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Abstract—Distribution system reconfiguration is an effective 

solution to reduce the consequences of a disaster through 

transferring loads to another feeder via automatic switches. 

Meanwhile, an optimal sequence of damage components 

repairments provides the operator with the opportunity to utilize 

components that play a critical role in restoring loads sooner. 

Motivated by the rise in penetration of renewable distributed 

generators in modern distribution systems, this paper aims to 

develop a robust reconfiguration and crew routing co-

optimization method to cope with renewable and demand 

uncertainties while recovering from a disaster. The method 

optimizes the grid recovery process for the worst load/generation 

scenario and repeats the optimization every time step considering 

the activities before the current time step. Finally, a case study on 

the IEEE 33-bus distribution test network is investigated to 

analyze the efficiency of the method. 

Keywords— Reconfiguration, model predictive control, outage 

management. 

NOMENCALTURE 

A. Sets and Indices 

𝐷𝑚𝑔_𝑖  Set of damaged buses. 

𝐷𝑚𝑔_𝑙 Set of damaged lines. 

𝐿 Set of lines. 

𝑁𝐿 Set of damaged lines. 

𝑆𝑊 Set of switchable lines. 

𝑆𝑏 Set of substation buses. 

𝑖, 𝑗 Index for buses. 

𝑙 Index for lines. 

𝑚, 𝑛 Index for the place of damaged components and 

start and end depots. 

𝑡 Index for time. 
 

B. Parameters 

𝐴𝑖
  𝑃𝑉𝑚𝑎𝑥  Area of photovoltaic panel installed at bus i (m2). 

𝑒𝑖,𝑡
𝐷  Demand prediction error at bus i and time t. 

𝑒𝑖,𝑡
𝑃𝑉 Photovoltaic generation prediction error at bus i 

and time t. 

𝑀 A big number used in the big-M method 

𝑁𝑖 Number of customers connected to bus i. 

𝑛𝑐 Number of repair crews 

𝑝𝑖,𝑡
𝐷  Active power demand at bus i and time t. 

𝑃𝑙
𝑚𝑎𝑥 Maximum active power at line l. 

𝑃𝑖
𝐷𝐺𝑚𝑎𝑥 Maximum active DG generation at bus i. 

𝑝𝑡
𝑃𝑉𝑚𝑎𝑥  Maximum PV generation density at time t. 

𝑃𝑖,𝑡
𝑃𝑉𝑚𝑎𝑥  Maximum PV generation at bus i and time t. 

𝑞𝑖,𝑡
𝐷  Reactive power demand at bus i and time t. 

𝑄𝑙
𝑚𝑎𝑥 Maximum reactive power at line l. 

𝑄𝑖
𝐷𝐺𝑚𝑎𝑥 Maximum reactive DG generation at bus i. 

𝑅𝑙 Resistance of line l. 

𝑟𝑚,𝑐 Repair time duration of component m by crew c. 

𝑟𝑒 Metric of recovery agility 

𝑆 Number of supplied customers 

𝑆0, 𝑆𝑝𝑒 Desired and post-disaster number of supplied 

customers 

𝑡𝑟𝑚,𝑛 Route duration from m to n. 

𝑇𝑆𝐷 Time step duration. 

𝑤𝑖  Priority weight of customers which connected to 

bus i. 

𝑋𝑙 Reactance of line l. 

휀 Maximum voltage deviation. 

𝜎𝐷 Standard deviation of load prediction error. 

𝜎𝑃𝑉 Standard deviation of PV generation prediction 

error. 
 

C. Variables 

𝐴𝑇𝑛,𝑐 The time when repair crew c approach damage 

component n. 

𝑓𝑚,𝑡 Binary variable to consider finishing the repair of 

damage component c at time t. 

𝑃𝑖,𝑡
𝐷𝐺  Active DG generation installed at bus i and time t. 

𝑃𝑙,𝑡 Active power at line l and time t.  

𝑄𝑖,𝑡
𝐷𝐺  Reactive DG generation installed at bus i and time 

t. 

𝑄𝑙,𝑡 Reactive power at line l and time t.  

