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ABSTRACT

Existing methods that use remote microphones with hearing aid
(HA) noise reduction systems, assume the wireless transmission to
be instantaneous. In practice, however, there exists a time difference
of arrival (TDOA) between the wirelessly transmitted target signals
and the acoustic signal arriving from the target source to the HA de-
vice, which degrades their noise reduction performance. As speech
is correlated between consecutive time-frames in the short-time
Fourier transform (STFT) domain, we propose a linear minimum
mean-square error (MMSE) estimator to estimate the desired signal,
by combining multiple HA microphone signals with multiple con-
secutive time-frames of the remote microphone signal. We derive
closed form expressions for the resulting filter weights and interpret
them in terms of existing multi-channel and multi-frame methods.
The simulation results validate the interpretation and show that us-
ing a multi-frame method along with a multi-channel method is an
advantage, in the presence of unknown, positive TDOA between the
microphone signals.

Index Terms— Multi-microphone speech enhancement, multi-
frame speech enhancement, wireless acoustic sensor networks.

1. INTRODUCTION

Microphone arrays play a crucial role in noise reduction in hearing
aid (HA) systems. In addition to the spectro-temporal information of
the incoming acoustic signals, exploiting the spatial characteristics
has benefited both noise reduction and spatial scene preservation in
HAs [1]. However, the noise reduction performance of HA systems
is limited, due to space constraints, by the number of microphones
that can be placed discreetly [2].

Wireless communication has enabled the HA systems to connect
to remote microphones placed in a wireless acoustic sensor network
(WASN) [3]. Using spatially distributed remote microphones, helps
to acquire the spatial characteristics of the entire acoustic environ-
ment, as opposed to the spatial information around the head of the
HA user, obtained from the HA microphones alone [4]. Moreover,
clinical studies have shown that using remote microphones located
close to the target source significantly enhance the noise reduction
and speech intelligibility in hearing assistive devices (HADs) (e.g.,
[5, 6]). Existing literature, thus focuses on the inclusion of remote
microphones with HA microphones using available beam-forming
algorithms (e.g., [7, 8, 9]. However, it ignores the time difference of
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arrival (TDOA) between the target signal acoustically transmitted to
the HA microphones and the target signal which is wirelessly trans-
mitted by the remote microphones to the HA system. In other words,
it assumes instantaneous wireless transmission of the remote micro-
phone signals to the HA system. This TDOA depends on the trans-
mission delay introduced by the wireless communication protocol
used, the position of the target source w.r.t the microphones and/or
the distance between the microphones [3]. For example, under opti-
mum conditions, the Bluetooth LE standard [10] can achieve a wire-
less latency of around 20 ms. In the presence of positive TDOAs,
the multi-microphone beam-formers in existing literature, show poor
noise reduction performance in a HA system [4, 11].

In this paper, we use the fact that speech is highly correlated
across time and frequency in the discrete STFT domain, to overcome
this performance loss. We propose a linear MMSE filter, that com-
bines the multi-channel HA signals and multiple frames of a remote
microphone signal, to help overcome the effects of the TDOA be-
tween the local HA microphone signals and the remote microphone
signal. We derive closed form expressions of the proposed MMSE
estimator and show that it is a linear combination of the traditional
multi-channel Wiener filter (MWF) [2] and the multi-frame Wiener
filter (MFWF) filter [12, 13]. Furthermore, we verify the derived ex-
pressions through simulations using oracle signal statistics and show
that, even in the presence of an unknown, positive TDOA, the pro-
posed method is able to enhance the signal-to-noise ratio (SNR) of
the output, over using the MWF [2] on the HA microphone signals.

