
 

  

 

Aalborg Universitet

A Two-stage Deep Learning Receiver for High Throughput Power Efficient LEO
Satellite System with Varied Operation Status

Nielsen, Martin Hedegaard; De Carvalho, Elisabeth; Shen, Ming

Published in:
IEEE Access

DOI (link to publication from Publisher):
10.1109/ACCESS.2022.3180055

Creative Commons License
CC BY 4.0

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Nielsen, M. H., De Carvalho, E., & Shen, M. (2022). A Two-stage Deep Learning Receiver for High Throughput
Power Efficient LEO Satellite System with Varied Operation Status. IEEE Access, 10, 60904-60913.
https://doi.org/10.1109/ACCESS.2022.3180055

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1109/ACCESS.2022.3180055
https://vbn.aau.dk/en/publications/a76dd72b-6d55-4a90-9631-84d4767ddc9f
https://doi.org/10.1109/ACCESS.2022.3180055


Received May 12, 2022, accepted May 31, 2022, date of publication June 3, 2022, date of current version June 13, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3180055

A Two-Stage Deep Learning Receiver for High
Throughput Power Efficient LEO Satellite
System With Varied Operation Status
MARTIN H. NIELSEN , ELISABETH DE CARVALHO , (Senior Member, IEEE),
AND MING SHEN , (Senior Member, IEEE)
Department of Electronic Systems, Aalborg University, 9220 Aalborg, Denmark

Corresponding author: Martin H. Nielsen (mhni@es.aau.dk)

This work was supported by the Innovation Fund Denmark as part of the Research Project under Grant MARS2.

ABSTRACT Low Earth orbit satellites are expected to be one of the biggest suppliers of wireless commu-
nication within the coming years. For this to happen 5G and 6G networks, are crucial to be implemented in
satellite communication. This comes with the problem of power-efficient transmissions. This paper exploits
recent advances in complex-valued deep learning to copewith this challenge. The proposed approach is based
on the autoencoder structure, where a legacy orthogonal frequency division modulation (OFDM) transmitter
is used as an encoder and a deep complex convoluted network (DCCN) is used as decoder/receiver. Different
from other state-of-the-art receiver architectures based on one-stage trained neural networks, our proposed
DCCN adopts a two-stage training scheme, where the first stage is trained using AWGN channel and a
fixed non-linear front end. The second stage uses a transfer learning to adapt to the flat fading channels and
the front end model can be changed to compensate for different front ends, significantly reducing training
time.This allows for power-efficient transmission at different operation statuses (e.g. radiated power levels
and steering angles) without compromising the bit error rate in both average white Gaussian noise (AWGN)
and flat fading channels. A K-band (28 GHz) active phased array in package (AiP) transmitting a 5G NR
OFDM signal with a bandwidth of 100 MHz was used as the main front end test vehicle for validating the
proposed DCCN. Satisfactory bit error rates were achieved while the AiP was driven into saturation with
high power efficiency at different power levels and steering angles. This work demonstrates, for the first time,
the promising capability of deep neural networks in processing varied operation staged non-linear OFDM
waveforms in the form of an auto-decoder receiver.

INDEX TERMS Deep learning, OFDM, receiver, non-linear, power efficiency, LEO satellite.

I. INTRODUCTION
Satellite communication has been a topic of interest for many
years, but recently it has been developing rapidly with the
advancements in low Earth orbit (LEO) satellites that are
usually deployed at an altitude of 500–1500 km to ensure low
latency in established communication links [1]. Dependent
on the altitude deployed the satellite will over the course
of a transmission window different distances to the ground
making the communication channel dynamic and varying
free space path loss. This is conventionally overcome at the
transmitter side [2].