𝑢𝑖,𝑡
𝐺  Situation of DG installed at bus i and time t. (1: if 

the DG is on. 0: if the DG is off.) 

𝑢𝑙,𝑡
𝐿  Situation of line l at time t (1: if the line is on.) 

𝑉𝑖,𝑡 Voltage of bus i at time t.  



𝑥𝑚,𝑛,𝑐 Movement binary variable (1: if crew c move 

toward component m  after repairing component n, 

immediately) 

𝑦𝑚,𝑐 The binary variable indicating whether component 

m is repaired by crew c or not (1: if it is repaired by 

crew c) 

𝑧𝑚,𝑡 Availability of component m at time t (1: if it is 

available and 0: if is unavailable) 

𝛽𝑖,𝑗,𝑡 Binary variable which is 1 if bus i is the parent of 

bus j, according to the definition of the parent in 

graph theory,  at time t.  

𝜌𝑖,𝑡 Binary variable which is 1 if customers at bus i are 

supplied at time t.  
 

D. Symbols 

𝑣𝑎�̂� Predicted value of general variable var. 

𝑣𝑎�̆� Real value of general variable var. 

𝑣𝑎�̃� Worst value of general variable var. 

𝑣𝑎𝑟̅̅ ̅̅ ̅ Value of general variable var in optimization of 

previous time step 

I. INTRODUCTION 

Nowadays, societies are highly dependent on 
uninterruptable electricity energy supply for many aspects of 
their lives. Unfortunately, the occurrence of natural disasters 
such as storms, earthquakes, floods, etc. has threatened the 
sustainability of the electrical energy systems. An example of 
which can be considered is the 2018 Hurricane Michael cut out 
power to 452000 customers in Virginia [1]. Taking lessons from 
previous disasters, power system engineers and researchers 
suggested several measures to decrease the consequences of 
upcoming high impact low probability (HILP) events. 

In this vein, two viewpoints, which are operation-oriented 
and planning-oriented, have been introduced by the researchers 
to manage the consequences of disasters on power systems [2]. 
The planning-oriented viewpoint such as storage placement [3] 
proposes to make the system stronger to better withstand such 
threats [4]. On the other hand, the operation-oriented viewpoint 
refers to actions such as outage management which are taken 
between some hours before the events until the full recovery [5]. 
In fact, operation-oriented measures suggest making wiser 
operational decisions to deal with the event. It includes 
preventive, corrective, and restorative measures which are taken 
beforehand, at the same time, and after the event; respectively 
[6]. “Outage management”, as a restorative operation-oriented 
approach, refers to all of the activities to restore the interrupted 
loads due to the occurrence of events. Outage management, 
which is usually done by the repair crews and the system 
operator, follows a multistep procedure. The main outage 
management activities are damages assessment, repairment, 
distribution system reconfiguration (DSR), and DG dispatch [7]. 
Optimizing and coordinating these activities leads to a more 
agile load restoration. However, finding the optimal recovery 
procedure is a challenging task, especially if there is a high 
penetration of renewable energy sources (RES), which causes 
generation uncertainty in the distribution system. 

Several pieces of research in the literature aim to decrease 
the outage duration through outage management tasks 
optimization. Authors in [7] present co-optimizing repair crew 

routing and the reconfiguration procedure to considerably 
decrease interrupted energy by coordinating the schedule of 
opening and closing switches, dispatching the DGs, and the 
sequence of repairing damaged components. All of the 
mentioned activities can be called “recovery scheduling”. In [8], 
the mobile source routing problem is combined with repair crew 
routing and distribution system reconfiguration co-optimization 
to decide on the optimal restoration logistics.   None of the 
mentioned references consider loads’ and RESs’ uncertainties in 
outage management.  Due to the increase of RES penetration in 
modern distribution systems, power systems engineers have 
faced a high degree of uncertainties, resulted from the nature 
outputs of RES [9]. Thus, in practical cases, the real network 
load and generation situation may differ from those they have 
considered in the recovery scheduling step. Therefore, to cope 
with this pitfall, references [10]-[11] present probabilistic 
reconfiguration optimization models to consider uncertainties. 
The rationale behind using the probabilistic approach is the fact 
that the mean value over many repetitions is near the expected 
value. However, confronting low probability events, we should 
be ready for worsts scenarios. Therefore, robust optimization 
methods are more suitable for natural disasters compared to 
probabilistic methods which target expected value because the 
expected value is a good indicator only for credible events. 

