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Abstract—This paper derives the small-signal model of grid-
forming (GFM) inverters considering the presence of shunt
capacitor in the power grid. It is pointed out that the shunt
capacitor introduces two additional resonant peaks in the loop
gain of power control loops, in addition to the fundamental-
frequency resonant peak that is identified in the prior art. Based
on the findings, the active damping control is modified to dampen
all three resonant peaks to guarantee the stable operation of GFM
inverters. Finally, simulation and experimental tests are carried
out to corroborate the theoretical analysis.

Index Terms—Grid-forming, small-signal model, stability,
power control, active damping, voltage-source inverters.

I. INTRODUCTION

Nowadays, the grid-forming (GFM) control emerges as a
suitable solution for operating inverters under the weak grid
condition. Being controlled as a voltage source rather than a
current source, the GFM inverter can operate stably even if
the short circuit ratio (SCR) of the power grid approaches 0
[1].

The GFM inverter synchronizes with the power grid by
regulating its active power while maintaining its terminal
voltage by regulating its reactive power [2]. Hence, the design
of active and reactive power control loops is crucial for the
stable operation of GFM inverters [2]. By considering GFM
inverters with a single L filter that is connected with inductive
grid impedance, it is revealed in [3], [4] that there is a resonant
peak at the grid fundamental frequency in the loop gain of the
power control loop, which can lead to the unstable operation
of GFM inverters [5]. To dampen this resonant peak, the active
damping method based on the virtual resistor is reported in [3].
In [6] the parameters tuning guideline of the virtual resistor
as well as its associated high-pass filter are elaborated.

In [4], it is pointed out that multiple resonant peaks, rather
than a single fundamental-frequency resonant peak, appear
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in the power control loop of GFM inverters when there are
shunt capacitors at the point of common coupling (PCC) of
ac grids. However, their impact on system stability and the
appropriate active damping control are not considered therein
[4], [7], which might be acceptable in some scenarios where
the shunt capacitor is small and has limited impact on the
low-frequency dynamics of power control loops [3]. Yet for
scenarios with large shunt ac capacitors (e.g. contributed by
capacitive loads or shunt capacitor branch used for reactive
power compensation), neglecting the impact of capacitors in
designing the active damping control may fail to stabilize the
GFM inverter, as will be demonstrated in this paper.

To reveal the dynamic impact of shunt ac capacitors on the
stability of GFM inverters and the design of active damping
control, this paper derives the small-signal model of GFM
inverters with shunt ac capacitors. Based on the developed
model, it is shown that two additional resonant peaks emerge
in power control loops of GFM inverters, due to the presence
of shunt ac capacitors. By investigating the characteristic of
these two extra resonant peaks, the impact of shunt ac capaci-
tors can be analytically derived and the guideline for designing
active damping control is also given. Finally, simulation and
experimental tests are carried out to corroborate the theoretical
analysis.

II. SMALL-SIGNAL MODELLING METHOD

A. System description

Fig. 1 shows the single-line diagram of a three-phase GFM
inverter. The active damping method is adopted in this work
to damp out the resonant peak [3]. The GFM inverter is
connected to the PCC through a LC filter, where Zg is the
grid impedance. Cg represents the shunt ac capacitor, and its
stability impact is the focus of this work. Vdc denotes the
constant DC voltage, which is either an energy storage unit or
a front-end converter connected to the DC-link [3]. P0, Q0,
vinv and vg denote the output active power, reactive power,



if

Grid-forming Inverter

ZgLf
vg

PCC

vdc

vc

Po, Qo

Qref

Modulator

m

= 

≈ 

= 

≈ 

Δω

ωgω

s
1
s
1
s
1

vinv

Vref 

s+   v
skv

if

dq

abc

Qo

Kq

ΔV
V*

Pref

Po

Kp

Cf

ig

V 

CgCg

ω

ig2

δ 

Fig. 1: Grid-forming voltage-source inverter.

the inverter bridge voltage and grid voltage respectively. vc
represents the voltage of the PCC while if is the current of
filter inductance Lf , ig and ig2 represent the current of the
PCC and the grid.

