
 

  

 

Aalborg Universitet

Monte Carlo Tree Search for Priced Timed Automata

Jensen, Peter Gjøl; Kiviriga, Andrej; Guldstrand Larsen, Kim; Nyman, Ulrik; Mijačika, Adriana;
Høiriis Mortensen, Jeppe
Published in:
Quantitative Evaluation of Systems

DOI (link to publication from Publisher):
10.1007/978-3-031-16336-4_19

Publication date:
2022

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Jensen, P. G., Kiviriga, A., Guldstrand Larsen, K., Nyman, U., Mijačika, A., & Høiriis Mortensen, J. (2022). Monte
Carlo Tree Search for Priced Timed Automata. In E. Ábrahám, & M. Paolieri (Eds.), Quantitative Evaluation of
Systems: 19th International Conference, QEST 2022, Proceedings (pp. 381-398). Springer.
https://doi.org/10.1007/978-3-031-16336-4_19

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 20, 2024

https://doi.org/10.1007/978-3-031-16336-4_19
https://vbn.aau.dk/en/publications/4c277232-7315-49fd-961c-645874faeb23
https://doi.org/10.1007/978-3-031-16336-4_19


QEST
Evaluation
Artifact

2022
Accepted

Monte Carlo Tree Search for Priced Timed Automata

Peter Gjøl Jensen, Andrej Kiviriga(�), Kim Guldstrand Larsen, Ulrik Nyman,
Adriana Mijačika, and Jeppe Høiriis Mortensen

Aalborg University, Selma Lagerløfs Vej 300, 9220 Aalborg, Denmark
{pgj, kiviriga, kgl, ulrik}@cs.aau.dk,

adrianamijacika@gmail.com, Jeppe.h.m7997@gmail.com

Abstract. Priced timed automata (PTA) were introduced in the early 2000s to
allow for generic modelling of resource-consumption problems for systems with
real-time constraints. Optimal schedules for allocation of resources may here be
recast as optimal reachability problems. In the setting of PTA this problem has
been shown decidable and efficient symbolic reachability algorithms have been
developed. Moreover, PTA has been successfully applied in a variety of appli-
cations. Still, we believe that using techniques from the planning community
may provide further improvements. Thus, in this paper we consider exploiting
Monte Carlo Tree Search (MCTS), adapting it to problems formulated as PTA
reachability problems. We evaluate our approach on a large benchmark set of
PTAs modelling either Task graph or Job-shop scheduling problems. We discuss
and implement different complete and incomplete exploration policies and study
their performance on the benchmark. In addition, we experiment with both well-
established and our novel MTCS-based optimizations of PTA and study their
impact. We compare our method to the existing symbolic optimal reachability
engines for PTAs and demonstrate that our method (1) finds near-optimal plans,
and (2) can construct plans for problems infeasible to solve with existing sym-
bolic planners for PTA.

Keywords: Priced Timed Automata (PTA) · Model-checking · Monte Carlo Tree
Search (MCTS) · Planning · Upper confidence bounds for trees (UCT)

1 Introduction

The world is full of planning and scheduling problems that have impact on the real
world. Finding optimal solutions for such problems can be of great importance for profit
maximization or resource minimization, affecting financial success and sustainable de-
velopment. In general such problems do not just have one solution, but many solutions
– with varying cost. These scheduling problems are one sub-field within operations
research, and lots of effort has been put into finding both optimal and near optimal
solutions to them.

One technique that has been successfully applied to planning is that of model check-
ing, e.g. BDD based model checking [19]. For optimal planning problems involving
timing constraints, the notion of priced timed automata was introduced in the early
2000s, with initial decidability results [7, 4] based on so-called corner-point regions
and later with efficient symbolic forward reachability algorithms using so-called priced



2 A. Kiviriga et al.

zones made available in the tool UPPAAL CORA. Here a generic and highly expressive
modeling formalism is provided, extending the classical notion of timed automata [3]
with a cost-variable (to be optimized), but also providing support for discrete variables
over structured (user-defined) types, as well as user-specified procedures [8]. In fact,
the notion of PTA allows for an extension of Planning Domain Definition Language
(PDDL) 2.1 at level 3 towards duration-dependent and continuous effects to be en-
coded as demonstrated by [18]. Most recently so-called extrapolation techniques have
been introduced for more efficient analysis of PTA, implemented in the tool TiaMo [13].

Applications of PTA and UPPAAL CORA are several and from a variety of areas
[14], e.g. power optimization of dataflow applications [2], battery scheduling [27], plan-
ning of nano-satelites [23, 30], grape harvest logistic [33], programmable logic con-
trollers [35], smart grids [21], service oriented systems [17], and optimal multicore
mapping of spreadsheets [11] to mention a few.

Despite the success of PTA and UPPAAL CORA, we still believe that the perfor-
mance may be improved by exploiting advances made by the planning community.
Thus, we consider in this paper various ways of exploiting Monte Carlo Tree Search
(MCTS) to further improve performance of PTA optimization. MCTS is a powerful
technique that has seen application in many domains requiring (near-) optimal plan-
ning, including problem instances where the size of the search-space makes symbolic
and complete methods infeasible. In particular, MCTS [16] has already been applied
directly to Job-shop [5] scheduling problems. We benchmark our implementations of
MCTS based analysis of PTA on Job-shop and Task graph problems and compare
against the two tools UPPAAL CORA [9] and TiaMo [13].