Motivated by the aforementioned problems, this paper 
proposes a robust model predictive control (R-MPC) maximize 
the number of served customers. Unlike presented conventional 
methods, the proposed optimization model can be repeatedly 
calculated during the recovery phase in the RMPC; as a result, 
the recovery strategy can adapt with new information released 
from uncertainties parameters, i.e. load and RES output during 
the recovery phase. Therefore, the main contributions of this 
paper are as follows: 

• Proposing an RMPC optimization model to maximize 
the restored load considering the worst value of load and 
RES output for future time steps. 

• Modifying repair crew routing to be compatible with the 
RMPC model. In this way, the routing plan can change 
in every time step, while previous repair actions or 
movements are fixed. 

The rest of this paper is organized as follows. In section 2 
represents the conventional outage management formulation, 
uncertainty modeling, and proposed RMPC framework. After 
that, numerical results are presented in section 3 to examine the 
efficiency of the proposed approach. Finally, the conclusion is 
drawn in section 4. 

II. METHODOLOGY 

Before presenting the proposed framework in Subsection 
2.4, the formulation of conventional distribution system 
reconfiguration and repair crew routing co-optimization based 
on the model in [7] is presented in the first two following 
subsections. Then, the uncertainty modeling is discussed in 
Subsection 2.3. The main goal of the recovery actions is to serve 
the maximum number of customers and avoid social 
dissatisfaction and economical losses. Therefore, the objective 
function (1) is represented as the net number of supplied 
customers during the recovery process. 



max { ∑ ∑ 𝑤𝑖 . 𝑁𝑖 . 𝜌𝑖,𝑡

∀𝑖∀𝑡

} () 

A. Distribution System Reconfiguration 

Distribution systems operators can change the configure of 
the system to agile restoring loads. Nevertheless, changing the 
configure is constrained to several technical necessities. For 
example, DGs can generate within a predefined interval, and 
lines cannot pass more power than their capacity. Equations (2)-
(5) represent DGs’ and lines’ active and reactive power limits. 
Demands and available generations are equal to the predicted 
value in the conventional framework. Topological constraints of 
the distribution system are radially presented in (6)-(9) by 
spanning tree theory [7]. The demand and generation balance in 
each bus is presented in (10)-(11). Linear voltage drop 
approximation is represented in (12)-(13), in which the voltage 
value of two buses is calculated by the Big-M method. 
Therefore, equations (12)-(13) will be relaxed when the line is 
open. Finally, voltage limits are presented in (14) [7]. 

0 ≤  𝑃𝑖,𝑡
𝐷𝐺 ≤ 𝑃𝑖

𝐷𝐺𝑚𝑎𝑥 ∗ 𝑢𝑖,𝑡
𝐺  () 

0 ≤  𝑄𝑖,𝑡
𝐷𝐺 ≤ 𝑄𝑖

𝐷𝐺𝑚𝑎𝑥 ∗ 𝑢𝑖,𝑡
𝐺  () 

−𝑃𝑙
𝑚𝑎𝑥 ∗ 𝑢𝑙,𝑡

𝐿 ≤ 𝑃𝑙,𝑡 ≤ 𝑃𝑙
𝑚𝑎𝑥 ∗ 𝑢𝑙,𝑡

𝐿  () 

−𝑄𝑙
𝑚𝑎𝑥 ∗ 𝑢𝑙,𝑡

𝐿 ≤ 𝑄𝑙,𝑡 ≤ 𝑄𝑙
𝑚𝑎𝑥 ∗ 𝑢𝑙,𝑡

𝐿  () 

𝑢𝑙,𝑡
𝐿 = 1                                         𝑙 ∈ 𝐿 − (𝑆𝑊 ∪ 𝑁𝐿) () 

𝑢𝑙,𝑡
𝐿 = 𝛽𝑖,𝑗,𝑡 + 𝛽𝑗,𝑖,𝑡                      𝑙 ≡ 𝑖𝑗 () 

𝛽𝑖,𝑗,𝑡 = 0                                      𝑗 ∈ 𝑆𝑏 () 

∑ 𝛽𝑖,𝑗,𝑡

∀𝑖

≤ 1                              ∀ 𝑗 () 

∑ 𝑃𝑙,𝑡 + 𝑃𝑖,𝑡
𝐷𝐺

𝑙∈𝐿(.,𝑖)

= ∑ 𝑃𝑙,𝑡

𝑙∈𝐿(𝑖,.)