The GFM inverter is synchronized with the power grid
through the active power control, where the commonly used
power synchronization control is adopted in this work, which
can be expressed as [8].

δ =
1

s
[ωg +Kp(Pref − P0)] (1)

where Pref denotes the reference of active power and δ is
the reference of angle. ωg denotes the grid angular frequency
while Kp represents the active power-frequency droop coeffi-
cient.

The reactive power is controlled by adjusting the voltage
magnitude, which is given by

V = V ∗ +Kq(Qref −Q0)− if
skv

s+ ωv
(2)

where Qref and V denote the reference of reactive power
and voltage magnitude while V ∗ denotes the nominal voltage
magnitude. Kq represents the reactive power-voltage droop
coefficient. skv

s+ωv
is the active damping with a high-pass filter

(ωv represents the cut-off frequency of the high-pass filter),
which is further added to damp out the resonant peak of power
control loops of GFM inverters [3].

B. Small-signal modeling

It is noted that the control is implemented in the dq
frame where the d-axis and q-axis components are controlled
separately. Without loss of generality, the output variables are
defined as ydq =

[
yd yq

]T
, whereas the input variables

are defined as xdq =
[
xd xq

]T
. Their relationship can be

generally expressed as

[
yd
yq

]
=

[
G11(s) G12(s)
G21(s) G22(s)

] [
xd

xq

]
(3)

The instantaneous active power and reactive power can be
calculated as shown in (4). It should be noted that the factor
3
2 can be omitted if the modeling is performed based on per
unit (p.u.) value.{

P = 3
2 (igdvcd + igqvcq)

Q = 3
2 (igdvcq − igqvcd)

(4)

For convenience, a matrix J can be defined as

J =

[
0 −1
1 0

]
(5)

Afterwards (4) can be rewritten as[
P
Q

]
=

3

2

[
vTcdqigdq
vTcdqJigdq

]
(6)

By following the same assumptions as proposed in [9], all
state variables x in Fig. 1 can be represented as x = X0 +
x̂, where X0 represents the corresponding steady-state value
[10], and x̂ is the small signal perturbation. Hence, the state
variables can be represented by their stead-state values with
small-signal perturbations, i.e.,

idq = Idq0 + îdq

vdq = Vdq0 + v̂dq[
δ
V

]
=

[
δ0
V0

]
+

[
δ̂

V̂

]
[
P
Q

]
=

[
P0

Q0

]
+

[
P̂

Q̂

]
sin(δ0 + δ̂) ≈ sinδ0 + cosδ0δ̂

cos(δ0 + δ̂) ≈ cosδ0 − sinδ0δ̂

(7)

By substituting (7) into (6), the small-signal representation
of the model active and reactive power output can be described
in the following form[

P̂

Q̂

]
=

3

2

([
ITgdq0

−ITgdq0J

]
v̂cdq +

[
V T
cdq0

V T
cdq0J

]
îgdq

)
(8)

According to Fig. 1, the dynamics of the active damping
control in controller dq frame can be expressed as

v̂cinvdq = v̂cinvdqref −AD(s)̂icfdq

AD(s) =
skv

s+ ωv

(9)

where the superscript c represents the controller dq frame. The
relationship between the controller and system dq frame can
be described as Fig. 2. Assuming δg is 0, then the phase angle
difference between the controller and the system dq frame is
equal to δ.