Currently, the satellite sector is changing its service focus
from TV and maritime applications towards broadband
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Internet services using the LEO satellites and 5G signals
[3]–[5]. With higher data rates needed for Internet access,
highly bandwidth-efficient modulation schemes, such as
multi-sub-carrier orthogonal frequency division modulation
(OFDM), are wanted. Multi-subcarrier OFDM signals can
provide the necessary bandwidths for future space commu-
nication and are already being used in some satellite systems
[6]–[8]. However, this comes with the cost of a high peak-
to-average power ratio (PAPR) and low efficiency in the
transmitter front end, since to ensure linearity back off is
typically used.

For many years the industry and research practice for
increasing power efficiency is use pre-distortion to deal
with non-linear amplifier responses. Pre-distortion can be
implemented in a plethora of ways all from look up tables
using memory polynomial models to different deep learning
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FIGURE 1. Concept figure of the proposed system architecture where a DCCN receiver is used to compensate for the front end.

techniques [6], [8]–[23]. Memory polynomial unlike deep
learning uses an equation to describe non-linear behavior. It is
based on a feedback loop between the input and output of
the power amplifier (PA) to achieve pre-distortion. It uses the
inverse polynomial to change the input signal such that the
wanted efficiency/linearity of the system is achieved [9]–[11].

Implementing pre-distortion in satellites is not as easy,
since the optimization can be costly for the satellites [12].
When a highly integrated active phased array is used, it is very
difficult to establish the feedback loop. Further, the PAPR
change in the input signal caused by pre-distortion can in
some cases not be realized [12]. Commonly the deep learning
approach is based on autoencoders, where both the trans-
mitter and receiver are changed to neural networks. Some
research reduces the PAPR [14], [20], while some gaining
better bit error rate (BER) performance [13], [15], [16]. How-
ever to our knowledge no autoencoders have gained both high
BER performance and are able to combat high non-linearity
without changing the transmitter completely [13]–[20]. How-
ever, using deep learning comes with challenges [4], [5], [24].
With the wanted integration of satellites into the 5G network,
multiple satellites can and will have to connect to the same
ground station in these new mega-constellations [4], [24].
This can cause issues having to deal with multiple slightly
different front ends. Another inconvenience is that the satel-
lite has limited power on board and using pre-distortion or an
autoencoder can be a become resource problem.

Instead of relying on changing the on-board communica-
tion system, this paper proposes to train a receiver that can
compensate for the different non-linear behavior present in
the received signal. Then only the power output from the
transmitter can be increased and the satellite can achieve
the performance increases that conventional pre-distortion
gives a front-end transmitter by only changing the receiver
side. This allows for multiple satellites to be serviced by
the same ground station without having to change the satel-
lite architecture. The idea was initially proposed in [21].
It was shown possible to recover the received signal and
compensate for the non-linear distortion before the actual
receiver and BER performance was later shown in [22].

However, it lackedmore realistic channels and results for how
it compensates for different amplifiers, steering angles, and
power levels without retraining the model. A fading channel,
unlike AWGN, distort and corrupts the signal. Hence, using
pre-processing for OFDM signals is both time-consuming
and inconvenient. Instead using complex-valued neural net-
works as receivers has the potential to solve these issues
faster and as reliable as legacy receivers [23]. Complex val-
ued networks are similar to deep neural networks but they
can process and understand complex numbers without pre-
processing. This paper proposes to combine the use of a
complex-valued neural network [23] with the idea of recov-
ering signals [21], [22] to provide a new receiver structure
that can both decode and compensate for the non-linearity
in a single complex-valued neural network for an OFDM
system. This paper proposes a two-stage Deep Complex
Convolution Neural Network (DCCN) which is trained in
two steps to achieve the wanted performance. The special
two-stage DCCN comes with the benefit that it is very robust
to variations in the non-linear signal. Further, it can quickly
adapt to different front ends with only one retraining of step
two. This makes quick adaptation to different satellites very
fast at the ground station. Different operation modes for the
same front end are possibly compensated for. This is possi-
ble without retraining for operation modes such as different
power saturation, different bandwidths, and different steering
angles, these are all compensated for due to the two-stage
DCCN.