+ 𝜌𝑖,𝑡𝑝𝑖,𝑡
𝐷          ∀ 𝑖 () 

∑ 𝑄𝑙,𝑡

𝑙∈𝐿(.,𝑖)

+ 𝑄𝑖,𝑡
𝐷𝐺 = ∑ 𝑄𝑙,𝑡

𝑙∈𝐿(𝑖,.)

+ 𝜌𝑖,𝑡𝑄𝑖,𝑡
𝐷        ∀ 𝑖 () 

−𝑀(1 − 𝑢𝑙,𝑡
𝐿 ) ≤ 𝑉𝑗,𝑡 − 𝑉𝑖,𝑡 +

𝑅𝑙𝑃𝑙,𝑡 + 𝑋𝑙𝑄𝑙,𝑡

𝑉1

 () 

𝑉𝑗,𝑡 − 𝑉𝑖,𝑡 +
𝑅𝑙𝑃𝑙,𝑡 + 𝑋𝑙𝑄𝑙,𝑡

𝑉1

≤ 𝑀(1 − 𝑢𝑙,𝑡
𝐿 ) () 

1 − 휀 ≤ 𝑉𝑖,𝑡 ≤ 1 + 휀 () 

𝑢𝑖,𝑡
𝐺 ≤ 𝑧𝑚,𝑡     ∀ 𝑖 ∈ 𝐷𝑒𝑝𝑒𝑛𝑑(𝑖, 𝑚), 𝑖 ∈ 𝐷𝑚𝑔_𝑖 () 

𝑢𝑙,𝑡
𝐿 ≤ 𝑧𝑚,𝑡     ∀ 𝑖 ∈ 𝐷𝑒𝑝𝑒𝑛𝑑(𝑙, 𝑚), 𝑖 ∈ 𝐷𝑚𝑔_𝑙 () 

Distribution system reconfiguration and repair crew routing 
problems can be connected by (15)-(16). According to these 
equations, if damaged component m belongs to line element line 
l or bus i, the element is unavailable until the end of component 
m repairment. 

B. Repair Crew Routing 

If the repair activities are co-optimized with DSR, the 
components that are more critical in load-serving are taken back 
to the system sooner. To do so, the repair sequence variables are 
considered as decision variables of the coordinated DRS and 
repair crew routing problem. Besides, the following constraints 
which model repair crew routing are added to the distribution 
system reconfiguration optimization model. 

∑ 𝑥𝑚,𝑛,𝑐

∀𝑛≠𝑚

− ∑ 𝑥𝑛,𝑚,𝑐

∀𝑛≠𝑚

= 0    ∀ 𝑐, 𝑚 ≠ 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑 () 

∑ 𝑥𝑚,𝑛,𝑐

∀𝑛≠𝑚

− ∑ 𝑥𝑛,𝑚,𝑐

∀𝑛≠𝑚

= 1   ∀ 𝑐, 𝑚 = 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑 () 

∑ ∑ 𝑥𝑛,𝑚,𝑐

∀𝑛≠𝑚

= 𝑛𝑐    

∀𝑐

                 ∀ 𝑚 =  𝑒𝑛𝑑 () 

∑ 𝑦𝑚,𝑐 = 1                      

∀𝑐

             ∀ 𝑚 ≠ 𝑒𝑛𝑑 () 

𝑦𝑚,𝑐 = ∑ 𝑥𝑚,𝑛,𝑐

∀𝑛≠𝑚

                         ∀𝑚 ≠ 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑 () 

𝐴𝑇𝑚,𝑐 + 𝑟𝑚,𝑐 + 𝑡𝑟𝑚,𝑛 − 𝐴𝑇𝑛,𝑐 ≤ 𝑀(1 − 𝑥𝑚,𝑛,𝑐)         ∀𝑚

≠ {𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑} , 𝑛 ≠ 𝑚, 𝑐 
() 

−𝑀(1 − 𝑥𝑚,𝑛,𝑐) ≤ 𝐴𝑇𝑚,𝑐 + 𝑟𝑚,𝑐 + 𝑡𝑟𝑚,𝑛 − 𝐴𝑇𝑛,𝑐   ∀𝑚

≠ {𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑} , 𝑛 ≠ 𝑚, ∀ 𝑐 
() 

∑ 𝑓𝑚,𝑡 = 1                      

∀𝑡

                                           ∀ 𝑚 () 

∑(𝐴𝑇𝑚,𝑐 + 𝑟𝑚,𝑐

∀𝑐

) ≤ ∑ 𝑇𝑆𝐷. 𝑡. 𝑓𝑚,𝑡

∀𝑡

                      ∀ 𝑚 () 

∑ 𝑇𝑆𝐷. 𝑡. 𝑓𝑚,𝑡

∀𝑡

≤   ∑(𝐴𝑇𝑚,𝑐 + 𝑟𝑚,𝑐)

∀𝑐

− 𝛿             ∀ 𝑚 () 

𝐴𝑇𝑚,𝑐 ≤ 𝑦𝑚,𝑐 . 𝑀                                                        ∀ 𝑚, 𝑐 () 

𝑧𝑚,𝑡 = ∑ 𝑓𝑡′

𝑡−1

𝑡′=1

                                                           ∀ 𝑚, 𝑡 () 

𝑧𝑚,𝑡 = 1                                                             ∀ 𝑚, 𝑡 = 1 () 

Equations (17)-(29) present the constraints of repair crew 
routing. Equation (17) ensures that every crew which enters a 
place will exit from that place unless the place is the start or the 
end depots. Constraint (18) forces that all crews start from the 
start depot. All of the crews end their mission into the end depot 
according to (19). Equation (20) asserts that each damaged 
component will be repaired by a crew. In equation (21), the 
relationship between variables 𝑥𝑚,𝑛,𝑐  and 𝑦𝑚,𝑐  is asserted. 

Furthermore, Constraints (22)-(23) computes the repair crews’ 
arrival time to each place. If crew c travels from m to n, the 
arrival time to m will be the summation of the duration taken to 
repair n, the arrival time to n, and the travel duration from m to 
n. Constraint (24) says that for each damaged component, there 
is a time step that the component would be repaired in. Equations 
(25)-(26) calculate the finishing time step of repairing 
component m. In these equations, δ is a small number. Also, the 
arrival time of crew c to a component which is not repaired by 
crew c is considered zero, shown in (27). A component will be 
available at time step t if it is repaired in any time step before the 
t. Based on this fact, equation (28) makes a connection between 
the availability of the component and its repair finishing time 
step. 

C. Uncertainty modelling 

As explained in the Introduction Section, the amount of load 
and RES power cannot be exactly predicted at the recovery 
planning stage. As Equations (10) and (11), the values of these 
variables affect the optimal solution, consequently, the optimal 
recovery decision. Uncertainty modelling is a prerequisite of 
robust optimization. This subsection discusses the load and 



generation uncertainty model. The real values of these variables 
are defined in (30) and (31). The first parts of these equations 
are predicted values; while, the second parts are Gaussian errors. 

𝑝𝑖,𝑡
 𝐷   =  �̅�𝑖,𝑡

 𝐷  +  𝑒𝑖,𝑡
𝐷  . �̅�𝑖,𝑡

 𝐷 () 

𝑝𝑡
𝑃𝑉𝑚𝑎𝑥   =  �̅�𝑡

  𝑃𝑉𝑚𝑎𝑥  +  𝑒𝑡
𝑃𝑉𝑚𝑎𝑥  . �̅�𝑡

  𝑃𝑉𝑚𝑎𝑥 () 

Without losing the generality, it is assumed that distribution 
systems are geographically small. For bigger systems, the grid 
can be divided into several parts in which each part of the grid’s 
recovery can be optimized independently of other parts. Solar 
irradiation to all photovoltaic modules in the geographically 
small distribution system is equal. However, the amount of 
photovoltaic generation at bus i depends on the size of the 
photovoltaic panels. Hence, PV generations are defined as the 
multiplication of their area and regional solar irradiation as 
asserted in (32). 