Based on Fig. 1 and Fig. 2, after transforming v̂cinvdq to
system dq frame, (9) can be rewritten as
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Fig. 2: Controller dq frame and system dq frame.

v̂invdq =

[
−Vinvq0 −AD(s)Ifq0 cosδ0
Vinvd0 +AD(s)Ifd0 sinδ0

] [
δ̂

V̂

]
−AD(s)̂ifdq

(10)

Assuming v̂gdq = 0, it can be concluded from Fig. 1 that

dîfdq
dt

=
v̂invdq
Lf

− v̂cdq
Lf

− Rf

Lf
îfdq + ωg

[
îfq
−îfd

]
dv̂cdq
dt

=
1

(Cf + Cg)
(̂ifdq − îg2dq) + ωg

[
v̂cq
−v̂cd

]
dv̂cdq
dt

=
1

Cf
(̂ifdq − îgdq) + ωg

[
v̂cq
−v̂cd

]
dîg2dq
dt

=
v̂cdq −Rg îg2dq

Lg
+ ωg

[
îg2q
−îg2d

]
(11)

For obtaining accurate small-signal model of GFM inverter,
introducing the Laplace transformation and substituting (10)
into (12) [11], which leads to

[
−Vinvq0 −AD(s)Ifq0 cosδ0
Vinvd0 +AD(s)Ifd0 sinδ0

] [
δ̂

V̂

]
−AD(s)̂ifdq

= v̂cdq + (sLf +Rf + LfωgJ )̂ifdq

îgdq = îg2dq + (sCg + CgωgJ)v̂cdq (12)

îfdq = îgdq + (sCf + CfωgJ)v̂cdq

v̂cdq = (sLg +Rg + LgωgJ )̂ig2dq

Based on (12), the complete small signal model of a GFM
inverter can be derived as shown in Fig. 3, where,

Zf (s) =sLf +Rf + LfωgJ

Yg(s) =sCg + CgωgJ

Yf (s) =sCf + CfωgJ

Zg(s) =sLg +Rg + LgωgJ

(13)

According to Fig. 3, the transfer function from
[
δ̂ V̂

]T
to[

P̂ Q̂
]T

can be expressed as
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Fig. 3: Small Signal Model of a GFM inverter.

[
P̂

Q̂

]
=[1 + Zf (s)(Yf (s) + Yg(s))]

−1

• {1 +AD(s)[(Yf (s) + Yg(s)) + Zg(s)
−1]

• [1 + Zf (s)(Yf (s) + Yg(s))]
−1}

•
[
−Vinvq0 −AD(s)Ifq0 cosδ0
Vinvd0 +AD(s)Ifd0 sinδ0

] [
δ̂

V̂

]
= GPQ(s)

[
δ̂

V̂

]
(14)

To decouple the active/reactive power control loop shown in
Fig. 3, V̂ can be first set to be constant to calculate the transfer
function for active power control loop. Afterwards, δ̂ can be set
to zero to compute the transfer function of the reactive power
control loop [3]. In the end, the open-loop transfer function
of active and reactive power control loops of a GFM inverter
can thus be derived as shown in (15), which is also displayed
in Fig. 4.

TP = GδP
Kp

s
TQ = GV QKq

(15)

Where,

GPQ(s)(1, 1) = GδP

GPQ(s)(2, 2) = GV Q

(16)

The poles of TP and TQ can be calculated by using (15),
which is given by

p1,2 = ±jωg

p3,4 = ±j(
√

Lf+Lg

LgLf (Cf+Cg)
+ ωg)

p5,6 = ±j(
√

Lf+Lg

LgLf (Cf+Cg)
− ωg)

(17)
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Fig. 4: Active and reactive power control block diagram of a GFM inverter.

For the condition that there is no ac capacitor, GδP and
GV Q are reduced to the well-known forms given in previous
works, e.g., in [3] and [12], i.e.

GδP =
a0s

2 + a1s+ a2
(sLg +Rg)2 + (ωgLg)2

(18)

GV Q =
b0s

2 + b1s+ b2
(sLg +Rg)2 + (ωgLg)2

(19)

where

a0 =
Lg

ωg
(vgV0cosδ0 − V 2

0 )

a1 =
Rg

ωg
(vgV0cosδ0 − V 2

0 )

a2 = ωgLgvgV0cosδ0 −RgvgV0sinδ0

b0 =
Lg

ωg
(V0 − vgcosδ0)

b1 =
Rg

ωg
(V0 − vgcosδ0)

b2 = ωgLg(2V0 − vgcosδ0) +Rgvgsinδ0

(20)

It is clear that from (18) and (19) that only a pair of grid-
fundamental-frequency resonant poles p1,2 = ±jωg remain as
ignoring Rg under this condition.

