filterbank version of the optimal
filter and to derive a filter that outputs a vector.

5 Conclusion

In what follows, the specific contributions of the individual papers included
in this thesis will be stated after which they will be discussed and directions
for future research will be given.

5.1 Contributions

[A] The paper considers the problem of determining the number of sinu-
soidal components from a noisy signal using a subspace method that ex-
ploits the orthogonality between the signal and noise subspaces. In [113],
it was first proposed to do this by scaling a subspace orthogonality cri-
terion based on the Frobenius norm to account for the unknown and
thus varying number of dimensions of the involved subspaces. This
was introduced based on the Cauchy-Schwarz inequality and while the
notion of estimating the model order based on subspace orthogonality
is sound, the criterion itself lacked a proper mathematical foundation.
This paper formalizes these ideas in the context of the sinusoidal model,
a problem also considered in [235]. It does so by connecting the under-
lying problem of measuring orthogonality of subspaces having variable
dimensions (due to the unknown number of sinusoids) to the concept of
angles between subspaces. Defining such angles in multi-dimensional
spaces is a non-trivial problem, but based on this connection, a new cri-
terion is proposed. This new criterion is compared to other methods
for model and order selection, including well-known statistical methods
and other subspace-based criteria, and the results clearly demonstrate
that the principle works well. Interestingly, it is typically simpler to
apply this new principle to nonlinear models than criteria such as the
BIC, which require complicated statistical analysis be performed to de-
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termine the penalty. This principle was adopted for joint fundamental
frequency and order estimation in [78].

[B] This paper explores the ideas behind the optimal filtering method orig-
inally proposed for fundamental frequency estimation in [38] further
and explores their novel application to enhancement and separation of
periodic signals, problems often encountered in speech and audio pro-
cessing, building on the preliminary results first presented in [236]. This
results in a set of filter designs that can be thought of as adaptive, op-
timal finite impulse response comb filters with a wide range of applica-
tions. A number of different filter designs are proposed and analyzed,
including filterbank formulations and filters that implicitly estimate the
noise statistics in the computation of the optimal filters. Moreover, a
number of simplifications and special cases are investigated, and it is
shown that the filters reduce to well-known filters and concepts in par-
ticular special cases. Experiments demonstrate how these filters can be
applied to speech and audio signals and investigate their performance
when enhancing and separating such signals. Particularly, the ability of
these filters to attenuate interference without explicit knowledge about
their presence is remarkable.

[C] Most of the fundamental frequency estimators encountered in the liter-
ature employ asymptotic approximations, very often implicitly. When
the fundamental frequency is not close to zero and when the number
of samples is high, these approximations are accurate and good esti-
mates can be obtained, even in the presence of noise. The harmonic
summation method is an example of this. However, when this is not
the case, such estimators may fail completely, as they ignore the interac-
tion between the harmonics. This paper thus considers the problem of
estimating low fundamental frequencies from noisy observations. The
problem is further complicated by the real-valued nature of audio sig-
nals which creates interactions between the positive and negative sides
of the spectrum, something that is not normally an issue. The issues sur-
rounding this are poorly understood and have not been investigated in
detail in the literature. The paper analyzes the problem in depth using
exact CRLBs computed numerically and a collection of exact estimators,
expanding on the preliminary work [237, 238], that do not make use of
the aforementioned asymptotic approximations are derived and tested
in simulations. The results show that it is possible to achieve better
performance with the exact estimators with the nonlinear least squares
method clearly performing the best.

[D] An often heard criticism of the harmonic model is that it assumes that
the signal is stationary over the segments that are being analyzes or pro-
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cessed, as it is well-known that voiced speech is continuously changing.
To investigate whether this is important, the harmonic chirp model was
proposed in [56]. In this paper, this model and the associated estimator
are explored further and its use for analysis of voiced speech is inves-
tigated. Moreover, optimal segmentation in combination with a MAP
criterion i used to find the combination of the optimal model and seg-
mentation of the observed signal. To account for the background noise
rarely being white in speech and audio signals, adaptive pre-whitening
based on an auto-regressive noise model, which serves to smooth the
estimated noise spectrum, is used. The results demonstrate that the har-
monic chirp model is a better model of voiced speech, particularly for
longer segments, than the harmonic model, and that the model-based
fundamental frequency estimators achieve competitive performance in
terms of traditionally used metrics on real speech data while having
the additional benefits of robustness and statistically optimal continu-
ous pitch estimates.

[E] This paper continues the work of papers [B], [D], and the preliminary
results reported in [239], by considering model-based enhancement for
non-stationary periodic signals, such as voiced speech. It is shown in
the paper that it possible to account for the non-stationary nature of
speech in the design of optimal filter for noise reduction based on the
harmonic chirp model. Considering that most existing methods as-
sume that speech and noise are stationary within segments, this is a
notable feature. Based on the harmonic chirp model, optimal filters that
let the signal of interest pass undistorted while attenuating the back-
ground noise optimally by maximizing the output SNR. Moreover, it is
also demonstrated that in the process, the principle behind the APES
filters can be used to estimate the noise statistics required by various
optimal filtering methods, such as the Wiener filter. Hence, a number of
problems in speech enhancement are solved simultaneously this way.

[F] Linear prediction, which is closely related to the auto-regressive model,
is a ubiquitous tools in speech processing. Traditional linear predic-
tion is performed by minimizing the 2-norm of the prediction error. Its
properties are well-understood and its problems when applied to speech
signals have been well-known since the 70s. Inspired by advances in
convex optimization and compressed sensing, sparse linear prediction
is proposed and its applications to speech processing explored, building
on the preliminary work first reported in [240–247]. Since voiced speech
can be modeled (crudely) as a pulse-train passed through an all-pole
filter, it is better to use the 1-norm than the 2-norm of traditional linear
prediction when analyzing and processing voiced speech, as this renders
the residual sparse. This way, several of the well-known problems of
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traditional linear prediction, such as the estimates’ dependency on time-
shifts and pitch, are solved. Moreover, by using high-order but sparse
predictors, the combined effects of long- and short-term predictors can
be captured. The paper considers different algorithms for implementing
the idea of sparse linear prediction and explores several possible speech
applications.

[G] In this paper, the idea of model-based microphone array processing
is explored, based on the preliminary ideas and results presented in
[248, 249]. More specifically, it is proposed to incorporate the harmonic
model in an optimal spatio-temporal filtering framework which is then
used for localization by jointly estimating the fundamental frequency
and the direction-of-arrival of speech signals impinging on a uniform
array. Hereby, the piece-wise smooth evolution of the fundamental fre-
quency of voiced speech along with movements in space can be ex-
ploited for better localization of speakers in complex acoustic environ-
ments. Similarly to its single-channel counterparts explored in, e.g., [B],
different filter designs can be derived and a number of interesting special
cases and simplifications exist. As part of the work, a recently proposed
way of estimating signal statistics is also investigated. The good perfor-
mance and robust nature of the proposed method is demonstrated in
the experiments.

5.2 Discussion

As highlighted in the previous section, the papers in this thesis make a num-
ber of specific contributions to signal modeling, parameter estimation, and
model-based filtering within speech and audio processing. These contribu-
tions each provide a small piece to a bigger puzzle. The papers have made
significant advances to model-based fundamental frequency estimation by
introducing and analyzing a number of new methods for solving this prob-
lem, but also by proposing new ways of solving some of the associated prob-
lems, problems that occur in many different contexts in speech and audio
processing. These include the problem of order selection, which is a gen-
eral problem in science and engineering. The papers also introduce different
ways in which the presence of noise, and, in particular, colored noise can
be handled and its statistics estimated. The papers explore how other in-
terfering, periodic sources can be dealt with via optimal filtering for both
the single-channel and multi-channel cases. The multi-channel models and
methods also demonstrate the potential of the model-based approach. It is
also demonstrated how more advanced models, such as the harmonic chirp
model, can be be used to help answer questions whether the harmonic model,
for example, is robust to non-stationarity. Similarly, the exact estimators de-
veloped for estimating low fundamental frequencies help answer the ques-
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tion of how accurate the commonly used asymptotic approximations are and
whether they are already sufficient. Sparse linear prediction demonstrates
how the inherent problems associated with the ubiquitous linear prediction
based on 2-norm minimization can be solved, not via heuristics, but by ex-
amining the underlying statistical assumptions and by casting the problem
as a statistically meaningful convex optimization problem. More recent work
has shown how this can be taken even further using a fully Bayesian frame-
work [62, 63].

Seen as a whole, a number of important and more general lessons can
also be learned from the papers included in this thesis. The thesis demon-
strates that signal models can be used for solving quite a number of differ-
ent important problems in speech and audio processing, such as fundamen-
tal frequency estimation, localization, noise statistics estimation, separation,
enhancement, and beamforming, and that there are inherent advantages of
doing so, such as treating the fundamental frequency as the continuous pa-
rameter it is and obtaining methods that are robust by explicitly accounting
for noise. These usages go beyond the typical uses of such models, which
have in the past mostly been limited to signal modification and analysis,
although the harmonic model was, at one point, also considered for both
speech and audio coding (e.g., [16]) but it never gained widespread use. The
thesis also demonstrates that the problems associated with the use of these
models can, quite often, be solved, one by one. For example, the papers
demonstrate that the presence of colored noise can be handled in a number
of ways, for example by explicitly taking its presence into account in the es-
timation process or by pre-processing. Similarly, the often heard criticism of
the models not taking the non-stationarity of speech into account can be ad-
dressed, as demonstrated by the harmonic chirp model. Moreover, it is only
because of the methodological approach to solving the estimation and mod-
eling problems that the weaknesses of the obtained methods are revealed.
For example, the absence of explicit assumptions of non-parametric meth-
ods may seem like an advantage at first sight, but it is really a disadvantage
down the road, as there is no systematic approach to resolving any issues
the methods may have, which are then only also discovered experimentally.
With the model-based approach, for example, it is quite clear that model
and order selection are inherent parts of the solution to many problems, as
multiple models are considered in the process of solving an estimation or
modeling problem while is less obvious in other approaches. In noise track-
ers [12, 105, 174], for example, a hypothesis test selecting between noise and
speech-plus-noise models is typically performed, and the compared models
are of different complexity, which causes problems, and similar observations
hold for many source separation methods. The papers in this thesis also show
that there are several ways in which signals models can be used in speech and
audio processing. It is well-known that the harmonic model can be used for
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fundamental frequency estimation [101], although questions concerning the
robustness of methods based on this model have remained unanswered un-
til recently [104], but it is less obvious that the models can be used directly
in filtering for noise reduction and beamforming, including also the non-
stationary harmonic chirp model. It is also important to note that another
common criticism of the models considered here and their estimators is that,
due to their nonlinear nature, they lead to nonlinear, complicated estimators
that are so much more complex than their non-parametric counterparts that
it defeats any advantage they may have in accuracy or robustness. However,
as shown in [58,103,195] it is possible to derive fast estimators for these mod-
els, and, in the case of the method of [103], the fast implementation is of a
complexity comparable to harmonic summation while the resulting method
is much more robust than non-parametric methods. There thus appears to
be very little reason to not use these methods anymore, as compared to the
alternatives.

The models discussed in this thesis are mostly Gaussian, and it is some-
times argued that the scientific community should turn its attention to non-
Gaussian models and nonlinear signal processing. While it is of course true
these would be more general and can describe more complex phenomena
and do things that linear signal processing cannot, such models and methods
are also much more difficult to deal with, meaning that there is a tractability
to the models considered herein that may be lost for more complex models.
More specifically, closed-form solutions may not exist, and it may be very dif-
ficult to analyze and understand the behaviour of the algorithms, and thus
it can also be very difficult to improve them, other than by trial-and-error.
Deep learning is an example of this. Many interesting and promising results
and applications within speech and audio, and in other fields too, have been
reported recently (e.g., [250–253]), but, as pointed out in [254, 255], that type
of research suffers from some issues that we are now also seeing in signal
processing research. The incorporation of more structure (i.e., models) in
deep learning is a possible solution to at least some of these issues [256].
More complex models also generally lead to poorer estimates [87], so as sim-
ple models as possible should be preferred. Concerning the usage of the
Gaussian distribution, it should also be stressed that it is actually the worst
case distribution in the sense that it leads to the largest CRLB [257], and it
is the distribution that maximizes the entropy. It should also be noted, that
in the models considered herein, the part that is not Gaussian is explained
by the possibly nonlinear model, which is thought of as being deterministic.
However, if the distribution of the parameters that generates this model is
taken into account, then the results would in many cases be a non-Gaussian
model. Moreover, as sparse Bayesian learning shows, the Gaussian distribu-
tion can be utilized to solve complicated problems in clever ways by looking
at the problems differently [160]. Interestingly, NMF methods for speech
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and audio processing are sometimes argued to be non-Gaussian by nature,
but Gaussian signals are parametrized by additive power spectra, on which
NMF are typically based, and the NMF model is thus closely related to the
Gaussian assumption. Furthermore, the Kullbach-Leibler divergence reduces
to the often-used Itakura-Saito distance for infinitely long, Gaussian signals,
which means that the usage of spectral measures, which are common for
NMF methods, is well-founded for Gaussian signals, but not necessarily for
others (see [84]). Concerning the relation between the models and methods
considered in this thesis and NMF, it is possible to use a parametrization of
the involved spectra using, for example, an auto-regressive model [258]. In
that case, the NMF model corresponds to a stochastic model comprising a
sum of auto-regressive processes [259]. The NMF-based methods, which in
speech and audio originated in source separation, have spread to other re-
lated problems over the past decade, including also some of the problems
considered in this thesis [260, 261], which has led to both new methods and
valuable new insights. This can be seen as part of a larger trend, where a
convergence of source separation, signal enhancement, and array processing
is going on, as argued in [13], and this is likely to continue in the future.

5.3 Future Research

The present thesis has made a number of contributions to making parameter
estimation in speech and audio processing robust to the presence of additive,
background noise, and to the filtering of such signals with the objective of
suppressing said noise. However, additive noise is not the only kind of sig-
nal degradation that speech and audio signals are subjected to. Except for
situations when the microphone is very close to the source, as is the case in
many headsets, the recorded signals to be analysed and processed will suffer
from reverberation. For the problems considered here, very few estimators
have been derived that explicitly take the presence of noise and reverberation
into account, and this is a major source of error, and future search should be
conducted to address this problem. Dereverberation, i.e., the problem of en-
hancing signals that have been subjected to reverberation, has been an open
problem for a long time (see, e.g., [262]), and much research has been de-
voted to it in recent years [20, 156, 171, 218, 220, 221, 263]. More recently, the
combination of additive and convolutive noise has also been considered in
so-called comprehensive speech enhancement [171, 182, 222], two problems
that should be addressed simultaneously to obtain optimal solutions. Very
little work has, though, been devoted to taking revereberation into account
or studying its effect in parameter estimation in speech and audio, however,
with a few notable exceptions [13,264], and future research should be devoted
to finding principled ways of taking unknown reverberation into account in
parameter estimation, for example in fundamental frequency estimators, to
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make such estimator more robust. One possibility for doing this is to use the
principle of [218, 219] wherein reverberation is taken into account by split-
ting the impulse responses into early, sparse parts and late, stochastic parts
that can be treated as noise. Aside from reverberation, the models and es-
timators discussed in this thesis also do not take the presence of nonlinear
degradations into account. Such nonlinearities, however, occur frequently
in many situations. For example, signals are often clipped during record-
ing, distorted by loudspeakers during playback, or compressed by dynamic
range control. There exists methods for dealing with very specific cases of
such nonlinearities in isolation and in specific contexts [30, 265–267], but no
general approach exists. It is interesting to note that in control theory and
system identification, methods exist for taking the presence of nonlinearities
into account [268, 269], and it is possible that a similar methodology can be
adopted in speech and audio processing. Furthermore, taking the ideas of
comprehensive enhancement a step further, the presence of nonlinear signal
degradations aside from background noise and reverberation would be de-
sirable, even if very difficult. As it stands, no method capable of handling all
these phenomena simultaneously currently exist. That these problems can be
handled is particularly important in, for example, forensics and for studying
historically important recordings [270].

Another interesting transformation in speech and audio processing, is
the development from acoustic arrays having fixed, predetermined geome-
tries to wireless acoustic sensor networks (WASNs) comprising a number
of independent devices in an acoustic environment [271]. Such networks
have the potential to form the foundation for the solutions to a number of
long-standing problems of both scientific and practical interest in speech and
audio processing, such as the cocktail party problem. While this is not a
new idea, it is not until recently that it has become practical. The tradi-
tional methodology in beamforming, localization, etc., is, however, rooted in
the telephony system where all parts of the system were known and well-
understood, but for WASNs this is no longer the case. Moreover, WASNs
introduce a number of problems that are not present in traditional arrays,
such as synchronization, widely different SNRs, different and unknown mi-
crophone responses, etc. In other words, to realize the potential of such
WASN a number of scientific problems have to be solved, and this requires a
more general way of looking at problems such as parameter estimation and
signal enhancement. For example, rather than using a beamformer that ex-
ploits the array geometry followed by a post-filter, a more general approach,
such as a multi-channel Wiener filter, could be taken [170, 272], wherein the
problem then is to estimate the required statistics. In relation to this, much
research has, as has already been discussed, been devoted to noise trackers
of the past couple of decades, starting with [106], and those have enjoyed
much success in single-channel enhancement, but the generalization of these
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principles to WASNs is highly non-trivial. Moreover, they have problems
handling non-stationary noise and multiple speakers where more sophisti-
cated methods are needed [18, 177, 258]. In the presence of multiple speakers
as well as noise sources, even defining the signal of interest, and thus the
problem to be solved, is difficult. The model-based approach has the poten-
tial to be a possible solution to these problems, as demonstrated in [179,273],
as models of the signal of interest may be the only reliable information that
can be exploited, as the geometry of the array is unknown, far-field models
do not apply, etc. Combined with distributed signal processing for solving
the involved optimization problems, such models could thus form the foun-
dation for signal processing in WASNs. Moreover, generalizing this further
and combining this notion with the aforementioned comprehensive enhance-
ment, an even more general way of looking at these problems would be as
a collection of independent recordings, each recorded by different devices
with possibly different bandwidths, sampling frequencies, jitter, and SNRs in
different places, suffering from different types and amounts of degradations
(background noise, reverberation, and distortions), that combine to form an
ensemble of recordings of an acoustic phenomenon.

In terms of methodology, the future of signal processing is, in this author’s
opinion, Bayesian, and the continued development of models for speech and
audio signals that are amenable to efficient computation or have closed-form
solutions to integrals, are thus important. Similarly, it can be learned from
the dereverberation and array processing literature that, as previously men-
tioned, there are many ways of looking at a problem, and once the right way
is found, much scientific progress can be gained. The adoption of relative
transfer functions [274] in localization, beamforming, and dereverberation is
an example of this, and so is sparse linear prediction. Hence, the contin-
ued search for good models of speech and audio signals and good ways of
posing the estimation problems is extremely important. Furthermore, the
potential of the Bayesian methodology can also be seen from the advances
in sparse approximations, which was predominantly based on deterministic
convex optimization but is now based on probabilistic methodology [160].
In a sense, the ideas of sparse approximations have enabled us to linearize
the nonlinear models of localization, frequency estimation, and many other
problems via the dictionaries, which are then highly structured, something
that can be exploited both for interpretability but also in achieving compu-
tationally efficient implementations. Exploiting such structure is thus ex-
tremely important in casting the involved learning and estimation problems
in ways that have as few degrees of freedom as possible, examples of which
are shift-invariance [275] and the Kronecker decomposition [276]. Moreover,
the Bayesian methodology also allows for combining different models and
using prior knowledge in hierarchies, exploiting spatio-spectral patterns, for
example, something that is otherwise difficult to do in a consistent manner.
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Aside from the aforementioned reasons for finding good ways of posing
parameter estimation and linear filtering problems, it is also important that
the search for good models continues in that better models lead to better re-
sults in terms of better characterizing the involved signals, something that is
important in many contexts (e.g., in biomedical applications), but also that
models and methods that allow for model mismatch are found, an example
of which is [204]. Similarly, it is equally important that the importance and
effect of model mismatch be understood. Important new insights concerning
this has been recently reported in [277] based on the concept of the model
misspecification and the miss-specified CRLB [278], which enables the anal-
ysis of the effects of using the wrong model, such as the harmonic model
for a case where inharmonicity is known to be present. There is another as-
pect of the models that has not been mentioned so far, namely that of the
spaces of the parameters of the models (or priors as one might call them). In
this thesis, those parameter spaces have not been modeled in a data-driven
way or specified analytically or probabilistically in much detail. NMF-based
methods for speech enhancement and source separation basically work by
exploiting that different sources lie in different parts of the parameter space,
which is also how the method of [258] works5. However, the methods for
first training and later manipulating parameters of different models in these
spaces is comparably underdeveloped in speech and audio. For example,
methods based on the auto-regressive model basically still rely on methods
from speech processing from decades ago [279] which employ reparametriza-
tion to ensure stability. Hence, it is possible that much progress and more
refined models and methods can be achieved by leveraging advances in, for
example, manifold learning [280–283] which have already been used for, e.g.,
localization and tracking [284]. It should be noted that this way of integrat-
ing signal processing and machine learning retains both the tractable nature
of traditional signal processing and leads to interpretable, meaningful repre-
sentations, yet builds on the advances in and advantages of machine learning
and data-driven methods. In relation to this, it seems clear that signal pro-
cessing is currently undergoing an transformation wherein machine learning
is integrated into the core of its methodology, something that will lead to
many new insights and advances of both academic and practical value, and
these directions for future research ideas are thus very much aligned with
this development.

5The method of [258] can be shown to be mathematically equivalent to NMF.
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1. Introduction

Estimating the order of a model is a central, yet commonly
overlooked, problem in parameter estimation, with the
majority of literature assuming prior knowledge of the
model order. In many cases, however, the order cannot
be known a priori and may change over time. This is
the case, for example, in speech and audio signals. Many
parameter estimation methods, like the maximum likelihood
and subspace methods, require that the order is known to
work properly. The consequence of choosing an erroneous
order, aside from the size of the parameter set being wrong,
is that the found parameters may be biased or suffer from
a huge variance. The most commonly used methods for
estimating the model order are perhaps the minimum
description length (MDL) [1, 2], the Akaike information
criterion (AIC) [3], and the maximum a posteriori (MAP)
rule of [4]. These methods are based on certain asymptotic
approximations and on statistical models of the observed
signal, like the noise being white and Gaussian distributed.
We refer the interested reader to [4, 5] for an overview
of such statistical methods. A notable feature of the MAP

rule of [4] is that it shows that linear and nonlinear
parameters should be penalized differently, something that
not recognized by many prior methods (on this topic, see also
[6]). In this paper, we are concerned with a more specific,
yet important, case, namely, that of finding the number of
complex sinusoids buried in noise. This problem is treated
in great detail from a statistical point of view in [4] and is
also exemplified in [5] and other notable approaches include
those of [7–13]. A different class of methods is subspace
methods, which is also the topic of interest here. In subspace
methods, the eigenvectors of the covariance matrix are
divided into a set that spans the space of the signal of interest,
called the signal subspace, and its orthogonal complement,
the noise subspace. These subspaces and their properties
can then be used for various estimation and identification
tasks. Subspace methods have a rich history in parameter
estimation and signal enhancement. Especially for the esti-
mation of sinusoidal frequencies and finding the direction
of arrival of sources in array processing, these methods have
proven successful during the past three decades. The most
common subspace methods for parameter estimation are
perhaps the MUSIC (MUltiple SIgnal Classification) method
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[14, 15] and the ESPRIT (Estimation of Signal Parameters
via Rotational Invariance Techniques) method of [16] while
the earliest example of such methods is perhaps Pisarenko’s
method [17]. In the context of subspace methods, the
typical way of finding the dimensions of the signal and
noise subspaces is based on statistical principles where the
likelihood function of the observation vector is combined
with one of the aforementioned order selection rules with
the likelihood function depending on the ratio between the
arithmetic and geometric means of the eigenvalues [18, 19].
Recently, the underlying principles of ESPRIT and MUSIC
have been extended to the problem of order estimation by
exploiting the properties of the eigenvectors rather than the
eigenvalues. Compared to the order estimation techniques
based on the eigenvalues, one can interpret these methods
as being based on the geometry of the space rather than
the distribution of energy. Specifically, two related subspace
methods based on ESPRIT have been proposed, namely,
to the ESTimation ERror (ESTER) method [20] and the
Subspace-based Automatic Model Order Selection (SAMOS)
method [21]. Similarly, it was shown in [22] that the
orthogonality principle of MUSIC can be used for finding
the number of harmonics for a set of harmonically related
sinusoids when normalized appropriately. See also [23]
for a comparison of this method with the ESTER and
SAMOS methods. An attractive property of the subspace-
based order estimation criteria is that they do not require
prior knowledge of the probability density function (pdf) of
the observation noise but only a consistent covariance matrix
estimate. This means that the subspace methods will work in
situations where the statistical methods may fail due to the
assumed pdf not being a good approximation of the observed
data. Furthermore, it can be quite difficult to derive a method
like the MAP rule of [4] for complicated signal models.

Mathematically, the specific problem considered herein
can be stated as follows. A signal consisting of complex
sinusoids having frequencies {ωl} is corrupted by additive
noise, ε(n), for n = 0, . . . ,N − 1,

x(n) =
L∑

l=1

Ale
j(ωln+φl) + ε(n), (1)

where Al > 0 and φl are the amplitude and the phase of
the lth sinusoid. Here, ε(n) is assumed to be white complex
symmetric zero-mean noise. The problem considered is then
how to estimate the model order L. The model in (1) may
seem a bit restrictive, but the proposed method can in fact
be used for more general problems. Firstly, the proposed
method is valid for a large class of signal models; however,
for the case of complex exponentials a computationally
efficient implementation of our method exists. This is also
the case for damped sinusoids where the principles of unitary
ESPRIT may be applied [24]. Secondly, for the case of colored
noise, the proposed method is also applicable by the use of
prewhitening.

In this paper, we study the problem of finding the model
order using the angles between a candidate signal subspace
and the signal subspace in depth. In the process of finding
the model order, nonlinear model parameters are also found.

The concept of angles between subspaces has previously been
applied within the field of signal processing to, among other
things, analysis of subspace-based enhancement algorithms,
for example, [25, 26], and multipitch estimation [27]. For
complex sinusoids, the measure based on angles between
subspaces reduces to a normalization of the well-known
cost function first proposed for frequency and direction-of-
arrival estimation in [14] for a high number of observations.
We analyze, discuss, and compare the measure and its
properties to other commonly used measures of the angles
between subspaces and show that the proposed measure
provides an upper bound for some other more complicated
measures. These other measures turn out to be less useful
for our application, and, in simulations, we compare the
proposed method to other methods for finding the number
of complex sinusoids. Our results show that the method has
comparable performance to commonly used methods and is
generally best among the subspace-based methods. It is also
demonstrated, however, that the method is more robust to
model violations, like colored noise. As an aside, our results
also establish the MUSIC criterion for parameter estimation
[14] as an approximation to the angles between the noise and
candidate model subspaces.

The remaining part of this paper is organized as follows.
First, we recapitulate the covariance matrix model that forms
the basis for the subspace methods and briefly describe the
MUSIC method in Section 2. In Section 3, we then move
on to derive the new measure based on angles between
subspaces. We relate this measure to other similar measures
and proceed to discuss its properties and application to
the problem interest. The statistical performance of the
method is then evaluated in simulations studies in Section 4
and compared to a number of related parametric and
nonparametric methods and, in Section 5, the results are
discussed. Finally, we conclude on our work in Section 6.

2. Fundamentals

We start out this section by presenting some fundamental
definitions, relations, and results. First, we define x(n) as a
signal vector, referred to as a subvector, containing M < N
samples of the observed signal, that is,

x(n) =
[
x(n) x(n + 1) · · · x(n + M − 1)

]T
(2)

with (·)T denoting the transpose. Assuming that the phases
of the sinusoids are independent and uniformly distributed
on the interval (−π,π], the covariance matrix R ∈ CM×M of
the signal in (1) can be written as [5]

R = E
{
x(n)xH(n)

}
= APAH + σ2IM , (3)

where E{·} and (·)H denote the statistical expectation
and the conjugate transpose, respectively. We here require
that L < M. Moreover, we note that for the above to
hold, the noise need not be Gaussian. The matrix P is
diagonal and contains the squared amplitudes, that is,
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P = diag
([

A2
1 · · · A2

L

])
, and A ∈ CM×L is a Vander-

monde matrix defined as

A =
[
a(ω1) · · · a(ωL)

]
, (4)

where a(ω) = [ 1e jω · · · e jω(M−1) ]T . Also, σ2 denotes the
variance of the additive noise, ε(n), and IM is the M ×
M identity matrix. Assuming that the frequencies {ωl} are
distinct, the columns of A are linearly independent and A
and APAH have rank L. Let

R = QΛQH (5)

be the eigenvalue decomposition (EVD) of the covariance
matrix. Then, Q contains the M orthonormal eigenvectors
of R, that is, Q = [ q1 · · · qM

]
and Λ is a diagonal matrix

containing the corresponding eigenvalues, λk, with

λ1 ≥ · · · ≥ λL ≥ λL+1 = · · · = λM = σ2. (6)

The subspace-based methods are based on a partitioning of
the eigenvectors into a set belonging to the signal subspace
spanned by the columns of A and its orthogonal complement
known as the noise subspace. Let S be formed from
the eigenvectors corresponding to the L most significant
eigenvalues, that is,

S =
[
q1 · · · qL

]
. (7)

We denote the space spanned by the columns of S as R(S)
and henceforth refer to it as the signal subspace. Similarly,
let G be formed from the eigenvectors corresponding to the
M − L least significant eigenvalues, that is,

G =
[
qL+1 · · · qM

]
, (8)

where R(G) is referred to as the noise subspace. Using the
EVD in (5), the covariance matrix model in (3) can now
be written as Q(Λ − σ2IM)QH = APAH . Introducing ΛS =
diag

([
λ1 − σ2 · · · λL − σ2 ]), we can write this as

SΛSSH = APAH. (9)

From the last equation, it can be seen that the columns of A
span the same space as the columns of S and that A therefore
also must be orthogonal to G, that is,

AHG = 0. (10)

In practice, the eigenvectors are of course unknown and are
replaced by estimates. Here, we will estimate the covariance
matrix as

R̂ = 1
N −M + 1

N−M∑

n=0

x(n)xH(n), (11)

which is a consistent estimate for ergodic processes and
the maximum likelihood estimate for Gaussian noise. The
eigenvector estimates obtained from this matrix are then

also consistent and the covariance matrix model (3) and the
orthogonality property (10) therefore hold asymptotically.

Since the covariance matrix and eigenvectors are esti-
mated from a finite set of vectors, the orthogonality property
in (10) only holds approximately. In the MUSIC algorithm
[14, 15], the set of distinct frequencies {ωl} are found by
minimizing the Frobenius norm, denoted ‖ · ‖F , of (10), that
is,

{
ω̂l
} = arg min

{ωl}

∥∥∥AHG
∥∥∥

2

F
. (12)

Since the squared Frobenius norm is additive over the
columns of A, we can find the individual sinusoidal frequen-
cies for l = 1, . . . ,L as

ω̂l = arg min
ωl

∥∥∥aH(ωl)G
∥∥∥

2

F
(13)

with the requirements that the frequencies are distinct and
fulfill the two following conditions:

∂
∥∥aH(ωl)G

∥∥2
F

∂ωl
= 0,

∂2
∥∥aH(ωl)G

∥∥2
F

∂ω2
l

> 0. (14)

The reciprocal form of the cost function in (13) is sometimes
referred to as spectral MUSIC and 1/‖aH(ωl)G‖2

F as the
pseudospectrum from which the L frequencies are obtained
as the peaks. We mention in passing that it is possible to
solve (13) using numeric rooting methods [28] or FFTs.
Regarding the statistical properties of MUSIC, the effects of
order estimation errors, that is, the effect of choosing an
erroneous G in (13), on the parameter estimates obtained
using MUSIC have been studied in [29] in a slightly different
context and it was concluded that the MUSIC estimator is
more sensitive to underestimation of L than overestimation.
The more common case of L being known has been treated in
great detail, with the statistical properties of MUSIC having
been studied in [30–34].

3. Angles between Subspaces

3.1. Definition and Basic Results. The orthogonality property
states that for the true parameters, the matrix A is orthogonal
to the noise subspace eigenvectors in G. For estimation
purposes, we need a measure of this. The concept of
orthogonality is of course closely related to the concept of
angles, and how to define angles in multidimensional spaces
is what we will now investigate further.

The principal (nontrivial) angles {θk} between the two
subspaces A = R(A) and G = R(G) are defined recursively
for k = 1, . . . ,K as (see, e.g., [35])

cos(θk) = max
u∈A

max
v∈G

uHv
‖u‖2‖v‖2

� uHk vk. (15)

The quantity K is the minimal dimension of the two
subspaces, that is, K = min{L,M − L}, which is the
number of nontrivial angles between the two subspaces.
Moreover, the directions along which the angles are defined
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are orthogonal, that is, uHui = 0 and vHvi = 0 for i =
1, . . . , k − 1.

We will now rewrite (15) into something more useful,
and in doing this, we will make extensive use of projection
matrices. The (orthogonal) projection matrix for a subspace
X spanned by the columns of a matrix X is defined as ΠX =
X(XHX)

−1
XH . Such projections matrices are Hermitian, that

is, ΠH
X = ΠX and have the properties Πm

X = ΠX for m =
1, 2, . . . and ‖ΠX‖2

F = dim(X) where dim(·) is the dimension
of the subspace. Let ΠG be the projection matrix for subspace
G, and the ΠA the projection matrix for subspace A. Using
the two projection matrices, we can write the vector u ∈ A
as ΠAy and v ∈ G as ΠGz with y, z ∈ CM . This allows us to
express (15) as

cos(θk) = max
y∈CM

max
z∈CM

yHΠAΠGz∥∥y
∥∥

2‖z‖2

� yHk ΠAΠGzk = σk

(16)

for k = 1, . . . ,K . Again, we require that yHyi = 0 and
zHzi = 0 for i = 1, . . . , k − 1, that is, that the vectors are
orthogonal. Futhermore, the denominator ensures that the
vectors have unit norm. It then follows that {σk} are the
singular values of the matrix product ΠAΠG, and that the
two sets of vectors {y} and {z} are the left and right singular
vectors, respectively. Regarding the mapping of the singular
values to actual angles, a difficult problem, we refer the
interested reader to [36] for a numerically stable algorithm.

The set of principal angles obey the following inequality:

0 ≤ θ1 ≤ · · · ≤ θK ≤ π

2
. (17)

Next, the singular values are related to the Frobenius norm
of the product ΠAΠG as

‖ΠAΠG‖2
F = Tr{ΠAΠG} =

K∑

k=1

σ2
k , (18)

and therefore also to the angles between the subspaces, that
is,

K∑

k=1

cos2(θk) = ‖ΠAΠG‖2
F . (19)

3.2. A Simplified Measure. We will now show how the
concepts introduced in the previous section can be simplified
for use in estimation. The Frobenius norm of the product
ΠAΠG can be expressed as

‖ΠAΠG‖2
F = Tr

{
ΠAΠGΠ

H
GΠ

H
A

}
= Tr

{
ΠAΠ

H
G

}
(20)

= Tr
{
A
(
AHA

)−1
AHGGH

}
. (21)

This expression can be seen to be complicated since it
involves matrix inversion and it does not decouple the
problem of estimating the parameters of the column of A.
Additionally, it is not related to the MUSIC cost function in

a simple way. It can, though, be simplified in the following
way. The columns of A consist of complex sinusoids, and
for any distinct set of frequencies these are asymptotically
orthogonal, meaning that

lim
M→∞

MΠA = lim
M→∞

MA
(
AHA

)−1
AH

= AAH.

(22)

We can now simplify (21) and manipulate it into a familiar
form, that is,

‖ΠAΠG‖2
F = Tr

{
A
(
AHA

)−1
AHGGH

}

≈ 1
M

Tr
{
AHGGHA

}
= 1

M

∥∥∥AHG
∥∥∥

2

F
,

(23)

which, except for the scaling 1/M, is the reciprocal of the
original MUSIC cost function as introduced in [14]. From
(19) and (23), we get

1
M

∥∥∥AHG
∥∥∥

2

F
≈

K∑

k=1

cos2(θk). (24)

This shows that the original MUSIC cost function can be
explained and understood in the context of angles between
subspaces. At this point, it must be emphasized that this
interpretation only holds for signal models consisting of
vectors that are orthogonal or asymptotically orthogonal.
Consequently, it holds for sinusoids, for example, but not for
damped sinusoids.

We now arrive at a convenient measure of the extent to
which the orthogonality property in (10) holds, which is the
average over all the principal (nontrivial) angles between A
and G:

1
K

K∑

k=1

cos2(θk) = 1
K

K∑

k=1

σ2
k ≈

1
MK

∥∥∥AHG
∥∥∥

2

F
� J (25)

with K = min{L,M − L}. This measure is only zero when
all angles are π/2, that is, when the subspaces A and B are
orthogonal in all directions. Additionally, the intersection
of the subspaces is the range of the set of principal vectors
for which cos(θk) = 1. Due to the normalization 1/K , the
measure can be seen to be bounded as

0 ≤ 1
K

K∑

k=1

cos2(θk) ≤ 1. (26)

This bound is also asymptotically valid for the right-
most expression in (25) and is otherwise an approximation
for finite lengths. To put the derived measure a bit into
perspective, it can, in fact, be brought into a form similar
as the aforementioned and well-known statistical methods
(MDL, AIC, etc.) by taking the logarithm of (25), that is,

ln J = ln
∥∥∥AHG

∥∥∥
2

F
− ln(MK), (27)

which consists of two familiar terms: a “goodness of fit”
measure and an order-dependent penalty function, which in
this case is a nonlinear function of the model order, unlike,
for example, MDL and AIC.
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3.3. Relation to Other Measures. We will now proceed
to relate the derived measure to some other measures.
Interestingly, the Frobenius norm of the difference between
the two projection matrices can be expressed as

‖ΠA −ΠG‖2
F = Tr{ΠA + ΠG − 2ΠAΠG}

=M − 2‖ΠAΠG‖2
F ,

(28)

which shows that minimizing (18) is the same as maximizing
the Frobenius norm of the difference between the two
projection matrices. This puts the original MUSIC cost
function into perspective, as it was originally motivated in
[14] as the distance between the subspaces.