To train the neural network this paper uses an online end-
to-end numeric simulator that uses a legacy OFDM transmit-
ter, together with real experimental data gathered from the
front end to train and test the DCCN.

The paper is structured as follows. In Sec. II the prob-
lem and communication system are described, Sec. II-A the
legacy OFDM transmitter is described, Sec. II-B the end-
to-end simulator is detailed and Sec. II-C describes the chan-
nel models used. Sec. III describes the acquisition and results
of the measured front-end models together with the results
of the end-to-end simulator. In Sec. IV the deep learning
receiver architecture is elaborated and the training process is
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FIGURE 2. Geometrical illustrating of the satellite to ground data
transmission link.

described. The results of the deep learning receiver are the
presentation in Sec. VI and discussed in Sec. VII. The paper
is concluded in Sec. VIII.

II. COMMUNICATION SYSTEM & PROBLEM
FORMULATION
The satellite communication system starts when the satellite
establishes a communication link with the ground station [2],
[21], [22], [25]–[28]. The window for an LEO satellite starts
when the elevation angle ε is greater than 5◦. The satellite
will then travel with a constant velocity towards the ground
station where the elevation angle is 90◦. The satellite will then
travel from the ground station until the elevation angle is 5◦.
The distance to the ground station will not be constant and
can be geometrically described as shown in Fig. 2.
The differentiation in the distance from the ground station

causes the transmission distance to vary. The link will there-
fore change over time. This can be described mathematically.

(H + Re)2 = R2e + d
2
− 2Red cos(

π

2
+ ε0), (1)

where ε represents the elevation angle, d is the distance of
data transmission, H denotes the orbital altitude of LEO
satellite, Re is the earths radius. This makes it possible to
denote the distance as a function of ε

d(ε) = Re[

√
(
H + Re
Re

)2 − cos2(ε)− sin(ε)]. (2)

Then the free space path loss can be expressed as

L(ε0) = (
4πd(ε)
λ

)2 = (
4π fd(ε)

c
)2, (3)

since the noise can is fixed the variation in SNR regardless of
distance is

1
S
N
(dB/Hz) = (

S
N 5◦

)− (
S
N 90◦

) = 1L(ε). (4)

Based on the equation the variation for a satellite in LEO
at an altitude of 800 km is approximately 12 dB in the link
budget between 5◦ and 90◦ [22]. To have the possibility of
an efficient as possible satellite downlink, the transmitter
should be able to vary transmission power such that the power
received is constant. However to keep the transmitter efficient
the transmitter should be driven non-linearly.

A. OFDM TRANSMITTER
5G NR is an evolution of LTE signal that is proposed
to become the future communication signal for satellites
[6], [7]. OFDM is the basis for 5G and LTE signals therefore,
this paper only considers the OFDM signal since any channel
coding/precoding associated with LTE or 5G NR happens
before OFDM transformation, see Fig. 3 a. OFDM is based
on a frame structure where a communication slot is composed
of multiple OFDM symbols. The notations related to the
OFDM slot are as follows: an OFDM symbol contains N
subcarriers, where N is the size of DFT/IDFT. Among the
N subcarriers, a total of G nullified guard subcarriers are
placed at the center (DC guard band) and the edge guard
band. A subcarrier in an OFDM symbol is referred to as a
resource element (RE). A collection of REs is referred to as
a Resource block as shown in Fig. 3. A communication slot
contains F consecutive OFDM symbols, in which P and D
REs are allocated to pilot and data, respectively. The length of
a time-domain full OFDM symbol is S = N +Ncp where Ncp
is the length of CP. Under m-ary modulation, an IQ sample
carries m bits, and the size of the constellation is 2m.

B. END-TO-END SIMULATOR
The end-to-end simulator is built based on Fig. 3. It uses
a random bit generator to produce the bit sequence b that
is encoded such that b ∈ ±1. The encoded bits are then
converted to complex-valued in-phase and quadrature (IQ)
data by mapping to a constellation on the IQ plane. From the
IQ data, an OFDM frequency-domain symbol X is is created
by inserting pilot signals and guard bands into the IQ data,
and then X is transformed to a time-domain OFDM symbol,
x, via an N-point IDFT and a subsequent parallel to serial
(P/S) conversion.