2. SIGNAL MODEL AND NOTATION

Consider a multi-channel noise reduction system composed of a HA
system connected to remote microphones. We consider a monau-
ral HA system, composed of a microphone array with M ≥ 2 mi-
crophones, worn by the HA user, and a single remote microphone
placed close to the mouth of the target source (e.g., a microphone
clip worn on the chest of the target source). The complex STFT
coefficients of the mth HA microphone signal can be represented by

Ym(k, l) = Xm(k, l) + Vm(k, l), (1)

where Y (k, l), X(k, l) and V (k, l) are the noisy signal, target
speech and the additive noise, respectively. The frequency bin and
the time frame index are denoted by k and l, respectively. As we
assume independent sub-band processing, we omit the frequency
bin index k for clarity.

Assuming an acoustic scene with one target speech source, the
noisy measurements of the HA microphones located locally w.r.t.
the HA user, can be stacked into a multi-channel vector as



yHA(l) = a(θS , l)S(l +
⌊τa
T

⌋
) + vHA(l)

= d(θS , l)Xr(l) + vHA(l)

= xHA(l) + vHA(l) ∈ CM×1,

(2)

where S(l+
⌊
τa
T

⌋
) is the speech at the target source located along the

azimuthal direction θS w.r.t the HA user, a is the acoustic transfer
function (ATF) from the target source location to HA microphones,
d is the corresponding relative acoustic transfer function (RATF),
Xr is the target signal at a pre-selected HA reference microphone,
τa is the acoustic propagation delay from the target source to Xr (in
ms) and T is the STFT frame hop (in ms). Furthermore, xHA and
vHA represent respectively, the speech and noise signal vectors at
the HA microphones, which we assume to be uncorrelated.

Consider a remote microphone, placed close to the mouth of the
target source. The wirelessly transmitted remote microphone signal,
received at the HA system at the lth time-frame, can be written as

YE(l) = S(l −
⌊ τ

T

⌋
) +NE(l −

⌊ τ

T

⌋
), (3)

where YE(l), NE(l) are the STFT coefficients of the noisy signal
and the additive noise in the remote microphone, and τ is the TDOA
(in ms) of the remote microphone signal transmitted to the HA sys-
tem, w.r.t to the acoustic signal Xr at the HA reference microphone.
The TDOA between spatially separated microphone signals can be
estimated as in [14, 15]. The TDOAs, τ ∈ R, however, in this pa-
per we consider only τ ≥ 0. With the current and previous L − 1
frames of the noisy delayed remote microphone signal, the Lth order
multi-frame remote microphone vector is given by

yE(l) =

 YE(l)
...

YE(l − L+ 1)

 = sE(l) + nE(l) ∈ CL×1, (4)

where, sE(l) and nE(l) are the speech and noise component vec-
tors in the remote microphone signal, defined corresponding to (3).
The speech component of the delayed remote microphone signal is
generally correlated to the speech component in the HA reference
microphone signal, i.e., E[S(l −

⌊
τ
T

⌋
)X∗

r (l)] ̸= 0, for a finite τ .
Using the model in [12], the multi-frame speech component vector
sE can decomposed into two mutually uncorrelated components as

sE(l) = ρX(l)Xr(l) + xi(l) ∈ CL×1, (5)

where

ρX(l) ≜
E[sE(l)X∗

r (l)]

E[Xr(l)X∗
r (l)]

(6)

is the normalised inter-frame correlation (IFC) coefficient vector and
xi(l) is uncorrelated with Xr(l) [12]. E{·} is the expectation oper-
ator and ∗ is the conjugate operator. Using (5) in (4), we get

yE(l) = xE(l) + vE(l) ∈ CL×1, (7)

where, xE(l) ≜ ρX(l)Xr(l) and vE(l) ≜ xi(l) + nE(l) such that
xE and vE are uncorrelated. As we assume each time-frequency
(TF) tile to be processed independently, we omit the time index l for
clarity, in the rest of the paper.