In [22], it was proposed to measure the orthogonality
using the following normalized Frobenius norm of the
matrix product AHG:

∥∥AHG
∥∥2
F

LM(M − L)
, (29)

which was derived from the Cauchy-Schwarz inequality. A
new derivation of the measure in (29) is provided in the
appendix in which it is shown that this too can be interpreted
as an average over cosine to angles, more specifically, between
each vector pair. However, the definition of the angles differs
from that of the angles between subspaces, and, as a result,
the normalizations differ as well. Clearly, we have that

ML(M − L) ≥M min{L,M − L} (30)

and thus
∥∥AHG

∥∥2
F

ML(M − L)
≤

∥∥AHG
∥∥2
F

M min{L,M − L} . (31)

That the two approaches lead to different normalizations
may seem like a minor detail, but this is in fact also
the fundamental difference between the AIC, MDL, MAP,
and so forth, order selection rules. These all provide a
different order dependent scaling of the likelihood function.
At the very least, the new normalization is mathematically
more tractable than the old one. In Figure 1, the two
normalizations, namely, ML(M − L) and M min{L,M − L},
are shown as a function of L for M = 50. Note that the
curves have been scaled by their respective maximum values.
Interestingly, both the measures defined in (29) and (25),
respectively, are consistent with finding the frequencies using
(13) in the sense that the frequencies that minimize (13) also
minimize either of these measures for a given order L.

The measure in (25) can also be related to some other
measures that have been defined in relation to angles between
subspaces, like the projection 2-norm [37]. The distance or
gap between subspaces, is defined for L =M/2 as [35–37]

dist
(
A,G

) = ‖ΠA −ΠG‖2 (32)

and is related to the concept of angles between subspaces in
the sense that (see, e.g., [35])

dist
(
A,G

) = sin(θK ) =
√

1− cos(θK ), (33)
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Figure 1: Normalization factors (scaled for convenience) as a
function of L for the measure in [22] (solid) and based on the theory
of angles between subspaces (dash-dotted).

which is given by the Kth singular value of the matrix
product ΠAΠG as θK = arccos(σK ). Another measure
of interest is the minimum principal angle which by the
definition in (15) is a function of the maximum singular
value as θ1 = arccos(σ1) and is given by the induced matrix
2-norm, that is,

‖ΠAΠG‖2
2 = σ2

1 . (34)

In the study of angles between subspaces, there has also been
some interest in a different definition of the angle between
two subspaces based on exterior algebra. Specifically, this so-
called higher dimensional angle θ is related to the principal
angles as [38, 39]

cosp(θ) =
K∏

k=1

cosp(θk) =
K∏

k=1

σ
p
k (35)

for p = 1, 2, . . ., which for p = 1 can be interpreted as the
volume of a certain matrix [38]. In [40], θ was shown to be
an angle in the usual Euclidean sense.

Equations (33), (34), and (35) are not very convenient
measures for our purpose since they cannot be calculated
from the individual columns of A but rather depend on all of
them. This means that optimization of any of these measures
would require multidimensional nonlinear optimization
over the frequencies {ωl}.

We will now investigate how the various measures relate
to each other, and in doing so, we will arrive at some
interesting bounds. First, we note that the arithmetic mean
of the singular values can be related to the geometric mean
and (35) as

1
K

K∑

k=1

σ2
k ≥

⎛
⎝

K∏

k=1

σ2
k

⎞
⎠

1/K

≥
K∏

k=1

σ2
k , (36)

where the right-most expression follows from σk ≤ 1. We
can now establish the following set of inequalities that relate
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the various measures based on angles between subspaces to
the Frobenius norm:

K∏

k=1

σ2
k ≤ σ2

K ≤ σ2
1 ≤

K∑

k=1

σ2
k . (37)

It follows that the Frobenius norm can be seen as a
majorizing function for the other measures. Therefore,
finding the frequencies using (12) can be seen to minimize
the upper bound of the other measures. Similarly, we obtain
the following set of inequalities for the normalized measure
involving the average over the squared cosine terms in (19),
that is,

K∏

k=1

σ2
k ≤ σ2

K ≤
1
K

K∑

k=1

σ2
k ≤ σ2

1 . (38)

In this case, the normalized Frobenius norm is still an upper
bound for two of the measures, but it is lower than or equal
to the measure in (19). In this sense, the measure in (19) can
be seen as a majorizing function for the measures in (33) and
(35). It can be seen from (38) that the measures are identical
when all singular values {σk} are either one or zero, that is,
when the subspaces have a K dimensional intersection or are
orthogonal in all directions. The only measure, however, that
ensures orthogonality in all directions for a value of zero,
is the proposed measure in (25). Clearly, this is a desirable
property for our application.

3.4. Application to Sinusoidal Order Estimation. As can be
seen, (10) can only be expected to hold when the eigenvectors
of R are partitioned into a signal and a noise subspace such
that the rank of the signal subspace is equal to the true
number of sinusoids. Based on the proposed orthogonality
measure, the order is found by evaluating the measure for
various candidate orders 1 ≤ L ≤M−1 and then picking the
order for which the measure is minimized, that is,

L̂ = arg min
L

min
{ωl}

∥∥AHG
∥∥2
F

MK
(39)

= arg min
L

L∑

l=1

min
ωl

∥∥aH(ωl)G
∥∥2
F

MK
(40)

withK = min{L,M−L}. As before, the frequencies should be
distinct and satisfy (14). The set of candidate orders does not
include zero (as no angles can be measured then), meaning
that the measure cannot be used for determining whether
only noise is present. This is also the case for the related
ESTER and SAMOS methods.

3.4.1. Consistency. Regarding the consistency of the proposed
method, it can easily be verified that the covariance matrix
model and the orthogonality property hold for the noise-
free case. We will here make the following simple argument
for the consistency of the method for noisy signals based on
[31]: since a consistent estimate of the covariance matrix is
used, the eigenvector estimates are consistent too and the

covariance matrix model in (3) holds asymptotically in N
and M (which is here assumed to be chosen proportional to
N) [31, 32]. Therefore, the orthogonality criterion in (10)
holds as N tends to infinity. Provided that the sinusoids
are linearly independent but not all orthogonal, (10) holds
only for the combination of the true set of frequencies
{ωl} and order L. Regarding the finite length performance
of MUSIC, it is well known to perform well for high
SNR and N being consistent but suboptimal [31, 32] while
exhibiting thresholding behavior below certain SNR or
number of samples N . This thresholding behavior can largely
be attributed to the occurrence of “subspace swapping” [41,
42].

3.4.2. Computational Complexity. The major contributor to
the computational complexity of a direct implementation of
(40) is the EVD of the covariance matrix, and this is also
the case for the ESTER and SAMOS methods and [18, 19].
This can be lessened by the use of recursive computation of
the covariance matrix eigenvectors over time, also known as
subspace tracking. However, for our method and the ESTER
and SAMOS methods, it is critical that a subspace tracker is
chosen that tracks the eigenvectors and not just an arbitrary
basis of the subspace. The reasons is that a subpartitioning
of an arbitrary basis is not necessarily the same as a
subpartitioning of the eigenvectors and the methods may
therefore fail to provide accurate order estimates. Examples
of subspace trackers that are suited for this purpose are, for
example, [43–45] (see [46] for more on this). Aside from
the EVD, our method also requires nonlinear optimization
for finding the frequencies. This is by no means a particular
property of our methodl; indeed most other methods for
finding the order of the model in (1), including [4, 10–
13], require this as well, with the methods of [19, 20] being
notable exceptions. For (40), this can be done either by FFTs
(see [22, 46]) or by polynomial rooting methods [28]. In the
FFT-based implementation of [22], the Fourier transform
of the eigenvectors is calculated once per segment and this
information is simply reused in the subsequent optimization.
The complexity is therefore similar to that of spectral [14]
or root MUSIC [28], two methods that have a rich history
in spectral estimation and array processing. In practice, the
complexity can be reduced considerably by applying certain
approximations, that is, by either (1) using the min-norm
solution, which can be calculated recursively over the orders,
instead of the full noise subspace [5, 47], or by (2) finding
approximate solutions using a number of the least significant
eigenvectors that are known with certainty to belong to
the noise subspace (usually an upper bound on number of
possible sinusoids can be identified from the application).

3.4.3. Comparison to ESTER and SAMOS. There appears
to be a number of advantages to our method compared
to the related methods ESTER and SAMOS that are also
based on the eigenvectors. It can be seen from (40) that
the method can find orders in a wider range than both the
ESTER and SAMOS methods, with those methods being
able to find orders in the intervals 1 ≤ L ≤ M − 2 and
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1 ≤ L ≤ (M − 1)/2, respectively. The class of shift-invariant
signal models also includes damped sinusoids and the ESTER
and SAMOS methods hold also for this model and so does
the orthogonality property of MUSIC. At first sight it may
appear that an efficient implementation of the nonlinear
optimization in (40) does not exist. However, either the
rooting approach of [28] may be used or the principle
of unitary ESPRIT can be applied by using a forward-
backward estimate of the covariance matrix whereby the
FFT-based implementation is applicable (see [24]). We here
stress that an additional advantage of the MUSIC-based
method presented here is that it is more general than those
based on the shift-invariance property [20, 21]; that is, the
relation (10) can be used for a more general class of signal
models. It is, however, not certain that there exits an efficient
implementation of the nonlinear optimization required by
this approach.

4. Experimental Results

4.1. Details and Reference Methods. We now proceed to eval-
uate the performance of the proposed estimator (denoted
MUSIC (new) in the figures) under various conditions using
Monte Carlo simulations comparing to a number of other
methods that have appeared in literature. The reference
methods are listed in Table 1. It should be noted that the
model selection criteria of the MDL [13] and the MAP [4]
methods are in fact identical for this problem, although
derived from different perspectives. The difference between
these two methods is then, essentially, that one uses high-
resolution estimates of the frequencies while the other uses
the computationally simple periodogram. Note that it is
possible to refine the initial frequency estimates obtained
from the periodogram in several ways, for example, [48, 49],
but to retain the computational simplicity, we refrain from
doing this here.

In the experiments, signals are generated according to
the model in (1) with Gaussian noise. Furthermore, all
amplitudes are set to unity, that is, Al = 1 for all l
and the signal-to-noise ratio (SNR) is defined as SNR =
10 log10(

∑L
l=1 A

2
l /σ

2) [dB]. Note that similar results have
been obtained for other amplitude distributions. For exam-
ple, the general conclusions are the same for a Rayleigh pdf,
but in the interest of brevity we will focus on the simple case
of unit amplitudes. The sinusoidal phases and frequencies
are generated according to a uniform pdf in the interval
(−π,π] which will result in spectrally overlapping sinusoids
sometimes. For each combination of the parameters, 500
Monte Carlo simulations were run. Unless otherwise stated,
we will use L = 5 and M = N/2.

4.2. Statistical Evaluation. First, we will evaluate the per-
formance in terms of the percentage of correctly estimated
orders under various conditions. We start out by varying
the number of observations N while keeping the SNR
fixed at 20 dB and then we will keep N fixed at 200 while
varying the SNR. The partitioning of the EVD into signal
and noise subspaces in (7) and (8) depends on the sorting
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Figure 2: Percentage of correctly estimated model orders as a
function of the number of observations for an SNR of 20 dB.
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Figure 3: Percentage of correctly estimated model orders versus the
SNR for N = 200.

of the eigenvalues resulting in the right ordering of the
eigenvectors. As a result, the performance of the methods
is expected to depend on the SNR. The results are shown
in Figures 2 and 3. Next, we evaluate the performance as a
function of the true model order for N = 100 and SNR =
20 dB. Note that the choice of M also limits the number
of possible sinusoids that can be found using MUSIC since
M > L. The results are depicted in Figure 4. An experiment
to investigate the dependency of the performance on the
choice of M while keeping N = 100 constant has also been
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Table 1: List of reference methods used in the experiments with short descriptions and references to literature.

Name Reference Description

ESTER [20] Subspace-based method based on the shift-invariance property of the signal model

ESPRIT+MAP [4, 16] Frequencies estimated using ESPRIT, amplitudes using least-squares, model selection using the MAP criterion

EIG [19] Method based on the ratio between the arithmetic and geometric means of the eigenvalues

SAMOS [21] Same as ESTER except for measure

MUSIC (old) [22, 23] Same as the proposed method except for the normalization

FFT+MDL [1, 12, 13] Statistical method based on MDL, with parameters estimated using the periodogram
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Figure 4: Percentage of correctly estimated model orders as a
function of the true order with SNR = 20 dB and N = 100.

conducted with an SNR of 20 dB. The results are shown
in Figure 5. The reason that the method of [19] fails here
is that the covariance matrix is rank deficient for M >
N/2. This can of course easily be fixed by modifying the
range over which the geometric and arithmetic means of
the eigenvalues are calculated. Since the gap between the
signal and noise subspace eigenvalues depends not only on
the SNR but also on how closely spaced the sinusoids are
in frequency, the importance of the difference in frequency
between the sinusoids will now be investigated. We do this
by distributing the frequencies evenly as 2πΔl and then
vary Δ for L = 5 sinusoids, N = 100, M = 25, and
an SNR of 20 dB. All other experimental conditions are as
described earlier. The results are shown in Figure 6. In a final
experiment, we illustrate the applicability of the estimators
in the presence of colored Gaussian noise. The percentages of
correctly estimated orders are shown in Figure 7 as a function
of the SNR. To generate the colored noise, a second-order
autoregressive process was used having the transfer function
H(z) = 1/(1− 0.25z−1 + 0.5z−2). Other than the noise color,
the experimental conditions are the same as for Figure 3,
that is, with N = 200. Note that for a fair comparison, the
white noise model selection criterion has been used for all the
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Figure 7: Percentage of correctly estimated model orders as a
function of the SNR for colored Gaussian noise for N = 200.

methods. In other words, this experiment can be seen as an
evaluation of the sensitivity to the white noise assumption.
It is of course possible to modify the methods to take the
colored noise into account in various ways, one way that can
be applied to all the methods being prewhitening [18], but all
such ways require that the statistics of the noise be known.

5. Discussion

From the experiments the following general observations
can be made. First of all, it can be observed that, with one
exception, all the methods exhibit the same dependencies on
the tested variables, although they sometimes exhibit quite
different thresholding behavior. The one exception is for
colored Gaussian noise. It can be seen from these figures
that the proposed estimator has the desirable properties that
the performance improves as the SNR and/or the number
of observations increases and that the model order can be
determined with high probability for a high SNR and/or
a high number of observations, and this is generally the
case of all the tested methods. MUSIC can also be observed
to consistently outperform the other subspace methods
based on the eigenvectors, namely, ESTER and SAMOS.
Curiously, the new MUSIC criterion performs similarly to
the old one in all the simulations, which indicates that the
orthogonality criterion does not depend strongly on the
normalization. The MAP criterion of [4] combined with
ESPRIT and the method based on the eigenvalues [19] can
be seen to generally perform the best, outperforming the
measure based on angles between subspaces when the noise
is white Gaussian. This is, most likely, due to these methods
making use of the assumption that the noise is not only
white but also Gaussian; this assumption is not used in
the proposed method. Despite their good performance for

white Gaussian noise, both aforementioned methods appear
to be rather sensitive to the white noise assumption and
their performance is rather poor for colored noise. The poor
performance of the eigenvalue-based method of [19] for
colored noise is no surprise. In fact, for colored noise, the
method of [19] can be shown to overestimate the model
order with probability 1 [50, 51]. That the MAP criterion
in combination with ESPRIT outperforms the method of
[13] can only be attributed to the former method resulting
in superior parameter estimates to the periodogram, which
will fail to resolve adjacent sinusoids for a low number of
samples. We observe from Figure 4 that the performance of
all the methods deteriorates as the number of parameters
approaches M. That the MAP-based method fails in this case
cannot be solely attributed to the MAP rule since it relies
on sinusoidal parameter estimates being accurate. However,
the MAP rule was derived in [4] based on the assumption
that the likelihood function is highly peaked around the
parameters estimates, which is usually the case when N is
high relative to the number of parameters. We have observed
from order estimation error histograms that while the orders
are not estimated correctly for high orders, the estimated
order is still generally close to the true one and may thus still
be useful. From Figure 5, it appears that the methods are not
very sensitive to the choice of M as long as it is not chosen
too low or too high, that is, not too close to either L or N .

6. Conclusion and FutureWork

In this paper, we have considered the problem of finding
the number of complex sinusoids in white noise, and a new
measure for solving this problem has been derived based on
angles between the noise subspace and the candidate model.
The measure is essentially the mean of the cosine to all non-
trivial angle squared, which is asymptotically closely related
to the original MUSIC cost function as defined for direction-
of-arrival and frequency estimation. The derivations in this
paper put order estimation using the orthogonality property
of MUSIC on a firm mathematical ground. Numerical
simulations show that the correct order can be determined
for a high number of observations and/or a high signal-
to-noise ratio (SNR) with a high probability. Additionally,
experiments show that the performance of the proposed
method exhibits the same functional dependencies on the
SNR, the number of observations, and the model order
as statistical methods. The experiments showed that the
proposed method outperforms other previously published
subspace methods and that the method is more robust to
the noise being colored than all the other methods. Future
work includes a rigorous statistical analysis of the proposed
method along the lines of [33].

Appendix

Alternative Derivation of the OldMeasure

We will now derive the normalized MUSIC cost function
first proposed in [22] for finding the number of sinusoids.
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Note that this derivation differs from the one in [22]. The
following can be established for the acute angle 0 ≤ θl,m ≤
π/2 between two vectors a(ωl) and qm:

cos2θl,m =
∣∣aH(ωl)qm

∣∣2

‖a(ωl)‖2
2

∥∥qm
∥∥2

2

. (A.1)

Averaging over cos2θl,m for all vector pairs, we get

J = 1
L(M − L)

L∑

l=1

M∑

m=L+1

cos2θl,m

= 1
L(M − L)

L∑

l=1

M∑

m=L+1

∣∣aH(ωl)qm
∣∣2

‖a(ωl)‖2
2

∥∥qm
∥∥2

2

.

(A.2)

Noting that all the columns of A and G have the same norms,
this can be written as

J =
L∑

l=1

M∑

m=L+1

∣∣aH(ωl)qm
∣∣2

L‖a(ωl)‖2
2(M − L)

∥∥qm
∥∥2

2

=
∥∥AHG

∥∥2
F

‖A‖2
F‖G‖2

F

=
∥∥AHG

∥∥2
F

LM(M − L)
,

(A.3)

and, clearly, we have the following inequalities:

0 ≤
∥∥AHG

∥∥2
F

LM(M − L)
≤ 1, (A.4)

which also follow from the Cauchy-Schwartz inequality. The
orthogonality measure in (A.3) has the desirable properties
that it facilitates optimization over the individual columns
of A and is invariant to the dimensions of the matrices.
This measure is different than the original measure proposed
in [14] due to the scaling of the cost function. Note that
the MUSIC cost function originally was introduced as the
reciprocal of the Euclidean distance between the signal model
vectors and the signal subspace.
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Optimal Filter Designs for Separating and
Enhancing Periodic Signals

Mads Græsbøll Christensen∗ and Andreas Jakobsson

Abstract— In this paper, we consider the problem of separating
and enhancing periodic signals from single-channel noisy mix-
tures. More specifically, the problem of designing filters for such
tasks is treated. We propose a number of novel filter designs
that 1) are specifically aimed at periodic signals, 2) are optimal
given the observed signal and thus signal-adaptive, 3) offer full
parametrizations of periodic signals, and 4) reduce to well-known
designs in special cases. The found filters can be used for a
multitude of applications including processing of speech and
audio signals. Some illustrative signal examples demonstrating
its superior properties as compared to other related filters are
given and the properties of the various designs are analyzed using
synthetic signals in Monte Carlo simulations.

I. INTRODUCTION

Many natural signals that are of interest to mankind are
periodic by nature or approximately so. In mathematics and
engineering sciences, such periodic signals are often described
by Fourier series, i.e., a sum of sinusoids, each described by
an amplitude and a phase, having frequencies that are integer
multiples of a fundamental frequency. In mathematical de-
scriptions of periodic functions, the period which is inversely
proportional to the fundamental frequency is assumed to be
known and the function is observed over a single period
over which the sinusoids form an orthogonal basis. When
periodic signals are observed over arbitrary intervals, generally
have unknown fundamental frequencies, and are corrupted by
some form of observation noise, the problem of parametrizing
the signals is a different and much more difficult one. The
problem of estimating the fundamental frequency from such
an observed signal is referred to as fundamental frequency
or pitch estimation. Additionally, some signals contain many
such periodic signals, in which case the problem is referred
to as multi-pitch estimation. Strictly speaking, the word pitch
originates in the perception of acoustical signals and is defined
as “that attribute of auditory sensation in terms of which
sounds may be ordered on a musical scale” [1], but since
this attribute in most cases is the same as the fundamental
frequency of a Fourier series, these terms are often used
synonymously. Some pathological examples do exist, however,
where it is not quite that simple. The pitch estimation problem
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has received much attention in the fields of speech and audio
processing, not just because it is an interesting and challenging
problem, but also because it is the key, or, perhaps more
correctly, a key to many fundamental problems such as sepa-
ration of periodic sources [2], enhancement, and compression
of periodic sources [3] as Fourier series constitute naturally
compact descriptions of such signals. A fundamental problem
in signal processing is the source separation problem, as many
other problems are trivially, or at least more easily, solved once
a complicated mixture has been broken into its basic parts (for
examples of this, see [4], [5]). We remark that for periodic
signals, this problem is different from that of blind source
separation, as assumptions have been made as to the nature
of the sources (for an overview of classical methods for blind
source separation, see, e.g., [6], [7]). For periodic signals, once
the fundamental frequencies of the periodic sources have been
found, it is comparably easy to estimate either the individual
periodic signals directly [8]–[11] or their remaining unknown
parameters, i.e., the amplitudes, using methods like those in
[12]. With amplitudes and the fundamental frequency found,
the signal parametrization is complete. Some representative
methodologies that have been employed in fundamental fre-
quency estimators are: linear prediction [13], correlation [14],
subspace methods [15]–[17], harmonic fitting [18], maximum
likelihood [19], [20], cepstral methods [21], Bayesian estima-
tion [22]–[24], and comb filtering [8], [25], [26]. Several of
these methodologies can be interpreted in several ways and one
should therefore not read too much into this rather arbitrary
grouping of methods. For an overview of pitch estimation
methods and their relation to source separation, we refer the
interested reader to [27]. It should also be noted that separation
based on parametric models of the sources is closely related to
source separation using sparse decompositions (for an example
of such an approach, see [28]).

The scope of this paper is filtering methods with applica-
tion to periodic signals in noise. We propose a number of
novel filter design methods, which are aimed specifically at
the processing of noisy observations of periodic signals or
from single-channel mixtures of periodic signals. These filter
design methods result in filters that are optimal given the
observed signal, i.e., they are signal-adaptive, and contain as
special cases several well-known designs. The proposed filter
designs are inspired by the principle used in the Amplitude
and Phase EStimation (APES) method [29], [30], a method
which is well-known to have several advantages over the
Capon-based estimators. The obtained filters can be used
for a number of tasks involving periodic signals, including
separation, enhancement, and parameter estimation. In other
words, the filtering approaches proposed herein provide full
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parametrizations of periodic signals through the use of filters.
We will, however, focus on the application of such filters to
extraction, separation, and enhancement of periodic signals. A
desirable feature of the filters is that they do not require prior
knowledge of the noise or interfering source but are able to
automatically reject these.

The paper is organized as follows. In Section II, we intro-
duce the fundamentals and proceed to derive the initial design
methodology leading to single filter that is optimal given the
observed signal in Section III. We then derive an alternative
design using a filterbank in Section IV, after which, in Section
V, we first illustrate the properties of the proposed design and
compare the resulting filters to those obtained using previously
published methods. Moreover, we demonstrate its application
for the extraction of real quasi-periodic signals from mixtures
of interfering periodic signals and noise, i.e., for separation and
enhancement. Finally, we conclude on the work in Section VI.

II. FUNDAMENTALS

We define a model of a signal containing a single periodic
component, termed a source, consisting of a weighted sum
of complex sinusoids having frequencies that are integer
multiples of a fundamental frequency1 ωk, and additive noise.
Such a signal can, for n = 0, . . . , N − 1, be written as

xk(n) =

Lk∑
l=1

ak,le
jωkln + ek(n) (1)

where ak,l = Ak,le
jφk,l is the complex amplitude of the lth

harmonic of the source (indexed by k) and ek(n) is the noise
which is assumed to be zero-mean and complex. The complex
amplitude is composed of a real, non-zero amplitude Ak,l > 0
and a phase φk,l distributed uniformly on the interval {−π, π].
The number of sinusoids, Lk, is referred to as the order of
the model and is often considered known in the literature.
We note that this assumption is generally not consistent with
the behavior of speech and audio signals, where the number
of harmonics can be observed to vary over time. In most
recordings of music, the observed signal consists of many
periodic signals, in which case the signal model is

x(n) =

K∑
k=1

xk(n) =

K∑
k=1

Lk∑
l=1

ak,le
jωkln + e(n). (2)

Note that all noise sources ek(n) are here modeled by a single
noise source e(n). We refer to signals of the form (2) as multi-
pitch signals and the model as the multi-pitch model. Even if
a recording is only of a single instrument, the signal may be
multi-pitch as only some instruments are monophonic. Even
in that case, room reverberation may cause the observed signal
to consist of several different tones at a particular time, i.e.,
the signal is effectively a multi-pitch signal.

The algorithms under consideration operate on vectors con-
sisting of M time-reversed samples of the observed signal,

1For many signals, the frequencies of the harmonics will not be exact
integer multiples of the fundamental. This can be handled in several ways
by modifying the signal model (see, e.g., [27] for more on this), but this is
beyond the scope of this paper and will not be discussed any further.

defined as x(n) = [ x(n) x(n − 1) · · · x(n −M + 1) ]T ,
where M ≤ N and (·)T denotes the transpose, and similarly
for the sources xk(n) and the noise e(n). Defining the filter
output yk(n) as

yk(n) =

M−1∑
m=0

hk(m)x(n−m), (3)

and introducing hk = [ hk(0) · · · hk(M − 1) ]
H , we can

express the output of the filter as yk(n) = hHk x(n), with (·)H
being the Hermitian transpose operator. The expected output
power can thus be expressed as

E
{
|yk(n)|2

}
= E

{
hHk x(n)xH(n)hk

}
(4)

= hHk Rhk, (5)

where E {·} denotes the statistical expectation. The above
expression can be seen to involve the covariance matrix
defined as R = E

{
x(n)xH(n)

}
. We will now analyze the

covariance matrix a bit more in detail.
The signal model in (2) can now be written using the above

definitions as

x(n) =

K∑
k=1

Zk

 e−jωk1n 0
. . .

0 e−jωkLkn

a∗k + e(n)

(6)

,
K∑
k=1

Zka
∗
k(n) + e(n) (7)

or, alternatively, as x(n) ,
∑K
k=1 Zk(n)a

∗
k + e(n). Here,

Zk ∈ CM×Lk is a Vandermonde matrix, being constructed
from Lk harmonically related complex sinusoidal vectors as
Zk = [ z(ωk) · · · z(ωkLk) ], with z(ω) = [ 1 e−jω · · ·-
e−jω(M−1) ]T , and ak = [ ak,1 · · · ak,Lk

]H is a vector
containing the complex amplitudes. Introducing zk = e−jωk ,
the structure of the matrix Zk can be seen to be

Zk =


1 1 · · · 1

z1k z2k · · · zLk

k
...

...
. . .

...
z
(M−1)
k z

(M−1)2
k · · · z

(M−1)Lk

k

 . (8)

From this, it can be observed that either the complex amplitude
vector or the Vandermonde matrix can be thought of as time-
varying quantities, i.e., a∗k(n) = Dna∗k and Zk(n) = ZkD

n

with

Dn =

 e−jωk1n 0
. . .

0 e−jωkLkn

 , (9)

meaning that the time index n can be seen as either changing
the sinusoidal basis or, equivalently, the phases of the sinu-
soids. Depending on the context, one perspective may be more
appropriate or convenient than the other.

For statistically independent sources, the covariance matrix
of the observed signal can be written as R =

∑K
k=1 Rk =∑K

k=1 E
{
xk(n)x

H
k (n)

}
, i.e., as a summation of the covari-

ance matrices of the individual sources. By inserting the
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single-pitch signal model in this expression, we can express
the covariance matrix of the multi-pitch signal x(n) as

R =

K∑
k=1

ZkE
{
a∗k(n)a

T
k (n)

}
ZHk + E

{
ek(n)e

H
k (n)

}
(10)

=

K∑
k=1

ZkPkZ
H
k +Q, (11)

where the matrix Pk is the covariance matrix of the ampli-
tudes, i.e., Pk = E

{
a∗k(n)a

T
k (n)

}
. For statistically indepen-

dent and uniformly distributed stochastic phases (on the inter-
val (−π, π]), this matrix reduces to a diagonal matrix having
the power of the sinusoidal components on the diagonal, i.e.,
Pk = diag

([
A2
k,1 · · · A2

k,L

])
. We note, however, that one

can also arrive at the same result by considering the complex
amplitudes deterministic as in (6). Moreover, the matrix Q
is the covariance matrix of the combined noise source e(n),
i.e., Q = E

{
e(n)eH(n)

}
=
∑K
k=1 Qk also referred to as the

noise covariance matrix.
In practice, the covariance matrix is unknown and is re-

placed by an estimate, namely the sample covariance matrix
defined as R̂ = 1

G

∑N−1
n=M−1 x(n)x

H(n) where G = N −
M + 1 is the number of samples over which we average. For
the sample covariance matrix R̂ to be invertible, we require
that M < N

2 + 1 so that the averaging consists of at least M
rank 1 vectors (see, e.g., [31] for details). In the rest of the
paper, we will assume that M is chosen proportionally to N
such that when N grows, so does M . This is important for
the consistency of the methods under consideration.

III. OPTIMAL SINGLE FILTER DESIGNS

A. Basic Principle

We will now proceed with the first design. We seek to find
an optimal set of coefficients, {hk(m)}, such that the mean
square error (MSE) between the filter output, yk(n), and a
desired output, a signal model if you will, ŷk(n), is minimized
in the following sense:

P =
1

G

N−1∑
n=M−1

|yk(n)− ŷk(n)|2 , (12)

Since we are here concerned with periodic signals, this should
be reflected in the choice of the signal model ŷk(n). In fact,
this should be chosen as the sum of sinusoids having fre-
quencies that are integer multiples of a fundamental frequency
ωk weighted by their respective complex amplitudes ak,l, i.e.,
ŷk(n) =

∑Lk

l=1 ak,le
jωkln. This leaves us with the following

expression for the MSE:

P =
1

G

N−1∑
n=M−1

∣∣∣∣∣
M−1∑
m=0

hk(m)x(n−m)−
Lk∑
l=1

ak,le
jωkln

∣∣∣∣∣
2

.

(13)
In the following derivations, we assume the fundamental fre-
quency ω0 and the number of harmonics Lk to be known (with
Lk < M ), although the so-obtained filters can later be used
for finding these quantities. Next, we proceed to find not only
the filter coefficients but also the complex amplitudes ak,l.

We now introduce a vector containing the complex sinusoids
at time n, i.e.,

wk(n) =
[
ejωk1n · · · ejωkLkn

]T
. (14)

With this, we can express (12) as

P =
1

G

N−1∑
n=M−1

|hHk x(n)− aHk wk(n)|2, (15)

which in turn can be expanded into

P = hHk R̂hk − aHk Gkhk − hHk GH
k ak + aHk Wkak, (16)

where the new quantities are defined as

Gk =
1

G

N−1∑
n=M−1

wk(n)x
H(n) (17)

and

Wk =
1

G

N−1∑
n=M−1

wk(n)w
H
k (n). (18)

B. Solution

Solving for the complex amplitudes in (16) yields the
following expression [31]

âk = W−1
k Gkhk, (19)

which depends on the yet unknown filter hk. For Wk to be
invertible, we require that G ≥ Lk, but to ensure that also
the covariance matrix is invertible (as already noted), we will
further assume that G ≥ M . By substituting the expression
above back into (16), we get

P = hHk R̂khk − hHk GH
k W−1

k Gkhk. (20)

By some simple manipulation, we see that this can be simpli-
fied somewhat as

P = hHk

(
R̂k −GH

k W−1
k Gk

)
hk , hHk Q̂khk (21)

where
Q̂k = R̂k −GH

k W−1
k Gk (22)

can be thought of as a modified covariance matrix estimate
that is formed by subtracting the contribution of the harmonics
from the covariance matrix given the fundamental frequency.
It must be stressed, though, that for multi-pitch signals, this
estimate will differ from Qk in the sense that Q̂k will then
also contain the contribution of the other sources. Therefore,
Q̂k is only truly an estimate of Qk for single-pitch signals.
Note also that similar observations apply to the usual use of
APES [29], [30].

Solving for the unknown filter in (21) directly results in
a trivial and useless result, namely the zero vector. To fix
this, we will introduce some additional constraints. Not only
should the output of the filter be periodic, i.e., resemble a sum
of harmonically related sinusoids, the filter should also have
unit gain for all the harmonic frequencies of that particular
source, i.e.,

∑M−1
m=0 hk(m)e−jωklm = 1 for l = 1, . . . , Lk,

or, equivalently, as hHk z(ωkl) = 1 . We can now state the
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filter design problem as the following constrained optimization
problem:

min
hk

hHk Q̂khk s.t. hHk z(ωkl) = 1, (23)

for l = 1, . . . , Lk.

The constraints for the Lk harmonics can also be expressed
as hHk Zk = 1, where 1 = [ 1 · · · 1 ]T . The problem in (23)
is a quadratic optimization problem with equality constraints
that can be solved using the Lagrange multiplier method.
Introducing the Lagrange multiplier vector

λ = [ λ1 · · ·λLk
]
T
, (24)

the Lagrangian dual function of the problem stated above can
be expressed as

L(hk,λ) = hHk Q̂khk −
(
hHk Zk − 1T

)
λ. (25)

By taking the derivative with respect to the unknown filter
vector and the Lagrange multiplier vector, we get

∇L(hk,λ) =
[

Q̂k −Zk
−ZHk 0

] [
hk
λ

]
+

[
0
1

]
. (26)

Equaling this to zero, i.e., ∇L(hk,λ) = 0, we obtain

λ =
(
ZHk Q̂−1k Zk

)−1
1 (27)

and
hk = Q̂−1k Zkλ, (28)

which combine to yield the following optimal filters:

ĥk = Q̂−1k Zk

(
ZHk Q̂−1k Zk

)−1
1. (29)

We will refer to this filter as SF-APES (single filter APES-like
design). This filter is optimal in the sense that it has unit gain
at the harmonic frequencies and an output that resembles a
sum of harmonically related sinusoids while everything else
is suppressed maximally. It can readily be used for determining
the amplitudes of those sinusoids by inserting (29) into (19),
which yields the following estimate:

âk = W−1
k GkQ̂

−1
k Zk

(
ZHk Q̂−1k Zk

)−1
1 (30)

= W−1
k Gk

(
R̂−GH

k W−1
k Gk

)−1
Zk (31)

×
(
ZHk

(
R̂−GH

k W−1
k Gk

)−1
Zk

)−1
1. (32)

The output power of the filter, when this is applied to the
original signal, can be expressed as ĥHk R̂ĥk, which may be
used for determining the fundamental frequency by treating ωk
in Zk, Gk, Wk as an unknown parameter and then pick as an
estimate the value for which the output power is maximized,
i.e.,

ω̂k = argmax
ωk

ĥHk R̂ĥk. (33)

In practice, this is done in the following manner: For a segment
of data, the optimal filters are found for each candidate funda-
mental frequency. The filters are then applied to the signal
and the output power is measured. This shows how much
power is passed by the filters as a function of the fundamental

frequency, and the fundamental frequency estimate is then
picked as the fundamental frequency for which the most power
is passed. One can also obtain an estimate of the number of
harmonics L by estimating the noise variance by filtering out
the harmonics and applying one of the many statistical model
order estimation tools, like, e.g., the MAP-rule of [32], as
shown in [33]. From the optimal filter, it is thus possible to
obtain a full parametrization of periodic signals as was claimed
in the introduction.

The proposed filter design leads to filters that are generally
also much well-behaved for high SNRs, where Capon-like
filters are well-known to perform poorly and require that
diagonal loading or similar techniques be applied [31]. The
proposed filter also holds several advantages over traditional
methods, like the comb filtering approach or sinusoidal filters
(also known as FFT filters), namely that it is 1) optimal given
the observed signal, and 2) optimized for periodic filter output.
To quantify further what exactly is meant by the filter being
optimal, one has to take a look back at (12). The found filter is
optimal in the sense that it minimizes the difference in (12),
the exact time interval being determined by the summation
limits, under the constraint that it should pass the content at
specific frequencies undistorted and the output should to the
extent possible resemble a periodic signal.

We will now discuss some simplified designs that are all
special cases of the optimal single filter design.

1) Simplification No. 1: We remark that it can be shown
that Wk is asymptotically identical to the identity matrix.
By replacing Wk by I in (21), one obtains the usual noise
covariance matrix estimate, used, for example, in [12]. As
before, the optimal filters are

ĥk = Q̂−1k Zk

(
ZHk Q̂−1k Zk

)−1
1, (34)

but the modified covariance matrix estimate is now determined
as

Q̂k = R̂−GH
k Gk, (35)

which is computationally simpler as it does not require the
inversion of the matrix Wk for each candidate frequency. We
refer to this design as SF-APES (appx). It must be stressed that
for finite N , this is only an approximation that, nonetheless,
may still be useful for practical reasons as it is much simpler.
This approximation is actually equivalent to estimating the
noise covariance matrix by subtracting from R̂k an estimate
of the covariance matrix model (for a single source) in (11)
based on periodogram-like amplitude estimates.

2) Simplification No. 2: Interestingly, the Capon-like filters
of [19], [34] can be obtained as a special case of the solution
presented here by setting the modified covariance matrix equal
to the sample covariance matrix of the observed signal, i.e.,
Q̂k = R̂. More specifically, the optimal filter is then

ĥk = R̂−1Zk

(
ZHk R̂−1Zk

)−1
1, (36)

which is the design that we will refer to as Capon in the
experiments. The main difference between the design proposed
here and the Capon-like designs previously proposed is that
the modified covariance matrix Q̂k is used in (23) in place of
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R̂, i.e., the difference is essentially in terms of the output of
the filter being periodic.

3) Simplification No. 3: A simpler set of filters yet are
obtained from (36) by assuming that the input signal is white,
i.e., R̂ = σ2I. These filters are then no longer signal adaptive,
but they also only have to be calculated once. The optimal
filters are then given by

ĥk = Zk
(
ZHk Zk

)−1
1, (37)

which is thus fully specified by the pseudo-inverse of Zk.
4) Simplification No. 4: Curiously, the filters defined in (37)

can be further simplified as follows: complex sinusoids are
asymptotically orthogonal for any set of distinct frequencies,
which means that the pseudo-inverse of Zk can be approxi-
mated as

lim
M→∞

MZk
(
ZHk Zk

)−1
= Zk lim

M→∞

(
1

M
ZHk Zk

)−1
(38)

= Zk. (39)

This means that the filter becomes particularly simple. In fact,
it is just

ĥk =
1

M
Zk1, (40)

i.e., the normalized sum over a set of filters defined by Fourier
vectors.