Next, the Cyclic Prefix (CP) is prepended to x to create a
time-domain full OFDM symbol, xcp. The baseband signal
xcp is then upconverted to RF and sent to the RF front end
model. The RF front end model is created based on the
popular Memory Polynomial model that can describe the
non-linear distortion given the input and output of a non-
linear system. It is given as

y(t) =
N∑
n=1

M∑
m=0

anmx(t − τm)|x(t − τm)|n−1, (5)

where N is the polynomial order while M is the memory
effect, i.e, the number of previous samples that have effect
on the current output. To determine the amplifier coefficients
anm the input and output of the device need to be captured, and
reverse modeling is used to find them. The coefficients are
dependent on the signal power levels and how high the PAPR
of the signal was at the input and output baseband signals.

The now distorted signal is propagated over a channel
model and the received IQ samples are then represented as
OFDM-time domain samples ycp. Then, the CP is removed
from ycp and the rest of the IQ samples, y, are transformed
to the frequency-domain OFDM symbol, Y, via DFT. Based
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FIGURE 3. a) Block diagram of a PHY layer OFDM communication system. b) OFDM slot illustration, subcarriers on y axis and symbols on x axis.
A resource block is shown to be 12 subcarriers and 7 symbols.

on Y, a channel equalizer outputs the estimated transmit
frequency-domain IQ data X̂ which is then demodulated to
soft bits (log-likelihood) b̃ which are converted to binary
outputs bits via hard decision to become b̂. The end-to-end
simulator can then calculate the Bit Error Rate depending
on how much difference there is between b̂ and the ground
truth b.

C. LEO CHANNEL
According to [29] and [30], the LEO communication channel
cannot be treated as an AWGN channel. It is stated that it
can be seen as a fading environment. We therefore model our
channel after the well described flat fading model [31] since
it is a good baseline model:

y = x ∗ h+ n,Y = X�H+ N, (6)

where x, y,n are the time-domain transmitted and received
signals and white noise, respectively and n is the chan-
nel impulse response. Y,X,H,N are the frequency domain
transforms. ∗ is the convolution and � is the elementwise
product.

III. MEASUREMENT OF NON-LINEAR HARDWARE
To have a practical RF front end model in the end-to-end
simulator, an active phased array in package (AiP) is used
for measuring the non-linear behavior of the front end. The
AMOTECH A0404 AiP uses 4 Anokiwave AWMF-0158
beam forming devices and a 4 by 4 patch antenna array for
transmitting [32]. In this paper, the changes happening in the
transmission window i.e. different input power is given and a
variation in the steering angle are measured and investigated.

To capture the data for use in the hardware models the
AiP is measured over the air using a 28 GHz 5G NR signal
with a bandwidth of 100 MHz, compliant with the 3GPP
downlink specification for 5G NR OFDM modulated with
a peak to average power ratio of 10.6 dB generated by the
R&S SMBV100B signal generator. The 5G NR signal from
the generator is up-converted from 3 GHz. A continuous-
wave (CW) signal has been multiplied by two into 25 GHz

for up-conversion and down-conversion as shown in Fig. 4.
A pre-amplifier is used to push the AiP into compression, the
pre-amplifier is in backoff to ensure linearity. This setup is
shown in Fig. 4.
The data is captured by the observation horn antenna

placed 42 wavelengths away (44 cm) and aligned with the
main beam which is connected to and analyzed in the spec-
trum analyzer (R&S FSW 67 GHz). The procedure for taking
measurements is as follows:

1) I and Q waveform for the 5G NR signal is uploaded
using the R&S VISA tool from the PC to the vector
signal generator.