The rest of the paper is organized as follows: First we formally define Priced Timed
Automata, then we introduce a general formalization of Monte Carlo Tree Search along
with specific PTA policies. Finally we discuss additional enhancements and present our
experimental evaluation.

2 Priced Timed Automata

The priced timed automaton [6] is an extension of timed automaton [3] with prices on
both locations and transitions. Delaying in locations entails a price growth based on
fixed price (cost) rate, while taking transitions is associated with a fixed price. We now
present the formal definition of priced time automaton and its semantics based on [9].

Let C be a set of clocks. The set of constraints over clocks C, B(C), are defined
as the set of conjunctions of atomic constraints of the form x ▷◁ n, where x ∈ C,
▷◁ ∈ {<,≤,=, >,≥} and n ∈ N≥0. Such constraints – guards and invariants – allow
to restrict the behavior w.r.t. the values of clocks. The power set of C is denoted as 2(C).

Definition 1 (Priced Timed Automaton). A Priced Timed Automaton (PTA) over
clocks C and actions Act is represented as a tuple A = (L, l0 ,E , I ,P) where:

– L is a finite set of locations,
– l0 ∈ L is the initial location,
– E ⊆ L × B(C) × Act × 2(C) × L is a set of edges where an edge connects two

locations and contains a guard, an action, and a set of clocks to be reset,



Monte Carlo Tree Search for Priced Timed Automata 3

– I : L →,B(C) is a set of location invariants, and
– P : (L ∪ E) → N assigns cost rates and cost increments to locations and edges,

respectively.

In the case of (l, g, a, r, l′) ∈ E, we write l
g,a,r−−−→ l′. A clock valuation v over C is a

mapping v : C → R≥0 and RC denotes a set of all clock valuations. The semantics of a
PTA is defined in terms of a priced transition system:

Definition 2 (Priced Transition System). A Priced Transition System (PTS) over ac-
tions Act is a tuple T = (S, s0, Σ,→) where:

– S is a set of states
– s0 is an inital state,
– Σ = Act ∪ R≥0 is the set of labels, and
– →⊆ (S × Σ × R≥0 × S) is a set of labelled and priced transitions. We write
s

a−→p s′ whenever (s, a, p, s′) ∈→.

Now a PTA A = (L, l0 ,E , I ,P) defines a PTS TA = (S, s0, Σ,→), where the set
of states S are pairs (l, v), with l ∈ L is a location and v is a clock valuation s.t. the
invariant I(l) of l is satisfied by v, denoted v |= I(l).

There are two possible types of transitions between states: action transitions and
delay transitions. Action transitions are the result of following an enabled edge in the
PTA A. As a result, the destination location is activated and the clocks in the reset set
are set to zero, and the price of the transition is given by the cost of the edge. Formally:

(l, v)
a−→p (l′, v′) iff ∃(l, g, a, r, l′) ∈ E, such that

v |= g ∧ v′ = v[r] ∧ v′ |= I(l) ∧ p = P ((l, g, a, r, l′))

where v[r] is the valuation given by v[r](x) = 0 if x ∈ r and v[r](x) = v(x) otherwise.
Delay transitions allow the time to pass resulting in an increase of the value of all

clocks, but with no change of the location. The cost of a delay transition is the product
of the duration of the delay and the cost rate of the active location. Formally:

(l, v)
d−→p (l, v′) iff v′ = v + d ∧ v |= I(l) ∧ v′ |= I(l) ∧ p = d · P (l)

where v+d is the valuation given by (v+d)(x) = v(x)+d for all x. Finally, the initial
state is s0 = (l0, v0), where l0 is the initial location, and v0(x) = 0 for all clocks x.
For networks of priced timed automata we use vectors of locations and the cost rate of
a vector is the sum of the cost rates of individual locations.

An example of a PTA is shown in Figure 1 with clocks x and y and five locations
– ℓ0 (initial), ℓ1, ℓ2, ℓ3, and ℓg (goal), with cost rates P (ℓ0) = +5, P (ℓ2) = +10 and
P (ℓ3) = +1, and the cost of the edge from ℓ2 (ℓ3) to ℓg is +1 (+7). Note that the
invariant y = 0 in ℓ1 enforces that the location must be left immediately. Below we
show two example traces for the automaton:

π1 = (ℓ0, x = 0, y = 0) −→0 (ℓ1, x = 0, y = 0) −→0 (ℓ3, x = 0, y = 0)

2−→2 (ℓ3, x = 2, y = 2) −→7 (ℓg, x = 2, y = 2)

π2 = (ℓ0, x = 0, y = 0)
1.5−−→7.5 (ℓ0, x = 1.5, y = 1.5) −→0 (ℓ1, x = 1.5, y = 0)

−→0 (ℓ2, x = 1.5, y = 0)
0.5−−→5 (ℓ2, x = 2, y = 0.5) −→1 (ℓg, x = 2, y = 0.5)



4 A. Kiviriga et al.

Fig. 1: Priced Timed Automata example

We see that π1 reaches ℓg with a total cost of 2 + 7 = 9, whereas the reachability cost
of π2 is 7.5 + 5 + 1 = 13.5. In fact, among the infinitely many traces that reach ℓg , π1

has the minimum cost. The question of cost-optimal reachability was shown decidable
by [7] and later proven to be PSPACE-complete [12]. Here, extending the result for
reachability of TAs in [15], it is observed that a PTS semantics with natural-valued
delays is complete for PTAs with non-strict guards. Moreover, if k is the maximum
constant to which clocks are compared to in guards and invariants, it suffices to consider
delays no greater than k + 1. In short, in Definition 2 it suffices to consider finite-state
PTS with Σ = Act ∪ N≤k+1

1 – as in the PTA of Figure 1, where k = 2.
These observations are crucial for our developments of non-symbolic MCTS-based

methods for optimal reachability of PTA as we shall see.