IV. OPTIMAL FILTERBANK DESIGNS

A. Basic Principle

We will now consider a different approach to designing
optimal filters for periodic signals. Suppose that we design
a filter not for the entire periodic signal, but one for each of
the harmonics of the signal. In that case, we seek to find a
set of filter coefficients that depend on the harmonic number
l, i.e., {hk,l(m)}. The corresponding output of such a filter,
we denote yk,l(n). The output of each filter should resemble
a signal model ŷk,l(n) exhibiting certain characteristics. As
was the case with the single filter, we propose a cost function
defined as

Pl =
1

G

N−1∑
n=M−1

|yk,l(n)− ŷk,l(n)|2 , (41)

which measures the extent to which the filter output yk,l(n)
resembles ŷk,l(n). Adding this cost up across all harmonics
of the kth source, we obtain an estimate of the discrepancy as

P =

Lk∑
l=1

Pl =
1

G

Lk∑
l=1

N−1∑
n=M−1

|yk,l(n)− ŷk,l(n)|2 . (42)

For the single filter design, the output of each filter should
resemble a periodic function having possibly a number of
harmonics. In the present case, however, the output of the filter
should be just a single sinusoid, i.e., ŷk,l(n) = ak,le

jωkln.
Defining

yk,l(n) =

M−1∑
m=0

hk,l(m)x(n−m) , hHk,lx(n), (43)

we can express (42) as

P =
1

G

Lk∑
l=1

N−1∑
n=M−1

∣∣hHk,lx(n)− ak,lejωkln
∣∣2 . (44)

To form an estimate of the kth source from the output of the
filterbank, we simply sum over all the outputs of the individual
filters, as each output is an estimate of the lth harmonic, i.e.,

yk(n) =

Lk∑
l=1

yk,l(n) =

M−1∑
m=0

Lk∑
l=1

hHk,lx(n), (45)

which shows that the filters of the filterbank can be combined
to yield the single filter needed to extract the source. As
before, we proceed in our derivation of the optimal filters by
expanding this expression

P =

Lk∑
l=1

hHk,lR̂hHk,l +

Lk∑
l=1

|ak,l|2 (46)

−
Lk∑
l=1

hHk,lg(ωkl)a
∗
k,l −

Lk∑
l=1

ak,lg
H(ωkl)hk,l, (47)

where the R̂ is defined as before and the only new quantity
is

g(ω) =
1

G

N−1∑
n=M−1

x(n)e−jωn. (48)

B. Solution

With all the basic definitions in place, we can now derive
the optimal filterbank. First, however, we must solve for the
amplitudes. Differentiating (47) by âk,l and setting the result
equal to zero, we obtain

âk,l = hHk,lg(ωkl) for l = 1, . . . , Lk. (49)

Inserting this back into (47), we are left with an expression
that depends only on the filters {hk,l}:

P =

Lk∑
l=1

hHk,lR̂hk,l −
Lk∑
l=1

hHk,lg(ωkl)g
H(ωkl)hk,l (50)

=

Lk∑
l=1

hHk,l

(
R̂− g(ωkl)g

H(ωkl)
)
hk,l (51)

,
Lk∑
l=1

hHk,lQ̂k,lhk,l, (52)

where Q̂k,l is a modified covariance matrix estimate as before,
only it now depends on the individual harmonics. We can now
move on to the problem of solving for the filters. As before,
we must introduce some constraints to solve this problem.
It is natural to impose that each filter hk,l should have unit
gains for the lth harmonic. However, one can take additional
knowledge into account in the design by also requiring that
the other harmonics are canceled by the filter. Mathematically,
we can state this as

hHk,lZk = bl, (53)
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where
bl = [ 0 · · · 0︸ ︷︷ ︸

l−1

1 0 · · · 0︸ ︷︷ ︸
Lk−l

]. (54)

We can now state the design problem for the lth filter of the
filterbank as

min
hk,l

hHk,lQ̂k,lhk,l s.t. hHk,lZk = bl. (55)

For this problem, the Lagrangian dual function is

L(hk,l,λ) = hHk,lQ̂k,lhk,l −
(
hHk,lZk − bTl

)
λ. (56)

By taking the derivative with respect to the unknown filter
vector and the Lagrange multiplier vector, we get

∇L(hk,l,λ) =
[

Q̂k,l −Zk
−ZHk 0

] [
hk,l
λ

]
+

[
0
bl

]
. (57)

By the usual method, we obtain

λ =
(
ZHk Q̂−1k,lZk

)−1
bl (58)

and
hk,l = Q̂−1k,lZkλ. (59)

This, finally, results in the following optimal filters for l =
1, . . . , Lk

ĥk,l = Q̂−1k,lZk

(
ZHk Q̂−1k,lZk

)−1
bl. (60)

We will refer to this design as FB-APES (filterbank APES-like
design). The individual filters can now be applied to obtain
amplitude estimates as

âk,l = ĥHk,lg(ωkl) (61)

= bHl

(
ZHk Q̂−1k,lZk

)−1
ZHk Q̂−1k,lg(ωkl). (62)

Organizing all the filters for the kth source in a matrix, we
get

Ĥk = [ hk,1 · · · hk,Lk
] . (63)

The optimal filters in (60) can also be rewritten using the
matrix inversion lemma to obtain an expression that does not
require direct inversion of Q̂k,l of each l:

Q̂−1k,l =
(
R̂− g(ωkl)g

H(ωkl)
)−1

(64)

= R̂−1 +
R̂−1g(ωkl)g

H(ωkl)R̂
−1

1− gH(ωkl)R̂−1g(ωkl)
, (65)

which can then be inserted into (60). As with the single filter
approach, this design can also be used for estimating the
fundamental frequency by summing over the output powers
of all the filters, i.e.,

ω̂k =argmax
ωk

Lk∑
l=1

ĥHk,lR̂ĥk,l (66)

=argmax
ωk

Lk∑
l=1

Tr
{
ĤH
k R̂Ĥk

}
. (67)

Note that the filters can also be applied in a different way, or,
rather, the output power can be measured differently. In (66),

the output power is determined as the sum of output power of
the individual filters. If, instead, the output power is measured
on the estimated source obtained as in (45), one obtains

E
{
|yk(n)|2

}
=

(
Lk∑
l=1

ĥHk,l

)
R̂

(
Lk∑
l=1

ĥk,l

)
. (68)

However, assuming that the output of the individual filters is
uncorrelated, the two estimates will be identical (see [34] for
more details about this).

At this point some remarks are in order. For the Capon-
like filters of [19], [34], the single filter and the filterbank
approaches are closely related. This is, however, not the case
for the designs considered here in that they operate on different
covariance matrix estimates, Q̂k and Q̂k,l, respectively. While
it is more complicated to compute the former than the latter,
the latter must be computed a number of times, once for each
harmonic l. This suggests that, in fact, the single filter should
be preferable from a complexity point of view if the number
of harmonics is high.

As with the single filter design, it is possible to obtain some
simplified versions of the optimal design. Next, we will look
more into some of these.

1) Simplification No. 1: By posing the optimization prob-
lem in (55) in a slightly different way, we obtain an important
special case. More specifically, by changing the constraints of
(55) such that each filter only has to have unit gain for the
corresponding harmonic, we obtain the following problem:

min
hk,l

hHk,lQ̂k,lhk,l s.t. hHk,lz(ωkl) = 1, (69)

where, as before, Q̂k,l = R̂−g(ωkl)g(ωkl)H . The solution to
this problem is, in fact, the usual single sinusoid APES filter
[29], [30], which is

ĥk,l =
Q̂−1k,lz(ωkl)

zH(ωkl)Q̂
−1
k,lz(ωkl)

. (70)

This design takes only the individual harmonics into account
in the design of the individual filters. Essentially, the filter that
is obtained from (55) takes the presence of all the harmonics
of the kth source into account, while the present one does not.

2) Simplification No. 2: Taking this one step further and
replacing Q̂k,l by R̂, one obtains the well-known single
sinusoid Capon filter [35]

ĥk,l =
R̂−1z(ωkl)

zH(ωkl)R̂−1z(ωkl)
. (71)

As with the prior simplification, this design leaves it for the
algorithm to automatically cancel out the contribution of the
other harmonics.

3) Simplification No. 3: Similarly, replacing Q̂k,l by R̂ in
(60) results in the filters

ĥk,l = R̂−1Zk

(
ZHk R̂−1Zk

)−1
bl, (72)

which are identical to the filters of the optimal Capon-like
filterbank of [19]. Interestingly, when summed, it result in the
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optimal single Capon-like filter as
Lk∑
l=1

ĥk,l = ĥk. (73)

4) Simplification No. 4: The previous design can, of course,
be simplified further by assuming that the covariance matrix
is white, i.e., R̂ = σ2I, which results in static filters that have
to be calculated only once. The filters are then given by

ĥk,l = Zk
(
ZHk Zk

)−1
bl, (74)

which when organized in a filterbank matrix can be written as

Ĥk = Zk
(
ZHk Zk

)−1
. (75)

Source estimates obtained using this filterbank, as described
in (45), will be exactly the same estimates as one would get
using (37)–this can easily be verified by inserting the right
hand side of (74) in (45). The resulting fundamental frequency
estimators are, however, generally different, but are equivalent
under certain conditions. In the experimental part of this paper,
we will refer to this method as the FB-WNC design (filterbank
white noise Capon-like design).

5) Simplification No. 5: Applying the asymptotic approx-
imation in (39) to the filters in (74), we obtain even simpler
filters. More specifically, (74) reduces to

ĥk,l =
1

M
Zkbl, (76)

and the filterbank matrix is then simply given by

Ĥk =
1

M
Zk. (77)

When applied to the problem of fundamental frequency es-
timation, as in (66), this leads to the familiar approximate
non-linear least squares (NLS) method–it is nonlinear in the
fundamental frequency, hence the name; it is also sometimes
referred to as the harmonic summation method [27]. Note
that when source estimates are obtain using this filterbank as
described in (45), one will obtain exactly the same estimate as
with (40). We will refer to this method as FB-WNC (appx) in
the experiments, where it will serve as a method representative
of the usual way filters are designed. A large class of methods
exist for enhancement and separation of signals that operate
on the coefficients of the short-time Fourier Transform (STFT)
(see, e.g., [36], [37]). The individual bases of the STFT are
the same as the individual filters of the filterbank (76), in fact,
this will be the case for all methods that operate directly on
the coefficients of the STFT, including mask-based methods
like [38] and non-negative matrix factorization-based methods
like [39].

6) Simplification No. 6: We will close this section by
introducing one final simplification. If in lieu of Q̂k,l we use
Q̂k as obtained for the single filter approach in (22) in (60),
the optimal filters of the filterbank are then given by

ĥk,l = Q̂−1k Zk

(
ZHk Q̂−1k Zk

)−1
bl. (78)

It can be seen that the only difference between the different
filters of the filterbank is then the vector bl, which serves to

extract the filter for the individual harmonics. The filterbank
matrix containing these filters can then be expressed as

Ĥk = Q̂−1k Zk

(
ZHk Q̂−1k Zk

)−1
. (79)

It is then also easy to see that these filters are related to the
optimal single filter in (29) in a trivial way as

ĥk = Ĥk1. (80)

A similar relationship exists for the corresponding Capon-like
filters [34]. Curiously, one would also obtain these filters by
modifying (42) by moving the summation over the harmonics
inside the absolute value, which would also be consistent with
the formation of the source estimates according to (45).

V. RESULTS

A. Practical Considerations

Before moving on to the experimental parts of the present
paper, we will now go a bit more into details of how to apply
the proposed filters and what issues one has to consider in
doing so.

Given a segment of new data {x(n)}, the procedure is as
follows:

1) Estimate the fundamental frequencies {ωk} of all
sources of interest for the data {x(n)}.

2) Determine or update recursively the sample covariance
matrix R̂.

3) Compute a noise covariance matrix estimate Qk for each
source (or for its harmonics Qk,l) and the inverse.

4) Compute the optimal single filter hk or filterbank Hk

for each source of interest k using one of the proposed
designs.

5) Perform block filtering on the data {x(n)} to obtain
source estimates yk(n) for each source of interest k
(using the observed signal from the previous segment
as filter states as appropriate).

In performing the above, there are a number of user parameters
that must be chosen. The following may serve as a basis
for choosing these. Generally speaking, the higher the filter
length M , the better the filter will be in attenuating noise
and canceling interference from other sources as the filter has
more degrees of freedom. This also means that the higher
the model order, the more interfering sources the filter can
deal with. However, there are several concerns that limit the
filter length. First of all, the validity of the signal model. If
the signal is not approximately stationary over the duration of
the segment, the filters cannot possibly capture the signal of
interest, neither can it deal with noise and other sources. On a
related issue, the filter length M must be chosen, as mentioned,
with M < N/2 + 1 to yield a well-conditioned problem.
This means that the signal should be stationary over N and
not just M . It should of course also be taken into account
that the higher the filter order, the more computationally
complex the design will also be. Regarding how often one
should compute the optimal filters, i.e., how high the update-
rate should be relative to M and N , it should be noted that
for the filter outputs to be well-behaved, the filters must not
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Fig. 1. Frequency responses of the various filters for a set of harmonically related sinusoids in white Gaussian noise at an SNR of -20 dB (top panels) and
20 dB (bottom panels). The designs shown here are (a) SF-APES, (b) SF-Capon, (c) FB-APES, (d) FB-WNC.

change abruptly. Consequently, it is advantageous to update
the filters as often as possible by computing a new covariance
matrix and subsequently new filters at the cost of increased
computational complexity. In this process, one may also just
as well update the fundamental frequency. In fact, it may also
be advantageous to estimate a new fundamental frequency
frequently relative to M and N to track changes in the signal
of interest. This all suggests that it should be preferable in most
situations to update the fundamental frequency, the covariance
matrix and filters frequently.

Regarding numerical issues, as we have seen, the Capon-
design suffers from bad conditioning of the covariance matrix
for high SNRs, and it may thus be reasonable to use a regular-
ized estimate of the covariance matrix, like R̃ = R̂+δI, where
δ is a small positive constant, before computing inverses. It
is also possible that the APES-like designs may benefit from
such modified estimates under extreme conditions.

B. Tested Designs

In the tests to follow, we will compare the proposed design
methods to a number of existing FIR design methods. More
specifically, we will compare the following:
• SF-APES which is the optimal single filter design given

by (29).
• SF-Capon, i.e., the single filter design proposed in [19],

[34], which is based on a generalization of the Capon
principle. The optimal filter is given by (36).

• SF-APES (appx) is an approximation of SF-APES based
on the simpler modified covariance matrix estimate in
(35). It is thus a computationally simpler approximation
to SF-APES.

• FB-APES is the optimal filterbank design given by (60).
• FB-WNC is a static single filter design based on Fourier

vectors. The filter is given by (74). It serves as reference
method as such filters are often used for processing of
periodic signals.

• FB-WNC (appx) is an approximation of the FB-WNC
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Fig. 2. Estimated computation times for the various filters designs (a) as a function of the number of observations N with M = N/4 and Lk = 5, and (b)
as a function of the number of harmonics Lk with N = 100 and M = 25. For each data point, each filter was computed 1000 times and the average was
computed.

filters with the filters being defined in (76). It is based on
the asymptotic orthogonality of complex sinusoids. It is
perhaps the most commonly used filter design method
for processing periodic signals and is sometimes also
referred to as the frequency sampling design method or
the resulting filters as FFT filters.

Note that we do not include all the simplifications of Sections
III and IV as some of them are trivially related.

C. Frequency Response

We will start out the experimental part of this paper by
showing an example of the optimal filters obtained using some
of the proposed methods and their various simplifications and
the Capon-like filters of [19], [34]. More specifically, we will
show the frequency response of the filters obtained using some
of the various designs for a synthetic signal. In Figure 1, these
are shown for a synthetic signal having ω0 = 0.6283, L =
5, Rayleigh distributed amplitudes and uniformly distributed
phases with white Gaussian noise added at a -20 dB SNR
(top panels) and 20 dB (bottom panels). The filters all have
length 50 in these examples and were estimated from 200
samples. All the filters can be seen to exhibit the expected

response for -20 dB SNR following the harmonic structure of
the signal having 0 dB gain for the harmonic frequencies, and
several of them are also quite similar. For an SNR of 20 dB,
however, it can clearly be seen that the proposed filters still
exhibit the desired response emphasizing the harmonics of the
signal. The Capon-like design, SF-Capon, however, behaves
erratically for 20 dB SNR, and this is typical of the Capon-like
filters. Comparing the response of this method to the proposed
ones, namely SF-APES, and FB-APES, it can be seen that this
problem is overcome by the new design methodology. The
erratic behavior of the Capon-like filter can be understood by
noting that for high SNR, the Capon method will generally
suffer from poor conditioning of the sample covariance matrix
(as the eigenvalues only due to the noise tending toward zero),
explaining the low accuracy of the resulting filter, and as
the SNR increases, the filters obtained using the SF-Capon
design will get progressively worse. We also remark that for
the example considered here, SF-APES (appx) will be quite
similar to SF-APES and FB-WNC (appx) to FB-WNC, for
which reason these designs are not shown. This is because the
asymptotic approximations that these derivative methods are
based on are quite accurate in this case. This is also the likely
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Fig. 3. Performance of the various filters in SDR (a) as a function of the SNR and (b) the SIR with an interfering source present (with noise added at a
fixed SNR of 20 dB).

explanation for the frequency responses of SF-APES and FB-
APES looking extremely similar for both SNRs. We remark
that while the adaptive designs will change with the observed
signal, FB-WNC and its simplification will remain the same.

D. Computational Complexity and Computation Times
In comparing the performance of the various methods, it is

of course also important to keep the computational complexity
of the various methods in mind. All the tested methods, except
the FB-WNC (appx) design, have cubic complexities involving
operations of complexity O(M3), O(L3

k), O(M2Lk), and
O(ML2

k), as they involve matrix inversions and matrix-matrix
multiplications. Some of the designs avoid some matrix in-
versions, like the SF-APES (appx) design, but such details
cannot be differentiated with these asymptotic complexities.
We therefore have measured average computation times of
the various designs in MATLAB. More specifically, we have
computed the average computation times over 1000 trials as
a function of Lk and N as M is assumed to be chosen
proportionally to N . The measurements were obtained on
an Intel(R) Core(TM)2 CPU 6300 @ 1.86GHz with 2GB of
RAM running MATLAB 7.6.0 (R2008a) and Linux 2.6.31-
17 (Ubuntu). Note that the current implementations do not

take into account the structure of the various matrices like,
e.g., Toeplitz structure of the covariance matrix. The obtained
results are shown in Figure 2(a) as a function of N with
M = N/4 and Lk = 5 and as a function of Lk with
N = 100 and M = 25 in Figure 2(b) for typical ranges of
these quantities. From Figure 2(a) it can be observed that the
computational complexity of the the designs SF-APES, SF-
APES (appx), FB-APES, and SF-Capon indeed are cubic in
M (and thus N ), the difference essentially being a scaling. It
can be observed that the FB-APES design is the most complex,
owing to the different noisy covariance matrix estimates that
must be determined for each harmonic. Note that for a very
low number of harmonics, this design is less complex than
SF-APES and SF-APES (appx). It can also be seen that, as
expected, the SF-Capon design is the least complex of the
adaptive designs, as it does not require the computation of a
noise covariance matrix estimate. The general picture is the
same in Figure 2(b), although it can be observed that the
difference in computation time between the FB-APES method
and the others appear to increase on the logarithmic scale
as the number of harmonics is increased, the reason again
being that the higher the number of harmonics, the more noise
covariance matrices (and their inverses) must be determined.
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Fig. 4. Performance of the various filters in SDR (a) as function of the fundamental frequency, (b) and the filter length with an interfering source present.

E. Enhancement and Separation

Next, we will consider the application of the various filter
designs to extracting periodic signals from noisy mixtures con-
taining other periodic signals and noise or just noise. We will
test the performance under various conditions by generating
synthetic signals and then use the filters for extracting the
desired signal. More specifically, the signals are generated in
the following manner: A desired signal s1(n) that we seek to
extract from an observed signal x(n) is buried in a stochastic
signal, i.e., noise e(n); additionally, an interfering source
s2(n) is also present, here in the form of a single sinusoid.
The observed signal is thus constructed as

x(n) = s1(n) + s2(n) + e(n). (81)

We will measure the extent to which the various filter designs
are able to extract s1(n) from x(n) using the signal-to-
distortion ratio (SDR) defined as:

SDR = 20 log10
‖s1(n)‖2

‖s1(n)− y1(n)‖2
[dB] , (82)

where y1(n) is the signal extracted by applying the obtained
filters to x(n). The ultimate goal is of course to reconstruct

s1(n) as closely as possible and, therefore, to maximize the
SDR.

As a measure of the power of the interfering signal s2(n)
relative to the desired signal s1(n), we use the following
measure:

SIR = 20 log10
‖s1(n)‖2
‖s2(n)‖2

[dB] , (83)

which we refer to as the signal-to-interference ratio (SIR)
(for a discussion of performance measures for assessment of
separation algorithms see, e.g., [38], [40]). It is expected that
the higher the SIR, the worse the SDR will be. Finally, we
measure how noisy the signal is using the signal-to-noise ratio
(SNR) defined as

SNR = 20 log10
‖s1(n)‖2
‖e(n)‖2

[dB] . (84)

The reader should be aware that our definitions of SDR and
SIR are consistent with those of [40], but also that our defini-
tion of SNR differs but is consistent with its use in estimation
theory. In the experiments reported next, unless otherwise
stated, the conditions were as follows; the above quantities
were calculated by applying the found filters to the observed
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signal and the SDR was then measured. This was then repeated
100 times for each test condition, i.e., the quantities are
determined using Monte Carlo simulations. In doing this, the
zero-state responses of the filters were ignored. Segments of
length N = 200 were used with filter lengths of M = N/4
(for all designs) and an SNR of 20 dB was used. The desired
signal was generated with a fundamental frequency of 0.5498
and five harmonics. The real and imaginary values of the
complex amplitudes were generated as realizations of i.i.d.
Gaussian random variables, leading to Rayleigh distributed
amplitudes and uniformly distributed phases. The interfering
source was a periodic signal having a fundamental frequency
of 0.5890, five harmonics and with Rayleigh distributed am-
plitudes and uniformly distributed phases. Its amplitudes were
then scaled to match the desired SIR in each realization.
In these experiments, we will assume that the fundamental
frequency of the desired signal is known while the fundamental
frequency of the interference is unknown. As has already been
mentioned, it is possible to estimate the fundamental frequency
using the proposed filters, but this is beyond the scope of this
paper, and we will just assume that the fundamental frequency
has been estimated a priori using one of the methods of [27].

In the first experiment, only the desired signal and the noise
are present, i.e., no interfering source was added, and the
performance of the filters is observed as a function of the
SNR. The resulting measurements are plotted in Figure 3(a).
It can be seen that the Capon-like filter design, SF-Capon, that
was the starting point of this work, performs poorly in this
task. In fact, it is worse than the static designs FB-WNC and
FB-WNC (appx). It can also be observed that the APES-like
filters, SF-APES, SF-APES (appx) and FS-APES, all perform
well, achieving the highest SDR. In [19], it was shown that
the Capon-like filters perform well in terms of multi-pitch
estimation under adverse conditions compared to the alterna-
tives. This was especially true when multiple periodic sources
were present at the same time as the signal-adaptive optimal
designs were able to cancel out the interference without prior
knowledge of it. It appears that with this particular setup, there
is a 10 dB reduction in the noise regardless of the SNR for the
proposed filters, and, interestingly, all the filter designs seem
to tend perform similarly for low SNRs. This means that there
appears to be no reason to prefer one method over the others
for low SNRs, in which case the simplest design then should
be chosen.

The next experiment is, therefore, concerned with the per-
formance of the filters when interference is present. Here, the
noise level, i.e., the SNR, is kept constant at 20 dB while the
SIR is varied. The results are depicted in Figure 3(b). This
figure clearly shows the advantage that the adaptive designs,
SF-APES, SF-APES (appx), FB-APES, and SF-Capon, hold
over the static ones, FB-WNC and FB-WNC (appx) in that
the former perform well even when the interference is very
strong, while the latter does not. The advantages of the designs
proposed herein are also evident as the APES-like filters, SF-
APES, SF-APES (appx), and FS-APES, outperform all others
for the entire tested range of SIR values. We remark that in
several of these figures, it may be hard to distinguish the
performance of SF-APES, SF-APES (appx), and FB-APES as
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Fig. 5. Shown are: (a) the spectrogram of the original signal, (b) with noise
and interference added with SNR = 0 dB and SIR = −10 dB (c) and the
signal extracted using the FS-APES design.

the curves are very close; indeed they appear to have similar
performance in terms of SDR.

As some of the simpler designs are based on sinusoids being
asymptotically orthogonal, namely SF-APES (appx) and FB-
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WNC (appx), it is interesting to see how the various filters
perform when this is not the case. We do this by lowering
the fundamental frequency for a given N , as for a given N ,
the fundamental frequency has to be high, relatively speaking,
for the asymptotic approximation to hold. In this case, only
noise is added to the desired signal at an SNR of 10 dB.
The results are shown in Figure 4(a). As could be expected,
the aforementioned approximate designs perform poorly (as
does the Capon-like filters SF-Capon), but, generally, the
performance of all the methods degrades as the fundamental
frequency is lowered. This is, however, to be expected. Note
that the reason FB-WNC (appx) performs well for certain
fundamental frequencies is that the harmonics may be close to
(or exactly) orthogonal, but this would merely be a coincidence
in all practical situations.

Now we will investigate the influence of the filter length by
varying M while keeping N fixed at 200, here in the presence
of an interfering source. In this case, noise is added at an SNR
of 10 dB while the SIR was 10 dB. In Figure 4(b), the results
are shown. The conclusions are essentially the same as for
the other experiments; the proposed filter designs perform the
best, the SF-Capon filters behave erratically, and the static
designs FB-WNC and FB-WNC (appx) perform poorly when
interference is present. We note that for the respective matrices
to be invertible, the filter lengths cannot be too long. On the
other hand, one would expect that the longer the filters, the
better the performance as the filters have more degrees of
freedom to capture the desired signal while canceling noise
and interference, and this indeed seems to be the case.

These experiments generally show that the proposed filter
designs have a number of advantages over previous designs
and static designs alike when applied to the problem of
separating periodic signals. Among the proposed designs, SF-
APES and FB-APES appear to perform the best and equally
well while SF-APES (appx) is sometimes slightly worse.

F. Some Speech and Audio Examples

We will now demonstrate the applicability of the proposed
methods to real signals. In the experiments to follow, we
will use the SF-APES design. In the first such experiment,
we will use the filters obtained using the said method to
extract a real trumpet signal, a single tone sampled at ∼ 8
kHz using 50 ms segments and a filter length of 100 and
the filter is updated every 5 ms. Note that both the signal
and the filters are complex by mapping the input signal to
its analytic counterpart using the Hilbert transform. For each
segment the fundamental frequency and the model order was
found using the approximate non-linear least squares method
of [27] and the optimal filter was updated every 1 ms. The
single tone has been buried in noise at an SNR of 0 dB and
interfering tones, which were also trumpet tones (both signals
are from the SQAM database [41]), have been added with
an SIR of -10 dB. The spectrogram of the original signal
is shown in Figure 5(a) and the same signal with noise and
interference added is depicted in Figure 5(b). The spectrogram
of the extracted signal is shown in Figure 5(c). These figures
clearly demonstrate the ability of the APES-like designs to

extract the signal while rejecting not only noise, but also strong
periodic interference even when these are fairly close to the
harmonics of the desired signal. Note that for this particular
example, because the SIR and SNR are quite low, the FS-
Capon method would also perform quite well.

Regarding the application of the proposed filters to speech
signals, an interesting question is whether the filters are
suitable for such signals, as they exhibit non-stationarity. To
address this question, we apply the SF-APES method to a
voiced speech signal, this particular signal being from the
SQAM database [41] and sampled at 11025 Hz. As with
the prior example, we estimate the pitch for each segment,
which are here of size 30 ms (corresponding to 165 complex
samples), a size commonly used in speech processing and
coding. From these segments, the optimal filterbank is then
also determined using the estimated pitch. In this example,
the complex filters of length 40 are updated every 2.5 ms.
The signal is depicted in Figure 6(a) and the extracted signal
is shown in Figure 6(b). The difference between the original
signal and the extracted one is shown in Figure 6(c) and
the estimated pitch is shown in Figure 6(d). A number of
observations can be made regarding the original signal. Firstly,
it is non-stationary at the beginning and the end with a time-
varying envelope, and the pitch can be observed to vary too.
It can, however, be observed from the extracted signal and
the corresponding error signal that the filters are indeed able
to track this signal, resulting in an SDR of 20 dB. This
demonstrates that the filters may be useful even if the signal
is not completely stationary.

Our final example involves the separation of two speech
signals, more specifically two quasi-stationary segments of
voiced speech mixed at an SIR of 0 dB. These signals are
sampled at 8 kHz and are from the EUROM.1 corpus [42].
As before 30 ms segments are used for determining the pitch
and the optimal filters resulting in segments consisting of 120
complex samples along with filters of length 30. We here
update the filters every 2.5 ms. In Figures 7(a) and 7(b), the
two signals are shown along with their mixture in Figure 7(c).
As before, the fundamental frequencies of the two sources
are estimated with the approximate non-linear least squares
method [27], and the resulting estimates are shown in Figure
7(d). It can be seen that one source has an average pitch of
approximately 162 Hz while that of the other is about 200 Hz.
The two extracted signals are shown in Figures 7(e) and 7(f),
respectively. As can be seen, the filters are able to separate
the signals achieving SDRs of 14 and 12 dB, respectively. Of
course, some errors occur, as can also clearly be seen, as parts
of the other interfering source will be passed by the filters.

VI. CONCLUSION

In this paper, new filter designs for extracting and separating
periodic signals have been proposed, a problem occurring
frequently in, for example, speech and audio processing. The
proposed filters are designed such that they have unit gain
at the frequencies of the harmonics of the desired signal
and suppress everything else. The novel part of the present
designs is that they are optimized for having an output that is
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Fig. 6. Shown are: (a) the original voiced speech signal, (b) the extracted signal, (c) the difference between the two signals, i.e., the part of the signal that
was not extracted, and (d) the estimated pitch used in the filters.

approximately periodic too. Additionally, the obtained filters
are optimal for a segment of the observed signal and are
thus signal-adaptive. The filter designs can be used not only
for the aforementioned applications but also for estimating
the parameters of periodic signals. The designs have been
demonstrated to overcome the shortcomings of previous de-
signs while retaining their desirable properties, like the ability
to cancel out interfering signals. We have shown how the
new designs reduce to a number of well-known designs under
certain conditions and they can thus be seen as generalizations
of previous methods. In simulations, we have demonstrated the
superior performance of the obtained filters in enhancement
and separation applications.
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Accurate Estimation of Low Fundamental
Frequencies from Real-Valued Measurements

Mads Græsbøll Christensen, Senior Member, IEEE

Abstract— In this paper, the difficult problem of estimating
low fundamental frequencies from real-valued measurements is
addressed. The methods commonly employed do not take the
phenomena encountered in this scenario into account and thus
fail to deliver accurate estimates. The reason for this is that
they employ asymptotic approximations that are violated when
the harmonics are not well-separated in frequency, something
that happens when the observed signal is real-valued and the
fundamental frequency is low. To mitigate this, we analyze
the problem and present some exact fundamental frequency
estimators that are aimed at solving this problem. These esti-
mators are based on the principles of nonlinear least-squares,
harmonic fitting, optimal filtering, subspace orthogonality, and
shift-invariance, and they all reduce to already published methods
for a high number of observations. In experiments, the methods
are compared and the increased accuracy obtained by avoiding
asymptotic approximations is demonstrated.

I. INTRODUCTION

Signals that are periodic can be decomposed into a sum
of sinusoids having frequencies that are integer multiples of
a fundamental frequency, much like the well-known Fourier
series, except that real-life signals are noisy and are not
observed over an integer number of periods. The problem of
finding this fundamental frequency is referred to as funda-
mental frequency estimation or sometimes as pitch estimation,
with the latter term referring to the perceptual attribute that
is associated with sound waves exhibiting periodicity. Many
signals that can be encountered by the signal processing
practitioner are periodic or approximately so. This is, for
example, the case in speech processing, where voiced speech
exhibits such characteristics, and in music processing for tones
produced by musical instruments. Also in the analysis of
some bird calls and various other biological signals, like vital
signs [1], such signals can be encountered. Moreover, they
occur in radar applications for rotating targets [2] and in
passive detection, localization, and identification of boats and
helicopters [3]. It is then also not surprising that a host of
methods have been proposed over the years including methods
based on the principles of maximum likelihood, least-squares
(LS), and weighted least-squares (WLS) [4]–[8], auto-/cross-
correlation and related methods [9]–[13], linear prediction
[14], filtering [2], [15]–[17], and subspace methods [18], [19].
We note in passing that several of the cited methods can
be interpreted in more than one way and may therefore be
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on Acoustics, Speech, and Signal Processing 2013.

M. G. Christensen is with Audio Analysis Lab,Dept. of Architecture,
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considered as belonging to several of the categories above.
For an introduction to the fundamental frequency estimation
problem and an overview of fundamental frequency estimators,
we refer the interested reader to [20].

We are here concerned with a specific problem in determin-
ing the fundamental frequency under certain circumstances.
When the fundamental frequency of a periodic signal is low
as compared to the number of samples, the harmonics of
the signal are closely spaced in its spectrum, as the distance
between harmonics is given by the fundamental frequency. A
similar effect comes into play when the observed signal is
real (when we say that some quantity is real, we mean that
it is real-valued, i.e., its imaginary part is zero). In this case,
harmonics occur in the spectrum not only at positive integer
multiples of a fundamental, but also for negative, as complex
conjugate pairs of complex sinusoids combine to yield real
signals. Again, the distance between the individual complex
sinusoids is given by the fundamental frequency. The problem
here is that when harmonics are close in frequency, and they
are far from being orthogonal, they will interact. As such, this
is not really a problem, but most of the parametric methods
in the literature ignore this. The reason for this is simple: by
ignoring the interaction, one obtains simpler estimators that
can be implemented efficiently using, for example, the fast
Fourier transform (FFT) or polynomial rooting methods. An
example of this is the so-called harmonic summation method
[4], in which an approximate maximum likelihood estimate of
the fundamental frequency is obtained by summing the power
spectral density sampled at candidate fundamental frequencies
and picking the one that yields the highest power. This method
is accurate when the number of samples approaches infinity,
but it fails to take the interaction into account for finite length
signals. From the above discussion, it should also be clear that
when the fundamental frequency is high relative to the number
of available samples, there is essentially no error in using a
complex model for a real-valued signal.

Interestingly, the problem of taking the nature of real signals
into account has been addressed in the frequency estimation
literature, i.e., for the case where sinusoids are not constrained
to being integer multiples of a fundamental frequency. Some
examples of adaptations of well-known estimators to this
problem are for maximum likelihood methods [21], [22],
subspace methods [23], [24], Capon’s method [25], and the
linear prediction [26] method.

It is possible to bound the performance of estimators by
computing the Cramér-Rao lower bound (CRLB), which is
a lower bound on the variance of an unbiased estimator.
This has also been done for the problem of estimating the
fundamental frequency [2], [18]. These show that the expected
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performance (of an optimal estimator) does not depend on the
fundamental frequency. At first glance, this seems to contradict
the premise of this paper. However, upon closer inspection, it
turns out that these bounds were derived based on asymptotic
approximations relying on the number of samples approaching
infinity or being sufficiently large. In former case, the support
of spectrum of the sinusoids reduces to a single point, and,
hence, the interaction between sinusoids will be zero as long
as the fundamental frequency is different from zero, a trivial
case that is of no interest anyway.

In this paper, we aim to analyze and solve this problem
in a systematic manner. We define the problem of interest
with complex and real signal models and analyze it using
using what we refer to as the exact CRLB. Then, a number of
solutions to the problem are presented, some of which are new,
some of which are known, namely a nonlinear least-squares
method, an optimal filtering method, a subspace method
based on angles between subspaces, and, finally, a method
based on a WLS fitting of unconstrained frequencies (called
harmonic fitting). The presented methods have in common that
they avoid the use of asymptotic approximations, whenever
possible, and they take the real-valued nature of the observed
signal into account. The nonlinear least-squares method is
well-documented in the literature having been applied to many
problems, including also frequency estimation and fundamen-
tal frequency estimation [5], [6], [8]. The optimal filtering
method, which is based on constrained optimization, was
originally proposed in [8], but only for complex signals. Here,
the underlying constraints are modified to fit real signals. The
method based on angles between subspaces is an exact version
of the MUSIC-based methods of [8], [18] both of which
employ an approximate measure of subspace orthogonality
as introduced in [27]. The connection between the exact
and approximate measures of the angles between subspaces
was first analyzed in [28], but was only used for deriving
an approximate, normalized measure for order estimation
and, hence, not for fundamental frequency estimation. The
harmonic fitting method was originally proposed in [6], but
employed a weighting of the individual harmonics derived
based on asymptotic properties, while we here avoid using
these. In simulations, the effectiveness of these methods is
then investigated and their performance compared to the exact
CRLB, and the problem is analyzed via comparisons of the
asymptotic and exact CRLBs.

The remainder of the present paper is organized as follows:
In Section II, we introduce the problem and the signal models
and proceed to derive the corresponding CRLB. In the section
that follows, namely Section III, we present some methods for
solving the problem. We then present the experimental results
in Section IV, after which we conclude on our work in Section
V.

II. PRELIMINARIES

A. Model and Problem Definition

We will now proceed to define the problem of interest
and the associated signal model. The observed real signal
x(n) is composed of a set of L sinusoids having frequencies

that are integer multiples of a fundamental frequency ω0,
real amplitude Al > 0, and phases φl ∈ [0, 2π). Aside
from the sinusoids, we assume that an additive noise source
e(n) is present. This noise source represents all stochastic
signal components, even those that are integral parts of natural
signals that may be of interest to us in other cases. It is here
assumed to be white Gaussian distributed having variance σ2

and zero mean, although this is strictly speaking not necessary
for all the presented methods. Mathematically, the observed
signal can be expressed for n = 0, . . . , N − 1 as

x(n) =

L∑
l=1

Al cos (ω0ln+ φl) + e(n). (1)

The problem is then to estimate ω0 from x(n). For a given
L, the fundamental frequency can be in the range ω0 ∈
(0, πL ). Regarding the remaining unknown parameters, some
comments are in order. The model order, L, (also referred to
as the number of harmonics) can be found a variety of ways
and it is possible to solve jointly for the fundamental frequency
and the model order, something that has been done for all the
methodologies employed here (see [20]), and the extension
of these principles to the estimator presented herein is fairly
straightforward for which reason we defer from any further
discussion of this problem. Once the fundamental frequency
and the model order L has been found, the corresponding
phases and amplitudes can be found using one of the many
existing amplitude estimators [20], [29]. Compared to the
problem of estimating the fundamental frequency, this is
fairly easy, as these parameters are linear. We note that for
L = 1, the model above reduces to a single real sinusoid
and the associated estimation problem to the usual frequency
estimation problem.