However, the presence of the shunt ac capacitor introduces
two additional pairs of complex poles (p3,4 and p5,6 in (17)),
which contribute two additional resonant peaks in TP , as
shown in Fig. 5. It is known from (17) that the frequencies
of p3,4 and p5,6 are dependent on the values of Lg , Lf and
Cf . Hence, when Cg increases, the frequencies of p3,4 and
p5,6 decrease, while the decreasing of SCR can also lower
the frequencies of p3,4 and p5,6, as shown in Fig. 5.

Moreover, if
√

Lf+Lg

LgLf (Cf+Cg)
< 2ωg , the frequency of p5,6

is lower than ωg while the the frequency of p3,4 is higher
than ωg , as shown by the yellow solid line in Fig. 5 (a),
otherwise both frequencies of p3,4 and p5,6 are higher than
ωg , as shown by the blue dashed line in Fig. 5(a). These
two different scenarios would have different impact on the
controller design, which will be described in the Section.III.

III. ACTIVE DAMPING DESIGN

In order to guarantee the stable operation of the GFM
inverter, the active damping resistor kv is usually adopted to

Cg increase
Cg=0

Cg=80 uF

Cg=685 uF

(a)

SCR decrease

SCR=10

SCR=5

SCR=2
SCR=1.25

(b)

Fig. 5: Bode plot of TP without active damping. (a) Lf = 5mH , Lg =
20mH . (b) Lf = 5mH , Cg = 685uF .

dampen the resonant peaks in TP . Moreover, kv is usually
cascaded with a high-pass filter (HPF) s

s+ωv
to avoid its impact

on the steady-state power control of the GFM inverter, as
shown in Fig. 1, where ωv represents the cutoff frequency
of the HPF.

The selection of ωv is critical since the active damping only
remains effective in the frequency range higher than ωv [6].
Hence, ωv should be selected such that it is lower than the
lowest frequency of resonant peaks in TP . In previous works
ωv < ωg is suggested to dampen the grid-frequency resonant
peak in TP , which is the only resonant peak if there are no
ac capacitors, as shown by the purple dotted line in Fig. 5
(a). Yet, this design guideline of ωv should be re-investigated
if there are shunt ac capacitors, due to the presence of two
additional resonant peaks in TP .

1. If
√

Lf+Lg

LgLf (Cf+Cg)
> 2ωg , which corresponds to the case

that GFM inverter is connected to a stiff grid (large SCR)
and/or with small Cg . In this case, as shown in Fig. 5, the
frequencies of the two additional resonant peaks introduced
by the shunt ac capacitor are all larger than ωv . Hence, they
can still be dampened by selecting ωv < ωg . As an example
presented in Fig. 6 (a), where Lf = 5mH , Lg = 20mH ,



TABLE I: Parameters used in the simulation and experiment

Filter inductance Lf 5 mH
Filter capacitor Cf 20 uF
Shunt capacitor Cg 685 uF
Filter resistance Rf 0.01 Ω
Grid inductance Lg 20 mH
Grid resistance Rg 0.02 Ω

Grid voltage Vg 20 V
Active power control parameter kpp 0.1 p.u.

Reactive power control parameter kqp 0.03 p.u.
Grid frequencyωg 50 Hz

Switching frequency 5000 Hz.
Rated active power Pref 76 W

Active resistance kv 0.05 p.u.

Cf = 20uF and Cg is not present, the frequencies of two
additional resonant peaks can be calculated as 612.98 Hz and
512.98 Hz. Since the frequencies of two additional resonant
peaks are above 50Hz, all resonant peaks in TP can be
damped by selecting ωv = 40Hz < ωg , and the loop gain
indicates the system is stable due to the positive phase margin
(PM). In this scenario, the assumption in previous work that
neglecting the impact of ac capacitors during the design of
power control loops of GFM-VSC is justified [3].