3 Monte Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a family of algorithms that has been intensely
studied in the last decades due to its high success in a range of domains, in particular -
game playing. MCTS works on a search tree that grows in asymmetric fashion and in
accordance to the results of random samples (or heuristics) that are used to estimate the
reward (potential) of the action taken. The tree is iteratively expanded starting from the
root node according to four steps:

– Selection: Descend down the tree by selecting the best child according to the chosen
policy and until a first unexplored node is met. The selection process typically tries
to balance between exploration (visiting promising nodes) and exploitation (visiting
nodes with least visits).

– Expansion: Generate a successor of the given state according to the chosen policy.
– Simulation: Estimate the reward of the expanded node by performing simulations,

aka roll-outs until the terminal node is reached. Typically, the performance of the
algorithm can be drastically improved by a smart simulation strategy.

– Backpropagation: The estimated reward is ”backed up” through the tree to update
reward estimates.

The first two steps (selection and expansion) are often referred to as tree policy,
whereas the simulation (roll-out) step is called default policy. The algorithm does not

1 N≤k+1 are all natural numbers less than or equal to k + 1.



Monte Carlo Tree Search for Priced Timed Automata 5

have a predefined termination condition and is typically running until either a com-
putational budget (time, memory, etc.) is reached or some different, domain-specific
condition is met.

Some of the characteristics that have made MCTS popular in other domains are
particularly relevant in the setting of PTA. Tree policy allows to favor more promis-
ing regions of the model which over time leads to asymmetric tree growth. This helps
alleviate the state-space explosion – the most prominent obstacle in model-checking.
Moreover, MCTS being aheuristic – easily applicable without the need for domain-
specific knowledge – it can be applied to any problem domain as long as it can be
modelled as PTA.

We now introduce the formal definition of MCTS and then give the pseudocode of
the algorithm – both adapted for the setting of PTA with non-strict guards. Recall that
for PTA A with non-strict guards and with maximum constant k (to which clocks are
compared) it suffices to consider the finite set of labels Σ = Act ∪ N≤k+1 to get a
finite and complete PTS FA. We let Σ∗ denote the language of finite (natural-valued
and bounded) timed strings over Σ and let ϵ ∈ Σ∗ denote the empty string.

By convention we let |ϵ| = 0 and otherwise define |a0 . . . an| = n to be the length
of a word. We denote by wi ∈ Σ the i’th index of the word w ∈ Σ∗.

A timed word w ∈ Σ∗ of a PTS T = (S, s0, Σ,→) is valid iff for n = |w| we have:

s0
w0−→ s1

w1−→ . . .
wn−→ sn+1

We let the function O : Σ∗ ⇀ S denote the outcome of such a valid trace w be
O(w) = sn+1. By convention we let O(ϵ) = s0.

Definition 3 (Search Tree). We define ΥT = (N,n0,⇒) to be the search-tree for a
natural- and bounded-valued PTS T = (S, s0, Σ,→) as follows:

– N = Σ∗ is set of nodes,
– n0 = ϵ is the root node, and
– ⇒⊆ N × Σ × N is the transition relation such that (n, b, n′) ∈⇒ if and only if
nb = n′ with b ∈ Σ and (O(n), b,O(n′)) ∈→.

We delimit our attention to the most popular MCTS algorithm – the upper confi-
dence bound for trees (UCT) [29]. UCT uses upper confidence bound (UCB1) formula
as the tree policy, which addresses the exploration-exploitation dilemma of selecting
the most promising paths by treating it as a multiarmed bandit problem. UCB1 makes
a good candidate since it is guaranteed to be within a constant factor of the best bound
for regret.

Let us define the global functions of the MCTS algorithm. Let V : N → N as-
sign the number of node visits, Q : N → R assign the accumulative reward of the
node, P : N → N maps to the parent of a node s.t. P (n) = n′ where n′ = nα and
(n, α, n′) ∈⇒, and YX : N → P(N) defines all children of the node that are valid
according to the policy transition relation ⇒

X
, s.t. YX(n) = {n′ | n ⇒

X
n′}. The def-

initions for each policy and respective transition relations are given in the following
sections. Children are also partitioned into unexplored (Y U ) and explored (Y E) ones
s.t. YX(n) = Y U

X (n) ∪ Y E
X (n) and Y U

X (n) ∩ Y E
X (n) = ∅.