Regarding the realism of the model (1), there are several
issues that may be a concern. First, the amplitudes, phases
and frequencies are assumed to be constant for the duration
of the N samples. Since natural sources most often are
time-varying, N should be chosen sufficiently low so that
the model is a good approximation of the observed signal.
Second, the frequencies of the harmonics are assumed to be
integer multiples of the fundamental frequency. This should
be considered an approximation too, as natural signals may
exhibit deviations from this for variety of reasons. We note in
passing that a number of modified signal models that take this
into account exist [20], [30]. Since these are widely application
and signal specific and we wish to retain the generality of
the presented material, we will not go further into details on
this matter. Third, the noise was assumed to be Gaussian and
white. Regarding the Gaussian assumption, this appears to be
the norm in the literature, and, in our experience, it does not
appear to be a major shortcoming of existing methods used in
speech and audio processing. It should also be noted that even
though several of the estimators herein are derived based on
this assumption, the estimators may still be accurate, at least
asymptotically so, even if the assumption does not hold [31].
Moreover, the white Gaussian distribution can be shown to be
the one that maximizes the entropy of the noise [32], i.e., it is
a worst case scenario. For colored noise, one can apply pre-
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whitening [5], [33], i.e., a filtering, to render the noise white,
or, at least, more close to being white than it was prior to the
pre-whitening. Fourth, the noise was assumed to have zero
mean and no DC offset (0 frequency component) is included
in the deterministic part of (1). This is mostly done for
simplicity. The presence of such a component can, though, be
addressed in several ways: a) the presented estimators can be
extended by including the zero frequency component having
an unknown amplitude [31]; b) the mean can be estimated
(and removed) a priori as it is typically caused by calibration
errors in microphones and constant outside n = 0, . . . , N −1;
c) the signal of interest can be preprocessed using a simple
DC blocking filter.

This signal model in (1) can also be expressed using
complex sinusoids as

x(n) =

L∑
l=−L

ale
jω0ln + e(n), (2)

with al = a∗−l and a0 = 0. In this notation, the phase and
amplitude have been combined into a complex amplitude as
al = Al

2 e
jφl and (·)∗ denotes the complex-conjugate. It should

be stressed that no additional assumptions have been used in
going from (1) to (2), which means that (2) is exact. The
error in applying a complex model arises when modifying
(2) into x(n) ≈

∑L
l=1 ale

jω0ln + e(n), i.e., when assuming
that only half the complex sinusoids are there. This essentially
ignores the interaction between the complex sinusoids having
frequencies {ω0l}Ll=1 and {−ω0l}Ll=1. Another frequently used
approach is to convert (1) into a complex model via the
Hilbert transform, which can be used to compute the so-called
discrete-time analytic signal. However, the error committed in
this process is essentially the same (aside from the subop-
timality of the finite-length Hilbert transform), and they are
both accurate under the same conditions, namely that ω0 is
not close to 0 relative to N .

B. Cramér-Rao Lower Bound and Further Definitions

An estimator is said to be unbiased if the expected value of
its estimate θ̂i of the ith parameter θi of the parameter vector
θ ∈ RP is identical to the true parameter for all possible values
of the true parameter, i.e., E

{
θ̂i

}
= θi ∀θi. The difference,

i.e., θi − E
{
θ̂i

}
, is referred to as the bias. The CRLB is

a lower bound on the variance of an unbiased estimate of a
parameter, say θi, and it is given by var(θ̂i) ≥

[
I−1(θ)

]
ii

.
Here, the notation [I(θ)]il means the ilth entry of the matrix
I(θ) and var(·) denotes the variance. Furthermore, I(θ) is the
Fisher information matrix defined as

I(θ) = −E

{
∂2 ln p(x;θ)

∂θ∂θT

}
, (3)

where p(x;θ) is the likelihood function of the observed signal
parametrized by the parameters θ. For the case of Gaussian
signals with x ∼ N (µ(θ),Q) where Q is the noise covariance
matrix (which is not parametrized by any of the parameters in

θ) and µ(θ) is the mean, the likelihood function is given by

p(x;θ) =
1

det (2πQ)
1
2

e−
1
2 (x−µ(θ))TQ−1(x−µ(θ)). (4)

For this case, Slepian-Bang’s formula [34] can be used for
determining a more specific expression for the Fisher infor-
mation matrix. More specifically, it is given by

[I(θ)]nm =
∂µT (θ)

∂θn
Q−1 ∂µ(θ)

∂θm
. (5)

For the problem and signal model considered here, the in-
volved quantities are given by:

x , [ x(0) · · · x(N − 1) ]
T

Q , σ2I

θ , [ ω0 A1 φ1 · · · AL φL ]
T

µ(θ) , Za

Z , [ z(ω0) z∗(ω0) · · · z(ω0L) z∗(ω0L) ] ,

a ,
1

2

[
A1e

jφ1 A1e
−jφ1 · · · ALejφL ALe

−jφL
]T

z(ω0l) ,
[

1 ejω0l1 · · · ejω0l(N−1)
]T
.

Note that we will make extensive use of these definitions later.
In relation to the problem at hand, some observations about
the nature of the matrix Z can be made: Firstly, for ω0 6= 0
and ω0 ∈ (0, πL ), Z has full rank. However, for ω0 = 0, it
will be rank deficient and as ω0 → 0, the condition number
of Z will tend to infinity and the involved estimation problem
is basically ill-posed.

With the above in place, we now have to determine the
following derivatives:

∂µ(θ)

∂ω0
=

∂Z

∂ω0
a,
∂µ(θ)

∂Al
= Z

∂a

∂Al
,
∂µ(θ)

∂φl
= Z

∂a

∂φl
, (6)

which, in turn, require that the following be computed:

∂Z

∂ω0
=

[
∂z(ω0)

∂ω0

∂z∗(ω0)

∂ω0
· · · ∂z(ω0L)

∂ω0

∂z∗(ω0L)

∂ω0

]
∂z(ω0l)

∂ω0
=
[

0 jlejω0l · · · j(N − 1)lejω0l(N−1)
]T

(7)

∂a

∂Al
=

1

2

[
0 · · · 0 ejφl e−jφl 0 · · · 0

]T
∂a

∂φl
=

1

2

[
0 · · · 0 jAle

jφl − jAle−jφl 0 · · · 0
]T
.

For simplicity, we introduce the following definitions:

∂Z

∂ω0
a , α0

Z
∂a

∂Al
= Re

{
ejφlz(ω0l)

}
, βl

Z
∂a

∂φl
= −Al Im

{
ejφlz(ω0l)

}
, γl.

(8)

Here, Re {·} and Im {·} denote the real and imaginary values,
respectively. Note that all the quantities above are real. The
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entries in the Fisher information matrix can now be expressed
in terms of inner products between these quantities as:

I(θ) =
1

σ2



αT0 α0 αT0 β1 αT0 γ1 · · · αT0 βL αT0 γL
βT1 α0 βT1 β1 βT1 γ1 · · · βT1 βL βT1 γL
γT1 α0 γT1 β1 γT1 γ1 · · · γT1 βL γT1 γL

...
...

...
. . .

...
...

βTLα0 βTLβ1 βTLγ1 . . . βTLβL βTLγL
γTLα0 γTLβ1 γTLγ1 . . . γTLβL γTLγL


(9)

The CRLB can now be determined from this by computing the
inverse of this matrix and inspecting its diagonal elements.
The simple closed form expressions for CRLBs obtained in
[2], [18] can be found using the asymptotic orthogonality of
complex sinusoids in computing the inner products above.
However, we here do not employ this technique as we wish to
take into account that the sinusoids are not orthogonal for low
fundamental frequencies, and we therefore refer to this CRLB
as the exact CRLB. For reference, the asymptotic CRLB for
the problem at hand is given by

var(ω̂0) ≥ 24σ2

N3
∑L
l=1A

2
l l

2
. (10)

The lower bound can be seen to be determined by the signal-
to-noise ratio (SNR) defined (in dB) as

SNR = 20 log10

∑L
l=1A

2
l l

2

σ2
[dB] . (11)

An interesting observation can be made from (9): it can be
seen that the noise variance is simply a constant factor, and
the effect of noise is, hence, unrelated to the problem of low
fundamental frequencies. In this connection, it should be noted
that this is also the case when the noise variance is uknown
[35].

III. METHODS

A. Nonlinear Least-Squares

We will now present a number of estimators for solving
the problem of interest. The first such method is the nonlinear
least-squares (NLS) method, which is based on the principle of
maximum likelihood estimation. It is an adaptation of a type
of estimator that has appeared in many forms and contexts
throughout the years to the problem at hand [4], [5], [8]. The
maximum likelihood estimator for the parameters θ is given
by

θ̂ = arg max
θ

p(x;θ). (12)

Under the assumption that x is Gaussian distributed and the
noise is white, i.e., x ∼ N (µ(θ), σ2I) , the likelihood function
is given by (4). By inserting (4) into (12), taking the logarithm
and dropping all constant terms, we obtain:

θ̂ = arg min
θ
‖x− µ(θ)‖2 , (13)

where ‖ · ‖2 denotes the vector 2-norm. This shows the well-
known result that when the noise is white and Gaussian dis-
tributed, the LS method is the maximum likelihood estimator.
As before, the mean is determined by the harmonic signal

model, i.e., µ(θ) = Za and the unknown parameters are
in this case the fundamental frequency ω0 that completely
characterizes Z and the vector a containing the complex
amplitudes. This results in the following problem:

(ω̂0, â) = arg min
ω0,a
‖x− Za‖2 . (14)

Since we are not really interested in the complex amplitudes,
we will substitute these by their maximum likelihood estimate
(for a given ω0), which is â =

(
ZHZ

)−1
ZHx, with (·)H

denoting the Hermitian-transposition. The resulting estimator
depends only on ω0:

ω̂0 = arg max
ω0

xTΠZx. (15)

with ΠZ being the orthogonal projection matrix for the space
spanned by the columns of Z, i.e., ΠZ = Z

(
ZHZ

)−1
ZH .

This is the estimator that we will here refer to as the
NLS estimator. For each fundamental frequency candidate
it involves operations of complexity O(L2N) + O(L3) +
O(LN2) +O(N2). The estimator does not, however, require
any initialization1, unlike the methods to follow. It should be
noted that in assessing the complexity of the various methods,
we treat the involved variables, here N and L, as independent
variables, although they may not be. The matrix Z has full rank
as long as ω0 6= 0 and that N ≥ L for the inverse

(
ZHZ

)−1

to exist. However, for very small ω0, numerical effects may
render the estimates useless.

The harmonic summation method [4] follows from this by
using the fact that the columns of Z are orthogonal asymp-
totically in N [20]. Although this leads to a computationally
efficient implementation based on the fast Fourier transform,
this ultimately also leads to the failure of this method for low
ω0 and N .

B. Harmonic Fitting

The idea behind the following method is quite intuitive and
appealing due to its simplicity. It is based on the principle of
[36] used in [6]. Many different and good methods exist for
finding frequencies of sinusoids in an unconstrained manner,
meaning that they find frequencies that are not constrained
to being integer multiples of a fundamental frequency. The
question is then how to find an estimate of the fundamental
frequency from these frequencies.

Suppose we find a set of parameter estimates η̂ from x,
and assuming that a maximum likelihood estimator with suf-
ficiently large N is used (and that some regularity conditions
are satisfied), the estimates η̂ are distributed as (see, e.g., [34])

η̂ ∼ N (η, I−1(η)) (16)

where I(η) is the Fisher information matrix for the likelihood
function for η (here, η are the true values). Now, suppose
that we are not interested in these parameters, but rather in a

1In the context of complexity analysis, by initialization we mean that
quantities that have to be computed before numerical optimization can be
performed to obtain the parameters of interest, i.e. the computation of
quantities other than the signal of interest.
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different set θ and that we can find a linear transformation S
that relates these two. Mathematically, this can be stated as

η = Sθ. (17)

In the following, we assume that S is real, has full rank and is
tall and that both parameter sets are real. Since η̂ are estimates
of η and are distributed according to (16), the difference η̂−
Sθ is distributed as η̂−Sθ ∼ N (0, I−1(η)). We can now use
this to pose a probability density function of η̂ as

p(η̂;θ) =
1

det (2πI−1(η))
1
2

e−
1
2 (η̂−Sθ)T I(θ)(η̂−Sθ), (18)

which can be seen to be parametrized by the unknown param-
eters θ and is, hence, a likelihood function. Proceeding now
as in Subsection III-A, we can state the maximum likelihood
estimate of θ as

θ̂ = arg max
θ

ln p(η̂;θ) (19)

= arg min
θ

(η̂ − Sθ)
T

I(η) (η̂ − Sθ) , (20)

which can be seen to be a WLS estimator. Since the signal
model is linear, the problem has a closed form solution,
which is given by θ̂ =

(
ST I(η)S

)−1
ST I(η)η̂. At this point,

some remarks are in order. Firstly, the estimator takes on
the form of the solution to a linear LS problem regardless
of the original distribution of x. Secondly, the estimates η̂
need not follow the exact distribution in (16) for (20) to hold;
the estimate covariance can be off by a multiplicative factor
without affecting the form of the estimator. The principle
used in arriving at (20) is known as the extended invariance
principle (EXIP), or just the invariance principle, depending on
the exact problem [36] (see also [31], [34], [37]). The principle
has been applied to fundamental frequency estimation for a
complex model and using asymptotic approximations of I(η)
in [6]. Here, we will use it for a real model and without making
use of the aforementioned asymptotic approximation.

The problem now remains to cast the problem of interest in
this framework and determine η, S, and I(η). Firstly, for the
case of a sinusoidal model with no harmonic constraint, we
obtain a set of frequencies {Ωl ∈ (0, π)}Ll=1. Moreover, we
assume that the frequencies are organized as Ω1 < . . . < ΩL.
Next, we define a parameter set containing the corresponding
parameters as η , [ Ω1 C1 Φ1 · · · ΩL CL ΦL ]

T , where
{Cl} are the corresponding amplitudes and {Φl} the phases. It
should be noted that there is no reason to include both positive
and negative frequencies as these will be identical (as will the
corresponding amplitudes and phases) for estimators tailored
to real measurements. The transformation S ∈ R3L×2L+1

relating these to θ can easily be confirmed to be given by

S =



1
0 1
0 1
2
0 1 0
0 1
...

...
L 0
0 1
0 1


. (21)

We can now express η in terms of θ as in (17). The estimator
in (20) requires that the true parameters are known to find
I(η). Instead, we can use an approximation based on the
parameter estimates η̂ (see [37], [38]), i.e., I(η) ≈ I(η̂),
which, for Gaussian signals, is given by

[I(η̂)]nm =
∂µT (η)

∂ηn
Q−1 ∂µ(η)

∂ηm

∣∣∣∣
η=η̃

, (22)

with Q being the covariance matrix of the observation noise
and µ(η) being the mean of the same signal parametrized
in terms of η. The approximation above is essentially valid
due to the maximum likelihood estimates η̂ being consistent
estimates of η and I(η) being a continuous function. For the
particular parametrization used here, i.e., the unconstrained
model, I(η̂) can be shown to be the following (see, e.g., [34]):

I(η̂) =
1

σ2

 Ξ11 . . . Ξ1L

...
...

ΞL1 . . . ΞLL

 , (23)

where the individual blocks are given by

Ξkl =

 δTk δl δTk εl δTk ζl
εTk δl εTk εl εTk ζl
ζTk δl ζTk εl ζTk ζl

 . (24)

The entries in these blocks involve a number of quantities
defined as

δl , Ĉl Re

{
ejΦ̂l

[
0 jejΩ̂l · · · j(N − 1)ejΩ̂l(N−1)

]T}
εl , Re

{
ejΦ̂lz(Ω̂l)

}
(25)

ζl , −Ĉl Im
{
ejΦ̂lz(Ω̂l)

}
.

We note that the usually used expression for the CRLB for
the unconstrained model is obtained, as before, by applying
asymptotic approximations. More specifically, this leads to a
block-diagonal structure in (23) as the off-diagonal blocks
are approximately equal to zero, i.e., Ξkl = 0 ,for l 6= k.
Moreover, the individual blocks on the diagonal exhibit a
block-diagonal structure themselves, hence leading to simple
closed-form expressions.

Returning to the task at hand, we, finally, arrive at the
estimator:

θ̂ =
(
ST I(η̂)S

)−1
ST I(η̂)η̂. (26)

The processing steps of the estimator can be summarized
as follows: First, estimate the parameters in η̂ and, second,
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compute I(η̂) from these parameters. Third, compute the
parameter of θ̂ from the aforementioned quantities along with
S, which is not signal-dependent. The fundamental frequency
can now simply be extracted from the first element of θ̂.
Obviously, this process can be simplified somewhat if only the
fundamental frequency is desired by determining only the first
row of the matrix

(
ST I(η̂)S

)−1
ST I(η̂). As was demonstrated

in [6], this methodology proved quite successful even with a
number of asymptotic approximation, and we thus also expect
it to perform well for our problem. Given the initial estimates
η̂, the estimator has complexity O(L3), but unlike the NLS
method, it is in closed-form.

C. Optimal Filtering
The next solution to the problem under consideration is

based on optimal filtering, which was first used for funda-
mental frequency estimation in [8] (see also [16]). Before
providing more details on this, we introduce some notation
and definitions. First, we define the output signal x̂(n) of the
length M filter having real coefficients h(n) as

x̂(n) =

M−1∑
m=0

h(m)x(n−m) , hTx(n), (27)

with h being a vector containing the filter coefficients of the
filter defined as h = [ h(0) · · · h(M − 1) ]

T and x(n) =
[ x(n) x(n− 1) · · · x(n−M + 1) ]

T . For our signal model,
the output signal x̂(n) can be thought of as an estimate of the
periodic parts of the signal. The output power of the filter
can be expressed in terms of the covariance matrix R as
E
{
|x̂(n)|2

}
= hTRh. The question is now how to design

the filter such that x̂(n) actually resembles a periodic signal.
Such a filter should have a frequency response that allows
the periodic components to pass undistorted while suppressing
everything else. This means that the frequency response should
be one for all the harmonic frequencies, and, since we are here
concerned with real signals, this should be the case also for
the negative frequencies. One can think of filters having these
properties as a kind of comb filter. Mathematically, we can
state this as the following optimization problem:

min
h

hTRh s.t. ZHh = 1 (28)

with 1 = [ 1 · · · 1 ]T ∈ R2L. We here remind the reader that
Z ∈ CM×2L contains all the sinusoids of the real signal model,
so the constraints state that the frequency response of the filter
must be one for both positive and negative frequencies.

To solve the optimization problem, we introduce the La-
grange multipliers λ = [ λ1 · · ·λ2L ]

T , and the Lagrangian
dual function associated with the problem, which can be
written as L(h,λ) = hTRh − λT

(
ZHh− 1

)
. Taking

the derivative with respect to the filter coefficients and
the Lagrange multipliers and setting the result equal to
zero and solving for the unknowns, leads to the optimal
filter h = R−1Z

(
ZHR−1Z

)−1
1. The output power of

this filter can then be expressed compactly as hTRh =

1H
(
ZHR−1Z

)−1
1. Since the optimal filter depends on the

observed signal via R, the resulting filter can be thought of
as an adaptive comb filter.

The filter can be used for determining the fundamental
frequency in the following way: for a candidate fundamental
frequency, the filter passes the candidate harmonics while it
suppresses everything else. Therefore, the fundamental fre-
quency can be identified as the value for which the output
power of the filter is the highest. In math, this can be stated
as

ω̂0 = arg max
ω0

1H
(
ZHR−1Z

)−1
1. (29)

For complex signals, this type of solution was demonstrated to
have excellent performance under very adverse conditions in
[8], effectively decoupling the multi-pitch estimation problem
into a set of single-pitch problems. The estimator in (29) re-
quires initialization of complexity O(M3) for computing R−1

while for each fundamental frequency candidate, it requires
computations of complexity O(L3) +O(ML2) +O(M2L).

The method requires that the covariance matrix is replaced
by an estimate. We use here the usual estimator, the sample
covariance matrix, i.e.,

R ≈ 1

N −M + 1

N−1∑
n=M−1

x(n)xT (n). (30)

Since the method also requires that this matrix is invertible, it
follows that the filter length must be chosen such that M <
N
2 + 1, although it is well-documented in the literature that
M in practice should not be chosen too close to this bound.
Moreover, we also require that M ≥ L for the matrix inverse
in (29) to exist. Combined, this allows us to bound M as
2L ≤M ≤ N

2 + 1. It should also be noted that M should be
chosen proportionally to N for the estimator to be consistent.
This is also the case for the other methods presented later.

D. Angles between Subspace

The next method is a subspace method reminiscent of
MUSIC [27], a method that has previously been applied to
the fundamental frequency estimation problem in [8], [18]. It
builds on more recent ideas presented in [20], [28]. In MUSIC,
an estimate of a basis for the noise subspace is obtained via
the eigenvalue decomposition of the sample covariance matrix.
This is then used for estimation purposes by choosing the
candidate model that is the closest to being orthogonal to
that space. This is also the idea we here pursue, although
the present methods differs in a fundamental way, namely in
terms of how the angles between the subspaces are measured.
Let x(n) = [ x(n) x(n+ 1) · · · x(n+M − 1) ]

T . We can
then express this vector as

x(n) = Za + e(n), (31)

with Z ∈ CM×2L being defined as in (6) except that the
columns have length M and e(n) = [ e(n) e(n+1) · · · e(n+
M − 1) ]T . The covariance matrix2 of this vector is given by

R =E
{
x(n)xH(n)

}
= ZPZH + σ2I (32)

2The reader should be aware that our definitions of x(n) and R here differ
from those in Section III-C.
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where E
{
aaH

}
= P, which is given by

P = E




a1a
∗
1 a∗1a

∗
1 . . . a1a

∗
L a∗1a

∗
L

a1a1 a∗1a1 . . . a1aL a∗1aL
...

...
...

...
aLa

∗
1 a∗La

∗
1 . . . aLa

∗
L a∗La

∗
L

aLa1 a∗La1 . . . aLaL a∗LaL




. (33)

This matrix can be seen to involve block-matrices of the
following form:

Pkl = E

{[
aka
∗
l a∗ka

∗
l

akal a∗kal

]}
. (34)

Next, we will analyze the behavior of this matrix assuming
that the phases φl are uniformly distributed and indepen-
dent over l. This means that E

{
Ak

2 e
jφk
}

= 0 and that
E
{
Ak

2 e
jφk Al

2 e
−jφl

}
= Ak

2 E
{
ejφk

}
Al

2 E
{
e−jφl

}
= 0 for

k 6= l. Hence, we obtain that for k 6= l, the matrix Pkl is
simply Pkl = 0. For k = l, we obtain

Pll =

[
A2

l

4 0

0
A2

l

4

]
, (35)

as E
{
Al

2 e
jφl Al

2 e
−jφl

}
=

A2
l

4 and E
{
Al

2 e
jφl Al

2 e
jφl
}

=
A2

l

4 E
{
e2jφl

}
= 0. Therefore, the amplitude covariance matrix

P takes on the form P = 1
4diag

([
A2

1 A
2
1 · · · A2

L A2
L

])
,

which means that the diagonal structure obtained for complex
signals is retained for real signals, and the so-called covariance
matrix model, therefore, still holds. We note that the assump-
tions that lead to this model are sufficient but not necessary
conditions.

The eigenvalue decomposition (EVD) of the covariance ma-
trix is R = UΓUH , where Γ is a diagonal matrix containing
the positive eigenvalues, γk, ordered as γ1 ≥ γ2 ≥ . . . ≥ γM .
Moreover, it can easily be seen that γ2L+1 = . . . = γM =
σ2. The covariance matrix is positive definite and symmetric
by construction. Therefore, U contains the M orthonormal
vectors, which are eigenvectors of R. We will denote these as
U =

[
u1 · · · uM

]
. Let S be formed from a subset of

the columns of this matrix as

S =
[

u1 · · · u2L

]
. (36)

We denote the subspace spanned by the columns of S as S =
R (S) and refer to it as the signal subspace. Similarly, let G
be formed from the remaining eigenvectors as

G =
[

u2L+1 · · · uM
]
. (37)

We refer to the space G = R (G) as the noise subspace. Using
these definitions, we now obtain U

(
Γ− σ2I

)
UH = ZPZH

as the identity matrix is diagonalized by an arbitrary orthonor-
mal basis. Introducing Ψ = diag([ γ1 − σ2 · · · γ2L − σ2 ]),
this leads to the following partitioning of the EVD:

R =
[

S G
]([ Ψ 0

0 0

]
+ σ2I

)[
SH

GH

]
, (38)

which shows that we may write SΨSH = ZPZH . As the
columns of S and G are orthogonal and R (Z) = R (S), it

follows that ZHG = 0, which is the subspace orthogonality
principle used in the MUSIC algorithm [27], [39].

In practice, the estimated noise subspace eigenvectors will
not be perfect due to the observation noise and finite observa-
tion lengths. The above relation is, therefore, only approximate
and a measure must be introduced to determine how close a
candidate model Z is to being orthogonal to G. Traditionally,
this has been done using the Frobenius norm. However, this
only measures the sum of cosine to the non-trivial angles
squared between the two spaces for orthogonal vectors in
both Z and G, and, since we are here concerned with low
frequencies, the asymptotic orthogonality of the column of
Z is not accurate. We therefore measure the orthogonality as
follows. The principal angles {ξk} between the two subspaces
Z and G are defined recursively for k = 1, . . . ,K as [40]

cos (ξk) = max
u∈Z

max
v∈G

uHv

‖u‖2‖v‖2
, uHk vk, (39)

where K is the minimal dimension of the two subspaces, i.e.,
K = min{2L,M − 2L} and uHui = 0 and vHvi = 0 for
i = 1, . . . , k − 1. The angles are bounded and ordered as
0 ≤ ξ1 ≤ . . . ≤ ξK ≤ π

2 . Given the orthogonal projection
matrices for Z and G, denoted ΠZ and ΠG, respectively, the
expression in (39) can be written as

cos (ξk) = max
y

max
z

yHΠZΠGz

‖y‖2‖z‖2
(40)

= yHk ΠZΠGzk = κk. (41)

As can be seen, {κk} are the ordered singular values of
the matrix product ΠZΠG, and the two sets of vectors {y}
and {z} are the left and right singular vectors of the matrix
product, respectively. The singular values are related to the
Frobenius norm of ΠZΠG and hence its trace, denoted with
Tr {·}, as ‖ΠZΠG‖2F =

∑K
k=1 κ

2
k which shows that if the

Frobenius norm of the product is zero, then all the non-trivial
angles are π

2 , i.e., the two subspaces are orthogonal. This
expression can be used to find the fundamental frequency as

ω̂0 = arg min
ω0

‖ΠZΠG‖2F , (42)

and the estimate can be seen to be the value for which the
sum of cosine to the angles squared is the least. Finally, (42)
can be expressed as

ω̂0 = arg min
ω0

Tr
{

Z
(
ZHZ

)−1
ZHGGH

}
, (43)

which is asymptotically equivalent to the fundamental fre-
quency estimator in [18] but different for finite M and N
in that it takes the non-orthogonality of the sinusoids for
low M and ω0 into account. Hence, it can be expected to
yield superior estimates for low fundamental frequencies. This
estimator requires that a number of quantities are computed in
the initialization, i.e., only once, namely the EVD of R and
the projection matrix for the noise subspace, which results in a
complexity of O((M −L)M2) +O(M3) (which is obviously
only valid for L < M ). For each candidate fundamental fre-
quency, operations having complexity O(L2M)+O(M2L)+
O(L3) are computed.
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As for the covariance matrix, it has to be estimated and its
dimensions chosen. For this method, this is done as described
in (30), only with a different definition of x(n) as described
earlier in this section. Unlike the optimal filtering method, it
is not required for this method that the estimated matrix has
full rank. It must, however, allow for the estimation of a basis
for the signal subspace, which requires that M ≤ N − 2L +
1. Additionally, for the orthogonal complement to the signal
subspace to be non-empty, M ≥ 2L + 1, which means that
we obtain the following inequality for M :

2L+ 1 ≤M ≤ N − 2L+ 1. (44)

E. Shift-Invariance

The final estimator is also a subspace method and thus
builds on the same matrix covariance model as in Section III-
D. The last method was based on the noise subspace eigen-
vectors, while the present one is based on the signal subspace
eigenvectors. More specifically, it is based on the principle
used in [19]. The signal subspace is given by S = R (S) with
the matrix S being defined as in (36). As established earlier,
the columns of S span the same space as the columns of Z,
i.e., R (S) = R (Z). Therefore, we may express the relation
between these matrices as S = ZB where

B = PZHSΨ−1, (45)

with B being a square and full rank matrix as both S and Z
do, and it is hence invertible, something that we will make use
of later. The matrix Z exhibits a particular structure, known
as shift-invariance. This property can be expressed in the
following way. Define the matrices Z and Z by removing the
last and first rows of Z, i.e., Z = [ I 0 ] Z and Z = [ 0 I ] Z
where it follows that I is (M − 1)× (M − 1). Now, doing the
same for S we obtain S = [ I 0 ] S and S = [ 0 I ] S. From
these definitions and (45), it can easily be seen that S and Z
are related as S = ZB. More importantly, however, due to the
particular structure of the model, the matrices Z and Z can be
related as Z = ZD where

D = diag
([
ejω0 e−jω0 · · · ejω0L e−jω0L

])
. (46)

This property is known as shift-invariance. However, since we
are interested in finding the parameters that characterize Z,
this is of little use by itself. From the above it also follows
that S = SΣ and the matrix relating S to S can be shown to
be (see, e.g., [41])

Σ = B−1DB, (47)

i.e., the matrix Σ has the frequencies of the harmonics as the
arguments of its eigenvalues. Since S and hence S and S are
known from the EVD of the sample covariance matrix, this is
useful in the following way: Given S to S, we can solve for Σ,
from which we can find the frequencies via the EVD. Since
the sample covariance will be corrupted by noise in practice,
so will S and S, and, consequently the above relations will
only hold approximately, i.e., S ≈ SΣ, which means we have
to introduce some way of finding Σ. Here, we proceed by

estimating Σ using total least-squares (TLS) as follows. Define
∆ and ∆ as the minimal perturbations of S to S, respectively:

min
∥∥[∆ ∆

]∥∥
F

s. t. S + ∆ = (S + ∆) Σ. (48)

An estimate Σ̂ of Σ is then obtained as the solution to S+∆ =
(S + ∆) Σ for the perturbations solving (48) (see [41] for
further details).

The frequencies obtained from the eigenvalues of Σ̂ are
not constrained to being integer multiples of a fundamental
frequency, i.e., they are unconstrained frequencies, and, hence,
cannot be used directly for estimating the fundamental fre-
quency. Much like for the WLS method in Section III-B, we
must fit a fundamental frequency to these frequencies. We now
proceed to express Σ̂ in terms of the empirical EVD as

Σ̂ = CD̂C−1 (49)

with C containing the empirical eigenvectors of Σ̂ and

D̂ = diag
([

ejΩ̂
+
1 ejΩ̂

−
1 · · · ejΩ̂

+
L ejΩ̂

−
2L

])
. (50)

We here denote the estimated frequencies as {Ω̂+
l ∈ (0, π)}Ll=1

and {Ω̂−l ∈ (−π, 0)}Ll=1. Moreover, we assume that they are
ordered Ω̂+

1 < . . . < Ω̂+
L and Ω̂−1 > . . . > Ω̂−L and that the

corresponding eigenvectors in C are ordered accordingly.
Recall that S = SB−1DB, and thus SC ≈ SCD, where

D depends on the unknown fundamental frequency ω0. We
can now introduce a metric that measures the extent to which
the right and left side resemble each other as ‖SC−SCD‖2F .
This expression can be expanded as

‖SC− SCD‖2F = −2 Re
(

Tr
{

SCDHCHSH
})

(51)

+ Tr
{

SCCHS
H
}

+ Tr
{

SCCHSH
}
. (52)

Noting that the last two terms do not depend on ω0 and intro-
ducing δl =

[
CHSHSC

]
ll

, we finally obtain the estimator

ω̂0 = arg max
ω0

2 Re

{
L∑
l=1

δ2l−1e
−jω0l + δ2le

jω0l

}
. (53)

As can be seen, the resulting estimator is extremely simple
having complexity O(L) for each fundamental frequency
candidate, albeit the initialization, i.e., the computation of δl, is
somewhat complex. More specifically, it requires computations
of complexity O(M3) +O(L3) +O(M2L) +O(L2M). We
also note that the involved cost function is generally smooth
and well-behaved. Regarding the size of the covariance matrix,
M should be chosen according to (44) for obtaining a rank
2L estimate of S and for Σ to be unique.

IV. EXPERIMENTAL RESULTS

A. Exact vs. Asymptotic Bounds

We will start out the experimental part of this paper by
exploring the difference between the exact and asymptotic
CRLBs for the problem of estimating the fundamental fre-
quency and the dependency of this difference on various pa-
rameters. This is interesting for a number of reasons. Many of
the estimators derived based on complex models are based on
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Fig. 1. Exact and asymptotic Cramér-Rao lower bounds as functions of various parameters, namely (a) the segment length (in ms), (b) the fundamental
frequency (in Hz), (c) the number of harmonics L, and (d) the sampling frequency (in kHz). Each point on the curves is obtained over 1000 realizations of
the involved parameters.

the same asymptotic approximation that the asymptotic CRLB
is based on. Hence, if the asymptotic approximation is accurate
for the CRLB, it is also likely to be accurate for the various
estimators. Moreover, we can also learn something about the
conditions under which the approximation will hold and learn
if anything can be done about it. To make it easier to interpret
the results, we will do this assuming typical physical values
encountered in speech and audio applications. In the first
experiment, a low fundamental frequency of 50 Hz is assumed
along with a sampling frequency of 8 kHz. Moreover, the noise
variance is kept fixed at one throughout these experiments. The
remaining parameters were uniformly distributed phases and
Rayleigh distributed amplitudes with five harmonics. Based on
these values, the exact CRLB based on (9) and the asymptotic
approximation in (10) were computed as a function of the
segment length (in ms) for 1000 realizations of the parameters

for each experimental condition. The results, in the form of
the averages over these realizations, are shown in Figure 1(a).
As can be seen, there is a huge discrepancy between the two
bounds for short segments, and this discrepancy vanishes for
long segments. This clearly shows that the claim that the
problem of estimating low fundamental frequencies is difficult
is indeed true. It also shows that it is entirely unrealistic to
expect estimators to perform close to the asymptotic CRLB
under these circumstances, and, hence, an estimator may be
falsely deemed suboptimal if its performance is compared to
the wrong bound.

In the next experiment, the segment length is kept fixed
at 20 ms while the fundamental frequency is varied with
the remaining parameters and experimental conditions being
as before. The results are shown in Figure 1(b). The same
observations as for the varying segment length can be observed
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here, namely that as the fundamental frequency is lowered,
relative to N , the discrepancy between the asymptotic and
exact CRLBs grow. Beyond a certain frequency, here 80 Hz,
there is basically no difference between the two bounds and
asymptotic approximations must therefore be valid from this
frequency and beyond. It should be noted that depending on
the physics of the observed phenomenon, a low fundamental
frequency may also have more harmonics, as they can in
principle extend up to half the sampling frequency. This is
not reflected in this experiment. It can be seen from (10)
that, in theory, the more harmonics that are present, the more
accurately the underlying fundamental frequency also can be
estimated, at least for a sufficiently high N . For this reason, the
next experiment focuses on the dependency on the number of
harmonics, L. In this experiment, a fundamental frequency of
50 Hz is used for different L while other experimental settings
were as before. The results can be seen in Figure 1(c). From
the figure, it can be seen that the discrepancy between the two
bounds actually increases as a function of L, meaning that
the more harmonics are in the signal, it becomes relatively
more difficult to determine the fundamental frequency, due to
it being so low. On the other hand, the bound does decrease as
a function of L even if the gap increases, so it is still beneficial
to incorporate the additional harmonics in the model. Part of
the reason that the bounds decrease as a function of L is that
it effectively leads to an increase in SNR, as defined in (11)
when the noise variance is kept fixed.

The final experiment involving the differences between the
CRLBs is one where all the prior parameters are kept fixed
while the sampling frequency is changed, and this is motivated
as follows: since the highest possible segment length (in ms) is
dictated by the stationarity of the observed signal, it is not pos-
sible to mitigate the problems associated with low fundamental
frequencies by simply changing the segment length beyond a
certain point. However, the sampling frequency can of course
be changed in many situations, and raising the sampling
frequency while keeping the segment length in ms fixed, of
course leads to a higher number of samples N . Here, the
behavior of the asymptotic and exact CRLBs is observed for a
20 ms segment and a fundamental frequency of 50 Hz with five
harmonics. In Figure 1(d), the resulting curves can be seen.
The figure shows that simply changing the sampling frequency
does not alleviate the discrepancy between the two CRLBs,
and the explanation is that while raising the fundamental does
lead to a higher N , it also leads to a lower ω0. But it is also
interesting to note that both bounds do decrease as a function
of the sampling rate, meaning that we are able to estimate
the fundamental frequency more accurately by increasing the
sampling frequency. An explanation for this is that while
increasing the sampling frequency results in a proportionally
higher N and lower ω0 the effect of the noise on the ability
to estimate the parameters is nonlinear. That this is the case
can be seen from (10), from which it can be observed that the
bound is inversely proportional to N3.

B. Tested Methods
In the following experiments, we will compare the perfor-

mance of the presented estimators to the previously published

methods based on a complex signal model and/or asymptotic
approximations. We will denote the methods for real signals
by prefix “r” and their complex counterparts by prefix “c”. To
summarize, the following methods will be compared:
• rWLS is the harmonic fitting method based on WLS as

presented in Section III-B. It requires that unconstrained
frequencies and their amplitudes are found. This is done
using ESPRIT and LS, respectively.

• rFILT is the optimal filtering method presented in Section
III-C.

• rNLS is the NLS method of Section III-A.
• rABS is the subspace method based on measuring the

angles between subspaces as described in Section III-D.
• rSHIFT is another subspace method, but based on the

shift-invariance property, as presented in Section III-E.
We will compare the performance of these methods to a
number of reference methods, namely the following:
• cWLS is the harmonic fitting method as originally pro-

posed in [6]. It uses asymptotic approximations of the
weighting matrix to obtain a simple expression for the
fundamental frequency. Like its real counterpart it re-
quires unconstrained frequency and their amplitude es-
timates. Here, the same as for rWLS are used.

• cFILT is the optimal filtering method proposed in [8]. It
differs from rFILT in that it does not take the existence
of complex conjugate pairs of harmonics into account.

• cNLS is the approximate NLS method as described in
[8]. It is similar to the methods of [4], [5]. It differs from
rNLS in the following way: it is based on the asymptotic
orthogonality of complex sinusoids and, hence, takes
neither the existence of complex conjugate pairs nor the
interaction between the harmonics into account.

• cABS is the MUSIC-based method of [18], except that
the model order is assumed known. Unlike rABS, it uses
an approximation of the angles between the subspaces.

• cSHIFT is the method proposed in [19], which is based
on the shift-invariance property of the signal subspace. It
differs from rSHIFT in that it does not take the existence
of complex conjugate pairs of complex sinusoids into
account. Unlike [19] it uses TLS rather than LS.