In this paper, we apply a linear filter of order N = M +L,
wEMWF =

[
wH

HA wH
E

]H , to the noisy measurements y =[
yH
HA yH

E

]H ∈ CN×1 to estimate the desired signal, i.e., the
target signal at the HA reference microphone,

X̂r = wH
EMWFy, (8)

where the superscript H denotes the conjugate transpose operator.
Let the N×N cross power spectral density matrices (CPSDMs)

of the noisy, speech and noise vectors of the HA and remote micro-
phone vector be defined as

Cyy = E
[
yyH

]
,Cxx = E

[
xxH

]
,Cvv = E

[
vvH

]
, (9)

respectively. The CPSDMs for the HA microphone vector and the
remote microphone vector can be defined similarly for {Cyy,HA,
Cxx,HA, Cvv,HA} ∈ CM×M and {Cyy,E, Cxx,E, Cvv,E} ∈
CL×L, respectively. Under the assumptions that, (i) the speech and
noise processes are uncorrelated, (ii) the remote microphone is suf-
ficiently far from the HA, that the noise component in the remote
microphone signal is uncorrelated with the noise component in the
HA microphone signals and using (2) and (7), we obtain

Cvv =

E[vHAv
H
HA] 0

0 E[vEv
H
E ]

 , (10)

Cxx = ϕXr

 ddH dρH
X

ρXdH ρXρH
X

 , (11)

Cyy = Cxx +Cvv, (12)
where, ϕXr = E[XrX

∗
r ] is the power spectral density (PSD) of the

clean signal component at the reference HA microphone.

3. LINEAR FILTERING

We propose a linear MMSE estimator, to estimate the desired sig-
nal using the HA microphone signals and the multi-frame remote
microphone signal. We first briefly review the independent, lin-
ear MMSE estimators: MWF for the HA microphones and MFWF
for the remote microphone. We then describe the proposed joint
linear MMSE estimator using both local and remote microphones.
Lastly, we show that the resulting extended multi-channel Wiener
filter (EMWF) estimate can be decomposed into a linear combina-
tion of the MWF estimate and the MFWF estimate of the desired
signal, i.e., X̂r,EMWF = αX̂r,MWF + βX̂r,MFWF, where the linear
multipliers, α, β ∈ C can be expressed in closed-form, as a function
of the output SNRs of the MWF and MFWF estimates.

3.1. Multi-channel Wiener filter (MWF)

The MWF estimates a linear filter that minimizes the mean-square
error (MSE) between the filtered HA microphone signal and the de-
sired signal Xr [1]. The optimization problem is given by

min
w

E
[∣∣∣wHyHA −Xr

∣∣∣2] . (13)

Taking the speech CPSDM to be rank-1, i.e., Cxx,HA = E[xHAx
H
HA]

= ϕXrdd
H and using the matrix inversion lemma [16], the MWF

solution can be written as, e.g., [17, 18]

wMWF =
C−1

vv,HAdϕXr

1 + ϕXrd
HC−1

vv,HAd
. (14)

Using (14), the SNR of the MWF estimate can be written as

SNRMWF ≜
wH

MWF Cxx,HA wMWF

wH
MWF Cvv,HA wMWF

= ϕXrd
HC−1

vv,HA d.

(15)



3.2. Multi-frame Wiener filter (MFWF)

In [12, 19], based on the speech correlation between consecutive
time-frames, a multi-frame single channel speech enhancement
method was proposed. Similarly, we estimate a linear filter that
minimizes the MSE between the filtered remote microphone signal
vector and the desired signal Xr as

min
w

E
[∣∣∣wHyE −Xr

∣∣∣2] . (16)

Using (7) and the matrix inversion lemma [16], the optimal linear
filter weights are obtained as [12]

wMFWF =
C−1

vv,EρXϕXr

1 + ϕXrρX
HC−1

vv,EρX

. (17)

Using (17), the SNR of the MFWF estimate can be written as

SNRMFWF ≜
wH

MFWF Cxx,E wMFWF

wH
MFWF Cvv,E wMFWF

= ϕXrρ
H
XC−1

vv,E ρX .