2) The APA is driven into the non-linear region.
3) The I and Q at the receiver are then captured from the

signal analyzer using the R&S VISA tool.
4) The signal is then time aligned with the input sig-

nals samples post-process to ensure each sample cor-
responds to the correct time sample of the previously
recorded input signal.

A. MEASURED RESULTS
The measurement results are shown in Fig. 5. Fig. 5a the
power spectrum density is shown. The 38 dB output power
signal shows the AiPs non-linear behavior and the high adja-
cent channel power present. Fig. 5b shows the amplitude-
to-amplitude (AM/AM) and amplitude-to-phase (AM/PM)
behavior of the AiP. The non-linear saturation and memory
effects can be seen both in the spread of points and the
steep drop after 30 dB for AM/AM and the rotation in phase
for symbols in the AM/PM. Looking at the power added
efficiently (PAE) curve, Fig. 5c it is clear that the AiP is not
very efficient. To have the AiP be as efficient as possible it is
better to have an output power level of around 38 dBm at all
times.

B. SIMULATION RESULTS ON MEASURED AiP MODEL
To determine the non-linearity effect on the communication
system the simulator is tested in three different scenarios,
AiP distortion only, with AWGN and AiP distortion, and
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FIGURE 4. Measurement setup of the AiP with all instruments used
labeled.

with fading and AiP distortion. The noisy baseband signal
results from the three tests are shown in Fig. 6. The resulting
constellation patterns show that without proper modifications
to understand the non-linearity and fading it is not possible to
decode the symbols given.

IV. DCCN ARCHITECTURE
The neural network-based OFDM receiver uses similar signal
processing modules as legacy OFDM receivers with layers
functioning differently. The proposed architecture is shown
in Fig. 7 which includes recommendations founds in [23].

The proposed architecture uses the input signal, ycp, and
uses the first complex dense layer to remove the CP. The
DFT like C-Conv layer converts the signal y to the fre-
quency domain Y. The channel estimator uses four dense
layers to both compensate for the AiP and estimate the chan-
nel response, Ĥ. After the channel estimator, it then does
element-wise complex division to the equalization so that it
can estimate X̂. To do the estimation the first dense layer of
CFNP, where F is OFDM symbols per coherence slot, N is
number subcarriers which are proportional to the DFT/ODFT
size, and P number of pilots. The dense layer is designed to
locate pilots and estimate channel coefficients on pilots ĤP

LS ,
where LS is least-square similar to LMSSE. The operation
can be shown as equal to that of LMSSEwhichmatematically
can be described as,

X̂ =
Y

ĤLS
, ĤLS = L(

YP

XP
), (7)

where X̂ is the estimated signal, ĤLS contains the LS channel
estimates,XP andYP are transmitted and received pilots, and
L() is the interpolation operation. To obtain Ĥ an interpola-
tion of ĤP

LS to the entire slot and channel estimation is done
in the next three dense layers and a 2D filter of size (F, N).
The 2D filter can be mathematically described as follows

ĤLRA = UDpUH ĤLS , (8)

where Dp is a diagonal matrix with trainable parameters
δk =

λk

λk+
β
α

, U is a unitary matrix containing the singular

vectors of the frequency domain covariancematrix of channel
realizations denoted RHH = E{H ,HH

}. Instead of setting
the parameters explicitly they are learned directly from data.
As the non-linearity is treated at the receiver side to be part of
the channel a separate layer is not needed. However, through
testing, it has been shown that having three dense instead
of only two has better generalization capabilities than using
two [23].

To gain the time domain signal the network uses a complex
dense to take out the Resource Elements (RE) so we get
X̂D and then using an IDFT like C-Conv layer it is possible
to transform X̂ to time-domain x̂. The rest of the forward
network converts IQ samples to soft bits, where an input
IQ sample C is treated as a vector of 2 real numbers, R2.
The extracted IQ vector and its non-linear (Leaky ReLU)
activation, A0, are concatenated to a tensor of shape [B, D, 4],
whereB is the number of slots in a batch of input signals. A0 is
fed to a small dense layer of R42m followed by another Leaky
ReLU activation, A1, of which the output tensor is reshaped
to [B, D,m, 2] and then activated by a softmax function
along its last dimension to produce a soft bit–a vector of
likelihoods of ±1.