All estimators are implemented in a two-step fashion where a
coarse fundamental frequency estimate is first found using a
grid search after which a simple dichotomous search is used to
obtain a refined estimate. The same grid size and dichotomous
search algorithm is used for all the methods. For most of the
methods, a covariance matrix size/filter length of M = N/2
is used, except for the optimal filtering methods where M =
N/4 have been used (the reason for this will become clear
later). For the estimators relying on a complex model, the real
signal is mapped to a complex one via the Hilbert transform.
The optimal filtering methods require an invertible covariance
matrix for which reason the down-sampled analytic signal is
used for cFILT. To address the numerical issue associated
with very low fundamental frequencies, which may cause
the involved matrices to be rank deficient numerically but
not on paper, the Moore-Penrose pseudo-inverse [40] is used
whenever appropriate.
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Fig. 2. Example of a signal having a low frequency, here a tone played by a contrabassoon. Shown are (a) the time-domain signal, and (b) part of its
spectrum, namely the low frequencies, estimated using the periodogram.
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Fig. 3. Fundamental frequency estimates obtained for the signal in Figure 2 as a function of the segment length (in ms) for (a) the estimators for real-valued
signals and (b) their complex counterparts.

C. A Signal Example

Next, we will illustrate the problems associated with low
fundamental frequencies using a recorded signal, namely a
tone played by a contrabassoon. The signal is shown in Figure
2(a) along with its spectrum in Figure 2(b), here estimated
using the periodogram computed using a 8192 point FFT and
a rectangular window. Note that a sampling frequency of 8820
Hz is used. In studying the effect of the low fundamental
frequency on the ability to obtain accurate estimates, the
segment length will be varied from 10 ms to 100 ms (with
all segments beginning at the start of the signal shown in
Figure 2(a)). The various estimators are then run on these
segments. The number of harmonics was determined by visual
inspection of the spectrum. The results are shown in Figure 3
for (a) the presented estimators, and (b) the estimators based

on asymptotic approximations and complex signal models.
A number of interesting observations can be made from the
figures. Firstly, all estimators, both the real ones and their
complex counterparts, converge to the same result when the
segment length is increased. It can also be seen that all the
methods break down when the segment length gets extremely
short. Moreover, for this particular example, the methods for
real signals generally outperform the complex ones, but it
should also be noted that other factors may play a role due to
the complex nature of real-life signals.

D. Monte Carlo Simulations

The methods are compared using Monte Carlo simulations
by generating signals according to the model in (2) and then
applying the various estimators to the resulting signal. The
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Fig. 4. Performance measured in terms of the Mean Square estimation Error (MSE) as a function of the covariance matrix size, M , for (a) the real estimators
and (b) their complex counterparts based on asymptotic approximations.

so-obtained parameter estimates are then compared to the true
parameters and the estimation error is measured in terms of
the mean square error (MSE). For each set of experimental
conditions, 100 realizations are used and the CRLB shown
in the figures to follow is the average over the exact CRLB.
The signals were generated with the following parameters,
except when otherwise stated (e.g., when a certain parameter
is varied): a fundamental frequency with ω0 = 0.3129 is
used with five harmonics, each having unit amplitude and
phases uniformly distributed between −π and π. Segments
of N = 100 samples were used with white Gaussian noise
added at an SNR of 40 dB, according to the definition of the
SNR in (11).

First, the influence of the covariance matrix size, which
is also the filter length for the filtering methods, on the
performance of the various estimators is investigated. This is
done by simply varying M while keeping all other parameters
fixed. The results are shown in Figure 4 for the real estimators
(a) and the complex ones (b). Note that neither the NLS nor
the WLS class methods make use of the covariance matrix
an their performance hence does not depend on M . It can
generally be observed that as long as the covariance matrix
size is not chosen too low or too high, the methods perform
well. In fact, the only class of methods that are sensitive to
M being close to M/2 appears to be the optimal filtering
methods (we remind the reader that N = 100 is used here).
All methods, except one, perform close to the CRLB. For the
cNLS method, a gap between its MSE and the CRLB can
be seen. This demonstrates the clear sub-optimality of this
method for the problem at hand and illustrates the importance
of avoiding asymptotic approximations. It should be noted
that the cNLS method performs extremely well for sufficiently
high N and ω0, being statistically efficient. Moreover, it has
also been confirmed experimentally that the poor performance
reported (and in the experiments to follow) here is not due to
the suboptimality of the Hilbert transform used but rather, as
stated, the asymptotic approximation.

We will now proceed to investigate the dependency of the
performance for the various estimators on the number of
samples N . For the methods requiring a covariance matrix,
it was stated that M should be chosen proportionally to
N ; otherwise, the estimator would not be consistent. So, in
varying N , the covariance matrix size will also be varied
with M = N/2 for all methods, except the optimal filtering
methods for which M = N/4 is used. The results are shown
in Figure 5(a) and Figure 5(b) for the two classes of methods.
It can be seen that all the methods appear to be consistent in
that the MSE decreases as a function of N . It can also be seen
that the filtering methods, rFILT and cFILT perform poorly
for low N , and that cNLS is clearly sup-optimal performing
far from the CRLB, unlike rNLS, for the entire range of N
shown here. Similarly, the cSHIFT methods perform poorly.
Other than that, it appears that the remaining methods, aside
from rNLS, break down below 40 samples.

In the next experiment, the performance of the various
methods is investigated as a function of the SNR. From the
asymptotic SNR in (10), one would perhaps expect this to be a
trivial experiment as the noise variance is a linear parameter.
However, due to the estimation problem being nonlinear, it
is difficult to predict exactly how the performance of esti-
mators will depend on the SNR. Moreover, it is well-known
that, for nonlinear problems, estimators will exhibit so-called
threshold behavior, which means that below a certain point,
the estimators will break down producing what is essentially
useless results. The MSE as a function of the SNR is depicted
in Figures 6(a) and 6(b) for the real and complex estimators,
respectively. A number of interesting observations can be made
from these figures. For most of the methods, except cNLS,
it can be seen that the performance increases as a function
of the SNR, as can be expected from good estimators. The
cNLS method can be seen to hit a floor for high SNRs.
This is likely to be due to the approximations used in that
method being inaccurate. For low, SNRs, however, this appear
to not matter much as the error is dominated by the noise,
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Fig. 5. Performance measured in terms of the Mean Square estimation Error (MSE) as a function of the number of observations, N , for (a) the real estimators
and (b) their complex counterparts based on asymptotic approximations.
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Fig. 6. Performance measured in terms of the Mean Square estimation Error (MSE) as a function of the SNR for (a) the real estimators and (b) their complex
counterparts based on asymptotic approximations.

with the MSE following the CRLB. It even appears that the
cNLS method breaks down later than the cWLS, cSHIFT and
cFILT methods with also the cABS method performing quite
well for low SNRs. The rNLS can be observed to mitigate
the problems of the cNLS as it follows the CRLB even for
high SNRs. In fact, it can be seen to be statistically efficient
above SNRs of 5 dB. Curiously, the rABS and cABS appear
to perform almost equally well, being fairly robust against
low SNRs, although it is not statistically efficient. The rWLS,
rFILT and rSHIFT methods appear to perform similarly to
their complex counterparts in this experiment, with the optimal
filtering method performing the worst.

In the final and most important experiment, the role of the
fundamental frequency will be investigated. More specifically,
the fundamental frequency is varied from a value for which
it is expected that all methods work to a low value close to

zero, and it is expected they eventually will exhibit threshold
behavior. The results are shown in Figures 7(a) and 7(b)
for the two classes of methods. Starting with the complex
methods, a number of interesting points can be made. Firstly,
all except the cWLS perform poorly with the resulting MSEs
differing substantially from the CRLB. The cWLS method
performs well, following the CRLB, until about a fundamental
frequency of 0.06. The cABS method also performs quite
well, but performs further from the CRLB as the fundamental
frequency is lowered. The cNLS, cFILT and cSHIFT methods
can be seen to generally not perform well at all. For the real
methods, it can be observed that the rNLS method performs the
best, followed by the rWLS, rABS, and rSHIFT methods with
the rFILT method performing quite poorly and worst of the
methods. Comparing the two figures an important observation
can be made: it can clearly be seen that all methods, except the
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Fig. 7. Performance measured in terms of the Mean Square estimation Error (MSE) as a function of the fundamental frequency, ω0, for (a) the real estimators
and (b) their complex counterparts based on asymptotic approximations.

rWLS method, are improved by the modifications presented
in this paper. This clearly demonstrates that the commonly
used approximations are not suitable for low fundamental
frequencies and that it is possible to avoid them. Regarding
the rWLS method, from the experiments, it appears that the
approximations used in the weighting matrix in the cWLS
method is not the reason for threshold behavior as the rWLS
method behaves in the same way, rather the dominant error
source is most likely the unconstrained frequencies. The reader
should be aware that the rWLS method, like the cWLS
method, is dependent on the unconstrained frequencies being
accurate, and it can of course be expected that this will not
be the case when the fundamental frequency is low. Note
that the high sensitivity of this method to spurious frequency
estimates was also demonstrated in [18], albeit under different
circumstances.

V. CONCLUSION

In this paper, the problem of estimating low fundamental
frequencies from real-valued measurements has been consid-
ered. The problem has been analyzed via comparisons of
the asymptotic and approximate Cramér-Rao lower bounds.
These comparisons show that the asymptotic approximations
frequently used in estimators and in the computation of
estimation bounds are not accurate under these circumstances.
To mitigate this, a number of estimators have been presented in
which such approximations are avoided, and these estimators
can therefore be said to be exact. The estimators are based on
the methodologies of maximum likelihood, leading to a non-
linear least-squares method and a harmonic fitting algorithm
that fits individual frequencies to a fundamental frequency
estimate, optimal filtering as known from Capon’s classical
beam-former, and subspace methods, herein one based on
subspace orthogonality and one based on subspace shift-
invariance. All of the methods, except the harmonic fitting
one, which makes use of an set of intermediate parameters,

have cubic complexity in the number of samples and/or
the number of harmonics. In Monte Carlo simulations, the
performance of the various estimators has been investigated
and compared to methods employing asymptotic approxima-
tions. These simulations showed that, among the considered
methods, the nonlinear least-squares method performed the
best, the optimal filtering method performed the worst, and the
remaining methods in-between. More importantly, however,
the simulations showed that for all the considered methods, ex-
cept the harmonic fitting one, it is possible to achieve improved
performance by using the exact estimators. Moreover, it can
be seen that not only do the proposed methods perform closer
to the Cramér-Rao lower bound, but their threshold behavior
is also improved for low fundamental frequencies.
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Instantaneous Fundamental Frequency Estimation
with Optimal Segmentation for Non-Stationary

Voiced Speech
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and Mads Græsbøll Christensen, Senior Member, IEEE

Abstract—In speech processing, the speech is often considered
stationary within segments of 20–30 ms even though it is well
known not to be true. In this paper, we take the non-stationarity
of voiced speech into account by using a linear chirp model to
describe the speech signal. We propose a maximum likelihood
estimator of the fundamental frequency and chirp rate of this
model, and show that it reaches the Cramer-Rao lower bound.
Since the speech varies over time, a fixed segment length is not
optimal, and we propose making a segmentation of the signal
based on the maximum a posteriori (MAP) criterion. Using this
segmentation method, the segments are on average longer for the
chirp model compared to the traditional harmonic model. For
the signal under test, the average segment length is 24.4 ms and
17.1 ms for the chirp model and traditional harmonic model,
respectively. This suggests a better fit of the chirp model than
the harmonic model to the speech signal. The methods are based
on an assumption of white Gaussian noise, and, therefore, two
prewhitening filters are also proposed.

Index Terms—Harmonic chirp model, parameter estimation,
segmentation, prewhitening.

I. INTRODUCTION

PARAMETER estimation of harmonic signals is relevant
to the fields of speech processing and communication. In

speech models, the speech signal is often split into a voiced
part and an unvoiced part. The voiced part of the speech signal
is produced by the vibration of the vocal cords, and, therefore,
has a structure with a fundamental frequency and a set of
overtones given by integer multiples of the fundamental. Over
the years, several fundamental frequency estimators have been
proposed based on different methods, such as autocorrelation
[2], statistical [3]–[5], optimal filtering [6], or eigenvalue
decomposition [7], [8]. Some methods work directly in the
time domain [8], [9] whereas others use the spectrum or
cepstrum [10], [11]. Comparisons of various fundamental
frequency estimators have shown that different domains offer
different advantages in e.g., the two genders [12]. Most of
these fundamental frequency estimators split the signal into
segments of 20–30 ms [13], make a voiced/unvoiced deci-
sion [14], [15], and estimate the parameters of each voiced
segment separately. In most models, the signal is assumed
stationary within each segment, even though it is well known
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that this assumption of stationarity does not hold [13], [16].
Some estimators overcome this problem of non-stationarity
by looking at shorter segments, as, e.g., in [17], [18] where
the fundamental frequency is estimated based on a single
period of voiced speech. This overcomes the problem of non-
stationarity, however, the lack of data points, that each estimate
is based on, gives a greater uncertainty of the estimates. This
is also seen in [18] where the method has a poor performance
with respect to fine pitch error (FPE). Another approach,
giving higher estimation accuracy, is to model the change in
fundamental frequency within each segment. This can be done
by extending the harmonic model [19]–[22] to a harmonic
chirp model, which has also been suggested in [23]–[25]. Here,
the harmonic structure remains the foundation of the model,
but the fundamental frequency is allowed to change linearly
within each segment. This introduces an extra parameter to
estimate, but with the benefit that the model fits the speech
signal better. Using the harmonic chirp model instead of the
traditional harmonic model can, therefore, lead to better speech
enhancement [26], but with a better fit of the model it is
also possible to work with longer segments. In general, longer
segments lead to better performance of the estimators, and so
a smaller error on the estimated parameters can be obtained.
However, the optimal segment length depends on the features
of the signal, which are varying over time in the case of
speech signals. At some time instances, the parameters are
almost constant, and, in such periods, long segments can be
used whereas at other points in time, the parameters will
change fast and shorter segments should be used. Instead
of using a fixed segment length, it is, therefore, better to
have a varying segment length that depends on the signal
characteristics at the given point in time. In [27], [28], the
signal is modelled based on linear prediction (LP), and the
segment length is chosen according to a trade-off between
bit rate and distortion. The principle can, however, be used
with other criteria for choosing the segment length, depending
on what is most relevant in the given situation. The noise
characteristics also have an impact on the performance of
parameter estimators and optimal segmentation. Most methods
make an assumption of white Gaussian noise, which is rarely
experienced in real life scenarios. One way to address this
problem is to preprocess the signal in a way that makes the
noise resemble white Gaussian noise, as is, e.g., done through
Cholesky factorisation [29].

The contribution in this paper is three-fold. First, we pro-



2

pose estimating the fundamental frequency and fundamental
chirp rate by maximising the likelihood. Since maximising
with respect to two parameters leads to a search in a two-
dimensional space, we suggest an iterative procedure where
first a one dimensional optimisation of the chirp parameter is
performed followed by a one dimensional optimisation of the
fundamental frequency based on the newly found estimate of
the chirp rate. The estimation process is ended by convergence
of the two-dimensional cost function. The proposed parameter
estimator is a continuation of [1]. Our iterative procedure
offers some benefits over the method suggested in [25], where
an approximate cost function is introduced in order to decrease
the computational load. The approximate cost function in
[25] is evaluated over a two-dimensional grid, which means
that fundamental frequency and chirp rate have to be found
for each point in the grid before the optimum is found. In
this paper, the original cost function is evaluated iteratively,
giving fewer points for evaluation thus making the procedure
suggested in this paper faster. Second, we suggest a maximum
a posteriori (MAP) criterion to either make model selection
between the traditional harmonic model and the harmonic
chirp model, or make optimal segmentation of the signal
based on one of the models. The optimal segmentation is
based on the principle suggested in [27], [28]. The principle is
adapted to the harmonic chirp model by using the maximum
a posteriori (MAP) criterion for choosing the segment length.
The model selection and optimal segmentation are introduced
to give better representations of the signal. With the model
selection, the more complex harmonic chirp model is favoured
over the traditional harmonic model whenever it is beneficial
according to the MAP principle. This reduces the error in, e.g.,
reconstruction or filtering [26] of the signal while keeping
complexity low by choosing the traditional harmonic model
whenever this is sufficient. With optimal segmentation, the
segment length differs over time, optimising the fit of the
model to the signal in each segment. This results in parameters
that better describe the signal in the segment, and so also
a lower error on, e.g., reconstruction or filtering. Third, we
suggest two different methods to prewhiten the noise. Both the
maximum likelihood estimator of the fundamental frequency
and chirp rate and the MAP criterion are based on an assump-
tion of white Gaussian noise, and, therefore, a prewhitening
step is necessary if the noise is not white Gaussian. Both
methods are based on noise power spectral density (PSD)
estimation [30]–[33] and generate a filter to counteract the
spectral shape of the noise. The filter is either based directly
on the estimated spectrum of the noise or linear prediction of
the noise.

The paper is organised as follows. In Section II, the har-
monic chirp model is introduced. In Section III, the maxi-
mum likelihood estimator of the fundamental frequency and
fundamental chirp rate is derived. In Section IV, the general
MAP criterion is introduced for the harmonic chirp model
along with the MAP model selection criterion between the
traditional harmonic model, the harmonic chirp model and
the noise only model. This is followed by the segmentation
principle based on the MAP criterion in Section V. In Section
VI, the two prewhitening methods are described. In Section
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Fig. 1: Sketch of the difference between the harmonic model
(HM) and the harmonic chirp model (HCM). The top plot
shows a fundamental frequency track (f̂0) of a speech signal.
The bottom plot is an enlargement of the small black square
in the top plot.

VII, the proposed methods are tested through simulations on
synthetic chirp signals and speech, and the paper is concluded
in Section VIII.

II. HARMONIC CHIRP MODEL

In order to illustrate the difference between the harmonic
model and the harmonic chirp model, a fundamental frequency
track of a speech signal is plotted in the top of Fig. 1.
The figure shows that the fundamental frequency changes
continuously over time. This is also illustrated in the bottom
figure with an enlargement of the 30 ms segment marked by
the black square in the top figure. In this 30 ms segment,
the fundamental frequency changes by approximately 8 Hz,
whereas the harmonic model (HM), and most other funda-
mental frequency estimators, would assume the instantaneous
fundamental frequency to be stationary within the segment.
The harmonic chirp model (HCM) does not assume stationar-
ity, but assumes a linear change of the fundamental frequency
within a segment. As shown in the bottom figure, this model
better describes the instantaneous fundamental frequency in
the segment. With a better model, it is possible to work
with longer segments, which will give higher accuracy on the
estimated parameters. Further, it can lead to more efficient
coding and signal reconstruction.

The harmonic chirp model is an extension of the traditional
harmonic model. Therefore, the frequencies of the harmonics
are still given by integer multiples of a fundamental frequency.
However, in the chirp model, the instantaneous frequency of
the l’th harmonic, ωl(n), varies with the time index n =
n0, ..., n0 +N − 1 in a linear way:

ωl(n) = l(ω0 + kn), (1)

where ω0 = 2πf0/fs, with fs the sampling frequency, is the
normalised fundamental frequency, and k is the normalised
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fundamental chirp rate. This means that in order to obtain the
instantaneous frequency, both the fundamental frequency and
the chirp rate are needed. The instantaneous phase, ϕl(n), of
the sinusoids are given by the integral of the instantaneous
frequency as

ϕl(n) = l

(
ω0n+

1

2
kn2

)
+ φl, (2)

where φl ∈ [0, 2π] is the initial phase of the l’th harmonic.
This leads to the complex harmonic chirp model for a voiced
speech signal, s(n):

s(n) =

L∑
l=1

Ale
jϕl(n) (3)

=

L∑
l=1

αle
jl(ω0n+k/2n2), (4)

where L is the number of harmonics and αl = Ale
jφl , Al > 0

is the complex amplitude of the l’th harmonic. For speech
signals the model order has to be estimated, which can be
done, e.g., by use of the MAP criterion introduced in Section
IV (see also [8]). The complex signal model is used instead of
the real because it can ease both notation and computation. A
real signal can be easily converted to a complex signal by use
of the Hilbert transform [34] and without loss of information,
downsampled by a factor of two.

A special case of the harmonic chirp model for k = 0 is
the traditional harmonic model:

s(n) =

L∑
l=1

αle
jlω0n. (5)

Defining a vector of samples

s = [s(n0) s(n0 + 1) . . . s(n0 +N − 1)]T , (6)

where (·)T denotes the transpose. Note that the dependency
on the index n0 is left out for ease of notation. The signal
model is then written as

s = Za, (7)

where Z is a matrix constructed from a set of L modified
Fourier vectors matching the harmonics of the signal,

Z = [z(ω0, k) z(2ω0, 2k) . . . z(Lω0, Lk)], (8)

with

z(lω0, lk) =


ejl(ω0n0+k/2n2

0)

ejl(ω0(n0+1)+k/2(n0+1)2)

...
ejl(ω0(n0+N−1)+k/2(n0+N−1)2)

 . (9)

The vector a contains the complex amplitudes of the harmon-
ics, a = [α1 α2 . . . αL]T .

The signal we want to make parameter estimation on, is
often buried in noise, v(n), to give the observed signal, x(n),

x(n) = s(n) + v(n), (10)

which can also be put into a vector of observed samples

x = s + v, (11)

where x and v are defined similarly to s in (6). For real signals
as speech, the signal model will not fit the desired signal
perfectly, and so v will also cover the part of the speech signal
that does not align with the given model as, e.g., unvoiced
speech during mixed excitations.

III. ESTIMATION OF FREQUENCY AND CHIRP RATE

The fundamental frequency and chirp rate are estimated by
maximising the likelihood. The maximum likelihood estimates
are the parameters of the model that describe the observed sig-
nal the best, i.e., the parameters that maximise the probability
of the observed data, x, given the parameters:

θ̂ = arg max
θ
L(θ|x) = arg max

θ
p(x|θ), (12)

where θ is a vector containing the parameters of the model.
Under the assumption of circularly symmetric Gaussian noise,
the likelihood function can be written as [8]:

p(x|θ) =
1

πN det(Rv)
e−(x−s)HR−1

v (x−s) (13)

=
1

πN det(Rv)
e−vHR−1

v v, (14)

where det(·) denotes the determinant of the argument, (·)H the
Hermitian transpose and Rv = E[vvH ] the noise covariance
matrix, with E(·) the mathematical expectation. Often the log
likelihood is maximised instead of the likelihood

lnL(θ|x) = −N lnπ − ln det(Rv)− vHR−1
v v. (15)

In the case of white noise, the noise covariance matrix reduces
to a diagonal matrix, Rv = σ2

vIN , where σ2
v is the variance

of the noise signal and IN is an N ×N identity matrix. The
log likelihood can, therefore, be reduced to

lnL(θ|x) = −N lnπ −N lnσ2
v −

1

σ2
v

||v||22. (16)

The noise and its variance can be found using the signal model
in (7)

v = x− s = x− Za⇒ (17)

||v||22 = ||x− Za||22, (18)

σ2
v =

1

N
||x− Za||22, (19)

which turns the log likelihood into

lnL(θ|x) = −N lnπ −N ln
1

N
||x− Za||22 −N. (20)

In the estimation of the fundamental frequency and chirp rate,
it is only necessary to consider terms dependent on these two
parameters, and the log likelihood function can be reduced to
the nonlinear least squares (NLS) estimator that minimises the
error between the observed signal and the signal model:

{â, ω̂0, k̂} = arg min
a,ω0,k

||x− s||22 (21)

= arg min
a,ω0,k

||x− Za||22. (22)
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Here, we are interested in the joint estimation of the funda-
mental frequency and chirp rate, and, therefore, the amplitudes
are substituted with their least squares estimate [9],

â = (ZHZ)−1ZHx, (23)

to give the estimator:

{ω̂0, k̂} = arg min
ω0,k
||x− Z(ZHZ)−1ZHx||22 (24)

= arg min
ω0,k

(
xH(IN − Z(ZHZ)−1ZH)x

)
(25)

= arg min
ω0,k

(
xHΠ⊥ (ω0, k)x

)
, (26)

where Π is an orthogonal projection matrix

Π (ω0, k) = Z(ZHZ)−1ZH (27)

and Π⊥ its orthogonal complement

Π⊥ (ω0, k) = IN −Π (ω0, k) . (28)

This process includes a two-dimensional optimisation over ω0

and k. To solve the problem in a computationally efficient
manner, we propose iterating between two one-dimensional
searches [1]. First, the chirp rate in step i, ki, is estimated
using the fundamental frequency estimate from the previous
iteration, ω(i−1)

0 , i = 1, 2, ...

k(i) = arg min
k

(
xHΠ⊥(ω

(i−1)
0 , k)x

)
. (29)

This estimate of the chirp rate is used to find a new estimate
of the fundamental frequency

ω
(i)
0 = arg min

ω0

(
xHΠ⊥(ω0, k

(i))x
)
. (30)

The estimates of ω0 and k are found by iterating between
(29) and (30) until convergence of the cost function in
(26), but could alternatively be ended by the convergence
of the estimated parameters. The fundamental frequency and
chirp rate minimising the cost function in (26) are found by
searching among candidates in a grid centred at the value
of the parameter from the previous iteration, i − 1. The
grid search is followed by a Dichotomous search [35] to get
a refined estimate of the minimum. It is expected that the
fundamental frequency estimate is close to the estimate found
under the assumption of stationarity within the analysis frame.
Therefore, a fundamental frequency estimate found under the
traditional harmonic assumption, e.g., by using one of the
methods in [8], will be a good choice as an initialisation of
the iterations, i.e., ω(0)

0 = ω0,h. The chirp rate is expected to
be small and the first grid search is, therefore, centred around
zero, i.e., k(0) = 0. The estimation process is summarised in
Table I.

The best obtainable performance of an unbiased estimator
is given by the Cramer-Rao lower bound (CRLB). The CRLB
sets a lower limit to the variance of the parameter estimate

var(θ̂g) ≥ [I(θ)
−1

]gg, (31)

where θg is the g’th parameter of the parameter vector θ of
length G, [·]gg denotes the matrix element of row g and column

TABLE I: Estimation of fundamental frequency and chirp rate.

for each sample

initialisation
ω

(0)
0 = ω0,h

k(0) = 0
∆k = 2αk/(K − 1)
∆ω = 2αω/(K − 1)
repeat
K = {k(i−1) − αk,∆k, ...., k

i−1 + αk}
Ω = {ω(i−1)

0 − αω ,∆ω, ...., ω
i−1
0 + αω}

k(i) = arg mink∈K

(
xHΠ⊥(ω

(i−1)
0 , k)x

)
ω

(i)
0 = arg minω0∈Ω

(
xHΠ⊥(ω0, k(i))x

)
until (convergence)

g, and I(θ) is the Fisher information matrix (FIM) [36] of size
G×G:

[I(θ)]gh = −E
{
∂2 ln(p(x|θ))

∂θg∂θh

}
. (32)

Under the assumptions of white Gaussian noise and a noise
covariance matrix independent of the parameters, the FIM
reduces to:

I(θ) =
2

σ2
v

Re
{
∂sH

∂θ

∂s

∂θT

}
(33)

=
2

σ2
v

Re
{
DH(θ)D(θ)

}
(34)

with

D(θ) = [d(ω0)d(k)d(A1)d(φ1) . . . d(AL)d(φL)], (35)

d(y) =
∂s

∂y
. (36)

For the signal model at hand, the elements of the d vectors
are:

[d(ω0)]n =

L∑
l=1

jlnAle
jl(ω0n+k/2n2)+jφl , (37)

[d(k)]n =

L∑
l=1

1

2
jln2Ale

jl(ω0n+k/2n2)+jφl , (38)

[d(Al)]n = ejl(ω0n+k/2n2)+jφl , (39)

[d(φl)]n = jAle
jl(ω0n+k/2n2)+jφl . (40)

The CRLB depends on the choice of n0. The best estimates
are obtained if the segment is centred around n = 0 [23], and,
therefore, n0 should be chosen as n0 = −(N − 1)/2 for N
odd and n0 = −N/2 for N even. The CRLB also depends
on the number of harmonics and the amplitude of the l’th
harmonic Al. The CRLB for a harmonic signal [8] decreases
with A2

l l
2, which means that the more harmonics included

in the estimate of fundamental frequency and chirp rate, the
better the estimate.

IV. MAP CRITERION AND MODEL SELECTION

Model selection and segmentation can be done with a
maximum a posteriori (MAP) model selection criterion. The
principle behind the MAP criterion is to choose the model,M,
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that maximises the posterior probability given the observed
data, x:

M̂ = arg max
M

p(M|x). (41)

Using Bayes’ theorem [37] this can be rewritten as:

M̂ = arg max
M

p(x|M)p(M)

p(x)
. (42)

Choosing the same prior probability, p(M), for every model
to avoid favouring any model beforehand, and noting that the
probability of a given data vector, p(x), is constant once it has
been observed, the MAP estimate can be reduced to:

M̂ = arg max
M

p(x|M), (43)

which is the likelihood of the observed data given the model.
The likelihood is also dependent on other parameters like the
fundamental frequency and the model order. As opposed to
the maximum likelihood approach, these have to be integrated
out in the Bayesian framework to give the marginal density of
the data given the model [8]:

p(x|M) =

∫
Θ

p(x|θ,M)p(θ|M)dθ. (44)

An approximation to this integral can be found assuming high
amounts of data and a likelihood that is highly peaked around
the maximum likelihood estimates of θ [8], [38], [39]

p(x|M) = πG/2 det(Ĥ)−1/2p(x|θ̂,M)p(θ̂|M), (45)

where Ĥ is the Hessian of the log-likelihood function evalu-
ated at θ̂:

Ĥ = −∂
2 ln p(x|θ,M)

∂θ∂θT

∣∣∣∣
θ=θ̂

. (46)

Now an expression for the MAP estimator can be found by
taking the negative logarithm of (45). The term πG/2 can be
assumed constant for large N and is, therefore, neglected,
while a weak prior on p(θ|M) has been used [38] to obtain
the expression [8]:

M̂ = arg min
M
− lnL(θ̂|x) +

1

2
ln det(Ĥ). (47)

This corresponds to minimising a cost function, where the
first part is the likelihood from (16), and the second part is a
model-dependent penalty term.

The penalty term is found by noting that the Hessian is
related to the Fisher information matrix in (32). Evaluating the
Fisher information matrix at θ = θ̂ gives the expected value of
the Hessian, and, therefore, the elements in the Hessian can be
found by using (35)-(40). To ease complexity, an asymptotic
expression for the Hessian can be found by looking at the
elements of the matrix. The diagonal elements of the Hessian

for the harmonic chirp model are given by:

Ĥω0ω0
=

L∑
l=1

1

12
(N3 −N)l2Â2

l , (48)

Ĥkk =

L∑
l=1

1

960
(3N5 − 10N3 + 7N)l2Â2

l , (49)

ĤAlAl
= N, (50)

Ĥφlφl
= NÂ2

l , (51)

for N odd and n0 = −(N − 1)/2. From this, when the
Hessian is evaluated at θ = θ̂, the model order and amplitudes
can be considered constant, and the Hessian is then only
dependent on N . To make this dependency negligible, a
diagonal normalisation matrix, K, is introduced [8], [40]

K =

N−3/2 0
N−5/2

0 N−1/2 I2L

 , (52)

resulting in

Ĥ = K−1KĤKK−1. (53)

The definition of the elements in K as N−x/2 instead of N−x,
where x = 1, 3, 5, and multiplication with K from both sides
is done to ensure that also the off-diagonal elements of Ĥ
are compensated for in the right way. The determinant of the
Hessian is then given by:

det(Ĥ) = det(K−2) det(KĤK), (54)

where the main dependency on N is now moved to the term
K−2 whereas KĤK is assumed small and constant for large
N . Taking the natural logarithm of the determinant gives:

ln det(Ĥ) = ln det(K−2) + ln det(KĤK) (55)
= 3 lnN + 5 lnN + 2L lnN +O(1). (56)

An expression for the cost associated with the harmonic
chirp model can now be found by combining the log likelihood
for the harmonic chirp model in (20) with the penalty term in
(56) where the term O(1) is ignored:

Jc = N lnπ +N ln
1

N
||x− Za||22 +N

+
3

2
lnN +

5

2
lnN + L lnN. (57)

For the traditional harmonic model, the Hessian will not
contain a term related to the chirp rate, k, and the penalty
for the MAP estimator will, therefore, also be short of this
term:

Jh = N lnπ +N ln
1

N
||x− Z0a||22 +N

+
3

2
lnN + L lnN, (58)

where Z0 equals Z for k = 0. The MAP expressions for the
harmonic chirp model and the traditional harmonic model can
be used to choose between them by choosing the one with the
smallest cost. Due to Occam’s razor [41], the simplest model is
always preferred if the models describe the signal equally well.
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J11J1 =

m = 1

J12J1 =

J11 J22J2 = +

m = 2

J13J1 =

J11 J23J2 = +

J12 J33J3 = +

J11 J22 J33J4 = + +

m = 3

Fig. 2: Principle of segmentation. M = 3. Modified from [27].

This is assured by the extra penalty that naturally appears in
the MAP expression for the chirp model. The error between the
chirp model and the observed signal has to decrease enough
relative to the traditional harmonic model to outweigh this
penalty term before the chirp model is favoured over the
traditional harmonic model. Aside from choosing between the
two different harmonic models, the MAP estimator can also be
used for voiced/unvoiced detection by determining whether a
harmonic signal is present or not by comparing the two models
with a zero order model,

J0 = N lnπ +N lnσ2
x +N, (59)

where σ2
x is the variance of the observed signal. The

voiced/unvoiced detection can also be done by using the
generalised likelihood ratio test (GLRT) [42], [43]. In this
method, the ratio of the likelihood of the presence of voiced
speech found based on the harmonic model to the likelihood of
a noise-only signal is calculated and compared to a threshold.
The method has a constant false alarm ratio (CFAR) and so
the threshold is set to ensure a given CFAR that is independent
of the signal-to-noise ratio (SNR). Other methods as, e.g,
described in [14], [15] can also be used.

V. SEGMENTATION

The characteristics of the observed signal are varying over
time and sometimes faster than others, meaning that a fixed
segment length is not optimal. Using the MAP criterion, the
cost associated with different segment lengths can be com-
pared and the optimal chosen being the one minimising (57).
The segmentation assures that the optimal trade-off between
segment length and fit of the model is found, and so the seg-
ment length is chosen as long as possible without introducing
too large modelling errors. It follows from the CRLB that long
segments are desired and gives higher estimation accuracy. The
segmentation is based on the principle in [27], [28] which is
sketched in Fig. 2. In the figure, Jxy is the cost of a segment
starting at block x and ending at block y, with both block x
and y included in the segment.

A minimal segment length, Nmin, is chosen, generating a
block of Nmin samples and dividing the signal into M blocks.
Since this will give 2M−1 ways of segmenting the signal, a
maximum number of blocks in one segment, Kmax, is also
set since very long segments are highly unlikely, and setting
a maximum will bound the computational complexity. The
maximum number of samples in one segment is, therefore,

TABLE II: Segmentation.

while m × Nmin ≤ length(signal)
K = min([m,Kmax])
for k = 1 : K

blocks of signal to use is m− k + 1, ....,m
find analytic signal and downsample
estimate ω0 and k using Table I
estimate a and Z from (23), (8) and (9)
calculate J(m−k+1)m from (57)

J(k) =

{
J(m−k+1)m + J1(m−k) if m− k > 0,

J(m−k+1)m otherwise.
end for
kopt(m) = arg min J(k)
m = m+ 1

end while

backtrack
m = M
while m > 0

number of blocks in segment is kopt(m)
m = m− kopt(m)

end while

Nmax = KmaxNmin. Using a dynamic programming algorithm,
the optimal number of blocks in a segment, kopt, is found
for all blocks, m = 1, ...,M , starting at m = 1 moving
continuously to m = M . For each block, the cost of all
new block combinations is calculated while old combinations
are reused from earlier blocks. Relating to Fig. 2, the red
segments are calculated whereas the blue segments are reused
from earlier. To decrease the number of calculations further,
only a block combination minimising the cost is used in a
later step, which in Fig. 2 means that only one of J3 and
J4 is considered for m = 3, corresponding to the block
combination that minimised the cost at m = 2. When the
end of the signal is reached, backtracking is used to find the
optimal segmentation of the signal, starting at the last block,
and jumping through the signal to the beginning. This is done
by starting at m = M and setting the number of blocks in
the last segment of the signal to kopt(M). In this way, the
next segment ends at block m = M − kopt(M) and includes
kopt(M−kopt(M)) blocks. This is continued until m = 0. The
segmentation is summarised in Table II.

VI. PREWHITENING

The maximum likelihood estimates of the fundamental
frequency and chirp rate and the MAP model selection and
segmentation criterion were found under the assumption of
white Gaussian noise. However, in real life scenarios the noise
is not always white. A prewhitening step is therefore required.
The observed signal can be prewhitened by passing it through
a filter that changes the noise from coloured to white. This
is illustrated in Fig. 3. In the figure, H(z) is a filter with a
frequency response similar to the spectrum of the noise. The
coloured noise can be seen as white noise filtered using a
filter with coefficients given by H(z). Therefore, to obtain a
flat frequency spectrum of the noise, the action is reversed by
dividing by H(z), here denoted by A(z). Naturally, the desired
signal will also be altered by the passage through the filter.
This may have an influence on the results depending on how
much the signal is changed, and what the prewhitened signal
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coloured
noise, v(n)

white
noise, ṽ(n)

A(z) =
1

H(z)

Fig. 3: Prewhitening of noise by passing it through the filter
A(z).

is used for. At the very best, the linear transformation of the
signal will not affect the CRLB of the parameter estimation.

To obtain H(z), information about the noise spectrum is
needed. Different methods exist to estimate the power spectral
density (PSD) of the noise given a mixture of desired signal
and noise [30]–[33]. The PSD can be used directly to generate
a simple finite impulse response (FIR) filter based on the
frequency coefficients of the PSD. Alternatively, also based
on the PSD, linear prediction (LP) can be used to find
the characteristic parts of the noise spectrum and filter the
observed signal based on this. In linear prediction, the present
sample is estimated based on P prior samples:

v̂(n) = −
P∑
p=1

apv(n− p), (60)

leading to a filter of the form:

A(z) = 1 +

P∑
p=1

apz
−p. (61)

After filtering, the signal is normalised to have the same
standard deviation before and after the filtering. To ensure
that the desired signal has a smooth evolution over time after
filtering, i.e., no drastic changes in amplitude or phase, it is
important that the PSD is smooth. This is ensured by most
recent PSD methods where the value in one time frame is
a weighted combination of the preceding time frame and an
estimate from the current time frame.

VII. SIMULATIONS

In the following, the different proposed methods are tested
through simulations on synthetic signals and speech. The
synthetic signals are made according to (7). Unless otherwise
stated in the specific subsections, the signals were generated
with L = 10, Al = 1 ∀ l, random phase, fundamental
frequency, and fundamental chirp rate, in the intervals φl ∈
[0, 2π], f0 ∈ [100, 300] Hz, k ∈ [−500, 500] Hz/s and the
sampling frequency, fs, was set to 8000 Hz.