(18)

3.3. Extended multi-channel Wiener filter (EMWF)

We propose a linear MMSE estimator to estimate the desired signal
Xr , using both HA and remote microphone signal vectors in (2) and
(7), respectively. The linear optimization problem is given by

min
w

E
[∣∣∣wHy −Xr

∣∣∣2] . (19)

Using (9) it can be shown that, the resulting linear filter is given by

wEMWF = C−1
yyCyxer = C−1

yyCxxer, (20)

where Cyx ≜ E[yxH ] and er is a microphone selection vector, with
1 at the HA reference microphone index and 0 elsewhere. Inserting
(10) and (11) in (12) and applying the matrix inversion lemma [16],
it can be shown that, (20) may be expressed as

wEMWF =

[
αwMWF

βwMFWF

]
(21)

with

α =
1 + ϕXrd

HC−1
vv,HAd

1 + ϕXrd
HC−1

vv,HA d+ ϕXrρ
H
XC−1

vv,E ρX

, (22)

and

β =
1 + ϕXrρ

H
XC−1

vv,EρX

1 + ϕXrd
H C−1

vv,HA d+ ϕXrρ
H
X C−1

vv,E ρX

. (23)

Using (15) and (18), we can now re-write (22) and (23) as

α =
1 + SNRMWF

1 + SNRMWF + SNRMFWF
, (24)

β =
1 + SNRMFWF

1 + SNRMWF + SNRMFWF
. (25)

Therefore, from (21), EMWF is a linear combination of MWF ap-
plied to the HA microphone signals and MFWF applied to the multi-
frame remote microphone vector, i.e., X̂r, EMWF = αX̂r, MWF +

βX̂r, MFWF. Moreover, the influence of the HA and the remote mi-
crophones are completely described by SNRMWF and SNRMFWF.
This can be realized well in the following two cases, that are verified
experimentally in Sec. 4:

1. When SNRMWF ≫ SNRMFWF, e.g., the TDOA is high
(i.e., SNRMFWF → 0) and/or the target source is close to
the HA user, (i.e., high SNRMWF), then, α → 1 and β → 0,
i.e., the EMWF estimate is dominated by the MWF applied
to the HA microphone signals, while the contribution of the
remote microphone signal becomes insignificant.

2. When SNRMWF ≪ SNRMFWF, e.g., the TDOA is low (i.e.,
high SNRMFWF) and/or HA microphone signals are very
noisy, (i.e., SNRMWF → 0), then, α → 0 and β → 1, i.e.,
the EMWF estimate is dominated by the MFWF applied to
the remote microphone signal frames, while the contribution
of the HA microphone signals becomes insignificant.

4. RESULTS

In this section, we evaluate the performance of the proposed al-
gorithm through simulation experiments using the knowledge of
the clean and noisy signals. We use segmental signal-to-noise ra-
tio (segSNR) [20] and short-term objective intelligibility (STOI)
[21] to estimate the noise reduction and the speech intelligibility
performance, respectively. The gain in the performance metric is
calculated w.r.t the corresponding metric for the unprocessed noisy
input signal at the HA reference microphone.