6 A. Kiviriga et al.

Algorithm 1: The UCT Algorithm. This is a PTA-adapted redefinition of the Algorithm
from [16].
1: function UCTSEARCH(An initial state s0, a set of goal-states G, an empty set of solved nodes
S, an empty set of dead nodes D, and a Cp constant)

2: n0 ← s0
3: while budget remaining do
4: n← TREEPOLICY(n0, G, Cp,S,D)
5: ∆← DEFAULTPOLICY(n, G)
6: BACKUP(n,∆)
7: if O(n) ∈ G then
8: MARKSOLVED(n,S)
9: if O(n) ̸∈ G and Y (n) = ∅ then

10: PRUNE(n,D)
11: return BESTCHILD(n0, 0, ∅,D)
12: function TREEPOLICY(n, G, Cp)
13: while O(n) ̸∈ G do
14: if Y U

X (n) ̸= ∅ then
15: return EXPAND(n)
16: else
17: n← BESTCHILD(n,Cp,S,D)
18: return n
19: function EXPAND(n)
20: sample n′ ∈ Y U

X (n)
21: V (n′) = Q(n′) = 0
22: Y E

X (n′) = ∅
23: add n′ to Y E

X (n)
24: return n′

25: function BESTCHILD(n,Cp,S,D)

26: return argmax
n′∈Y E

X
(n)\(S∪D)

QB
V (n′)
Q(n′) + C

√
lnV (n)
V (n′)

27: function DEFAULTPOLICY(n,G)
28: while n ̸∈ G and within roll-out budget and
29: YX(n) ̸= ∅ do
30: sample n′ ∈ YX(n) uniformly
31: n← n′

32: return reward for n
33: function BACKUP(n, reward)
34: while n ̸= ϵ do
35: V (n)← V (n) + 1
36: Q(n)← Q(n) + reward
37: n← P (n)

38: function MARKSOLVED(n,S)
39: while n ∈ G or n′ ∈ S for all n′ ∈ YX(n) do
40: S ← S ∪ {n}
41: n← P (n)

42: function PRUNE(n,D)
43: if n ̸= ϵ and YX(n) = ∅ then
44: PRUNE(P (n))
45: D ← D ∪ {n}



Monte Carlo Tree Search for Priced Timed Automata 7

Algorithm 1 gives a pseudocode for our PTA-adapted version of the UCT algorithm.
The selection strategy used is a standard UCT formula (line 26). The expected reward of
a node, determined by the exploitation factor QB

V (n′)
Q(n′) , is inversely proportional to the

average cost found so far which is normalized according to the currently best solution
QB . The normalization ensures the reward value to be in range between 0 and 1 and
thus supports domain (cost range) independence and eliminates the need for any prior
knowledge about the reward distribution, which is also apriori unknown for PTAs. The
significance of the exploration term is controlled by the value of C constant.

Once a solution is found, we mark the given node terminal to avoid re-exploration
(lines 7 and 38-41). As long as the underlying search-tree is complete (determined
by the variant of ⇒

X
) , the algorithm is guaranteed to (eventually) provide an optimal

solution given that one exists.

4 General PTA Challenges

Infinite transition sequences: MCTS algorithms have in large parts been developed
for game playing, probabilistic planning or other, typically finite, state-space problems.
However, in the setting of PTA, infinite transition sequences are possible, e.g. due to
loops in the model. First and foremost it means that traditional roll-outs, directed at
reward estimation, might never come to a halt. To overcome this problem we introduce
a maximum budget for a roll-out (line 28). An example of the budget is an upper bound
on maximum allowed steps that can be done in the default policy before the simulation
is terminated.

Reward evaluation: In turn, capped roll-out length can pose a problem by introducing
the need to evaluate non-terminal states. Fortunately, PTA contains all the necessary in-
formation needed to evaluate the current cost of any state, including non-terminals. We
evaluate and back-propagate the reward regardless of whether the rollout has reached a
terminal state.

‘Dead’ states: Apart from infinite transition sequences, it is possible to encounter states
with no possible successors in PTA. In most MCTS algorithm domains such no succes-
sor states are also terminal states; however, it is not necessarily the case for PTA. This
is an issue for UCT as it is not equipped to deal with such dead states. In UCT, a dead
state can be encountered either during expansion or simulations step. For the latter we
simply terminate the roll-out upon reaching a dead state (line 29). In case of the former,
if UCT expands into a dead state, it must have highest so far expected reward. Simu-
lating from a dead state will not generate any new information, resulting in that state
being the best-so-far. To avoid computational overhead, we prune dead states and their
parent states from the search tree (lines 9 and 42-45) until no dead states remain in the
current branch of the tree.



8 A. Kiviriga et al.

5 Policies

In MCTS, the structure of the search tree is decided by the unfolding mechanism of
the tree policy. The same unfolding strategy is also used during the simulation process
of the default policy. In this section we discuss different unfolding strategies that we
refer to as policies. The specific choice of policy can have a dramatic effect on the
performance of MCTS (as we shall demonstrate in the experiments). In particular, for
PTA, the search-tree transition function ⇒ for the PTA in Figure 1 would for the state
(ℓ0, x = 0, y = 0) contain both the delay-action of 2 time units and the delay-action of
1 time unit (which would be repeatable), leading to the exact same configuration with
the same total cost, namely (ℓ0, x = 2, y = 2) at cost 10.

We thus explore both incomplete and complete policies, all restrictions over the full
search-tree transition function ⇒, with the latter category quarantining the existence of
at least one optimal trace. Here, an incomplete policy does not retain the entire search-
tree and does not guarantee preservation of an optimal solution. As the first policy, we
introduce the Unit Delay Policy.

Definition 4 (Unit Delay Policy). The transition function ⇒
UDP

is given directly by

⇒
UDP

= (N × (Act ∪ {1})×N)∩ ⇒.