A. TRAINING
The training of the DNN receiver as illustrated in Fig. 8. The
training is done online using the end-to-end simulator which
generates a random binary stream b. The stream is turned into
time-domain OFDM symbols, xcp by the OFDM transmitter.
The transmitted signal ycp is then distorted by a non-linear
AiP model together with a channel model that adds noise and
fading to xcp. Thus the received signal, ycp is the training data,
and b is the labels. The output of the receiver is given as soft
bits, b̃ and after the hard decision the b̂. The loss function is a
weighted sum of the cross entropy loss and the regularization
loss

`(b, b̃,8) = − ln

(
ebk∑
i eb̃i

)
+ ε`reg(8), (9)

where k is the index of the target bit, and ε < 1 is a small con-
stant. The Adam optimizer that is doing the back-propagation
is randomly initializing8 of DCCN receivers and updates the
loss function accordingly.

It is difficult to train the DCCN for fading channels due
to the severe distortion that will be implemented on top of
the already non-linear distortion introduced by the front-
end model. Therefore a two-stage training method is imple-
mented. In stage 1 the neural network is trained with the
APA model and AWGN channel. In stage 2, the DCCN is
retrained with flat fading and the AiP model for better BER
in flat fading channels. This is done by transfer learning.
The flow graph of the TensorFlow session freezes the CP
remover, data extraction, demodulator, and channel decoder
and only keeps training the 1D complex convolution and

60908 VOLUME 10, 2022



M. H. Nielsen et al.: Two-Stage Deep Learning Receiver for High Throughput Power Efficient LEO Satellite System

FIGURE 5. Measurement of the AiP. a) Measured power density response of the 100MHz 5G NR response. b) Measured AM/AM AM/PM
responds. c) AiP power added efficiently vs input power.

FIGURE 6. Effects of the non-linear distortion from the AiP and AWGN and fading on the constellation with SNR at 30 dB. a) Constellation
of the non-linear distorted signal without the channel. b) Constellation of the non-linear distorted signal with the AWGN. c) Constellation of
the non-linear distorted signal with flat fading.

FIGURE 7. Neural network receiver architecture to deal with non-linear
amplifier and different fading channels.

the channel estimator. Thus the already pre-existing weights
in a new session can be used to further enhance the neural
network for flat fading and non-linearity. The loss function
is the same throughout stages 1 and 2. The graph editing
technique enables back-propagation when the second half
of the forward network is frozen. This two-stage training
approach can increase the data efficiency by reusing the same
pre-trained receiver in stage 2 for different fading settings and
different active phased array (APA) models.

This increased training efficiency since multiple different
channels can be trained with the same initial model. This also
allows for more fine-tuning training to compensate for the
APA and given channel. To optimize training all operations
are vectorized and all data are fed as tensors in the code.
Loops are avoided and the learning rate is decayed exponen-
tially for fine-tuning as the training proceeds. For training
data, all data is generated online. Hence iterations are used
instead of epochs. Early stopping is implemented to make
sure that when the BER has not improved for 20 iterations
the DCNN model is saved for testing.

Determining SNR during training is not straightforward,
however, [23] provides a recommendation of using fixed SNR
when only considering AWGN channels and a mix of high
and low SNR during flat fading. We choose to use an SNR of
5 dB during AWGN in stage 1 and a variational SNR during
flat fading training, stage 2. In stage two different SNRs are
used with a mix of both high and low SNRwith about a 30/70
split, this is because the channel estimator relies more heavily
on the channel statistics and a variation of SNR is therefore
needed. This variation is not needed for AWGN since it is a
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FIGURE 8. Training diagram of the proposed DCCN receiver.