The acoustic scene consists of a monaural HA user, with M = 2
microphones and a remote microphone placed close to the mouth of
the target source. The listener is in a cylindrically isotropic noise
field, while the remote microphone, due to its proximity to the
source, is assumed to be nearly noise-free, with only microphone
noise. To study the performance of the proposed algorithm for sta-
tionary and non-stationary target sources, we use sustained vowel
signals and normal speech signals, respectively. The speech signals
spoken by 10 subjects, are obtained from the TIMIT corpus [22].
Each signal is 20s long with 2s of initial silence, containing multiple
sentences. The sustained phonation of vowels (i.e., /a/, /e/, /i/, /o/,
/u/) were recorded by 3 subjects. Each vowel utterance is 10 s long
with 2 s of initial silence. All the signals are sampled at a sampling
rate of fs = 16kHz. The hearing aid head related impulse responses
(HAHRIRs), measured on human subjects [23], are used to simulate
the HA microphone signals. Since the HAHRIRs are measured with
loudspeakers distributed uniformly around a ring of radius 1.9 m,
centered at, and at the same height as the HA user’s head, we con-
sider the target source, and thereby the remote microphone to be
placed on the same ring, along the direction θS = 0◦. The cylin-
drically isotropic noise field at the HA microphones is simulated
by convolving independent realisations of stationary speech shaped
noise (SSN) with the HAHRIRs from the 48 directions available in
the database. The microphone noise in the remote microphone is
taken to be white Gaussian noise (WGN).

For the spectral analysis and synthesis of the signals, we use a
square-root Hanning window of 8 ms frame length (N = 128 sam-
ples) and a frame hop of T = 2 ms. For simplicity, we choose the
TDOA, τ = nT ms, where n ∈ Z, to simulate multiple TDOA
conditions. To focus on the validation and interpretation of the pro-
posed algorithm, to keep the estimation errors low, we use the oracle
second order statistics estimated using

Cyy(l) = αyyCyy(l − 1) + (1− αyy)y(l)y
H(l),

Cyx(l) = αyxCy x(l − 1) + (1− αyx)y(l)x
H(l),

(26)

where αyy and αyx are smoothing coefficients. We take αyy = αyx,
for simplicity. To capture the short-term variations of the non-
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Fig. 1: Comparing the performance of EMWF-τ,L1 with MWF as a
function of TDOA (τ ).

stationary speech in noise signal, we choose αyy correspond-
ing to a time constant of 95 ms, for both MWF and EMWF.
The experiments are conducted at input SNRs of SNRin,HA =
{−20,−10, 0, 10, 20} dB at the HA reference microphone, and at
SNRin,E = 50 dB at the remote microphone.

In the following discussion, the choice of the filter order (L)
used for EMWF and MFWF algorithms, in the presence of varying
TDOAs (τ ), are denoted as subscripts, e.g., EMWFτ0,L1 denotes us-
ing L = 1 with EMWF, when the TDOA is τ = 0 ms. Existing
methods (e.g., [7]), use only the current frame of the remote mi-
crophone signal under the ideal assumption of zero TDOA, which
is equivalent to the case, EMWFτ0,L1 . Fig. 1 compares ∆segSNR
achieved by MWF and EMWFτ,L1 , as a function of TDOA (τ ), at
SNRin,HA = 0 dB. The ∆segSNR achieved by EMWFτ0,L1 (indi-
cated by × in Fig. 1), is over 10 dB higher than the gain achieved by
MWF. With positive TDOAs, i.e., τ > 0, ∆segSNR of MWF stays
constant due to its independence to the remote microphone signal,
while the performance of EMWFτ,L1 tends to the performance of
MWF. In other words, the benefit of using a single-frame remote mi-
crophone is maximum when the TDOA is zero, however, when there
is a positive TDOA, which is typical in practical wireless transmis-
sion of signals, the benefit of using the remote microphone declines.

Fig. 2 shows the performance of the proposed EMWF compared
to MWF as a function of the filter order (L), for different posi-
tive TDOAs (τ ), at SNRin,HA = 0 dB. We use the performance
of EMWFτ0,L1 (indicated by × in Fig. 2), as the benchmark for
the performance analysis of EMWF. For the sustained vowel sig-
nals, Fig. 2a shows that the degradation of ∆segSNR due to pos-
itive TDOAs, as seen in Fig. 1, is overcome by increasing the fil-
ter order (L) in EMWF. For τ ≤ 8 ms, ∆segSNREMWF matches
∆segSNREMWFτ0,L1