�̆�𝑖,𝑡
𝑃𝑉𝑚𝑎𝑥   = 𝑝𝑡

𝑃𝑉𝑚𝑎𝑥  𝐴𝑖
  𝑃𝑉𝑚𝑎𝑥 () 

The Gaussian probability distribution function is utilized in 
this paper to consider load error and photovoltaic generation 
density error [11]. The probability that a normal random variable 
takes a value more than 3 times of standard deviation is around 
0.0013. Similarly, the probability that the variable be less than -
3 times of standard deviation is around 0.0013. The worst load 
and photovoltaic errors are depicted in (33) and (34), 
respectively with 99.87 percent confidence. These worst errors 
are considered as the worst case in the proposed robust model in 
the following subsection. 

�̃�𝑖,𝑡
𝐷   = 3𝜎𝐷 () 

�̃�𝑡
𝑃𝑉𝑚𝑎𝑥   = −3𝜎𝑃𝑉 () 

D. RMPC co-ordinated DSR and repair crew routing 

In this section, the proposed uncertainty-aware RMPC 
distribution system reconfiguration and repair crew routing is 
introduced. Robust optimizations, in general, aim to optimize 
the objective function in the worst-case scenario [13]. In the case 
of DER and load uncertainty-aware recovery optimization, the 
worst scenario is when demands and generation errors are 
according to (33) and (34) as discussed in Subsection 2.3. Since 
the information about demands and generations is updated 
during the recovery interval, MPC approach [14] in which 
optimization is repeated until the end of the process is combined 
with the proposed robust optimization. The proposed RMPC 
framework is shown in Fig 1. As can be traced in Fig. 1, the joint 
DSR and repair crew routing optimization is repeatedly 
recalculated every time step to modify the reconfiguration 
schedule, conventional DGs dispatches, and repair crew routing 
based on new information that gets available in the current time 
step. This information is the exact demand and generation 
values. DGs dispatch and distribution system reconfiguration 
can revalue in each action time step, no matter what advisory 
values they got in previous time steps. The optimal values of the 
decision variables for future time steps are only advisory. They 
got updated subsequently. Repair crew routing optimization, 
however, is not independent of previous time steps optimization 
because the crews, who either are moving from one place to 
another place or are doing a repair on one element, cannot 
change their task in the current time step. To model the inter-
temporal relationship of repairs, all of the movements (𝑥𝑚,𝑛,𝑐) 

that start before the current time step should be fixed (35).  

𝑥𝑚,𝑛,𝑐 = 𝑓𝑖𝑥_𝑥𝑚,𝑛,𝑐                                𝑖𝑓( 𝑓𝑖𝑥𝑚,𝑛,𝑐 = 1) () 

The proposed process of RMPC recovery is summarized in 
Algorithm 1. At first, in the scheduling stage, all demands and 
RES outputs are equal to the worst value according to (33) and 
(34). Then, in order to reduce the prediction mismatch, demands 
and RES outputs are adjusted to the real values. The 
optimization is performed again in every time step. Furthermore, 
the crews’ previous movements are fixed because those 
movements have already been done and cannot be changed. 
Only afterward movements can be changed. The method of 
fixing movements, which determine the fixed movements and 
their values, is presented in lines (7)-(12) of the presented 
algorithm. In this paper, 𝑣𝑎𝑟̅̅ ̅̅ ̅ is a value of a general variable 𝑣𝑎𝑟 
of the optimization performed at the previous time step. To 
check whether a movement started before the current time step, 
the arriving time of crews to point m is subtracted from the travel 
duration to point m. This subtraction gives the time instance at 
which a crew moved toward pointed m. If the result is less than 
the current time step, all 𝑥𝑛,𝑚,𝑐 (all movements which end to m) 

are fixed. Finally, the optimization repeats to modify the next 
hours’ recovery plan based on current values of demand and 
RES output. 