FIGURE 9. Bit error rate plot with the trained decoder over AWGN
channel(solid) and LMMSE BER results for comparison(dotted).

simpler channel model and the DCCN can better generalize
for the AWGN using a low SNR of around 3-5 dB.

V. RESULTS
The proposed DCCN receiver is evaluated using numeric
results. For comparison, legacy OFDM receivers like
LMMSE, ALMMSE, etc. are used. Both Average White
Gaussian Noise channel (AWGN) and a Flat fading channel
are used with and without training for the non-linear APA
model. The selected APA model used for training and eval-
uation is the AiP at 38 dBm output power 100MHz with
steering angle 0. It is highly non-linear as shown in Fig. 6.
APA models for different output powers (31-39 dBm) are
used. To further evaluate the DCCN an APA model based
on [21] is also used to determine howwell the DCCN handles
never before seen APA models. Fig. 9 shows that the DCCN
is capable of handling AWGN and non-linear distortion at the
same time for different modulation forms. The blue solid line
is for the DCCNwith no APAmodel during training. It shows
that if the APAmodel is not known a-priory the DCCN cannot
handle the non-linear distortion very well. The blue dotted

FIGURE 10. Constallation of what the soft bit output of the DCCN
receiver. Red crosses is a normal 16QAM decoder scheme. SNR = 20 dB
smaller SNR will cause more spread of blue dots.

line is legacy receivers with non-linear distortion. It shows
it is not possible to handle non-linear distortion on its own.
The striped lines are all LMMSE cases for AWGN with no
implementation of an APA model. Hence, if the non-linear
distortion is handled at the transmitter side the baseline for
legacy receivers is slightly better in higher modulation orders
as shown. It is possible to drive the AiP at the highest PAE
of 24% while maintaining the BER performance of legacy
receivers in different modulations using the DCCN receiver.
For other AiPs, APAs, and amplifiers this potential benefit
can be higher.

A. SOFT BIT RESULTS
Fig. 10 shows some spread is still present in the DCCN
predicted soft bits, but compared to Fig. 6c there is a big
difference. The previously shown phase shift is now removed.
Further small variations are shown but have no impact on
the hard decision used on the soft bit prediction. The small
variations are due to the non-linearity and noise not being
fully eliminated.
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FIGURE 11. Bit error rate plot with the trained decoder over flat fading
channel vs conventional OFDM receiver codes.

FIGURE 12. Bit error rate plot with the trained decoder over flat fading
channel with different power outputs from the APA.

B. FLAT FADING
To test the DCCN in flat fading with the AiP it is compared
to different legacy receivers, like LMSSE, ALMSSE, Spline,
etc. [33]. The transmitter is once again without an APA
model. Fig. 11 shows that the DCCN can compensate for
the non-linearity while simultaneous deals just as well as
legacy receivers with the flat fading channel. Both LMMSE
and DCCN can not compensate for the non-linearity caused
by the AiP if they are not aware of it, similar to the AWGN
performance. The DCCN does slightly better only in low
SNR. This is due to high noise blocking the non-linearity
from the DCCN.When trained with the AiPmodel the DCCN
works very well. It is only a few BER worse than conven-
tional approaches like ALMMSE and the DCCN is equal to
LMMSE in performance.

C. OUTPUT POWER, AND STEERING ANGLE DIFFERENCE
It is evaluated how well the DCCN compensates for different
non-linear models from both the same AiP and different front
ends.

The DCCN shows that it is capable of compensating for
different power levels without changing the model. If the
non-linear frontend model is changed to a different AiP or

FIGURE 13. Bit error rate plot with the trained decoder over flat fading
channel with steering angle changing.

APA the DCCN cannot any longer function as shown in
Fig. 12. The dotted line represents the changed front-end
model and the DCCN does not function properly. However,
since a two-stage training method is used the front end model
can be changed in step 2 which significantly eliminates this
problem. Thismakes training time significantly less costly for
reapplying this model to different APA models and channel
environments since training time is reduced by one step.