, i.e., EMWF overcomes the performance loss
due to the TDOA. However, at higher TDOAs, the target source in
the remote microphone signal is less correlated to the target source
in the HA reference microphone signal, causing only a small gain in
noise reduction at higher filter orders (L). Moreover, with L ≥ 10,
∆segSNREMWF saturates, as sustained vowels are relatively station-
ary, and using more past frames does not improve the estimate made
using few highly correlated neighboring frames. The results ob-
tained using speech signals in Fig. 2b, show a similar improvement
as that of sustained vowel signals. From Figs. (2a) and (2b), we infer
that for small TDOAs such as τ ≤ 8 ms, filter orders L≤10 lead to
a significant gain in noise reduction and speech intelligibility, while
at TDOAs, e.g., τ ≥ 32 ms, this performance can not be reached
even with higher filter orders L ≥ 10.

To validate the weight interpretation discussed in Sec. 3.3, Fig. 3
shows segSNR for EMWFτ16,L5 , MWF and MFWFτ16,L5 as a
function of SNRin,HA. We consider τ = 16 ms and L = 5 here,
as ∆segSNREMWF does not show a significant improvement for
τ ≥ 16 ms and L ≥ 10, as seen in Fig. 2b. At SNRin,HA = −20
dB, the performance of EMWFτ16,L5 is nearly identical to the per-
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Fig. 2: Performance of EMWF for different TDOA (τ ) as a function
of filter order (L) for (a) sustained vowel and (b) speech signals.
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Fig. 3: segSNR as a function of SNRin,HA for the methods dis-
cussed, at τ = 16 ms and L = 5, estimated for speech signals.

formance of MFWFτ16,L5 . With an increase in SNRin,HA, the
performance of EMWFτ16,L5 closely follows the improvement in
the performance of MWF. Thus, when SNRin,HA is low, the re-
mote microphone signal is more valuable. Conversely, when the
SNRin,HA is sufficiently high, the HA microphone signals become
more valuable than a delayed remote microphone signal.

5. CONCLUSION

We proposed a beam-former using HA microphone signals and a
remote microphone signal, to overcome the loss in performance
caused by positive TDOAs between the wirelessly transmitted re-
mote microphone signal and HA microphone signals. We show
that the proposed method can be decomposed into existing MWF
and MFWF methods, and the linear combination coefficients are a
function of their respective output SNRs. Moreover, the proposed
method was compared to existing methods, that ignore the TDOAs,
using segSNR and STOI. The experimental results demonstrate that
the performance, for positive TDOAs up to τ ≤ 16 ms, can be
improved by using multiple past frames of the remote microphone
signal along with the HA microphone signals. Further research
includes performance assessment using estimated signal statistics.



6. REFERENCES

[1] Michael Brandstein, Darren Ward, Arild Lacroix, and Anasta-
sios Venetsanopoulos, Eds., Microphone Arrays: Signal Pro-
cessing Techniques and Applications, Digital Signal Process-
ing. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[2] Simon Doclo, Walter Kellermann, Shoji Makino, and
Sven Erik Nordholm, “Multichannel Signal Enhancement Al-
gorithms for Assisted Listening Devices: Exploiting spatial di-
versity using multiple microphones,” IEEE Signal Process.
Mag., vol. 32, no. 2, pp. 18–30, Mar. 2015.

[3] Gerald R. Popelka, Brian C. J. Moore, Richard R. Fay, and
Arthur N. Popper, Eds., Hearing Aids, vol. 56 of Springer
Handbook of Auditory Research, Springer International Pub-
lishing, Cham, 2016.

[4] Alexander Bertrand and Marc Moonen, “Robust Distributed
Noise Reduction in Hearing Aids with External Acoustic Sen-
sor Nodes,” EURASIP J. Adv. Signal Process., vol. 2009, no.
1, Dec. 2009.

[5] Elizabeth M. Fitzpatrick, Christiane Séguin, David R.
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