The speech signal, “Why were you away a year, Roy?”,
was used in some simulations and to illustrate the function of
some methods. The sentence is uttered by a female speaker
and sampled at 8000 Hz. Additionally, the five male and
five female speech signals from the Keele database [44] are
used. The signals have a duration of approximately 30 seconds
each. The signals are downsampled to 8000 Hz. With these
signals, follow the corresponding laryngograph signals and
an annotated fundamental frequency that can be used for
evaluation of the proposed method. However, it should be

noted that the annotated fundamental frequency is also only
an estimate and not the ground truth.

In most experiments, it is desirable to evaluate the methods
at different SNRs, e.g., in an interval from -10 to 10 dB to
simulate situations with different levels of background noise.
Therefore, noise was added to the signals with a variance
calculated to fit the desired input SNR defined as

iSNR =
σ2
s

σ2
v

, (62)

where σ2
s is the variance of the desired signal. The noise

signals used are white Gaussian noise, as well as different
types of noise from the AURORA database [45].

For each segment of noisy speech, the discrete-time ana-
lytic signal [34] is computed, and the parameter estimation
is performed on this complex, downsampled version of the
signal.

A. Prewhitening

The prewhitening using the FIR filter and LP is tested
on “Why were you away a year, Roy?” and compared to
prewhitening using Cholesky factorisation [46]. The signal
is added noise at input SNRs of 0 and 10 dB, and the
prewhitening filters are generated based on the noisy signal.
The PSD is found using an implementation of [31] given in
[30]. The PSD is obtained using 256 frequency points which
equal the number of coefficients in the FIR filter, whereas the
LP filter is made with five coefficients. The spectrum of babble
noise at an input SNR of 10 dB before and after prewhitening
is shown in Fig. 4. Here, it seems that the whitest noise signal
is obtained using the Cholesky factorisation, followed by LP,
while the FIR filter seems to make a minor change to the
original noise.

The prewhitening methods are compared by means of the
spectral flatness, F , which is the ratio of the geometric mean
to the arithmetic mean of the power spectrum, S(k), [47]:

F =

(∏K−1
k=0 S(k)

)1/K

1
K

∑K−1
k=0 S(k)

. (63)

The spectral flatness gives a number between zero and one,
where perfect white noise has a value of one. The spectral
flatness for four different noise types at 0 and 10 dB is shown
in Fig. 5, where the spectral flatness of the original noise and a
white noise signal generated with MATLAB’s randn are also
shown for comparison. The spectral flatness is very similar at
0 and 10 dB for all noise types using a given prewhitening
method. The results confirm the tendencies observed in Fig.
4. The Cholesky factorisation leads to the highest spectral
flatness for all noise types, followed by linear prediction in
the case of babble, car and street noise, while the FIR filter
is better than linear prediction for exhibition noise. There is,
however, large differences between the different noise types
in how significant the advantage is of using one prewhitening
method over another. The Cholesky factorisation is clearly
best in terms of whitening the noise, but as is shown in Fig.
6, it is also the method that has the largest influence on the
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Fig. 4: Spectrograms of babble noise before (a) and after
prewhitening with (b) LP filter, (c) FIR filter and (d) Cholesky
factorisation. The four spectrograms are plotted with the same
limits in dB.
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Fig. 5: Spectral flatness, F , at 0 and 10 dB input SNR for
original noise, prewhitened noise using FIR, LP and Cholesky
factorisation. The spectral flatness for white noise is added for
comparison.

desired signal. Here, it appears the LP filtering best preserves
the desired signal with the FIR filter nearly as good, whereas
the Cholesky factorisation clearly changes the appearance
of the desired signal. Using the Cholesky factorisation for
prewhitening, the signal model must be redefined to include
the Cholesky matrix, as was done in [5]. Thus, it cannot
be applied directly with the proposed model, and has been
excluded from the following simulations. The FIR and LP
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(a) Clean speech (b) LP
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Fig. 6: Spectrograms of speech signal before (a) and after
prewhitening with (b) LP filter, (c) FIR filter and (d) Cholesky
factorisation. The four spectrograms are plotted with the same
limits in dB.

filters only change the amplitude and phase, and, therefore,
they only change the complex amplitude vector a.

B. Fundamental frequency and chirp rate

The proposed estimator of fundamental frequency and chirp
rate is first evaluated on synthetic chirp signals. Two exper-
iments were made. In the first, the segment length, N , was
varied from 49 to 199 samples with a fixed input SNR of
10 dB. In the second, the input SNR was varied from -10 to
10 dB with a fixed segment length of 199 samples. For each
generated signal, noise was added, and an initial fundamental
frequency estimate was found using a harmonic NLS estimator
[8] with lower and upper limits of the search interval of 80
and 320 Hz. The model order is assumed known, i.e., L = 10.
From here, the fundamental frequency and chirp rate were
estimated, and the squared error was found. This was repeated
2000 times and the mean was taken to give the mean squared
error (MSE). In Figs. 7 and 8, the MSE as a function of N
and the input SNR is shown and compared to the CRLB and
estimates obtained using a harmonic NLS estimator [8]. The
chirp estimates reach the CRLB around a segment length of
110 and at an input SNR of around -5 dB under the given
settings. The harmonic estimates are close to reaching the
bound as well, but as the CRLB decreases for higher segment
lengths and input SNRs, the error on the harmonic estimates
do not decrease with the same rate resulting in a gap between
the CRLB and the estimates.

The estimator was used to estimate the fundamental fre-
quency and chirp rate of “Why were you away a year, Roy?”
with the spectrum shown in Fig. 6a. Here, the parameters
are estimated directly from the clean signal in segments with
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Fig. 8: Mean squared error for the fundamental frequency and
chirp rate as a function of the input SNR.

a length of 198 samples (24.8 ms). The initial fundamental
frequency estimate and model order were found jointly by
using a harmonic NLS estimator and a MAP estimator [8], re-
spectively. The limits on the harmonic fundamental frequency
are set to 80 and 300 Hz. To confirm that the combination
of the harmonic fundamental frequency and a chirp rate of
zero is a good initialisation, an example of a two-dimensional
cost function for a segment of a speech signal is shown in
Fig. 9. The initialisation is marked by a yellow cross while
the final estimate of fundamental frequency and chirp rate is
marked by a red cross. As seen, the function is locally convex
around the initial and true fundamental frequency and chirp
rate. The figure also shows that the change in fundamental
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Fig. 9: Example of a cost function for a speech signal as a
function of fundamental frequency and chirp rate.

frequency is rather small so if the fundamental frequency for
some reason changes a lot, ω0 < 0.6ω0,HM or ω0 > 1.5ω0,HM,
the fundamental frequency is set to the harmonic estimate and
the chirp rate is set to zero. However, it is important to note
that the instantaneous fundamental frequency is not the same
as the one found by the harmonic model. Now, the parameters
are estimated in steps of 5 samples. The resulting estimates
are shown in Fig. 10. The chirp rate can be interpreted as
the tangent to the fundamental frequency curve at a given
point. This means that the chirp rate should be negative when
the fundamental frequency is decreasing, positive when it is
increasing, and zero at a local maximum or minimum. To
illustrate this, some maxima and minima of the fundamental
frequency are marked by red stars in the upper plot and the
chirp rates at the same points in time are marked in the bottom
plot.

The estimation is repeated after the addition of noise to give
an input SNR of 0 and 10 dB, but this time the parameters
are only estimated once per segment of 198 samples. The
estimation is done both for white Gaussian noise and babble
noise as well as after prewhitening of the signal with babble
noise using the FIR and LP filter. The sum of the absolute
error between noisy and clean estimates is given in Table III
at 0 and 10 dB. Here, only the time interval shown in Fig. 10
is considered since the beginning and end of the signal contain
no speech. The white noise gives the best estimate at both 0
and 10 dB. At 0 dB, the LP prewhitened signal gives a lower
error than the FIR filtered and clean babble noise whereas at
10 dB, the babble noise gives the lowest error followed by the
FIR and LP filtered noise. This suggests that for the proposed
ML estimator, the dominance of the desired signal at 10 dB
decreases the importance of the noise shape relative to the
effects of prewhitening on the signal. However, at 0 dB the
noise is more dominant, and so the importance of prewhitening
increases.

The fundamental frequency and chirp rate are also estimated
from the signals in the Keele database. The fundamental
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TABLE III: Sum of absolute error between noisy estimate and
clean estimate of fundamental frequency in Hz at input SNRs
of 0 and 10 dB.

white noise babble FIR LP
0 dB 585 2653 2483 1201
10 dB 167 408 714 787

frequency estimates are compared to YIN [2] and SWIPE
[48] by means of the gross pitch error (GPE), the fine pitch
error (FPE) and the reconstruction SNR. The GPE is defined
as an estimate that deviates from the annotated fundamental
frequency by more than 20 % [18]. The GPEs are not
considered in the calculation of the FPE. The FPE is divided
into two parts, the mean, µ, and the standard deviation, σ, of
the errors on the estimates [12], [18]. Both are calculated from
the difference between the estimated fundamental frequency
and the annotated fundamental frequency. The annotated fun-
damental frequency is estimated in steps of 10 ms based on
segments of 26.5 ms of data. This is also done for HM,
HCM and YIN, however, it is not possible to choose the
segment length in SWIPE. The lower and upper limit on the
estimate are set to 50 and 300 Hz. The reconstruction SNR
is calculated from the reconstructed signal based on (7). For
YIN, SWIPE and the traditional harmonic model, the chirp
rate is approximated by ∆f = (f0(n + 1) − f0(n))/∆t
where ∆t is the time between two consecutive estimates of
the fundamental frequency. Note that this will cause a delay
in real-time applications. However, using past samples does
not result in ∆f for the correct segment and will degrade the
reconstruction compared to only using the harmonic model.
The estimated fundamental frequencies, chirp rates and ∆f ’s
are used in Z in (8). Since we are here considering non-
stationary signals it makes a difference from where in the

signal the reference point is set. From experiments on synthetic
chirp signals it was found that YIN and SWIPE have the
reference point towards the beginning of the signal whereas
HM has its reference point around the middle. Therefore,
we set n0 = 0 for YIN and SWIPE and n0 = −N/2 for
HM. The mid-segment reference point for HM means that
∆f is estimated incorrectly. The proper estimate would be
∆f = (f0(n+ 1/2)− f0(n− 1/2))/∆t, but this information
is not available. The wrong estimate of ∆f leads to a worse
performance compared to using the harmonic model on its
own. The result for HM without ∆f is therefore also included
in the comparison. The fundamental frequency, chirp rate and
∆f are estimated for each 25 ms based on 25 ms of data,
and the entire block of samples is reconstructed based on this
estimate. The model order is estimated using a MAP estimator
[8]. The amplitude vector, a, is estimated using (23). The
reconstruction SNR (rSNR) is then given by:

rSNR =
σ2
s

σ2
(s−ŝ)

, (64)

where ŝ is the reconstructed signal, and σ2
(s−ŝ) is the variance

of the error signal between the original speech signal and the
reconstructed signal.

The results are shown in Fig. 11. In terms of GPE, the
proposed method performs better than YIN and SWIPE at
low input SNRs, while SWIPE is better at high input SNRs.
The harmonic models perform equally. The bias, seen as the
mean, µ, is small for all methods. It is approximately 1 Hz for
YIN and within ± 0.5 Hz for the other methods. The proposed
method does not perform as well as the traditional harmonic
model in terms of standard deviation, σ. As mentioned ear-
lier, the annotated fundamental frequency is not the ground
truth, but a fundamental frequency estimate found from the
laryngograph signal using an autocorrelation method which is
also based on the harmonic assumption. In Fig. 9 it was seen
that the instantaneous fundamental frequency found by the
proposed method is not the same as the harmonic frequency.
Therefore, it is not surprising that the method does not per-
form well when it is compared to the fundamental frequency
estimated based on the harmonic assumption. Looking at the
reconstruction SNR, the chirp model outperforms all other
methods. The reconstruction SNR is the only of the four error
measures that takes both fundamental frequency and chirp rate
into account. Further, the reconstruction SNR does not depend
on another estimate of the fundamental frequency as do the
FPE and GPE, it compares to the original speech signal.

C. Model selection

The model selection was first tested on synthetic signals
degraded with white Gaussian noise to give an input SNR of
10 dB. In this part, the possible models included in the test
are the traditional harmonic model and the harmonic chirp
model. The model selection was tested for different chirp rates
and different segment lengths. For each combination of chirp
rate and segment length, 2000 signals were generated and
the selected model was noted for each signal. The percent
of the chirp model chosen is shown in Fig. 12. Even though
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Fig. 12: Model selection for synthetic signals as a function of
the chirp rate for different segment lengths from 49 to 199.

all generated signals, except for the ones with a chirp rate of
zero, are chirp signals, the chirp model is not chosen in all
cases. As mentioned in Section IV, this is due to the extra
penalty term introduced to the chirp model and not to the
harmonic model. The longer the signal is, the more prone it is
to be denoted as a chirp signal since the error term ||x−Za||22
will increase with signal length when the model does not fit,
making the cost of the harmonic model greater than that of
the chirp model, despite the extra penalty to the chirp model.

Model selection was also performed on the speech signals
from the Keele database in white Gaussian noise at different
segment lengths. Here, the noise model is also included. The
percentage of each chosen model is found by taking the
number of segments labelled according to a given model out
of the total number of segments in the signal. The result
is shown in Fig. 13. The percentage of the chosen noise
model is fairly independent of the segment length since the
amount of unvoiced speech is independent of the segment
length. For short segment lengths, the harmonic model is
chosen approximately 55% of the time and the chirp model is
never chosen, but as the segment length is increased, the two
models are almost equally preferred. It should again be kept
in mind that the chirp model has an extra penalty for being a
more complex model so even though the error on the signal,
||x−Za||22, is smaller for the chirp model, it has to overcome
the penalty as well before it is selected.

D. Segmentation

The segmentation is tested on the signal “Why were you
away a year, Roy?”. White Gaussian noise is added to the
signal to give an input SNR of 10 dB. The signal is segmented
according to the harmonic chirp model and the traditional
harmonic model where, in both cases, the minimum segment
length Nmin = 40 and the maximum number of blocks
Kmax = 10, meaning that the minimum length of a segment
is 40 samples (5 ms) and the maximum length of a segment,
Nmax, is 400 samples (50 ms). A representative example of
the chosen segment length as a function of time is shown in
Fig. 14. For comparison, the fundamental frequency estimate
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is plotted as well. In general, the chirp model gives rise to
longer segment lengths than the traditional harmonic model.
For this example, the average segment length is 195 samples
(24.4 ms) using the chirp model and 137 samples (17.1 ms)
using the traditional harmonic model. A typical choice of fixed
segment length is 20–30 ms [13]. On average, this is a good
choice when using the harmonic chirp model, however, shorter
segments are better if the traditional harmonic model is used.
The longer segments of the chirp model, of course, mean that
the total number of segments is lower than for the harmonic
model. The chirp model divides the signal into 105 segments
and with the harmonic model, the number of segments is 150.
Three areas in Fig. 14 are marked with circles as examples of
the longer segments obtained with the chirp model. In the light
blue circle, the fundamental frequency is decreasing quite fast,
but the change is constant over time. Thus a long segment is
obtained using the chirp model while shorter segments are
obtained when the harmonic model is used. In the purple
circle, the piece of speech is divided into four segments with
the chirp model: two segments of maximum length, where the
fundamental frequency is almost constant, and two shorter but
still fairly long segments, where the fundamental frequency
is increasing and decreasing, respectively. For the harmonic
model, there are two long segments where the fundamental
frequency is close to constant, but the rest of the piece is
divided into shorter segments. In the brown circle, the piece
is divided into two segments using the chirp model: one piece
where the fundamental frequency is decreasing and one where
it is increasing. The harmonic model covers the area in the
middle, where the fundamental frequency is fairly constant,
with two somewhat long segments, but in order to cover the
whole area, shorter segments are added on both sides of the
segments in the middle. The longer segments chosen for the
chirp model suggests that the chirp model describes the signal
in a better way than the traditional harmonic model since it
to some extent takes the non-stationarity of the speech into
account.

The signal is reconstructed using (7), as was done in the
evaluation of the fundamental frequency estimate. The signal
is reconstructed from the estimates in the optimal segments,

TABLE IV: Reconstruction SNR for chirp and harmonic signal
using either optimal segmentation or a fixed segment length
matching the mean segment length of the optimal segmenta-
tion, in this case N̄HM = 140 (17.5 ms) and N̄HCM = 188
(23.5 ms). The input SNR is 10 dB.

chirp harmonic
opt. segm. 12.49 12.38
fixed 10.88 11.29

TABLE V: Average segment length, N̄ , for chirp and harmonic
signal for different noise types at 10 dB.

chirp harmonic
babble 69 (8.6 ms) 62 (7.7 ms)
FIR 73 (9.1 ms) 65 (8.1 ms)
LP 119 (14.9 ms) 91 (11.4 ms)

meaning that in some cases 40 samples (5 ms) are recon-
structed based on one estimate of fundamental frequency and
chirp rate, whereas in other cases, 400 samples (50 ms) are
estimated based on one estimate. This is compared to estimates
from segments with a fixed length where the length of the
segments is set to the mean length of the segments from the
optimal segmentation. In this case, N̄HM = 140 (17.5 ms) and
N̄HCM = 188 (23.5 ms). This means that the reconstructions
based on optimal segmentation and fixed segment length use
the same number of segments to represent the signal. The
reconstruction SNR is shown in Table IV. The table shows that
with the same number of segments used for the reconstruction,
a better reconstruction SNR can be obtained when optimal
segmentation is used instead of using a fixed segment length.
The reconstruction SNR is more than 1.5 dB better for the
chirp model and more than 1 dB better for the traditional
harmonic model when comparing optimal segmentation to a
fixed segment length. By comparing the harmonic chirp model
to the traditional harmonic model, a better reconstruction SNR
is obtained with the harmonic chirp model when optimal
segmentation is used, even though the chirp model uses only
109 segments and the traditional harmonic model uses 147
segments to represent the entire signal.

The segmentation is also tested for the signal in babble noise
and prewhitened babble noise at an input SNR of 10 dB. The
average segment lengths in the different cases are shown for
the two models in Table V. In all cases, the signal is divided
into longest segments when the chirp model is used. With
respect to the different noise scenarios, the tendency is the
same for the two models. The segments are shortest when the
signal in babble noise is considered, followed closely by the
prewhitened signal using FIR filtering. The longest segments
are obtained with the LP filtered signal.

VIII. CONCLUSION

Traditionally, non-stationarity, fixed segment lengths and
noise assumptions have limited the performance of fundamen-
tal frequency estimators. In this paper, we take these factors
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Fig. 14: Segment length as a function of time for (a) the harmonic chirp model and (b) the traditional harmonic model. The
average segment length, N̄ , is marked by the red line. The average segment length is 195 samples (24.4 ms) for the harmonic
chirp model and 137 samples (17.1 ms) for the traditional harmonic model. The total number of segments is 105 for the chirp
model and 150 for the harmonic model.

into account. We described the voiced part of a speech signal
using a harmonic chirp model that allows the fundamental
frequency to vary linearly within each segment. We proposed
an iterative maximum likelihood estimator of the fundamental
frequency and chirp rate based on this model. The estimator
reaches the Cramer-Rao lower bound and shows expected
correspondence between the estimate of the fundamental fre-
quency and fundamental chirp rate of speech. Based on the
maximum a posteriori (MAP) model selection criterion, the
chirp model was shown to be preferred over the traditional
harmonic model for long segments, suggesting that the chirp
model is better at describing the non-stationary behaviour
of voiced speech. Since the extent of the non-stationarity
of speech changes over time, a fixed segment length is not
optimal. Therefore, we also proposed varying the segment
length based on the MAP criterion. Longer segments were
obtained when the chirp model was used compared to the
traditional harmonic model, again suggesting a better fit of
the model to the speech. The maximum likelihood and MAP
estimators are based on an assumption of white Gaussian
noise. However, in real life the noise is rarely white. Therefore,
we also suggested using two filters to prewhiten the noise, a
simple FIR filter and one based on linear prediction (LP). They
both have a minor influence on the speech signal, but the LP

filter gives less error on the fundamental frequency estimate
when the noise level is high. Further, the LP filter gives longer
segment lengths in the optimal segmentation.
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8�;�48�;E#�8�fff8��@8-#�/0�;G3402�:4?��2:��/�#
���20/��2/01#/04�&#2��4�4:/01#
2144/=0�7#��10�01�12/#/02/0�2;HNggghJXORM̂SQQLT[W\YKIJKLQRRM;�4
8f;�48�;::8���e���;E�
8����8d�A8F���1#��#��@8%8 ����0�2;Gl�&0#2��--*)�&#2���402�:4?���2/01#/04�?0/=
4?�41:
�>0/�#��
4?/�#��0�7��
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Sparse Linear Prediction and Its Applications to
Speech Processing
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Manohar N. Murthi,Member, IEEE,Søren Holdt Jensen,Senior Member, IEEE,and Marc Moonen,Fellow, IEEE

Abstract—The aim of this paper is to provide an overview of
Sparse Linear Prediction, a set of speech processing tools created
by introducing sparsity constraints into the linear prediction
framework. These tools have shown to be effective in several
issues related to modeling and coding of speech signals. For
speech analysis, we provide predictors that are accurate in
modeling the speech production process and overcome problems
related to traditional linear prediction. In particular, the pre-
dictors obtained offer a more effective decoupling of the vocal
tract transfer function and its underlying excitation, making it
a very efficient method for the analysis of voiced speech. For
speech coding, we provide predictors that shape the residual
according to the characteristics of the sparse encoding techniques
resulting in more straightforward coding strategies. Furthermore,
encouraged by the promising application of compressed sens-
ing in signal compression, we investigate its formulation and
application to sparse linear predictive coding. The proposed
estimators are all solutions to convex optimization problems,
which can be solved efficiently and reliably using, e.g., interior-
point methods. Extensive experimental results are provided to
support the effectiveness of the proposed methods, showing the
improvements over traditional linear prediction in both speech
analysis and coding.

Index Terms—Linear prediction, speech analysis, speech cod-
ing, sparse representation, 1-norm minimization, compressed
sensing.

I. I NTRODUCTION

Linear prediction (LP) has been successfully applied in
many modern speech processing systems in such diverse
applications as coding, analysis, synthesis and recognition
(see, e.g., [1]). The speech model used in many of these
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applications is the source-filter model where the speech signal
is generated by passing an excitation through an all-pole filter,
the predictor in the feedback loop. Typically, the prediction
coefficients are identified such that the 2-norm of the residual,
the difference between the observed signal and the predicted
signal, is minimized. This works well when the excitation
signal is Gaussian and independent and identically distributed
(i.i.d.) [2], consistent with the equivalent maximum likelihood
approach to determine the coefficients [3]. However, when the
excitation signal does not satisfy these assumptions, problems
arise [2]. This is the case for voiced speech where the
excitation can be considered to be a spiky excitation of a quasi-
periodic nature [1]. In this case, the spectral cost function
associated with the minimization of the 2-norm of the residual
can be shown to suffer from certain well-known problems
such as overemphasis on peaks and cancellation of errors
[2]. In general, the shortcomings of LP in spectral envelope
modeling can be traced back to the 2-norm minimization
approach: by minimizing the 2-norm, the LP filter cancels the
input voiced speech harmonics causing the envelope to have a
sharper contour than desired with poles close to the unit circle.
A wealth of methods have been proposed to mitigate these
effects. Some of the proposed techniques involve a general
rethinking of the spectral modeling problem (see, e.g., [4], [5],
[6], and [7]) while others are based on changing the statistical
assumptions made on the prediction error in the minimization
process (notably [8], [9], and [10]).

The above mentioned deficiencies of the 2-norm minimiza-
tion in LP modeling have also repercussions in the speech
coding scenario. In fact, while the 2-norm criterion is con-
sistent with achieving minimal variance of the residual for
efficient coding1, sparse techniques are employed to encode
the residual. Examples of this can be seen since early GSM
standards with the introduction of multi-pulse excitation(MPE
[12]) and regular-pulse excitation (RPE [13]) methods and,
more recently, in sparse algebraic codes in code-excited linear
prediction (ACELP [14]). In these cases, the sparsity of the
RPE and ACELP excitation was motivated, respectively, by
psychoacoustic and by the dimensionality reduction of the
excitation vector space. Therefore, a better suited predictor
for these two coding schemes, arguably, is not the one that

1The fundamental theorem of predictive quantization [11] states that the
mean squared reproduction error in predictive encoding is equal to the
mean squared quantization error when the residual signal is presented to the
quantizer. Therefore, by minimizing the 2-norm of the residual, these variables
have a minimal variance whereby the most efficient coding is achieved.
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minimizes the 2-norm, but the one that leaves the fewest
non-zero pulses in the residual, i.e., thesparsest residual.
Early contributions (notably [9], [15], and [16]) have followed
this line of thought questioning the fundamental validity of
the 2-norm criterion with regards to speech coding. Despite
this research effort, to the authors’ best knowledge, 2-norm
minimization is the only criterion used in commercial speech
applications.

Traditional usage of LP is confined to modeling only the
the spectral envelope capturing the short-term redundancies
of speech. Hence, in the case of voiced speech, the predictor
does not fully decorrelate the speech signal because of the
long-term redundancies of the underlying pitch excitation. This
means that the residual will still have pitch pulses present. The
usual approach is then to employ a cascaded structure where
LP is initially applied to determine the short-term prediction
coefficients to model the spectral envelope and, subsequently,
a long-term predictor is determined to model the harmonic
behavior of the spectrum [1]. Such a structure is arguably
suboptimal since it ignores the interaction between the two
different stages. Also in this case, while early contributions
have outlined gains in performance in jointly estimating the
two filters (the work in [17] is perhaps the most successful
attempt), the common approach is to distinctly separate the
two steps.

The recent developments in the field of sparse signal pro-
cessing, backed up by significant improvements in convex
optimization algorithms (e.g., interior point methods [18][19]),
have recently encouraged the authors to explore the conceptof
sparsity in the LP minimization framework [20]. In particular,
while reintroducing well-known methods to seek a short-
term predictor that produces a residual that is sparse rather
than minimum variance, we have also introduced the idea of
employing high order sparse predictors to model the cascade
of short-term and long-term predictors, engendering a joint
estimation of the two [21]. This preliminary work has led the
way for the exploitation of the sparse characteristics of the
high order predictor and the residual to define more efficient
coding techniques. Specifically, in [22], we have demonstrated
that the new model achieves a more parsimonious description
of a speech segment with interesting direct applications tolow
bit-rate speech coding. While in these early works, the 1-norm
has been reasonably chosen as a convex approximation of the
so-called 0-norm2, in [23] we have applied the reweighted 1-
norm algorithm in order to produce a more focused solution to
the original problem that we are trying to solve. In this work,
we move forward, introducing the novelty of a compressed
sensing formulation [24] in sparse LP, that will not only
offer important information on how to retrieve the sparse
structure of the residual, but will also help reduce the size
of the minimization problem, with a clear impact on the
computational complexity.

The contribution of this paper is then twofold. Firstly, we
put our earlier contributions in a common framework giving
an introductory overview of Sparse Linear Prediction and we

2The 0-norm is not technically a norm since it violates the triangle
inequality.

also introduce its compressed sensing formulation. Secondly,
we provide a detailed experimental analysis of its usefulness
in modeling and coding applications transcending the well-
known limitations related to traditional LP.

The paper is organized as follows. In Section II, we provide
a prologue that defines the mathematical formulations of the
proposed sparse linear predictors. In Section III, we definethe
sparse linear predictors and, in Section IV, we provide their
compressed sensing formulations. The results of the experi-
mental evaluation of the analysis properties of the short-term
predictors are outlined in Section V, while the experimental
results of the coding properties and applications are outlined in
Section VI. We provide a discussion on some of the drawbacks
of sparse linear prediction in Section VII. Finally, Section VIII
concludes our work.

II. FUNDAMENTALS OF L INEAR PREDICTION

We consider the following speech production model, where
a sample of speechx(n) is written as a linear combination of
K past samples:

x(n) =

K
∑

k=1

akx(n− k) + r(n), (1)

where {ak} are the prediction coefficients andr(n) is the
prediction error. In particular, we consider the optimization
problem associated with finding the prediction coefficient
vector a ∈ R

K from a set of observed real samplesx(n)
for n = 1, . . . , N so that the prediction error is minimized
[18]. Considering the speech production model for a segment
of N speech samplesx(n), for n = 1, . . . , N , in matrix form:

x = Xa+ r, (2)

the problem becomes:

a = argmin
a

‖x−Xa‖pp + γ‖a‖kk, (3)

where:

x =







x(N1)
...

x(N2)






,X =







x(N1 − 1) · · · x(N1 −K)
...

...
x(N2 − 1) · · · x(N2 −K)






.

(4)
The p-norm operator ‖ · ‖p is defined as ‖x‖p =

(
∑N

n=1 |x(n)|
p)

1

p . The starting and ending pointsN1 andN2

can be chosen in various ways by assumingx(n) = 0 for
n < 1 andn > N . In this paper we will use the most common
choice ofN1 = 1 andN2 = N+K, which is equivalent, when
p = 2 and γ = 0, to the autocorrelation method[25]. The
introduction of the regularization termγ in (3) can be seen as
being related to the prior knowledge of the coefficients vector
a, problem (3) then corresponds to themaximum a posteriori
(MAP) approach for findinga under the assumptions thata has
a Generalized Gaussian Distribution [26]. In finding a sparse
signal representation, there is the somewhat subtle problem
of how to measure sparsity. Sparsity is often measured as the
cardinality, corresponding to the so-called 0-norm‖ · ‖0. Our
optimization problem (3) would then become:

a = argmin
a

‖x−Xa‖0 + γ‖a‖0, (5)
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with the particular case in which we are only considering the
sparsity in the residual (γ = 0):

a = argmin
a

‖x−Xa‖0. (6)

Unfortunately, these are combinatorial problems which gen-
erally cannot be solved in polynomial time. Instead of the
cardinality measure, we will then use the more tractable 1-
norm ‖ · ‖1, which is known throughout the sparse recovery
literature (see, e.g., [27]) to perform well as a relaxationof the
0-norm. We will also consider more recent variations of the
1-norm minimization criterion such as the reweighted 1-norm
[28] to enhance the sparsity measure and moving the solution
closer to the original 0-norm problem (5).

III. SPARSEL INEAR PREDICTORS

In this section, we will define the different sparse linear
predictors and show their application in the context of speech
processing. In particular, we will introduce the problem of
determining a short-term predictor that engenders a sparse
residual and the problem of finding a high order sparse predic-
tor that also engenders a sparse residual. Since in Section II,
we have introduced the 1-norm minimization as the sparsity
measure, here we will also give a brief overview of the
reweighted 1-norm algorithm to enhance this sparsity measure,
moving closer to the original problem (0-norm minimization).

A. Finding a Sparse Residual

We consider the problem of finding a prediction coefficient
vector a such that the resulting residual is sparse. Having
identified the 1-norm as a suitable convex relaxation of the
cardinality, the cost function for this problem is a particular
case of (3). By settingp = 1 and γ = 0 we obtain the
following optimization problem:

min
a

‖x−Xa‖1. (7)

This formulation of the LP problem has been considered since
the early works on speech analysis [9] [15] [16] and becomes
particularly relevant for the analysis of voiced speech. In
particular, compared to the traditional 2-norm minimization,
the cost function associated with the 1-norm minimization
deemphasize the impact of the spiky underlying excitation
associated with voiced speech on the solutiona. Thus, there is
an interesting connection between recovering a sparse residual
vector and applying robust statistics methods to find the
predictor [8]. An example of the more accurate recovery of the
voiced excitation is shown in Figure 1. The effect of putting
less emphasis on the outliers of the spiky excitation associated
with voiced speech will reflect on the spectral envelope that
will avoid the over-emphasis on peaks generated in the effort
to cancel the pitch harmonics. An example of this property is
shown in Figure 2.

While the 1-norm has been shown to outperform the 2-
norm in finding a more proper LP model in speech analysis, in
the case of unvoiced speech both approaches seem to provide
appropriate models. However, by using the 1-norm minimiza-
tion, we provide a residual that is sparser. In particular in
[29] it is shown that, the residual vector provided by 1-norm
minimization will have at leastK components equal to zero.
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Fig. 1. An example of prediction residuals obtained by 2-normand 1-norm
error minimization. The speech segment analyzed is shown in thetop box.
The prediction order isK = 10 and the frame length isN = 160. It can be
seen that the spiky pitch excitation is retrieved more accurately when 1-norm
minimization is employed.

0 500 1000 1500 2000 2500 3000 3500 4000
−100

−80

−60

−40

−20

0

20

40

60

80

100

frequency [Hz]

A
m

pl
itu

de
 [d

B
]

 

 

1−norm LP
2−norm LP
Periodogram

Fig. 2. An example of LP spectral model obtained by 1-norm and 2-norm
error minimization for a segment of voiced speech. The prediction order is
K = 10 and the frame length isN = 160. The lower emphasis on peaks in
the envelope, when 1-norm minimization is employed, is a directconsequence
of the ability to retrieve the spiky pitch excitation.

B. Finding a High Order Sparse Predictor

We now consider the problem of finding a high order sparse
predictor that also engenders a sparse residual. This problem
is particularly relevant when considering the usual modeling
approach adopted in low bit-rate predictive coding for voiced
speech segments. This corresponds to a cascade of a short-
term linear predictorF (z) and a long-term linear predictor
P (z) to remove respectively near-sample redundancies, due
to the presence of formants, and distant-sample redundancies,
due to the presence of a pitch excitation. The cascade of the
predictors corresponds to the multiplication in thez-domain
of the their transfer functions:

A(z) = F (z)P (z) = 1−

K
∑

k=1

akz
−k

= (1−

Nf
∑

k=1

fkz
−k)(1−

Np
∑

k=1

gkz
−(Tp+k−1)).

(8)
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Fig. 3. An example of the high order predictor coefficient vector resulting
from a cascade of long-term and short-term predictors (top box) and the
solution of (9) for γ = 0.1 and orderK = 100. The order is chosen
sufficiently large to accommodate the filter cascade (8). It canbe seen that
the nonzero coefficient in the sparse prediction vector roughly coincide with
the structure of the cascade of the two predictors.

The resulting prediction coefficient vectora = {ak} of the
high order polynomialA(z) will therefore be highly sparse3.
Taking this into account in our minimization process, and
again considering the 1-norm as convex relaxation of the 0-
norm, our original problem (5) becomes:

min
a

‖x−Xa‖1 + γ‖a‖1, (9)

where the dimension of the prediction coefficient vectora

(the order of the predictor) has to be sufficiently large to
model the filter cascade (K > Nf + Tp + Np) in (8). This
approach, although maintaining resemblances to (7) looking
for a sparse residual, is fundamentally different. While the
predictor in (7) aims at modeling the spectral envelope, the
purpose of the high order sparse predictor is to model the
whole spectrum, i.e., the spectral envelope and the spectral
harmonics. This can be easily achieved due to the strong ability
of high order LP to resolve closely spaced sinusoids [30], [31].
Furthermore, considering the construction of the observation
matrixX, finding a high order sparse predictor is equivalent to
identify which columns ofX, and in turn, which samples inx
are important in the linear combination to predict a sample of
speech (1). Thus, when a segment of voiced speech is analyzed
with the predictive framework in (9), the nonzero coefficients
roughly coincide with the structure in (8). An example of the
predictor obtained as solution of (9) is shown in Figure 3.
An example of the spectral modeling properties is shown in
Figure 4.

There are mainly two problems associated with exploiting
the modeling properties of the sparse high order predictor:
determining an appropriate value ofγ to solve (9) and using
an approximate factorization to obtain again the initial formu-
lation composed by the two predictors (8). Below we address
these two issues.

1) Selection ofγ: It is clear from (9) thatγ controlshow
sparsethe predictor should be and the trade-off between the
sparsity of the predictor and the sparsity of the residual.

3Traditionally, for speech sampled at 8 kHz,Nf = 10, Np = 1, andTp

usually belongs in the range[16, 120].
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Fig. 4. Frequency response of the high order predictor of Figure 3. The
order of the predictor isK = 100 and we consider only the nine nonzero
coefficients of largest magnitude modeling the short-term andlong-term
predictors cascade.

In particular, by increasingγ, we increase the sparsity of
the prediction coefficient vector, until all its entries arezero
(A(z) = 1) for γ ≥ ‖XT

x‖∞ (where‖ · ‖∞ denotes the dual
norm to ‖ · ‖1). More precisely, for0 < γ < ‖XT

x‖∞, the
solution vectora is a linear function ofγ [32]. However, in
general, the number of nonzero elements ina is not necessarily
a monotonic function ofγ.

There are obviously several ways of determiningγ. In our
previous work [21] [22], we have found the modifiedL-curve
[33] as an efficient tool to find a balanced sparse representation
between the two descriptions. The optimal value ofγ (in the
L-curve sense) is found as the point of maximum curvature
of the curve(‖x − Xaγ‖1, ‖aγ‖1). We have also observed
that, in general, a constant value ofγ, chosen for example
as the average value of the set ofγ’s found with theL-
curve based approach for a large set of speech frames, is an
appropriate choice in the predictive problems considered.In
the experimental analysis we will consider both approachesto
definingγ.

2) Factorization of the high order polynomial:If γ is cho-
sen appropriately, the considered formulation (9) resultsin a
high order predictor̂A(z) with a clear structure that resembles
the cascade of the short-term and long-term predictor (Figure
3). We can therefore brinĝA(z) to the original formulation
in (8), by applying a simple and effective ad-hoc method
to factorize the solution [22]. In particular, we use the first
Nf coefficients of the high order predictor as the estimated
coefficients of the short-term predictor:

F̂ (z) = 1−

Nf
∑

k=1

âkz
−k, (10)

and then compute the quotient polynomialQ̂(z) of the division
of Â(z) by F̂ (z) so that:

Â(z) = Q̂(z)F̂ (z) + E(z) ≈ Q̂(z)F̂ (z), (11)

where the deconvolution remainderE(z) is considered to be
negligible as most of the information of the coefficients has
shown to be retained bŷQ(z) andF̂ (z). From the polynomial
Q̂(z) we can then extract theNp taps predictor. In this paper,
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we will consider the most common pitch predictor where
Np = 1 (P (z) = 1 − gpz

−Tp), then we merely identify the
minimum value and its position in the coefficients vector of
Q̂(z):

gp =min{qk},

Tp =argmin{qk}.
(12)

It is clear that, while heuristic, this factorization procedure is
highly flexible. A different numbers of taps for both the short-
term and long-term can be selected and also a voiced/unvoiced
classification can be included, based on the presence or
absence of long-term information, as described in [21], [22].

It should be noticed that the structure of the cascade can
also be incorporated into the minimization scheme and can
be potentially beneficial in reducing the size of the problem.
This approach is then similar to theOne-Shot Combined
Optimizationpresented in [17] which is implicitly a sparse
method looking for a similar high order factorisable predictor.
The joint estimation in this case requires prior knowledge
on the position of the pitch contributions (a pitch estimate)
and the model order of both the short-term and long-term
predictors. Differently from this method, in our approach,we
obtain information on the model order of both short-term and
long-term contribution and a pitch estimate, just by a simple
post-processing the solution of (9).