While the UDP policy streamlines the application of delays, we observe a decreasing
probability to pick larger delays. A child node (in tree and default policies) is chosen
randomly between all available actions from that state and a delay of a single time unit;
consequently, the probability for sequential choice of d unit-delay transitions at state s,
i.e. delaying d time units, can be captured as follows:

Pr(s, d) =

(
1

|Acts|+ 1

)d
where s ∈ S, d ∈ N and assuming that all actions Acts are available from state s at all
times. If a state has actions that are only valid after a certain amount of time, then those
actions are considerably less likely to be explored. We anticipate that such a skewed
construction of the tree severely affects the ability of MCTS to find optimal solutions.

To alleviate this, we introduce a Delay Sampling policy (DSP) that allows to choose
delays according to a more favorable probability distribution by enforcing a particu-
lar structure where delay and action transitions are always alternated. We also use this
node layer alternation in the policies following the DSP policy giving a clear cut be-
tween transitioning by delay or action. Let X : S → P(N) be a function that given
a state returns a set of natural-valued delays w.r.t. to location-based constants, which
includes the smallest possible delay, the largest possible delay, and a certain amount of
delays from in between the bounds. We include only a subset of possible delays, which
is limited to contain at most 100 values and at most 30% of the number of possible val-
ues (excluding bounds). The set of possible delays is selected in an attempt to reduce
potentially huge branching factor due to delay-actions as to direct the search towards
more cost-promising paths. Notice that X may change with each subsequent execution
of the algorithm, but will not change during. Formally, DSP is defined as follows.



Monte Carlo Tree Search for Priced Timed Automata 9

Definition 5 (Delay Sampling Policy). The DSP policy ⇒
DSP

is defined s.t. if

(n, α, n′) ∈⇒ then (n, α, n′) ∈ ⇒
DSP

iff:

– n′ = na, a ∈ Act , n = n′′d, d ∈ N, or
– n′ = nd, d ∈ X(O(n)), a ∈ Act and either n = ϵ or n = n′′a.

The policy solves the issue of uneven probability distribution for larger delays.
However, it is incomplete in the function X not guaranteeing preservation of key delay
values. In addition, we note that the policy still considers a fair degree of delay values
(up to 100), quickly leading to a significant degree of branching in the search-tree.

As an alternative, we introduce a policy with the behavior inspired by Non-lazy
schedules of [1]. The idea behind non-laziness is to avoid unnecessary simultaneous
idling of both jobs and corresponding resources. If the resource is available, the job
should claim the resource unless some other job can also use it. In the latter case, the first
job can be delayed to ‘pass’ the resource to the second job. We do not give the formal
definition of Non-lazy schedules here to maintain readability and refer the interested
reader to the mentioned paper for more details.

We introduce our Non-Lazy policy with delays restricted to being either zero, to
mimic no delay, or a non-lazy delay, representing the smallest non-zero delay leading
to some action becoming enabled, similarly to non-lazy schedules. In comparison to
DSP this drastically reduces the breadth of the search tree to at most 2 children and in
part alleviates the state-space explosion problem. Let NLD : S → P(N) give a set of
zero and non-lazy delay, and A′ = {α ∈ Σ | s ̸ α−→} be a set of actions that are not
immediately enabled from a given state.

NLD(s) ={0 | ∃α ∈ Σ s.t. s α−→ s′}∪

{d′ | d′ = arg min
d∈N>0

{∃α ∈ A′ s.t. s d−→ s′′
α−→ s′}}

We now give a formal definition of the policy.

Definition 6 (Non Lazy Policy). The NLP policy ⇒
NLP

is defined s.t. if

(n, α, n′) ∈⇒ then (n, α, n′) ∈ ⇒
NLP

iff:

– n′ = na, a ∈ Act , n = n′′d, d ∈ N, or
– n′ = nd, d ∈ NLD(O(n)), a ∈ Act and either n = ϵ or n = n′′a.

In [1] it is shown that non-lazy schedulers preserve optimal solutions for Job-shop
scheduling problems; however, this is not the case for all problems expressible as PTA
– implying that the method is incomplete for general PTAs.

Lastly we introduce a policy inspired by Randomized Reachability Analysis heuris-
tics from [28]. The idea is to consider action transitions and select delays based on
availability range of the chosen action transition. This supports an equal probability
distribution to traverse each individual action transition irrespective of its availability
range in terms of delays and overall provides a ‘fair’ exploration. The authors of this
heuristics demonstrated its efficiency in finding rare events. We here adapt the idea



10 A. Kiviriga et al.

for finding cost-optimal plans under the heuristic that taking only the smallest possible
delay for each transition will often lead to a lower cost.

We now give a formal definition of the Enabled Transition policy. Let LB : S×Σ →
N give the lower bound of the transition’s availability range over the actions of a given
PTS. Simply put, LB gives the smallest delay after which a certain action can be taken.
Formally:

LB(s, α) =

0 if ∄ d ∈ N s.t. s d−→ s′
α−→ s′′

arg min
d∈N

s
d−→ s1

α−→ s2 otherwise

Definition 7 (Enabled Transition Policy). The ETP policy ⇒
ETP

is defined s.t. if

(n, α, n′) ∈⇒ then (n, α, n′) ∈ ⇒
ETP

iff:

– n′ = na, a ∈ Act , d ∈ N, n = n′′d, d = LB(O(n′′), a), or
– n′ = nd, a ∈ Act , d ∈ {LB(O(n), a′) | a′ ∈ Act} and either n = n′′a or n = ϵ.