 

Algorithm 1 

1: Set Current time = t1 

2: Set 𝑓𝑖𝑥𝑚,𝑛,𝑐 = 0                                                ∀ m, n, c 

3: Set 𝑝𝑖,𝑡
𝐷 = 𝑝𝑖,𝑡

𝐷  ,  𝑝𝑖,𝑡
𝑃𝑉𝑚𝑎𝑥 = �̃�𝑖,𝑡

𝑃𝑉𝑚𝑎𝑥                           ∀ 𝑡             
4: Solve max (1) Subjected to (2)-(28) 

5: Set 𝑣𝑎𝑟̅̅ ̅̅ ̅ =  𝑣𝑎𝑟  for all variables 

6: for Current time = t2 : tn 

7:         for m = 1: Damaged 

8: if ∑ 𝐴𝑇𝑚,𝑐
̅̅ ̅̅ ̅̅ ̅ − ∑ ∑ (𝑡𝑟𝑛,𝑚̅̅ ̅̅ ̅̅ . 𝑥𝑛,𝑚,𝑐̅̅ ̅̅ ̅̅ ̅)∀𝑛∀𝑐∀𝑐 <

                                                          ( 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 − 1) ∗ 𝑇𝑆𝐷 

9:                      Set  𝑓𝑖𝑥𝑛,𝑚,𝑐 = 1                             ∀ 𝑛, 𝑐 

10:                    Set  𝑓𝑖𝑥_𝑥𝑛,𝑚,𝑐 = 𝑥𝑛,𝑚,𝑐̅̅ ̅̅ ̅̅ ̅                  ∀ 𝑛, 𝑐  

11:               end if 

12:       end for 

13:       Set    𝑝𝑖,𝑡
𝐷 = 𝑝𝑖,𝑡

𝐷  , 𝑝𝑖,𝑡
𝑃𝑉𝑚𝑎𝑥 = 𝑝𝑡

𝑃𝑉𝑚𝑎𝑥  ; 𝑡 ≤ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 

14:       Set   𝑝𝑖,𝑡
𝐷 = 𝑝𝑖,𝑡

𝐷  , 𝑝𝑖,𝑡
𝑃𝑉𝑚𝑎𝑥 = 𝑝𝑡

𝑃𝑉𝑚𝑎𝑥 ; 𝑡 > 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 

15:       Solve max (1) Subjected to (2)-(28), (34) 
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Fig. 1. Proposed framework’s schedule structure 



16:       Set 𝑣𝑎𝑟̅̅ ̅̅ ̅ =  𝑣𝑎𝑟  for all variables 

17: end for 

 
As shown in Fig 1, the distribution system operator 

reconfigures the system, re-dispatch the conventional DG, and 
specifies the route of repair crews based on the optimal values 
of decision variables in the current time step. The values are 
advisory for the next time steps. An example of the proposed 
model has been presented in Fig. 2. The robust optimization 
procedure is performed before the recovery process. The route 
(red lines) is considered as the optimal route according to the 
optimization model. After 60 minutes, the real value of 
generation and demand have been provided. Then, the 
optimization model is repeated to correct the repair route, 
dispatch, and switching based on the newly available 
information. Note that result of the repeated optimization model 
cannot change "Depot to A" and "A to B"  due to being provided 
before one hour. Thus, this part is considered from the old plan; 
however, route B to C can change in the new plan. 

III. CASE STUDY 

To assess the efficiency of the proposed approach, this 
method is implemented on the IEEE 33-Bus test network [16]. 
This test system is presented in Fig. 3. In Table I, nine damaged 
components are listed. The predicted load profile and the PV 
generation density prediction, depicted in Fig 4, are similar to 
[11], [16]. The standard deviation of demand and solar 
generations are 𝜎𝐷 = 0.03  and 𝜎𝑃𝑉 = 0.05 respectively [12]. 
To examine the efficiency of the method, both the conventional 
load restoration and RMPC are implemented for this case study. 
Three cases are simulated: 

 

 

• Case 1 (Based Case): one conventional DG with (500 
kW) at bus 5 and three PV DGs with 500 kW and 600 kW 
and 750 kW maximum generation are installed at buses 
16, 22, and 27, respectively. (Following Fig. 3.) 