C. Enhancing sparsity by reweighted 1-norm minimization

As shown throughout this section, the 1-norm is used as a
convex relaxation of the 0-norm, because 0-norm minimization
yields a combinatorial problem (NP-hard). We are therefore
interested in adjusting the error weighting difference between
the 1-norm and the 0-norm. A variety of recently introduced
methods have dealt with reducing the error weighting differ-
ence between the 1-norm and the 0-norm by relying on the
iterative reweighted 1-norm minimization (see, e.g., [34]and
references therein). In particular, the iteratively reweighted
1-norm minimization may be used for estimatinga and
enhancing the sparsity ofr (anda), while keeping the problem
solvable with convex tools [28] [23]. The predictor can then
be seen as a solution of the following minimization problem:

a = argmin
a

lim
p→0

lim
k→0
{‖x−Xa‖pp + γ‖a‖kk}, (13)

where each iteration of the reweighting process brings us
closer to the 0-norm.

The mismatch between the 0-norm and the 1-norm mini-
mization can be seen more clearly in Figure 5, where larger
coefficients are penalized more heavily by the 1-norm than
small ones. From an optimization point of view, whenp ≤ 1,
the cost functions will have lower emphasis on large values
and sharper slopes near zero compared to thep = 1 case. In
turn, from a statistical point of view, the density functions will
have heavier tails and a sharper slope near zero. This means
that the minimization will encourage small values to become
smaller while enhancing the amplitude of larger values. The
limit case forp = 0 will have an infinitely sharp slope in zero
and equally weighted tails. This will introduce as many zeros
as possible as these are infinitely weighted. In this sense, the
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Fig. 5. Comparison between cost functions forp ≤ 1. The 0-norm can be
seen as more “democratic” than any other norm by weighting all the nonzero
coefficients equally.

0-norm can be seen as more “impartial” by penalizing every
nonzero coefficient equally. It is clear that if a very small value
would be weighted as much as a large value, the minimization
process will eliminate the smaller ones and enhance the larger
ones.

The algorithm to obtain a short-term predictor engendering
a sparser residual, a reweighted formulation of (7), is shown
in Algorithm 1. This approach, as we shall see, becomes ben-
eficial in finding a predictor that produces a sparser residual,
providing a tighter coupling between the prediction estimation
and the search for the approximated sparse excitation. An
example of the reweighted residual estimate is shown in Fig.
6.

When we impose sparsity both on the residual and on
the high order predictor, as in (9), the algorithm is modified
as shown in Algorithm 2. This formulation is relevant as it
enhances the components that contain the information regard-
ing the near-end and far-end redundancies in the high order
predictor making the approximate factorization presentedin
III-B2 more accurate. In particular, the reweighting allows to
reduce the spurious near-zero components in the high order
predictor obtained (see Fig. 3) while enhancing the larger
components that contain information of near-end and far-end
redundancies.

It has been shown in [28] that‖r̂i+1‖1 ≤ ‖r̂
i‖1, meaning

that this is a descent algorithm. The halting criterion can
therefore be chosen as either a maximum number of iterations
or as a convergence criterion. In the experimental analysiswe
will give details on how many iterations are required in our
setting. In both algorithms, the parameterǫ > 0 is used to
provide stability when a component ofr̂ goes to zero.

As a general remark, in [28] and [34], it is also shown that
the reweighted 1-norm algorithm, at convergence, is equivalent
to the minimization of the log-sum penalty function. This is
relevant to what we are trying to achieve in (13): the log-
sum cost function has a sharper slope near zero compared
to the 1-norm, providing more effective sparsity inducing
properties. Furthermore, since the log-sum is not convex, the
iterative algorithm corresponds to minimizing a sequence of
linearizations of the log-sum around the previous solution
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Fig. 6. An example of prediction residuals obtained through 1-norm and
reweighted 1-norm error minimization using Algorithm 1. The speech segment
analyzed is shown in the top box. The prediction order isK = 10 and the
frame length isN = 160. Five iterations where made withǫ = 0.01.

Algorithm 1 Iteratively Reweighted 1-norm Minimization of
the Residual

Inputs: speech segmentx
Outputs: predictor̂ai, residual̂ri

i = 0, initial weightsWi=0 = I

while halting criterion falsedo
1. âi, r̂i ← argmina ‖W

i
r‖1 s.t. r = x−Xa

2. Wi+1 ← diag
(∣

∣r̂
i
∣

∣+ ǫ
)

−1

3. i← i+ 1
end while

estimate, providing at each step a sparser solution (until
convergence).

IV. COMPRESSEDSENSING IN SPARSEL INEAR

PREDICTION

The CS formulation is particularly relevant in our sparse
recovery problems: by exploiting prior knowledge about the
sparsity of the signalx we will show that a limited number
of random measures are sufficient to recover our predictors
and sparse residual with high accuracy. In particular, it has
been shown [24] [35] that a random projection of a high-
dimensional but sparse or compressible signal vector onto a
lower-dimensional space contains enough information to be
able to reconstruct, with high probability, the signal withsmall
or zero error. The random measures in CS literature are usually
obtained by projecting the considered measurement vectors
onto a lower dimensional space, using random matrices.

In recent work [36], [37], CS formulations in the context
of speech analysis and coding have been formulated in order
to find a sparse approximation of the residual, given the
predictor. It is then interesting to extend this work to the case
where we want to find directly the predictor that engenders
intrinsically a sparse residual. In particular, given the sparsity
level of the sparse representation that we wish to retrieve in
a given domain, we can determine an efficientshrinkageof
the minimization problem in a lower dimensional space, with
a clear impact on the computational complexity.

If we wish to perform CS, two main ingredients are needed:
a domain where the analyzed signal is sparse and the sparsity

Algorithm 2 Iteratively Reweighted 1-norm Minimization of
Residual and Predictor

Inputs: speech segmentx
Outputs: predictor̂ai, residual̂ri

i = 0, initial weightsWi=0 = I andDi=0 = I

while halting criterion falsedo
1. âi, r̂i ← argmina ‖W

i
r‖1 + γ‖Di

a‖1
s.t. r = x−Xa

2. Wi+1 ← diag
(∣

∣r̂
i
∣

∣+ ǫ
)

−1

3. Di+1 ← diag
(∣

∣â
i
∣

∣+ ǫ
)

−1

4. i← i+ 1
end while

level of this signalT . In our case, the residual is the domain
where the signal is sparse, while the linear transform that maps
the original speech signal to the sparse residual is the sparse
predictor. The sparsity in the residual domain is then imposed
by our needs [35]. Let us now review the formulation presented
in [37]:

r̂ = argmin
r

‖r‖1 s.t. Φx = ΦHr (14)

where x is the N × 1 analyzed segment of speech,H the
N×(N+K) synthesis matrix, constructed from the truncated
impulse response of theknownpredictor [38],r is the residual
vector to be estimated (supposedly sparse) andΦ is the
sensing matrix of dimensionM × N . The dimensionality of
the random linear projectionM stems from the sparsity level
T that one wishes to impose on the residual. In particular,
based on empirical results, the number of projections is set
equal to four times the sparsity, i.e.M = 4T . Furthermore,
when the incoherence between the synthesis matrix and the
random basis matrixΦ holds (µ(Φ,H) ≈ 1), even if H is
not orthogonal the recovery of the sparse residualr is still
possible and the linear program in (14) gives an accurate
reconstruction ofx with very high probability [24], [37]. As a
general remark, the entries of the random matrix can be drawn
from many different processes [39], in our case we will use a
i.i.d. Gaussian process, as done in [36], [37].

To adapt CS principles to the estimation of the predictor as
well, let us now consider the relation between the synthesis
matrix H and the analysis matrixA where one is the pseudo-
inverse of the other [40]:

A = H
+. (15)

We can now replace the constraintΦx = ΦHr in (14) as

Φr = ΦAx, (16)

whereA is the(N+K)×N analysis matrix that performs the
whitening of the signal, constructed from the coefficients of
the predictora of orderK [40], the dimension of the sensing
matrixΦ is now adjusted accordingly toM×(N+K). Notice
that, due to the structure ofA this can be rewritten equivalently
to:

Φr = ΦAx = Φ [x|X]
[

1|aT
]T

, (17)

where [x|X] is the matrix obtained by stacking the vectorx

to the left ofX in (4). The minimization problem can then be
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Fig. 7. An example of LP spectral model obtained through 1-norm
minimization (7) and through CS based minimization (18) for a segment
of voiced speech. The prediction order isK = 10 and the frame length
is N = 160, for the CS formulation the dimension of the sensing matrix is
M = 80, corresponding to the sparsity levelT = 20.

rewritten as:

min
a,r
‖r‖1 s.t. Φr = Φ(x−Xa). (18)

We can now see that (18) isequivalent to (7), the only
difference being the projection onto the random basis in the
constraint. Therefore, (7) can be seen as a particular case of the
formulation in (18) whereΦ = I and I is a identity matrix
of size (N + K) × (N + K). In this case we are then not
actually performing a projection in a random subspace. The
minimization constraint on the left side of (18) would become:

Φr = Φ(x−Xa) ⇒ r = x−Xa for Φ = I. (19)

The results obtained will then be similar to our initial for-
mulation (7), as long as the choice ofΦ is appropriate. In
this case, the formulation in (18) will not only provide hints
on the T pulses to be selected in the residual, but also a
dimensionality reduction that will simplify the calculations.
This computational complexity reduction, resulting from the
dimensionality reduction given by the projection onto random
basis has been also observed in [41] and arises from the
Johnson-Lindestrauss lemma [42]. An example of an envelope
estimation using the formulation in (18) is presented in Figure
7 while the recovered sparse residual is shown in Figure 8.

Similarly, if we are looking for a high order sparse predictor,
the problem (9) can be cast into a CS framework leading to:

argmin
a,r
‖r‖1 + γ‖a‖1 s.t. Φr = Φ(x−Xa). (20)

The formulation (9) and (20), similarly to (7) and (18), become
equivalent whenΦ = I and the minimization constraint is then
(19). Both formulations (18) and (20), can also be modified to
involve iterative reweighting (Algorithm 3 shows the general
case forγ > 0).

V. PROPERTIES OFSPARSEL INEAR PREDICTION

As mentioned in the introduction, many problems appearing
in traditional 2-norm LP modeling of voiced speech can be
traced back to the inability of the predictor to decouple the
vocal tract transfer function from the pitch excitation. This
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Fig. 8. An example of prediction residuals obtained through 1-norm
minimization and CS recovery. The speech segment analyzed is shown in the
top box. The prediction order isK = 10 and the frame length isN = 160.
For the CS formulation, the imposed sparsity level isT = 20, corresponding
to the sizeM = 80 for the sensing matrix.

Algorithm 3 CS Formulation of the Iteratively Reweighted
1-norm Minimization of Residual and Predictor

Inputs: speech segmentx, desired residual sparsity levelT
Outputs: predictor̂ai, residual̂ri

i = 0, initial weightsWi=0 = I andDi=0 = I,
random matrixΦ of sizeM × (N +K), M = 4T
while halting criterion falsedo

1. âi, r̂i ← argmina ‖W
i
r‖1 + γ‖Di

a‖1
s.t. Φr = Φ(x−Xa)

2. Wi+1 ← diag
(
∣

∣r̂
i
∣

∣+ ǫ
)

−1

3. Di+1 ← diag
(
∣

∣â
i
∣

∣+ ǫ
)

−1

4. i← i+ 1
end while

results in a lower spectral modeling accuracy and a strong
dependence on the placement of the analysis window. In this
section we provide some experiments to illustrate how the
sparse linear predictors presented in the previous sections
manage to overcome these problems. As a general remark,
it is well-known that thep−norm LP estimate withp 6= 2
is not guaranteed to be stable [43]. Nevertheless, the results
presented in this section concentrate on the spectral modeling
properties of sparse LP, thus the stability of the predictoris
simply imposed by pole reflection which stabilizes the filter
without modifying the magnitude of the frequency response.
We will provide a thorough discussion of the stability issues
in the Section VII and in Section VI where the speech coding
properties are analyzed and stability is critical.

The experimental analysis was done on 20,000 frames of
length N = 160 (20 ms) of clean voiced speech coming
from several different speakers with different characteristics
(gender, age, pitch, regional accent) taken from the TIMIT
database, downsampled at 8 kHz. The prediction methods we
compare in this section are shown in Table I. The optimality
of the methodsBE and RLP, presented in [6], comes from
the selection of the parameters which provided the lowest
distortion compared with the reference envelope. For brevity
and clarity of the presented results, we omitted the predictors
obtained as solutions of the iterative reweighted algorithms
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TABLE I
PREDICTION METHODS COMPARED IN THE MODELING PROPERTIES

EVALUATION .

Method Description

LP Traditional 2-norm LP with 10Hz bandwidth expansion
(γ = 0.996) and Hamming windowing.

SpLP10
1-norm LP presented in (III-A), solution of (7). Stability
is imposed by pole reflection if unstable. No windowing
is performed.

SpLP11

1-norm LP presented in (III-B). The order of (9) is
K = 110 (covering accurately pitch delays in the
interval [Nf + 1,K − Nf − 1]). γ is chosen as the
point of maximum curvature in theL-curve. The short-
term predictor coefficients are the firstNf coefficients of
the high order polynomial. Stability is imposed by pole
reflection if unstable. No windowing is performed.

BE Optimally bandwidth expanded 2-norm LP as shown in
[6]. Hamming window is used.

RLP Optimally regularized 2-norm LP as shown in [6]. Ham-
ming window is used.

presented in Section III-C and the CS formulation presented
in Section IV. These methods, while presenting very similar
modeling properties toSpLP10 and SpLP11, produce pre-
dictors estimates with slightly higher variance, thus requiring
few more bits to be encoded. Therefore, while it is hard
to provide a fair comparison in terms of modeling, their
properties become more interesting in the coding scenario
that will thoroughly analyzed in Section VI; in particular,the
differences in their bit allocation necessary for efficientcoding
and the information required in the residual will be analyzed.

A. Spectral Modeling

In this section, we provide results to the modeling properties
of the short-term predictors. As a reference, we used the
envelope obtained through a cubic spline interpolation between
the harmonics peaks of the logarithmic periodogram. This
method was presented in [6] and provided an approximation
of the vocal tract transfer function, without the fine structure
corresponding to the pitch excitation. We then calculated the
log spectral distortion between our reference envelopeSint(ω)
and the estimated predictive modelS(ω,a) as:

SDm =

√

1

2π

∫ π

−π

[10 log10 Sint(ω)− 10 log10 S(ω,a)]
2
dω.

(21)
where the numerator gain is calculated as the variance of the
residual.

The coefficients of the short-term predictors presented have
also shown to be smoother and therefore they have a lower
sensitivity to quantization. We also compared the log spectral
distortion between our reference envelopeSint(ω) and the
quantized predictive modelS(ω, â) for every predictor ob-
tained with the presented methods. The quantizer used is the
one presented in [44], with the number of bits fixed at 20 for
the different prediction orders, providing in all the method pre-

TABLE II
AVERAGE SPECTRAL DISTORTION FOR THE CONSIDERED METHODS IN

THE UNQUANTIZED CASE (SDm) AND QUANTIZED CASE (SDq ). A 95%
CONFIDENCE INTERVAL IS GIVEN FOR EACH VALUE.

METHOD K SDm SDq

LP
8 2.11±0.06 3.24±0.11
10 1.97±0.03 2.95±0.09
12 1.98±0.05 2.72±0.12

SpLP10
8 1.91±0.01 2.92±0.02
10 1.78±0.01 2.53±0.02
12 1.61±0.01 2.31±0.04

SpLP11
8 1.64±0.00 2.65±0.01
10 1.69±0.00 2.37±0.01
12 1.39±0.01 2.13±0.01

BE
8 2.04±0.03 3.11±0.08
10 1.88±0.02 2.92±0.07
12 1.83±0.10 2.71±0.04

RLP
8 1.89±0.02 2.93±0.04
10 1.72±0.01 2.51±0.03
12 1.53±0.02 2.22±0.04

sented atransparent coding4. The results are shown in Table II
for different prediction orders. A critical analysis of theresults
showed the improved modeling properties ofSpLP11. This
was given by its ability to take into consideration the whole
speech production model, thus decoupling more effectively
the short-term contribution that provides the spectral envelope
from the contribution given by the pitch excitation.SpLP10
and RLP achieved similar performance, providing evidence
supporting the generally good spectral modeling properties of
the minimization problem in (7).

B. Shift Invariance

In speech analysis, a desirable property for an estimator
is to be invariant to the small shifts of the analysis window,
since speech, and voiced speech in particular, is assumed to
be short-term stationary. However, standard LP is well-known
not to be shift invariant [8]. This is a direct consequence of
the coupling between the vocal tract transfer function and
the underlying pitch excitation that standard LP introduces in
the estimate. To analyze the invariance of the LP methods to
window shifts, we took the same 20,000 frames of clean voiced
speech and we expanded them to the left and to the right with
20 samples, giving a total lengthN = 200. In each frame of
length N = 200 we defined aM = 160 samples boxcar
window and we shifted the window bys = 1, 2, 5, 10, 20
samples. The average log spectral difference of the 10th order
AR estimate betweenS0(ω) and Ss(ω) was analyzed. The
average differences obtained for the methods in Table I are
shown in Table III. In Figure 9, we show an example of the
shift invariance property. The results obtained indicate clearly
the sparse predictors robustness to small shifts in the analyzed
window. While the decay in performance for increasing shift

4According to [45], transparent coding of LP parameters is achieved when
the two versions of coded speech, obtained using unquantized LP parameters
and quantized LP parameters, are indistinguishable throughlistening. This
is usually achieved with an average log distortion between quantized and
unquantized spectra lower that 1 dB, with no outliers with log distortion
greater than 4 dB and a number of outliers with 2-4 dB distortion lower
than 2%. Furthermore, according to [46] the quality threshold for the model
naturally follows from a distortion measure for the signal, the result being
independent of rate, and giving the same well-known 1 dB without invoking
notions of perception.
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Fig. 9. An example of the shift invariance property of the sparse linear
predictor (SpLP11) (top box), compared to traditional LP (LP). Ten en-
velopes are analyzed by shifting a the analysis window (160 samples) of
s = 1, 2, 5, 10, 20 samples over a stationary voiced speech segment (length
200 samples).

TABLE III
AVERAGE SPECTRAL DISTORTION FOR THE CONSIDERED METHODS WITH

SHIFT OF THE ANALYSIS WINDOWs = 1, 2, 5, 10, 20.

METHOD SD1 SD2 SD5 SD10 SD20

LP 0.113 0.128 0.223 0.452 1.262
SpLP10 0.003 0.003 0.011 0.017 0.032
SpLP11 0.001 0.002 0.005 0.006 0.009

BE 0.097 0.117 0.197 0.238 0.328
RLP 0.015 0.089 0.180 0.201 0.323

in the analysis window is comparable for all methods, the
sparse predictors still retains better performance. Also in this
case, the change in the frequency response in traditional LPis
clearly given by the pitch bias in the estimate of the predictor,
particularly dependent on the location of the spikes of the pitch
excitation.

C. Pitch Independence

The ability of the sparse linear predictors to decouple the
pitch excitation from the vocal tract transfer function is re-
flected also in the ability to have estimates of the envelope that
are not affected by the pitch. In this experiment, we calculated
the envelope using 10th order regularized LP (RLP) and
we modeled the underlying pitch excitation with an impulse
train with different spacing. We then filtered this synthetic
pitch excitation through the LP filter obtained and analyzed
the synthetic speech applying the different LP methods in
Table I. We divided the analysis into three subsets: high-
pitched Tp ∈ [16, 35] (f0 ∈ [228Hz, 500Hz]), mid pitched
Tp ∈ [36, 71] (f0 ∈ [113Hz, 222Hz]) and low pitched
Tp ∈ [72, 120] (f0 ∈ [67Hz, 111Hz]). The shortcomings of LP
can be particularly seen in high-pitched speech, as shown in
the results of Table IV. Because high-pitched speakers have
fewer harmonics within a given frequency range, modeling
of the spectral envelope is more difficult and particularly
problematic for traditional LP. The sparse linear predictors are
basically unaffected by the underlying pitch excitation, which
results in an improved spectral modeling. In particular for
SpLP11, since the high order structure of the initial estimate
includes the pitch harmonic structure, the extracted short-
term predictor is particularly robustly independent from the

TABLE IV
AVERAGE SPECTRAL DISTORTION FOR THE CONSIDERED METHODS WITH

DIFFERENT UNDERLYING PITCH EXCITATION. A 95% CONFIDENCE

INTERVAL IS GIVEN FOR EACH VALUE.

METHOD low mid high

LP 0.81±0.12 1.04±0.23 1.32±0.56
SpLP10 0.02±0.00 0.09±0.00 0.11±0.01
SpLP11 0.00±0.00 0.00±0.00 0.01±0.00

BE 0.45±0.07 0.65±0.19 0.89±0.34
RLP 0.05±0.02 0.16±0.10 0.19±0.09

underlying excitation.

VI. CODING APPLICATIONS OFSPARSEL INEAR

PREDICTION

By introducing sparsity in the residual, we can reasonably
assume that only a small portion of the residual samples are
sufficient to reconstruct the speech signal with high accuracy.
We will corroborate our intuition by providing some experi-
ments on the coding applications of sparse linear prediction.
Specifically, in VI-A, we will first give experimental proof of
the sparsity inducing effectiveness of the short-term predictors
in the Analysis-by-Synthesis (AbS) scheme [38]. In this case,
we used a very simple excitation model coding without long-
term prediction where we exploit directly the information on
the location of the nonzero samples. In VI-B, we will present
a simple coding procedure that exploits the properties of the
combined high order sparse LP and sparse residual. As we
shall see in VI-C, this approach presents interesting properties
such as noise robustness for which we give both objective and
subjective evaluation.

As a general remark, since the stability of the short-term
predictors is not assured, we consistently performed a stability
check and, if the short-term predictor was found to be unstable,
we performed a pole reflection. Note that this approach
necessarily modifies the time domain behavior of the residual
as well as the predictor coefficients. Nevertheless, since the
rate of unstable filters is low and the instability is very mild
(i.e., the magnitude of the poles is only very slightly higher
than one), this can be considered as an adequate solution to
this problem. We will return to the stability issue in Section
VII.

A. Coding Properties of the Short-Term Sparse Linear Pre-
dictor

The first experiment regards the use of the short-term
predictor in speech coding. In particular we compared the use
of the multipulse encoding procedure in the case of bandwidth
expanded linear prediction (LP) with a fixed bandwidth ex-
pansion of 60 Hz (done by lag-windowing the autocorrelation
function [38]). We compared this approach with our introduced
sparse linear predictors. The only difference is that, instead
of performing the multipulse encoding, we performed the
AbS procedure straight after selecting theT positions of the
T largest samples that are located in the residual. In this
experiment, we did not perform long-term prediction, focusing
only on the coding properties of the sparsity inducing short-
term predictors.
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TABLE V
PREDICTION METHODS COMPARED IN THE CODING PROPERTIES

EVALUATION .

Method Description

LP

Traditional 2-norm LP with a fixed bandwidth
expansion of 60 Hz (done by lag-windowing
the autocorrelation function) and Hamming win-
dowing.

SpLP10 1-norm LP solution of (7).

RWLP10
Reweighted 1-norm LP presented in Section
III-C using Algorithm 1. Four reweighting itera-
tions are performed (sufficient for convergence).

CSLP10

Compressed sensing formulation presented in
Section IV, solution of (18). The size of the
sensing matrix is given by the number of sam-
ples we want to retrieve in the residual.

RWCSLP10

Reweighed compressed sensing formulation of
CSLP10 using Algorithm 1. Four reweighting
iterations are performed (sufficient for conver-
gence).

TABLE VI
COMPARISON BETWEEN THE SPARSE PREDICTOR ESTIMATION METHODS.

A 95% CONFIDENCE INTERVAL IS GIVEN FOR EACH VALUE.

METHOD T â SSNR MOS t

LP 5 19 14.1±3.2 2.85±0.23 0.1±0.1
10 19 19.1±2.9 3.01±0.16 0.9±0.3

SpLP10 5 18 15.3±2.1 2.87±0.12 1.3±0.2
10 18 20.1±1.7 3.11±0.11 1.3±0.2

RWLP10 5 22 17.2±1.6 3.01±0.06 4.1±0.3
10 22 21.4±1.5 3.19±0.03 4.1±0.3

CSLP10 5 19 16.9±1.9 2.97±0.04 0.4±0.0
10 19 20.9±1.5 3.25±0.03 0.6±0.2

RWCSLP10 5 24 20.2±0.9 3.15±0.03 1.3±0.3
10 24 24.4±0.4 3.43±0.01 1.9±0.2

We considered the formulationSpLP10, reweighted 1-norm
RWLP10, and their CS formulationsCSLP10 and RWC-
SLP10. The methods compared are summarized in Table V.
As mentioned in Section V, all these methods achieve similar
modeling performance toSpLP10, although their estimate of
the predictor requires a slightly larger number of bits. Here
we will show this providing a comparison also in terms of
bits needed for transparent quantization of the predictor.The
methodsBE andRLP, presented in the previous section (Table
I) while offering better modeling properties than traditional LP,
do not provide any significant improvement in the coding sce-
nario, thus they will be omitted from the current experimental
analysis.

We have performed the analysis on the same speech signals
database considered in Section V. The frame size isN = 40,
the 10th order predictors were quantized transparently using
the LSFs coding method in [44] while theT pulses are left
unquantized. In the CS formulations the sensing matrix has
M = 4T rows; this means that just a slight reduction in the
size of the problem was obtained whenT = 10. Nevertheless
we were able to obtain important information on the location
of the pulses. In the reweighted schemes, the number of
iterations is four, which was sufficient to reach convergence
in all the analyzed frames.

In Table VI, we present the results in terms of Segmental
SNR, Mean Opinion Score (obtained through PESQ evalu-
ation) and empirical computational timet in elapsed CPU
seconds forT = 5 and T = 10, and number of bits
necessary to transparently encode the predictor (â) using LSFs

[44]. The results demonstrate the effectiveness of the sparse
linear predictors. These results also show that the predictors
in the reweighted cases (RWLP10 andRWCSLP10), need a
larger number of bits for transparent quantization due to the
larger variance of their estimates. This result is particularly
interesting when considering the model in (2). In particular,
the description of a segment of speech is distributed between
its predictive model and the corresponding excitation. Thus,
we can observe that the complexity of the predictor necessarily
increases when the complexity of the residual decreases (less
significant pulses). This also leaves open questions on the
optimal bit distribution between the two descriptions. As a
proof of concept, the results show how only 5 bits of difference
betweenLP andRWCSLP10 in the representation of the filter
result in a significant improvement in performance: only 5
pulses in the residual are necessary inRWCSLP10 to obtain
similar performance toLP using 10 pulses.

A critical analysis of the results leads to another interesting
conclusion. In fact, while 1-norm based minimization, with
or without theshrinkageof the problem provided by the CS
formulation in (18), is computationally more costly, than 2-
norm minimization, it greatly simplifies the next stage where
the excitation is selected in a closed-loop AbS scheme. In
particular, the empirical computational time in Table VI refers
to both the LP analysis stage and the search for the MPE
excitation. Since the MPE search for the location is not
performed in our sparse LP methods and we exploit directly
the information regarding theT pulses of largest magnitude,
the AbS procedure is merely a small least square problem
where we find theT pulse amplitudes. We will come back to
the discussion regarding complexity in VII-B. Furthermore, it
should be noted that the CS formulation improves the selection
of the T largest pulses. This is remarkable since while the
predictor obtained with or without the random projection is
similar, the reduction of the constraints helps us find a more
specific solution for the level of sparsityT that we would like
to retrieve in the residual. As mentioned above, the price topay
is a slightly higher bit allocation for the predictors obtained
through CS formulation.

B. Speech coding based on Sparse Linear Prediction

As a proof of concept, we will now present a very simple
coding scheme that incorporates all the previously introduced
methods. We will use the method presented in Section III-B,
exploiting the sparse characteristics of the high order predictor
and the sparse residual. In order to reduce the number of
constraints, we cast the problem in a CS formulation (20)
that provides a shrinkage of the constraints according to the
number of samples we wish to retrieve in the residual. Further-
more, in order to refine the initial sparse solution, we apply
the reweighting algorithm. The core scheme is summarized in
Algorithm 3. Differently from multistage coders, this method,
with its joint estimation of a short-term and a long-term
predictor and the presence of a sparse residual, provides a one-
step approach to speech coding. In synthesis, given a segment
of speech, a way to encode the speech signal can be as follows:

1) Define the desired level of sparsity of the residualT
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TABLE VII
COMPARISON BETWEEN THE CODING PROPERTIES OF THEAMR102 AND

THE CODER BASED ON SPARSE LINEAR PREDICTIONSPLP . A 95%
CONFIDENCE INTERVAL IS GIVEN FOR EACH VALUE.

METHOD rate MOS t

AMR102 10.2 kbps 4.02±0.11 0.1±0.0
SpLP 10.1 kbps 4.13±0.13 1.2±0.1

and define the sensing matrix dimensionality accordingly
M = 4T .

2) Perform n steps of the CS reweighted minimization
process (Algorithm 3).

3) Factorize the prediction coefficients into a short-term
and long-term predictor using the procedure in III-B2.

4) Quantize short-term and long-term predictors.
5) Select theT positions where the values of largest

magnitude are located.
6) Solve the analysis-by-synthesis equation keeping only

the T nonzero positions.
7) Quantize the residual.

We have again analyzed about one hour of clean speech
taken from the TIMIT database. In order to obtain comparable
results, the frame length is nowN = 160 (20 ms). The order
of the high order predictor in (20) isK = 110 (meaning
that we can cover accurately pitch delays in the interval
[Nf +1,K −Nf − 1], including the usual range for the pitch
frequency[70Hz, 500Hz]). the fixed regularization parameter
is γ = 0.12 and the defined level of sparsity isT = 20.
Four iterations of the reweighting minimization process are
performed, sufficient to reach convergence in all the analyzed
frames. The orders of the short-term and long-term predictors
obtained from the factorization of the high order predictor
are Nf = 10 and Np = 1, respectively. 25 bits are used
to transparently encode the LSF vector, 7 bits are used to
quantize the pitch periodTp and 6 bits to quantize the pitch
gain gp. The stability of the overall cascade is imposed by
pole reflection on the short-term predictor, and by limiting
the pitch gain to be less that unity. As for the residual, the
quantizer normalization factor is logarithmically encoded with
6 bits while a 8 levels uniform quantizer is used to quantize
the normalized amplitudes; the signs are coded with 1 bit per
each pulse. The upper bound given by the information content
of the pulse location (log2

(

160
20

)

bits) is used as an estimate
of the number of bits used for distortionless encoding of the
location. No perceptual weighting is performed in our case.
The total number of bits per frame used are 202, producing
a 10.1 kbps rate. We will compare this method (SpLP) with
the AMR coder in the 10.2 kbps mode (AMR102) [47]. The
results in terms of MOS (obtained through PESQ evaluation)
and empirical computation time are shown in Table VII and
demonstrate similar performance but with a more straightfor-
ward approach to coding than AMR. The CS formulation also
helps to generally keep the problem solvable in reasonable
time.

C. Noise Robustness

This study is motivated by the ability of a sparse coder to
identify more effectively the features of the residual signal

TABLE VIII
PERFORMANCES OFAMR102 AND THE CODER BASED ON SPARSE LINEAR

PREDICTION (SPLP ) FOR DIFFERENT VALUES OFSNR (WHITE GAUSSIAN

NOISE). A 95% CONFIDENCE INTERVAL IS GIVEN FOR EACH VALUE.

METHOD clean 30dB 20dB 10dB

AMR102 4.02±0.11 3.88±0.21 3.25±0.19 2.76±0.23
SpLP 4.13±0.13 3.94±0.15 3.52±0.14 3.21±0.19

that are important for its reconstruction, discarding those
which probably are a result of the noise. The traditional
encoding formulation, based on minimum variance analysis
and residual encoding through pseudo-random sequences (i.e.,
algebraic codes), makes the identification of these important
features basically impossible and requires, for low SNRs, noise
reduction in the preprocessing. Interestingly enough, sparse
LP based coding appears to be quite robust in the presence
of noise. An example of the different performance in terms of
MOS for different SNR under additive white Gaussian noise
is given in table VIII.

D. Subjective assessment of speech quality

To further investigate the properties of our methods, we have
conducted two MUSHRA listening tests [48] with 16 non-
expert listeners. Ten speech clips were used in the listening
test. In the first MUSHRA test we investigate what we have
shown in VI-B, about the similarity in quality between the
AMR coder and our method. In the second MUSHRA test
the noise robustness of our method, discussed in VI-C, is
proved. The test results are presented in Figure 10 where
the score 100 corresponds to “Imperceptible” and the score
0 corresponds to “Very annoying” according to the 6-grade
impairment scale. From the results, we can see that our method
does not affect greatly the quality of the signal, given that
our method is conceptually simpler and substantially less
optimized compared to AMR. For example, we are not taking
into account some of the main psychoacoustic criteria usually
implemented in the AMR, such as the adaptive postfilter to
enhance the perceptual quality of the reconstructed speech
and the perceptual weighting filter employed in the analysis
by synthesis search of the codebooks. Neverthless, in clean
condition the average score was 89 forAMR102, and 82
for SpLP. The most significant results though, are the one
related to the coding of noisy signals. In particular, we can
see from Figure 10 that our method scores considerably better
than the AMR showing how a sparse encoding technique can
be more effective in noise robust speech coding. In fact, in
noisy conditions, the average score was 62 forAMR102, and
75 for SpLP.

VII. D ISCUSSION

A. Stability

In the presented applications of sparse linear predictors,the
percentage of unstable filters was found to be low (around 2%)
and the instability “mild5.” This suggested the use of a simple
stability check and pole reflection in our experimental analysis.

5The maximum absolute value for a root found in all our considered
predictors isρmax = 1.0259.
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Fig. 10. MUSHRA test results. In the box above we show the results for clean
speech and in the box below for speech corrupted by white noise (SNR=10dB).
The four versions of the clips appear in the following order:Anchor, Hidden
reference,AMR102, andSpLP. The anchor is the NATO standard 2400 bps
LPC coding [49]. A 95% confidence interval is given for each value (upper
and lower star).

Theorems exist to determine the maximum absolute value of
the roots of a monic polynomial given the norm operator used
in the minimization [43] but the bounds are generally too high
to gain any real insight on how to create a intrinsic stable
minimization problem, as done in [50].

The stability problem in (7) was already tackled in [9]
by introducing the Burg method for prediction parameters
estimation based on the least absolute forward-backward error.
In this approach, however, the sparsity is not preserved. This is
mostly due to the decoupling of the mainK-dimensional min-
imization problem inK one-dimensional minimization sub-
problems. Therefore this method is suboptimal and produces
results, as we have observed, somewhere in between those of
the 2-norm and 1-norm approach. Also, the approach is only
valid in (7) and not in all the other minimization schemes
presented.

B. Computational Cost

As for the computational cost, finding the solution of the
overdetermined system of equations in (7) using a modern
interior point algorithm [19] can be shown to be equivalent to
solving around 20-30 least square problems. Nevertheless,im-
plementing this procedure in an AbS coder, as done in Section
VI-A, is shown to greatly simplify the search for the sparse
approximation of the residual in a closed-loop configuration,
without compromising the overall quality. Furthermore, inthe
case of (9), the advantage is that a one step approach is taken
to calculate both the short-term and the long-term predictors
while the encoding of the residual is facilitated by its sparse
characteristics.

The introduction of a compressed sensing formulation for
the prediction problem has helped reduce dramatically the
computational costs. An example of this can be seen in the
coding scheme presented in VI-B. RetrievingT = 20 samples
reduces the number of constraints of the minimization problem
from 270 (N +K) to 80 (M = 4T ). Since for each constraint
we have a dual variable, by reducing the number of the

constraints we also reduce the number of the dual variables
[18]. In turn, the whole coding scheme, as shown empirically,
is only about one order of magnitude more expensive than a 2-
norm LP based coder, although with added improvements such
as noise robustness and a fairly high conceptual simplicity.

C. Uniqueness

The minimization problems considered do not necessarily
have a unique solution. In these rare cases with multiple
solutions, due to the convexity of the cost function, we can
immediately state that all the possible multiple solutionswill
still be optimal [18]. Viewing the non-uniqueness of the
solution as a weakness is also arguable: in the set of possible
optimal solutions we can probably find one solution that offers
better properties for our modeling or coding purposes. A
theorem to verify uniqueness is discussed in [52].

D. Frequency Domain Interpretation

The standard linear prediction method exhibits spectral
matching properties in the frequency domain due to Parseval’s
theorem [2]:

∞
∑

n=−∞

|e(n)|2 =
1

2π

∫ π

−π

|E(ejω)|2dω. (22)

It is also interesting to note that minimizing the squared error
in the time domain and in the frequency domain leads to
the same set of equations, namely the Yule-Walker equations
[25]. To the best of our knowledge, the only relation existing
between the time and frequency domain error using the 1-norm
is the trivial Hausdorff-Young inequality [53]:

∞
∑

n=−∞

|e(n)| <
1

2π

∫ π

−π

|E(ejω)|dω, (23)

which implies that time domain minimization does not cor-
responds to frequency domain minimization. It is therefore
difficult to say if the 1-norm based approach is always advan-
tageous compared to the 2-norm based approach for spectral
modeling, since the statistical character of the frequencyerrors
is not clear. However, the numerical results in Tables II, III
and IV clearly show better spectral modeling properties of the
sparse formulation.

VIII. C ONCLUSIONS

In this paper, we have given an overview of several lin-
ear predictors for speech analysis and coding obtained by
introducing sparsity into the linear prediction framework.
In speech analysis, the sparse linear predictors have been
shown to provide a more efficient decoupling between the
pitch harmonics and the spectral envelope. This translates
into predictors that are not corrupted by the fine structure of
the pitch excitation and offer interesting properties suchas
shift invariance and pitch invariance. In the context of speech
coding, the sparsity of residual and of the high order predictor
provides a more synergistic new approach to encode a speech
segment. The sparse residual obtained allows a more compact
representation, while the sparse high order predictor engenders
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joint estimation of short-term and long-term predictors. A
compressed sensing formulation is used to reduce the size
of the minimization problem, and hence to keep the compu-
tational costs reasonable. The sparse linear prediction based
robust encoding technique provided a competitive approachto
speech coding with a synergistic multistage approach and a
slower decaying quality for decreasing SNR.
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Abstract—In this paper, spatio-temporal filtering methods
are proposed for estimating the direction-of-arrival (DOA) and
fundamental frequency of periodic signals, like those produced
by the speech production system and many musical instruments
using microphone arrays. This topic has quite recently received
some attention in the community and is quite promising for
several applications. The proposed methods are based on optimal,
adaptive filters that leave the desired signal, having a certain DOA
and fundamental frequency, undistorted and suppress everything
else. The filtering methods simultaneously operate in space and
time, whereby it is possible resolve cases that are otherwise
problematic for pitch estimators or DOA estimators based on
beamforming. Several special cases and improvements are con-
sidered, including a method for estimating the covariance matrix
based on the recently proposed iterative adaptive approach
(IAA). Experiments demonstrate the improved performance of
the proposed methods under adverse conditions compared to the
state of the art using both synthetic signals and real signals, as
well as illustrate the properties of the methods and the filters.