Similarly to NLP, ETP is also an incomplete policy but with more relaxed condi-
tions allowing it to consider all eventually enabled (either now or after delay) actions
from a given state.

6 Enhancements

To improve on the performance of the MCTS algorithm, we propose the following
modifications over the standard MCTS algorithm presented in Algorithm 1.

Building Rollouts. The standard UCT algorithms uses rollouts to estimate the reward
of a node, but strictly in a way s.t. the tree is not expanded, as to preserve memory. We
propose to add a rollout to the tree under two conditions: if 1. a roll-out reaches the
terminal state, and 2. it does so with the so-far-best cost. We denote such configuration
as BR.

Tree pruning with steps. It can be beneficial to perform a step (advance the root) once
‘enough’ information has been gathered to ensure near-optimal action choice in the
root of the search-tree. Two domain-independent techniques – Absolute pruning and
Relative pruning – have been introduced in [25]. They have shown that the Absolute
pruning in fact preserves the optimality of the search tree, but concluded that rather few
nodes are actually being pruned due to pruning conditions being too strict. We will thus
only study the Relative pruning technique.

We briefly recall the condition for Relative pruning (RP), which is dependent on the
tunable parameter µ.

Condition 1 (Relative pruning condition) Node ni can be pruned if ∃j such that
V (nj) > V (ni) + µ, where i ∈ {1, · · · , k}, j ∈ {1, · · · , k}, i ̸= j and for all i we
have (n, α, ni) ∈⇒ with α ∈ Σ.

We also propose a simpler method of pruning based on a constant stepping value,
i.e. a number of samples required in the current root-node before advancing the root of
the tree. We denote this pruning technique Stepping pruning (SP).



Monte Carlo Tree Search for Priced Timed Automata 11

7 Experiments

We perform experiments on three benchmarks:

1. Job-shop scheduling2 problems,
2. Task graph scheduling3 problems of [34] translated to PTA by [20], and
3. satellite mission scheduling problems [10, 31].

We select 120 Task graph models (of thousands) and use all 162 Job-shop models,
and all of the satellite models. The largest Job-shop model contains 100 jobs using 20
machines and the largest Task graph consists of 300 tasks (83 chains) executed on 16
machines. To account for randomness of the MCTS and random-search methods, we
report the average of 10 executions. For symbolic methods (which are deterministic)
we only conduct one execution. All experiments are limited to 10 minutes and the best
found solution is reported (if any). The experiments are conducted on AMD Opteron
6376 processors with frequency-scaling disabled running Debian with a Linux 5.8 ker-
nel and limited to 8 GB of memory (except for experiments with TiaMo which is given
sufficient memory).

Solving using PDDL (Planning Domain Definition Language) Planners. As a con-
sequence of our restriction to natural-valued delays, it is possible to compile the PTA
models into (classical, deterministic) planning problems and apply well-studied classic
planning algorithms. To study this, we convert the Job-shop PTA models to PDDL 2.2
with action costs from PDDL 3.1 and use the Fast Downward4 planner to find cost-
efficient plans. We apply some classical algorithms, e.g. greedy best-first search with
the FF heuristic for sub-optimal plans [24] and A∗ with LM-Cut for optimal plans [22].
However, the so-called grounding phase never terminates within the time and memory
limit, even for the smallest Job-shop model consisting of 6 jobs and 6 machines. Scal-
ing down the models further (by gradually removing jobs) reveals that the complexity
of the model with 3 jobs already surpasses the capabilities of the planner to find a so-
lution in allotted time. It is well-known that if the parameter-space of the actions in
PDDL encoding grows large, which is the case for our models, the state-space suffers
from an exponential explosion. We thus refrain from comparing to classical planners
in the remainder of this section and leave comparison to more complex planners (e.g.
temporal planning algorithms) to future work.

Presentation of results. In our graphs we present the relative performance of a method
against Best Known Solutions (BKS) which is known for the Job-shop and Task graph
problems. A 0% deviation indicates that the BKS was found and a 10% deviation de-
notes a solution that is 110% of the BKS. We refer to the BKS as the reference value.
For all but the last experiment we present the results over both benchmarks in one sin-
gle plot. Figures 2-9 are plotted as “Cactus” or “Survival” plots. The y-axis shows the
quality of the solution as ”% worse than the BKS” (Fig. 2-7). Each method is sorted

2 https://github.com/tamy0612/JSPLIB
3 https://github.com/marmux/spreadsheets
4 https://www.fast-downward.org/HomePage



12 A. Kiviriga et al.

 0

 5

 10

 15

 20

 25

 30

 50  100  150  200  250

%
 w

o
rs

e
 t

h
a
n
 B

K
S

Models

NLP
NLP-SP-500
NLP-BR
NLP-BR-SP-500

Fig. 2: The effect of BR and SP
on the NLP policy.

 0

 5

 10

 15

 20

 25

 30

 35

 50  100  150  200  250

%
 w

o
rs

e
 t

h
a
n
 B

K
S

Models

SP-5
SP-50
SP-500
SP-5000
RP-5
RP-50
RP-500
RP-5000

Fig. 3: Comparison of stepping values for
NLP using BR and with Cp =

√
2.

individually, resulting in monotonically increasing lines. Therefore, data-points from
different methods for a given x-value can be produced by different models, showcasing
the general trend of each individual method over the benchmark.