• Case 2: All DGs in the network are renewable at buses 5, 
16, 22, and 27 with 500 kW, 500 kW, 600 kW, and 750 
kW maximum generation, respectively. 

• Case 3: two conventional DGs with the capacity of 500 
kW and 750 kW at buses 5 and 27 and two PV DG with 
500 kW and 600 kW maximum generation are installed 
at buses 16 and 22, respectively. 

The programs are run by CPLEX/GAMS solver on a 
personal computer (PC) with an Intel Core i5 CPU and 6 GB 
RAM. 

IV. RESULTS 

To check the effectiveness of the proposed outage 
management method, the metric which is introduced in  [17] is 
employed. According to this metric, the agility of a recovery 
process is defined as “the number of recovered customers 
divided by the average outage time of the affected customers.” 
It is asserted as (35). 

𝑟𝑒 = (𝑆0 − 𝑆𝑝𝑒)/[
∫ 𝑆𝑑𝑡

𝑆0

𝑆𝑝𝑒

𝑆0 − 𝑆𝑝𝑒

] () 
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Fig. 2. Routing schedule change during recovery 

TABLE I.          DAMAGED COMPONENTS OF THE CASE STUDY 

Component Repair 

Duration 

(hr.) 

Component Repair 

Duration 

(hr.) 

Node 5 2 Line 10-11 1.5 

Node 12 3 Line 2-19 0.4 

Node 14 2 Line 28-29 1 

Node 28 2 Line 32-33 0.5 

Line 2-3 1.1  
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Fig. 3. Modified IEEE 33 buses test network  

 

Fig. 4. Predicted PV generation density 
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The interested readers are referred to [17] for more 
information about this metric. 

The results are presented in Fig. 5. As can be seen, for the 
base case, the number of served customers in most of the 
scenarios enhances slightly. Only in a few scenarios, the number 
of supplied customers are decreased compare to that of the 
conventional method. The result of case 2 and case 3 differs 
significantly. In case 2, in which all DGs are renewable, the 
improvement in load-serving is considerably more. This is 
mainly because of the fact that uncertainty is higher in case 2, 
and uncertainty aware approaches is more necessitated. 
However, in case 3, the less renewable DG case, the proposed 
model does not make a significant change in load-serving. On 
average, improvements in load-serving are 0.285 %, 4.556 %, 
and -0.045% for case 1, case 2, and case 3 respectively. 
Therefore, for a system with a low level of RES penetration, the 
proposed method does not affect the metric substantially. 
However, the results highlight the fact that the proposed method 
is an effective outage management optimization for networks 
with a high installed renewable DG capacity. 

To further examine the proposed method, the values of the 
metric, mentioned in the previous subsection, for the three cases 
are computed. The averages of the metric are presented in Table 
2. The results support the claim that the proposed method 
enhances the metric in case of high renewable energy sources 
penetration. 

 

V. CONCLUSION 

This paper developed a robust predictive control distribution 
system recovery method to cope with the load and renewable 
generation uncertainty challenges. In the scheduling step, the  
recovery procedure has been optimized for the worst scenario.  

Then, the co-optimization repeats every time step to correct the 
schedule based on the new information of generations and 
demands. Since the repair action done in previous time steps 
affect the rest of the recovery procedure, the history of repair 
crews’ activities, which has already been done, is fixed in the 
current time step optimization. The discussed methodology has 
been compared with the conventional method, developed in 
research papers, in the case study. Results reveal that the 
proposed method cause improvement in the number of supplied 
customers in the majority of scenarios. The more renewable 
penetration, the more substantial effect on the proposed model. 
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Fig. 5. Improvement in net number of supplied customers, 

comparing to conventional method. 

 Improvement (Percent) 

TABLE II.          DAMAGED COMPONENTS OF THE CASE STUDY 

Case Conventio

nal 

Method 

Proposed 

Method 

Improvement 

(Percent) 

Case 1 281.17 286.48 1.9 

Case 2 235.96 289.07 22.5 

Case 3 272.61 276.52 1.43 
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