Index Terms—Fundamental frequency estimation, DOA es-
timation, joint estimation, 2-D filtering, LCMV beamformer,
periodogram-based beamformer

I. INTRODUCTION

A fundamental property of speech and audio signals is the
so-called pitch. For many signals, namely periodic signals,
the pitch is equivalent to the fundamental frequency, i.e., the
frequency of which integer multiples form the frequencies of
the individual harmonics, even though there exists some patho-
logical examples where it is not quite that simple. In some
applications, the pitch itself is of interest or is being studied
for other purposes, some examples being prosody analysis and
transcription of music. The pitch also often forms the basis of
the processing of such signals. Some well-known examples
include speech coding, wherein long-term predictors are used
to exploit the correlation caused by the quasi-periodicity that
causes the pitch, and noise reduction, wherein the pitch can be
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used to either directly enhance the signal of interest [1] or to
estimate the properties of the noise [2]. Filters that extract or
attenuate the harmonics of periodic sounds are often referred to
as comb filters, due to their characteristic frequency response.
Such comb filters have played a prominent role in the history
of signal processing, dating back to 1970’s [3], and new forms
of comb filters keep emerging. The classical comb filter is
based on signal-independent FIR or IIR filters with poles or
zeros, respectively, close to the unit circle at the harmonic
frequencies. Later, it was shown that more efficient filters can
be obtained via a set of notch or peak filters [4], and a few
other examples of such approaches can be found in [5] and
the references therein. More recently, it was shown that by
generalizing the principle of the Capon spectral estimator, it
is possible to design optimal, adaptive FIR comb filters [1],
[6]. These filters have a number of properties that make them
desirable in several applications. The filters are distortion-
less, i.e., they let the signal of interest, i.e., periodic signals,
pass undistorted. They are adaptive and, hence, automatically
adapt to the conditions under which the signal of interest
has been recorded. This means that they can cancel strong
interferences, including also other periodic signals, without
prior knowledge of their properties. The filters also, curiously,
reduce to evaluating Fourier transforms at certain frequencies
or projecting onto the space spanned by Fourier bases under
certain conditions.

In microphone arrays, the direction-of-arrival (DOA) is
often used as a means of locating, tracking and separating
signals, something that is often done using spatial filters, i.e.,
beamformers [7], [8]. Since speech and audio signals are
generally broadband, unlike, for example, communication and
radar signals, many of the clever narrowband beamforming
techniques cannot be applied directly to such signals. Instead,
speech and audio signals are often decomposed into a set of
subbands, each of which are then processed as narrowband
signals. However, periodic signals can be modeled efficiently
using the harmonic model [9], in which the signal of interest
is modeled as a set of narrowband signals, namely sinusoids
corresponding to the individual harmonics. This means that
such signals can in fact be treated as multiple narrowband
signals that share some common parameters: the fundamental
frequency and the DOA. In fact, by finding, jointly, both the
fundamental frequency (i.e., the pitch) and the DOA, it is
possible to mitigate some of the severe problems that pitch
estimators encounter for multiple sources, and it is possible
to overcome some of the problems that DOA estimators
have with distinguishing between different sources when these



2

impinge on the array from angles that are close. It should also
be noted that the DOA along with the pitch also are believed
to be some of the governing factors that the human auditory
system uses for separating sources. This line of reasoning
has, quite recently, led to some joint DOA and fundamental
frequency estimators, including maximum likelihood based
[10], [11], subspace-based [12]–[14], correlation-based [15],
[16], and filtering-based [17]–[19] methods. Notably, the prob-
lem of joint DOA and fundamental frequency estimation was
formalized and thoroughly analyzed in [10], and a maximum
likelihood estimator that achieves the highest possible accu-
racy (under certain conditions) was proposed.

In this paper, we propose spatio-temporal filtering methods
for joint DOA and fundamental frequency estimation for
periodic signals, like, for example, speech signals or signals
produced by musical instruments. The filters are based on
the principle of the Capon and Frost beamformers [20], [21]
and spectral estimators combined and generalized to account
for the nature of periodic signals, and they are controlled
by two parameters: the DOA and the fundamental frequency.
The proposed filters are optimal and adaptive, and should,
hence, be capable of dealing with adverse conditions, like
when strong background noise or interference is present but
guarantee that the signal of interest is left undistorted. The
filters can be thought of as jointly performing beamforming
and enhancement, i.e., they are spatio-temporal. In this paper,
however, we consider only the application of these filters to
parameter estimation, i.e., estimation of the DOA and the
fundamental frequency. We consider various variations and
simplifications of the filters, including optimal filters for white
noise and for infinitely long filters. We also consider the
application of the principle of the iterative adaptive approach
(IAA) [19], [22], [23] for finding the covariance matrix, which
is required to compute the optimal filters. This can be used to
obtain longer filters for a given number of samples, something
that often results in an improved estimation of parameters,
especially under adverse conditions. While the IAA based
estimators are computationally more complex than using the
traditional sample covariance matrix estimate, it has been
shown [24], [25] that the computational complexity of the IAA
can be reduced dramatically.

The rest of the paper is organized as follows: In Section
II, we introduce the problem formulation along with some
useful notation, and we proceed to motivate the usage of joint
DOA and fundamental frequency estimation in more detail. We
then, in Section III, introduce the filter designs and consider,
as mentioned, various special cases and the IAA method
for estimation of the covariance matrix. In Section IV, the
experimental results are presented, after which the conclusion
follows in Section V.

II. PROBLEM STATEMENT

Consider a scenario where K microphones are recording a
mixture of a desired, noise, and interfering sources. At time
instance n, we can then model the signal observed using the
k’th microphone as

yk(n) = xk(n) + vk(n), (1)

where xk(n) is the recording of the desired source, and vk(n)
is the sum of the recorded noise and interference. In this
paper, we assume that the desired signal is periodic, which
is a reasonable assumption for, e.g., voiced speech and many
musical instruments. The noise can, for example, be back-
ground noise such as sensor noise, whereas the interference
covers other periodic signal not being of interest. Utilizing
the periodicity assumption and by exploiting that the desired
signal observations across the microphones are just delayed
and attenuated version of each other, the signal model can be
further specified as

yk(n) = βks(n− fsτk) + vk(n) (2)

= βk

L∑
l=1

αle
jlω0(n−fsτk) + vk(n),

with L being the number of harmonics, αl = Ale
jφl being

the complex amplitude of the l’th harmonic with Al and φl
denoting the positive real amplitude and phase, respectively,
ω0 is the fundamental frequency, fs is the sampling frequency,
τk is the delay of the desired signal from microphone 0 to
microphone k, and βk is the attenuation of the desired signal
at sensor k. Note that, by using this model, we have implicitly
assumed no reverberation. When the array of microphones is
organized in a known way, we can also model the time delay
τk. For example, if the microphones are organized in a uniform
linear array structure, we have that

τk = k
d sin θ

c
, (3)

where d is the inter microphone spacing, θ is the direction-
of-arrival (DOA), and c is the wave propagation speed. That
is,

yk(n) = βk

L∑
l=1

αle
jlω0ne−jlωsk + vk(n) (4)

with

ωs = ω0fsτ1 (5)

being the so-called spatial frequency. In the remainder of the
paper, we assume, for simplicity, that βp = βq = 1 for p 6=
q, which is a reasonable assumption for arrays with closely
spaced microphones. When this assumption does not hold, the
βs can be estimated using, e.g., the techniques presented in
[26].

In practice, N time-consecutive samples from each micro-
phone are used for the estimation of the pitch and DOA. These
data can be organized in a matrix like

Y(n) =


y0(n) · · · y0(n−N + 1)

...
. . .

...
yK−1(n) · · · yK−1(n−N + 1)

 . (6)

If we consider a subblock of M ×P samples from the above
matrix, which is useful for the filter designs to follow later,
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we can write the signal model on vector form as

Yk(n) =


yk(n) · · · yk(n−M + 1)

...
. . .

...
yk+P−1(n) · · · yk+P−1(n−M + 1)

 (7)

=

L∑
l=1

αl(n)zs(lωs)z
T
t (lω0) + Vk(n),

where αl(n) = ejlω0n, and

zs(lωs) =
[
1 e−jlωs · · · e−j(P−1)lωs

]T
, (8)

zt(lω0) =
[
1 e−jlω0 · · · e−j(M−1)lω0

]T
, (9)

Vk(n) =


vk(n) · · · vk(n−M + 1)

...
. . .

...
vk+P−1(n) · · · vk+P−1(n−M + 1)

 . (10)

In the optimal filter designs considered in Sec. III, it is useful
to stack the columns of the subblocks of the observed signal
matrix (denoted vec{·}), which yields

yk(n) = vec{Yk(n)}

=

L∑
l=1

αl(n)zl + vk(n), (11)

with vk(n) = vec{Vk(n)}, and

zl = vec{zs(lωs)z
T
t (lω0)} = zs(lωs)⊗ zt(lω0), (12)

where ⊗ denotes the Kronecker product of two vectors or
matrices.

A. Motivation for Joint Estimation
Instead of estimating the DOA and pitch jointly, we could

estimate those parameters separately with a much lower
computational complexity. However, there are a number of
significant benefits by conducting the estimation jointly. First
of all, in scenarios where multiple periodic sources are present
simultaneously, joint estimators may be able to resolve those
sources even if either the pitch frequencies or the DOAs of one
or more of those sources are similar. This would be impossible
if the parameters are estimated separately, since the search is
here in only one dimension. Another benefit is a potentially
higher estimation accuracy. In [10], it was shown that the
asymptotic Cramér-Rao bounds (CRBs) for the DOA and pitch
are given by

CRB(ω0) ≈ 6

N3K
PSNR−1, (13)

CRB(θ) ≈
[(

c

ω0fsd cos θ

)2
6

NK3
(14)

+

(
tan θ

ω0

)
6

K3N

]
PSNR−1

for the scenario described by (11) when v(n) is white noise
and βp ≈ βq for p 6= q, with PSNR denoting the pseudo
signal-to-noise ratio. The PSNR is defined as

PSNR =

∑L
l=1 l

2A2
l

σ2
v

, (15)

and σ2
v is the variance of the noise. Close investigation of these

expressions reveals the fact that the CRB of the pitch decreases
cubically and linearly for increasing N ’s and K’s, respectively.
In other words, the pitch estimate can be more accurate
when multiple microphone recordings are used. Moreover,
we can see that the DOA can be estimated more accurately
when taking the harmonic structure of the periodic signal into
account as opposed to if the DOA was estimated from, e.g.,
just the fundamental tone.

Another way of estimating the DOA and pitch is to use a
cascaded approach where the DOA is first estimated from the
multiple microphone recordings. Then, the signal impinging
from this direction is extracted using a beamformer, where-
upon the pitch is estimated from the beamformer output. This
traditional and cascaded way of estimating the parameters will
most likely increase the CRB of the parameter estimated in the
second step of this procedure. The cause of this increase, is the
linear transformation of the spatio-temporal data introduced
by the signal extraction after estimation of the first parameter
[10].

III. SPATIO-TEMPORAL FILTERING METHODS

In this section, we present filtering methods for joint es-
timation of the DOA and pitch from noisy, spatio-temporal,
observed data that can be modeled by (11). We assume that
we have sampled a signal N times in time and using K sensors
in space, which gives us the K ×N data matrix Y(n) in (6).
Then, based on these data, we can design optimal filterbanks
or filters for estimating the aforementioned parameters. In
all of the presented filtering methods, the idea is to design
a filterbank or filter that has minimum output power, while
it passes the desired signal undistorted. The joint parameter
estimates can then be obtained by maximizing the output
power of the so-obtained optimal filters.

A. Optimal Filterbanks

In the filterbank approach, the idea is to design a bank of L
FIR filters, where the lth filter should pass the lth harmonic of
the desired, periodic signal undistorted. Applying such a bank
of FIR filters on a block of the observed signal, we get

zk(n) =

L∑
l=1

M−1∑
m=0

P−1∑
p=0

hlmpyk+p(n−m) (16)

=

L∑
l=1

1T [Hl ◦Yk(n)]1

=

L∑
l=1

hHl yk(n),

where ◦ denotes the Hadamard product, M and P are the
temporal and spatial filter lengths, respectively, hlmp is the
(m, p)th coefficient of the lth filter in the filterbank, hl =
vec{Hl}, yk(n) = vec{Yk(n)}, 1 is a column vector of ones,
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and

Hl =


hl00 · · · hl(M−1)0

...
. . .

...

hl0(P−1) · · · hl(M−1)(P−1)

 . (17)

Then, we can design a filterbank where the sum of the output
powers from the individual filters is minimized, while the lth
filter passes the lth harmonic undistorted and cancels out the
other harmonics. The sum of the output powers of the filters
is given by

L∑
l=1

E
[∣∣hHl yk(n)

∣∣2] =

L∑
l=1

hHl Ryhl, (18)

where Ry = E[yk(n)yHk (n)] is the covariance matrix of
yk(n). From (11) and (18), it is clear that the aforementioned
design goal can be achieved by solving the following opti-
mization problem:

min
H

Tr[HHRyH] s.t. HHZ = I, (19)

with

Z =
[
z1 z2 · · · zL

]
. (20)

The well known solution to this second order optimization
problem can obtained using Lagrange multipliers, and it is
given by

Hopt = R−1
y Z

(
ZHR−1

y Z
)−1

. (21)

Note that for ZHR−1
y Z to be invertible, we must require that

M ≥ L, and this is also the case for the other optimal filter
designs proposed in the remainder of the section. Interestingly,
it can be shown that a filter identical to the one in (21) can be
designed by minimizing the sum of the powers of the noise
at the output of all the filters [27], which gives [18]

Hopt = R−1
v Z

(
ZHR−1

v Z
)−1

. (22)

This fact can be exploited to achieve some computationally
more efficient filter designs. If we, for a moment, assume
that the noise is white such that Rv = σ2

vI, where σ2
v is the

variance of the noise, we get that

Hwn = Z
(
ZHZ

)−1
. (23)

This filter will, of course, only be optimal with respect to the
aforementioned design criteria when the noise is indeed white,
but it may still be useful even in other noise settings due to
its simplicity. Finally, we can achieve an approximative filter
design by exploiting that [9]

lim
MP→∞

1

MP
ZHZ = I. (24)

In this case, the optimal filter for the white noise scenario
becomes

Hawn =
1

MP
Z. (25)

This approximative filter design can be interpreted as a filter-
bank of spatio-temporal, periodogram-based filters [18], and
it can be applied efficiently in practice using FFTs.

Using either of the aforementioned filter designs, the fun-
damental frequency and the DOA can then be estimated
jointly. This is achieved by maximizing the sum of the output
powers of the filters in these filterbanks over sets of candidate
fundamental frequencies and DOAs, i.e.,

{ω̂0, θ̂} = arg max
{ω0,θ}∈Ω×Θ

Tr
[
HHRyH

]
, (26)

where Ω and Θ are the sets of candidate fundamental frequen-
cies and DOAs, respectively. We note that, in practice, Ry is
most likely not known and therefore has to be estimated. More-
over, it is worth mentioning that, while the above estimator is
only for estimating the pitch and DOA of a single source, the
estimator can be used in the iterative RELAX algorithm in
[28] to estimate the parameters of multiple sources.

B. Optimal Single Filters

An alternative filtering approach to joint fundamental fre-
quency and DOA estimation is the single filter approach. In
this approach, the idea is to apply a single FIR filter on a
block of the observed signal, yielding the output:

zk(n) =

M−1∑
m=0

P−1∑
p=0

hmpyk+p(n−m) (27)

= 1T [H ◦Yk(n)]1

= hHyk(n),

where H is defined similarly to Hl, i.e.,

H =


h00 · · · h(M−1)0

...
. . .

...
h0(P−1) · · · h(M−1)(P−1)

 , (28)

and h = vec{H}. We then want to design a single filter that
passes all of the harmonics undistorted while the output power
of the filter is minimized. The output power of the single filter
is given by

E
[∣∣hHyk(n)

∣∣2] . (29)

That is, a solution to the above filter design problem is, from
(11), clearly achieved by solving:

min
h

hHRyh s.t. hHzl = 1, (30)

for l = 1, . . . , L.

Like in the filterbank approach, the solution to this optimiza-
tion problem can be obtained using Lagrange multipliers and
is given by

hopt = R−1
y Z

(
ZHR−1

y Z
)−1

1. (31)

The same filter is obtained if we minimize the power of the
noise after filtering under the same constraints, in which case
the optimal filter is given by [27]

hopt = R−1
v Z

(
ZHR−1

v Z
)−1

1 (32)
= Hopt1.
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Table I
COST FUNCTIONS INVOLVED IN THE ESTIMATORS OBTAINED USING THE DIFFERENT FILTERING APPROACHES AND DESIGN TOPOLOGIES.

Filterbank Single Filter

Optimal Tr
[(

ZHR−1
y Z

)−1
]

1T
(
ZHR−1

y Z
)−1

1

White Noise Tr
[(
ZHZ

)−1
ZHRyZ

(
ZHZ

)−1
]

1T
(
ZHZ

)−1
ZHRyZ

(
ZHZ

)−1
1

Approx.
1

M2P 2
Tr
[
ZHRyZ

] 1

M2P 2
1TZHRyZ1

If we again assume that the noise is white, with Rv = σ2
vI,

we get that

hwn = Z
(
ZHZ

)−1
1 = Hwn1. (33)

Then, by applying the approximation in (24), we can obtain
an approximative single filter design as

hawn =
1

MP
Z1 = Hawn1. (34)

This filter can be seen as a sum of spatio-temporal,
periodogram-based filters.

In the single filter approach, the fundamental frequency and
DOA are then jointly estimated by simply maximizing the
output power of either of the filter designs proposed above over
the sets of candidate fundamental frequencies Ω and DOAs Θ.
Mathematically speaking, the joint estimates obtained using
the single filter approach can be put as

{ω̂0, θ̂} = arg max
{ω0,θ}∈Ω×Θ

hHRyh. (35)

In Table I, an overview of the estimators obtained using the
two different filtering approaches and the different filter design
topologies is found. These have been found by first inserting
the expressions in (21), (23), and (25) in (26), and then
inserting (31), (33), and (34) in (35). We note that, except for a
scaling factor of 1

M2P 2 , the cost function for the approximative
filterbank approach resembles that of the approximative NLS
estimator in [10]. Furthermore, as mentioned in Section III-A,
the above estimator can be used in an iterative algorithm to
estimate the parameters of multiple sources [28].

When the assumptions on white Gaussian noise and large
sample sizes do not hold, the white noise and approximative
filtering methods will consequently not be optimal, and most
often yield less accurate estimates compared to the optimal
filtering methods as we also discovered in the experiments
in Section IV. The approximative filtering methods, however,
are computationally simpler compared to the optimal filtering
methods by not requiring any inversions. That is, the filter
design can be chosen to achieve a certain tradeoff between
computational complexity and estimation accuracy.

C. Estimation of the Covariance Matrix

In the estimators presented in this section, knowledge about
the covariance matrix Ry is needed. This covariance matrix
is obviously not known in most practical scenarios, so we
need to replace it by an estimate. One possible estimate is
the outer product estimate, which is commonly used, e.g.,
in single-channel, fundamental frequency estimation. In the

Table II
IAA FOR SPATIO-TEMPORAL SPECTRUM AND COVARIANCE ESTIMATION

initialization

α̂γ,ψ =
zHγ,ψy(n)

zHγ,ψzγ,ψ
, γ = 1, . . . ,Γ, ψ = 1, . . . ,Ψ

repeat

R̃y =

Γ∑
γ=1

Ψ∑
ψ=1

|αγ,ψ |2zγ,ψzHγ,ψ

α̂γ,ψ =
zHγ,ψR̃

−1
y y(n)

zHγ,ψR̃
−1
y zγ,ψ

, γ = 1, . . . ,Γ, ψ = 1, . . . ,Ψ

until (convergence)

multichannel, spatio-temporal case, the outer product estimate
of Ry is given by

R̂y =

K−P∑
k=0

N−M∑
m=0

yk(n−m)yHk (n−m)

(K − P + 1)(N −M + 1)
. (36)

The optimal estimators for the general noise case (see Table I)
require the covariance matrix of the observed signal to be
inverted. To ensure that R̂y is invertible, we must require it
to be full-rank, i.e.,

(K − P + 1)(N −M + 1) ≥MP (37)

needs to be fulfilled. Typically, K � N and P is desired to
be as large as possible to attain a reasonable spatial resolution.
If we, for example, choose P = K we have that

M ≤ N + 1

K + 1
. (38)

As a result of that, M may need to be very small or a large
amount of temporal samples N is needed if K is relatively
large.

Alternatively, to circumvent this issue, an iterative adaptive
approach (IAA) [22], [23] on the estimation of the covariance
matrix can be taken. First, let the amplitude of a spatio-
temporal frequency component of interest be denoted by
αγ′,ψ′ , where γ′ is a frequency index, and ψ′ is a direction
index corresponding to the DOA. Then, using the covariance
matrix model, the noise covariance matrix can be approxi-
mated as

Qγ′,ψ′ ≈
Γ∑
γ=1

Ψ∑
ψ=1

|αγ,ψ|2zγ,ψzHγ,ψ − |αγ′,ψ′ |2zγ′,ψ′zHγ′,ψ′

= R̃y − |αγ′,ψ′ |2zγ′,ψ′zHγ′,ψ′ , (39)

where γ and ψ denote frequency and direction indices, re-
spectively, Γ is the number of frequency grid points utilized
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in the IAA, Ψ is the number direction grid points utilized in
the IAA,

R̃y =

Γ∑
γ=1

Ψ∑
ψ=1

|αγ,ψ|2zγ,ψzHγ,ψ, (40)

is an estimate of the observed signal covariance matrix, and

zγ,ψ = zs(ψ, γ)⊗ zt(γ), (41)

zt(γ) =
[
1 e−jωγ · · · e−j(N−1)ωγ

]T
, (42)

zs(ψ, γ) =
[
1 e−jωs,ψ,γ · · · e−j(K−1)ωs,ψ,γ

]T
, (43)

with ωγ denoting the frequency corresponding to the γ’th grid
point, and ωs,ψ,γ denoting the spatial frequency corresponding
to the grid points ψ and γ, i.e.,

ωs,ψ,γ = ωγfs
d sin θψ

c
. (44)

In (44), θψ is the DOA corresponding to the ψ’th grid point.
The IAA is then used to obtain an estimate of the amplitude

αγ′,ψ′ by minimizing a weighted least-squares (WLS) cost
function JWLS given by

JWLS = [y(n)− αγ′,ψ′zγ′,ψ′ ]
H
Qγ′,ψ′ [y(n)− αγ′,ψ′zγ′,ψ′ ] ,

(45)

with y(n) = vec{Y(n)}. Minimizing the cost function with
respect to the unknown amplitude αγ′,ψ′ yields the following
closed-form estimate

α̂γ′,ψ′ =
zHγ′,ψ′Q

−1
γ′,ψ′y(n)

zHγ′,ψ′Q
−1
γ′,ψ′zγ′,ψ′

. (46)

Using the matrix inversion lemma on (39), it can be shown
that the amplitude estimate is equivalently found from

α̂γ′,ψ′ =
zHγ′,ψ′R̃−1

y y(n)

zHγ′,ψ′R̃
−1
y zγ′,ψ′

. (47)

This expression is preferred over (46) as the covariance matrix
estimate R̃y needs to be formed only once, while Qγ′,ψ′

needs to be updated per frequency and direction grid point.
We note that the amplitude estimate depends on the estimate
of the covariance matrix and vice versa, so these are estimated
by iterating between (40) and (47), hence the method is
termed the IAA. While the IAA has historically been used
for amplitude spectrum estimation, we here utilize it for
estimation of the covariance matrix of the observed signal
herein. As opposed to the sample covariance matrix estimate,
this estimate is formed from a single observation, y(n), while
also being full-rank. This enables us to choose M = N and
P = K, but of course it is computationally more complex
to obtain this estimate than the sample covariance matrix
estimate. The algorithm is summarized in Table II. As it can be
seen, the algorithm is initialized with R̃y = I. Typically, 10-15
iterations is sufficient to achieve convergence in practice.

Figure 1. Plots of the cost functions for the optimal (left) filterbank and (right)
single filter methods implemented using the (top) sample and (bottom) IAA-
based covariance matrix estimates when applied on a synthetic, multichannel,
periodic signal for N = 20.

Figure 2. Plots of the cost functions for the optimal (left) filterbank and (right)
single filter methods implemented using the (top) sample and (bottom) IAA-
based covariance matrix estimates when applied on a synthetic, multichannel,
periodic signal for N = 60.

IV. EXPERIMENTAL RESULTS

We now proceed with an experimental evaluation of the pro-
posed filter designs. The evaluation is split into three parts: 1)
a qualitative comparison of the proposed filters, 2) a thorough
statistical evaluation of the proposed filters through Monte-
Carlo simulations including comparison with state of the art,
and 3) qualitative evaluation of the filters on a real-life signal.
First, we compare the cost functions of the optimal filterbank
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Figure 3. MSEs of pitch and DOA estimates for different Γ’s in scenarios with (a,d) N = 20 and an SNR of 30 dB, (b,e) N = 20 and an SNR of 20 dB,
and (c,f) N = 25 and an SNR of 30 dB for the proposed methods.

and single filter when using both the sample and IAA-based
covariance matrix estimates. For this experiment, we used a
synthetic, periodic signal with L = 4 harmonics with unit
amplitudes, θ = −50◦, f0 = 200 Hz, fs = 4 kHz, and white
noise was added to each sensor signal at an SNR of 30 dB.
The other parameters of interest in the simulation were chosen
as follows: K = 3, P = 3, N = 20, M = b(N+1)/(K+1)c,
Γ = 512, Ψ = 128, 10 iterations was used to obtain the IAA
estimate, c = 343 m/s, and d = 0.04 m. Using this setup,
we then evaluated the cost functions of the optimal filters in
Table I for different candidate pitch frequencies and DOAs
when using the sample and IAA-based covariance matrix
estimates, and the results are depicted in Fig. 1. From the
figures, we can see that none of the methods show a distinct
peak at the true DOA and pitch when the sample covariance
matrix estimate is used. This is opposed to when using the
IAA-based covariance matrix estimate, in which case both
optimal filtering methods each yield a distinct, maximum peak
near the true parameters. This indicates that for low numbers
of samples, the IAA-based covariance matrix estimate should
be used. Moreover, it supports the practicability of optimal
filtering with the IAA despite its computational complexity,
since small sample sizes are generally preferred when the
signal of interest is nonstationary, violating the stationarity
assumption in (4). This is often the case in practice, e.g.,
when processing speech signals. The same experiment was
conducted for N = 80 resulting in the cost functions in Fig. 2.
For this sample length, both optimal filtering methods seem
to provide a good estimate of the DOA and pitch for both
covariance matrix estimates. However, the sample covariance
matrix estimate seems to give the best resolution in this case
due to narrower peaks around the true parameters, with the
optimal single filter having the narrowest peak. This indicates
that, for longer sample sizes, the sample covariance matrix
estimate may be preferred.

In the another series of experiments, we evaluated the sta-
tistical performance in terms of mean squared errors (MSEs)
of the proposed estimators implemented using the IAA-based
covariance matrix estimate (since relatively small sample sizes
are considered) through Monte Carlo simulations. In all these
experiments, 100 Monte Carlo simulations were conducted for
each parameter setting, and, in each simulation, the noise and
the phases of the harmonics were randomized. The MSEs of
the pitch and DOA estimates (MSEω0

and MSEθ), respec-
tively) obtained from these simulations were calculated as

MSE(ω̂0) =
1

Q

Q∑
q=1

(ω0,q − ω̂0,q)
2, (48)

MSE(θ̂) =
1

Q

Q∑
q=1

(θq − θ̂q)2, (49)

where Q is the number of Monte Carlo simulations, q is the
simulation number, ω0,q and θq are the true pitch and DOA
in simulation q, and ( ·̂ ) denotes an estimate of a parameter.

Moreover, a synthetic, multichannel periodic signal was
used in every simulation with L = 4 harmonics with unit am-
plitudes, and, in each simulation, the pitch and DOA were sam-
pled from U(250 Hz, 300 Hz) and U(15◦, 35◦), respectively,
where U(a, b) denotes the continuous uniform distribution in
the interval [a; b]. The methods evaluated in these experiments
are the optimal, white noise, and approximate filterbank (‘bo’,
‘bw’, and ‘ba’) and single filter (‘so’, ‘sw’, and ‘sa’) methods,
the multichannel pitch estimator (‘am’) in [29], the steered
response power method with phase transform (‘sp’) [30],
and the exact and asymptotic nonlinear least squares (NLS)
methods (‘n’ and ‘an’) in [10]. First, the performance of the
proposed methods was evaluated for different Γ’s in scenarios
with 1) N = 20 and an SNR of 30 dB, 2) N = 20
and an SNR of 20 dB, and 3) N = 25 and an SNR of
30 dB. The other simulation parameters were: fs = 4 kHz,
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Figure 4. MSEs of pitch and DOA estimates for different Ψ’s in scenarios with (a,d) K = 2 and an SNR of 30 dB, (b,e) K = 2 and an SNR of 20 dB, and
(c,f) K = 3 and an SNR of 30 dB for the proposed methods.
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Figure 5. MSEs of pitch and DOA estimates for different N ’s in scenarios with (a,b,d,e) white noise, and (c,f) white noise and an interfering source for the
proposed and state-of-the-art methods.

c = 343 m/s, K = 2, d = 0.04 m, and Ψ = 64. The
results from this series of simulations are depicted in Fig. 3.
From this figure, we make two important observations: first,
the performances of the ‘sw’ and ‘sa’ methods are generally
worse than those of the other proposed methods. Moreover,
the results indicate that the higher the SNR and number of
samples N , the more frequency grid points Γ is needed in the
IAA-based covariance matrix estimation to achieve the highest
possible performance. A similar series of simulations were
conducted where the performance of the proposed methods
were evaluated for different Ψ’s. In these experiments, three
scenarios were considered: 1) K = 2 and an SNR of 30 dB,
2) K = 2 and an SNR of 20 dB, and 3) K = 3 and an

SNR of 30 dB. The other simulation parameters were the same
as in the previous series of simulations except that N = 20
and Γ = 100, and the results are provided in Fig. 4. As in
the previous series of simulations, we observe that the higher
the SNR and number of sensors, the more spatial frequency
grid points is needed in the IAA-based covariance matrix
estimation to achieve the maximum possible performance.

Then, we conducted other series of simulations where the
performance of the proposed methods were also compared
with the state-of-the-art methods mentioned before. In the
first of these evaluations, the performance was measured for
different N ’s in two scenarios: 1) a scenario where the periodic
signal was added with white noise at an SNR of 30 dB, and
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Figure 6. MSEs of pitch and DOA estimates for different K’s in scenarios with (a,b,d,e) white noise, and (c,f) white noise and an interfering source for the
proposed and state-of-the-art methods.
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Figure 7. MSEs of pitch and DOA estimates for different SNRs in a scenario
with white noise for the proposed and state-of-the-art methods. The labels for
the plot are similar to those in Fig. 5.

2) a scenario with both white noise and an interfering source
added where the SNR was 30 dB, and the interfering source
was a single sinusoid with unit amplitude and random phase.
The interfering sinusoid had the same DOA as the desired
signal, but a frequency equal to fi = f0+60 Hz. Otherwise, the
simulation parameters were chosen as in the previous Monte-
Carlo simulations except that Γ = 512, Ψ = 64, and K = 2.
The results are found in Fig. 5. First of all, we observe that the
proposed ‘so’, ‘bo’, ‘bw’, and ‘ba’ methods all yield similar
performance, and that they outperform the ‘sw’ and ‘sa’
methods for the whole range of N ’s. In the comparison with

Figure 8. Plot of the spectrogram of a single-channel trumpet signal with
vibrato.

state of the art, we see that the ‘n’ method generally has the
best performance in the white noise only scenario. However,
for higher N ’s (≥ 25), there is not much difference between
the proposed optimal filtering methods and the ‘n’ method and,
for N ≥ 20, the proposed methods clearly outperform the ‘an’
and ‘am’ methods for pitch estimation and the ‘sp’ method for
DOA estimation. Finally, in the scenario with an interfering
source, the proposed optimal filters clearly outperform all other
methods for pitch estimation in the range 25 ≤ N ≤ 30, while
they are only slightly worse than the ‘n’ and ‘an’ methods
for DOA estimation in general. Similarly, we also evaluated
the performance for different K’s. Again, a scenario with
white noise and a scenario with white noise and an additional
interfering sinusoid with unit amplitude were considered. In
this evaluation, however, the interfering source had the same
frequency as the pitch of the harmonic signal, while its DOA
was θi = θ−80◦. The IAA grid size parameters were Γ = 256
and Ψ = 128, the number of temporal samples was N = 25,
and otherwise the simulation parameters were the same as in
the previous Monte-Carlo simulations. The results from this
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Figure 9. Plots of (top) pitch and (bottom) DOA estimates obtained from the spatially resynthesized, trumpet signal in a scenario with no reverberation.
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Figure 10. Plots of (top) pitch and (bottom) DOA estimates obtained from the spatially resynthesized, trumpet signal in a scenario with reverberation and a
reverberation time of T60 = 0.5 s.

experiment are depicted in Fig. 6. For pitch estimation, the
‘bw’ and ‘ba’ generally yield the best performance of the
proposed methods, followed closely by the ‘bo’, ‘so’, ‘sa’,
and ‘sw’ methods in this order. For DOA estimation, the ‘so’,
‘bo’, ‘bw’, and ‘ba’ methods yield similar performance and
outperform the ‘sw’ and ‘sa’ methods. In comparison with
state of the art in the white noise scenario, we see that the
‘so’ and ‘bo’ methods have similar performance to the ‘an’
method for pitch estimation and that they outperform the ‘am’
method. The ‘n’ method generally yields the most accurate
pitch estimates, though. The same observations are also valid
for DOA estimation for the ‘so’, ‘bo’, ‘an’ and ‘n’ methods,
whereas the ‘sp’ method shows a much worse performance.
In the scenario where an additional interfering sinusoid is

added, the proposed ‘so’ and ‘bo’ outperform the ‘an’ and
‘am’ methods for all K’s, wheres the ‘n’ method shows better
performance for low K’s due to bias and worse performance
for higher K’s. For DOA estimation the proposed optimal
filtering methods clearly outperforms all other methods in the
comparison.

In the last series of Monte-Carlo simulations, the perfor-
mances were measured for different SNRs in a scenario with
white noise only. The setup for these simulations was: N = 25,
K = 2, Γ = 512, Ψ = 50, and the remaining parameters were
setup as in the previous Monte-Carlo simulations. We see,
from the results in Fig. 7, that the ‘n’ method has the best
performance as expected for both DOA and pitch estimation
in all scenarios, however, the difference in terms of DOA
estimation performance between the ‘n’, ‘an’, ‘so’, and ‘bo’
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methods is negligible for low SNRs (≤ 30 dB). In terms of
pitch estimation, the proposed methods outperform the ‘am’
and ‘an’ methods for SNR ≥ 20 dB, and, for DOA estimation,
the ‘sp’ method is outperformed in all scenarios.

A final evaluation of the proposed filtering methods was
conducted on a real-life signal. The signal used in this ex-
periment was a 4 seconds long, single-channel trumpet signal
with vibrato. The spectrogram of the signal is shown in Fig. 8,
and it can be seen that it has a pitch fluctuating around ≈260.
Based on the spectrogram, we chose a fixed model order for
the experiment of L = 5. To obtain a multichannel signal, the
signal was resynthesized spatially, using an online available
room impulse response (RIR) generator [31]. The RIR gener-
ator was set up as follows: c = 343 m/s, fs = 8, 820 Hz,
the microphones of a ULA with 5 sensors was located at
〈2 + d[k− (K − 1)/2]〉 m× 0.5 m× 1.5 m, for k = 1, . . . , 5,
d = 0.04 m, the source was located at θ = −35◦ at a distance
of 3 m from the center of the array, the room dimensions
were 4 m× 4 m× 3 m, the length of the RIRs was 2048, the
microphones had cardioid responses with orientation (90◦, 0◦)
[(azimuth, elevation)], and the reflection order was 0. Then,
we generated the multichannel, real data using this setup,
and applied the proposed optimal filtering methods and the
state of the art methods on time-consecutive frame of length
N = 40 of the signal. The methods were implemented with
Γ = 128, Ψ = 64, and, in the ‘sp’ method, we used an FFT
length of 256 and integrated over frequencies in the interval
[150 Hz, fs/2]. From this experiment, we obtained the results
depicted in Fig. 9. The results show that all methods yield pitch
estimates close to the true pitch by comparing the estimates
with the spectrogram of the trumpet signal. Moreover, we see
that the proposed ‘so’ and ‘bo’ methods along with the ‘an’
and ‘n’ methods obtain DOA estimates closer to the true DOA
than the ‘sp’ method at most time instances. Subsequently,
a similar experiment was carried out where reverberation
was added, i.e., the same simulation setup was used except
that the reflection order was set to −1 (maximum), and the
reverberation time was 0.5 s. With this setup, we obtained
the results in Fig. 10. Again, all methods seem to provide
pitch estimates close to the true pitch. The DOA estimates
obtained using all methods are less accurate and biased in
this scenario. In general, the proposed ‘so’ and ‘bo’ methods
seem to perform similar to the ‘n’, ‘an’ methods in terms of
accuracy, whereas the ‘sp’ method is generally outperformed.

V. CONCLUSION

In this paper, the problem of estimating the fundamental
frequency as well as the direction-of-arrival of a desired,
periodic signal has been considered, and some new methods
based on spatio-temporal filtering have been proposed. The
methods are based on optimal filter designs that leave periodic
signals of a certain fundamental frequency from a certain
direction-of-arrival unchanged while everything else is atten-
uated as much as possible. The resulting filters are adaptive if
the statistics of the observed signal is estimated adaptively,
and several incarnations of the ideas have been presented,
including single filter and filterbank designs, simplifications

based on the assumption that the observed noise signal is white
and the filters being infinitely long. The application of the
recently introduced iterative adaptive approach to estimation
of the involved covariance matrix has also been proposed
and investigated. This approach is capable of overcoming the
usual limitations on the filter length relative to the number of
samples available. That is, with this approach we can estimate
the pitch and DOA using fewer samples which is preferable
when processing nonstationary signals such as speech. In
simulations, the proposed methods outperform state-of-the-
art methods under adverse conditions, including the recently
proposed maximum likelihood approach which is optimal for
white, Gaussian noise and a single periodic signal. More
specifically, the spatio-temporal filtering methods outperform
the competing methods when multiple periodic signals are
present at the same time, something that frequently happens
in practice, cf. the well-known cocktail party problem. Finally,
experiments on real data in form of a trumpet signal show the
applicability of the proposed optimal filtering methods even
in scenarios with slight reverberation.
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