We conduct the following sets of experiments:

– Building Rollouts where we construct the search-tree if a terminal node is found
during rollout,

– Impact of Stepping where we experiment with pruning techniques,
– Cp Sensitivity where we vary the exploration constant,
– Policy Study where we compare the proposed policies, and
– Comparison w. Existing Methods where we compare our best performing method

with existing solvers for PTA, and
– a study of the methods on a set of more general PTA models stemming from the

domain of satellite mission planning.

Building Rollouts. We initially study the impact of the BR enhancement as any config-
uration without this enhancement is unable to yield results for a significant portion of
the benchmarks. As a representative configuration we here present the results with the
NLP policy both with and without the SP pruning and the exploration constant C fixed
to
√
2. Other configurations demonstrate a similar tendency. We observe in Figure 2 that

only versions with the BR optimization manage to find a solution to all the instances.
In particular, we see that the version without both SP and BR produces no results at
all (red line). We witness the effect of BR from the plot and see that the best perform-
ing configurations are deviating no more than 30% from the reference. In addition, for
roughly 50% of the models, this deviation is less than 5%.

Impact of Stepping. In Figure 3 we compare different stepping sizes for SP and dif-
ferent upper-bounds number of visits (µ) for RP. We here restrict the reported results to
the BR variant of the NLP policy. We observe that SP is highly sensitive to the stepping
size and see that the smallest step sizes result in worse performance due to a too rapid
progression of the root-node while too high values fail to reduce the search-space to a
feasible size. We observe a similar tendency with RP wrt. the sensitivity of the µ-value,
albeit to a lesser degree. Importantly we observe that SP (using a stepsize of 500) and



Monte Carlo Tree Search for Priced Timed Automata 13

 0

 5

 10

 15

 20

 25

 30

 50  100  150  200  250

%
 w

o
rs

e
 t

h
a
n
 B

K
S

Models

C-0.00
C-0.40
C-0.71
C-1.00
C-1.41
C-1.70
C-100.00

Fig. 4: Comparison of different Cp values
effect on NLP with BR and SP-500

options.

 1

 2

 4

 8

 16

 32

 64

 128

 50  100  150  200  250

%
 w

o
rs

e
 t

h
a
n
 B

K
S

Models

UDP
DSP
NLP
ETP

Fig. 5: Comparison of UDP, DSP, NLP,
ETP policies with Cp =

√
2 and the best

enhancements used: BR and SP-500.

RP (with µ = 5) perform similarly well – and we delimit ourselves to reporting only on
variants using SP in subsequent experiments.

While using Cp =
√
2 is often considered a good value to strike a balance between

exploration and exploitation, we here study the sensitivity to changes in the Cp-value,
in particular as our setting is a single-player setting. Specifically we can in Figure 4
observe the difference in performance when Cp ∈ {0, 0.4, 1√

2
, 1,

√
2, 1.70, 100} where

the value 100 is chosen arbitrarily as “a sufficiently large value” to force the algorithm
to focus purely on exploration. From Figure 4 we observe that apart from Cp = 0,
the choice of Cp has little to no impact on the performance – likely due to the fact
that our setting is a single player setting. Regarding Cp = 0, we conjecture that the
effect observed stems from an intensive search around the initially found solution. For
instances with a positive effect we believe that a (near-)optimal solution is found within
the vicinity of any solution, where a negative effect indicate a larger difference between
local minima in the search-space. While a small set of models clearly favor Cp = 0,
we use Cp =

√
2 for the remainder of the experiments as it provides overall good

performance and is the value recommended by literature.

 1

 2

 4

 8

 16

 32

 64

 128

 20  40  60  80  100  120  140  160

%
 w

o
rs

e
 t

h
a
n
 B

K
S

Models

C-1.41-NLP-BR-SP-500
TiaMo
ROFS
RRA-RET
RRA-RLC
RRA-RLC-A

Fig. 6: Job-shop overview.

 1

 2

 4

 8

 16

 32

 64

 128

 256

 20  40  60  80  100  120

%
 w

o
rs

e
 t

h
a
n
 B

K
S

Models

C-1.41-NLP-BR-SP-500
ROFS
RRA-RET
RRA-RLC
RRA-RLC-A

Fig. 7: Task graph overview.



14 A. Kiviriga et al.

 0

 100

 200

 300

 400

 500

 600

 20  40  60  80  100  120  140  160

M
e
a
n
 T

im
e

Models

C-1.41-NLP-BR-SP-500
TiaMo
ROFS
RRA-RET
RRA-RLC
RRA-RLC-A

Fig. 8: Job-shop runtime overview.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 20  40  60  80  100  120

M
e
a
n
 T

im
e

Models

C-1.41-NLP-BR-SP-500
ROFS
RRA-RET
RRA-RLC
RRA-RLC-A

Fig. 9: Task graph runtime overview.