VI. DISCUSSION
The method given in this paper shows that the receiver can
handle different power levels without having to change the
front end model. Further, it shows that the given DCCN
receiver can be retrained for any given front end model while
only changing the model used in step two of the training
process. This is possible due to the equalizer used for channel
selective fading and is the most important aspect to achieve
high BER performance with non-linear amplifiers. Further,
this method makes it possible to not change our transmitter
architecture. Thus this can be readily implemented in satellite
to ground transmissions. And since only the DCCN needs to
be changed at ground station it can service a lot of satellites.
For the physical implementation of the system, the model can
be pre-trained before deployment and then uploaded to the
ground station. If the BER drifts significantly the model can
be retrained for the new channel and front end situation. Since
the model only needs a synthetic model of the transmitter
front end any changes to the whole system can be directly
updated and retrained off the actual deployed system.

The impact of steering angle for the AiP can change the
non-linearity behavior slightly, but as shown in 13 this vari-
ation is negligible and the DCCN performs as expected. The
complex convolution layer that is doing the DFT-like opera-
tion together with the equalization layers is why it is possible
to adapt to the change in the non-linearity. Since the AiP
at different power outputs does not dramatically change the
non-linear behavior the DCCN is capable of equalizing for it
without re-training. This is due to the strong generalization
capabilities of first the DFT-like convoluted layer and second
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the equalizer. The convoluted layer makes it possible for the
DCCN to understand IQ symbols. Any change and variation
due to the front end can be estimated by the channel equalizer
since the front end disturbances are seen to be part of the
channel matrix H . This comes with the cost of generaliza-
tion for different front ends. However for the same AiP the
generalization is very good. Both output power variation and
steering angle variaiton is possible to be compensated for at
the bit prediction side meaning a good BER is maintained
even with high distortion in the signal.

With these findings it is capable that a single ground station
can have multiple DCCN models trained for different satel-
lites and compensate for them all. If a multiple satellites are
to be serviced by the same ground station and they use similar
front ends no retraining is needed for the DCCNmodel. Only
if the front end changes completely a retrain is needed.

Since a legacy transmitter is used, the DCCN is a very
robust receiver that can use legacy OFDM transmitters with
non-linearity. To use this receiver a single measurement of
the given front end with a known signal is needed. Hence for
mobile communication systems, the proposed system could
be difficult to use due to multiple users all with different
APAs. For future work, it is wanted to investigate possible
solutions for adapting to different APAs. Hence, the limita-
tion of the proposed DCCN is how many APA models it can
compensate for without retraining. It should be noted that
the proposed DCCN does not suppress the adjacent channel
power at the transmitter side and it could be a problem for
terrestrial radio systems. But this is not an issue as band-pass
filtering is usually already included before feeding the signal
to antenna in most satellite transmitters to fulfill the inter-
ference regulations of the International Telecommunication
Union (ITU).

To help fast-track evaluation of different APAs, using the
over-the-air measurement setup shown in Fig.4, it is wanted to
implement the trained receiver into a software-defined radio
setup. This is left for future work.

VII. CONCLUSION
In this paper, we presented a fully trainable two-stage
deep learning receiver that addressed particular non-linearity
issues in the satellite transmitter. The deep learning receiver
can achieve equal BER to that of conventional approaches
and compensate for non-linearity in a dynamically changing
transmission link without the need for pre-distortion tech-
niques in the transmitter. This is due to the unique two-stage
training scheme proposed that integrates the estimation for
the channel and non-linear front end into one. Using an
online end-to-end simulator both for training and testing it
is possible to numerically validate the proposed method.

The DCCN can deal with different steering angles and out-
put power levels from the same AiP without retraining. It is
only needed to include a new AiP in step two, significantly
reducing training time for different transmitters to the same
ground station. Numerical validation results also show that
it is possible to almost double the power efficiency of the

chosen AiP without sacrificing BER. This is different from
conventional OFDM receivers like ALMMSE and LMMSE
since no architecture change at the transmitter side is needed.
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