2. If
√

Lf+Lg

LgLf (Cf+Cg)
< 2ωg , which corresponds to the case

that GFM inverter is connected to a weak grid (small SCR)
and/or with large Cg (introduced by the local capacitive load
or shunt capacitor used for reactive power compensation).
In this case, it is known from (17) that the frequency of
the complex poles p5,6 (which is defined as ωres1 hereafter)
is lower than ωg , which can only be effectively damped
by selecting ωv < ωres1, rather than ωv < ωg . In this
scenario, the impact of ac capacitors cannot be neglected when
designing power control loops of GFM-VSC, otherwise the
resonant peak at ωres1 cannot be identified and there is a
risking in selecting ωv in the range between ωres1 and ωg

that could destabilize the system. This is demonstrated by an
example given in Fig. 6 (b). With parameters given in Table
I, it can be calculated that ωres1 = 44.77Hz. By selecting
ωv = 45Hz < ωg , the resonant peak at ωres1 cannot be
damped and the system is unstable because of the negative
phase margin of the loop gain, as the blue solid line shown in
Fig. 6 (b). In contrast, the system can be stabilized by selecting
ωv = 20Hz < ωres1 = 44.77Hz, as the red dotted line shown
in Fig. 6 (b). Nevertheless, by neglecting the impact of ac
capacitor, both ωv = 20Hz and ωv = 45Hz yield a stable
loop gain, as shown in Fig. 6 (a), which leads to a misleading
stability prediction.

IV. SIMULATION AND EXPERIMENT

A. Simulation Results

To verify the theoretical analysis, the time-domain sim-
ulations are carried out in MATLAB/Simulink and PLECS
blockset with detailed electronic model presented in Fig. 1.
The main parameters given in Table I are adopted.

Fig. 7 shows the simulation results of the active power
with ωv changing from 20Hz to 45Hz at 1.7s. As the Cg

ωv =45 Hz

ωv =20 Hz

Positive
Phase 

Margin

(a)

ωv =20 Hz

ωv =45 Hz

Negative
Phase 

Margin

(b)

Fig. 6: Bode diagram of TP with active damping and different ωv . (a) Without
Cg . (b) With Cg .

is connected at the PCC, the system cannot be stable after
the increasing of ωv , resulting in a 44.7Hz oscillation in the
active power, as shown in Fig. 7(b), which verifies the stability
prediction in Fig. 6(b). However, the system can still be stable
with ωv = 45Hz if there is no Cg , as shown in Fig. 7(a), and
is in accordance with the theoretical analysis given in Fig. 6
(a).

B. Experimental Results

To further verify the simulation results, the experiments are
carried out with a three-phase grid-connected inverter. The
parameters used in the experiments are the same with the ones
used in the simulation.

Fig. 8 shows that the experimental results are consistent with
the simulation results. The system that contains Cg becomes
unstable after ωv changes from 20Hz to 45Hz, as shown
in Fig. 8 (b), while it can still maintain stable without Cg ,
as shown in Fig. 8 (a). The experimental results are in well
accordance with the simulation results and thus the accuracy
of the theoretical analysis is verified.
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Fig. 7: Simulation results for active power. (a) Without Cg . (b) With Cg .
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Fig. 8: Experimental results for active power. (a) Without Cg . (b) With Cg .

V. CONCLUSION

This paper demonstrates that the presence of shunt ac capac-
itors introduces two additional resonant peaks in the loop gain
of power control loops. The lowest frequency of these resonant
peaks becomes ωres1 =

√
Lf+Lg

LgLf (Cf+Cg)
− ωg . Therefore, to

stabilize the GFM inverter, the cutoff frequency of HPF used
in the active damping control should be selected with the value
of ωres1 considered. Simulation and experimental tests are
carried out to corroborate the theoretical analysis.
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