Policy Study. The summary on the performance of different policies is shown in Fig-
ure 5. Here we fix the configuration to use the BR and SP enhancements with a step-size
of 500. We observe that UDP has the worst performance with less than 20% of problem
instances solved within the given time-frame - and significantly worse quality solu-
tions. We believe this to be due to the low probability of selecting larger delays and the
state-space explosion of having to consider all possible delays. While DSP is an im-
provement over UDP, it suffers from a similar problem in that the branching factor can
explode leading to a performance degradation. Both NLP and ETP were able to solve
all problem instances with near-optimal solutions of at most 28.88% and 35.42% away
from the reference value, respectively, however with a clear advantage to NLP.

Comparison w. Existing Methods. Lastly we perform a comparison of our best config-
uration with other existing state-of-the-art solvers for PTA, namely UPPAAL CORA and
TiaMo. In addition, we have also adapted the Randomized Reachability Analysis (RRA)
methods of [28] to search for optimal schedules rather than rare events. We experiment
with several of the techniques proposed for RRA (RET, RLC and RLC-A) to search
for optimal solutions. We refer the interested reader to the mentioned paper for more
details.

In the case of CORA we use both the complete and optimal search-method as well
as the incomplete Random Optimal First Search (ROFS) approach, which allows for a
very lightweight search in a depth-first manner while choosing the most optimal action
at each step but providing no guarantee wrt. optimality of the returned solution. It is im-
portant to note that both CORA (except for the ROFS version) and TiaMo are complete
and able to find an optimal solution if given enough time and memory - and that both
methods are relying on a symbolic representation of the search-space.

Figure 6 gives an overview of all the methods for Job-shop scheduling benchmark
compared against BKS from [26]. Note that CORA has not managed to solve any in-
stance for either of the benchmarks, primarily limited by the fact that it is a piece of
32bit software only capable of utilizing 4GB of memory. Unfortunately CORA does
not provide anytime solutions in its current distribution. Both TiaMo and RRA methods
solve less than 20% of the instances, with TiaMo delivering sub-par solutions as it never
completes the search within the time-limit, and thus provides only any-time solutions
as they are found.



Monte Carlo Tree Search for Priced Timed Automata 15

Table 1: Results for different PTA models of satellite problems. MCTS policies exe-
cuted with Cp =

√
2, BR and SP-500 enhancements enabled. (oom = out of memory)

DSP NLP ETP ROFS Cora

gomx3-1day
Mean cost

186,007
(±0.00%)

188,408
(±1.95%)

186,007
(±0.00%)

198,292
(±0.00%)

186,007

Time 40.2 49.8 61.5 0.05 5.12

gomx3-2day
Mean cost

442,190
(±0.04%)

442,218
(±0.01%)

442,080
(±0.06%)

478,002
(±0.17%)

oom

Time 223.3 268.0 230.7 0.05 -

5sat
Mean cost

5,072,861
(±4.12%)

5,961,014
(±1.72%)

3,548,824
(±0.77%)

3,739,730
(±1.82%)

oom

Time 267.5 366.7 295.8 0.25 -

10sat
Mean cost

5,632,414
(±0.57%)

6,130,961
(±0.68%)

nf
5,687,131
(±2.47%)

oom

Time 232.4 232.6 600.0 0.56 -

MaxData626
Mean cost nf nf nf

7,458,522
(±2.17%)

oom

Time 600.0 600.0 600.0 0.62 -

The ROFS algorithm of CORA outperforms both the random search and TiaMo in
terms of solved instances, while having a drawback with the quality of the produced
plans when compared to our MCTS implementation. In terms of time (Fig. 8, 9), the
ROFS algorithm is the fastest overall, completing its search within single-digit seconds.
We note that the overall quality of the schedules found by ROFS is within a surpris-
ingly reasonable distance from the optimal, indicating that a greedy search strategy is
well suited for the given benchmark. We observe the best performance of the proposed
MCTS configuration using NLP, SP, BR and Cp =

√
2 and see a deviation of up to

28.88% of the BKS - with a median of deviations of no more than 10.3%. However,
investigating the computation time, we can see that the best found solution is in the
median produced at 289s and peaking at 546s.

The overview for the Task graph scheduling benchmark compared against BKS
from [32] is shown in Figure 7. Due to its limited support of the PTA syntax, the TiaMo
tool was not applicable. For over 80% of the benchmark (100/120 models) the solutions
found by NLP are (near-)optimal with the quality of solutions of at most 1% away from
BKS. For the rest of the benchmark the performance of NLP slightly worsens reaching
at most 9.11% deviation from BKS. In general, the trends for different methods are very
similar: RRA methods solve around 33% of models only, while ROFS finds solutions
near instantly, but their quality degrades with increased model complexity.

Satellite models. Additionally, we experiment with two satellite cases - GomX-3 and
Ulloriaq - designed, delivered, and operated by Danish satellite manufacturer GomSpace.
The PTA models for these satellites have been developed in [10] and [31] studies, re-
spectively, and analyzed with UPPAAL CORA (including ROFS). We show the results
in Table 1, but exclude UDP as it produces no results within the time limit. For all
models (but one) MCTS provides the best mean cost across all the methods; however,



16 A. Kiviriga et al.

ROFS finds solutions up to 4 orders of magnitude faster and with a modest reduction of
quality (up to 10% from the best MCTS method). We believe this is due to a generally
small variance in the quality of solutions in the solution-space and the fact that ROFS
performs only a single traversal of the model, immediately reporting the result upon
reaching the terminal state. For “MaxData626” model MCTS methods timeout without
a solution. Further experiments with an increased time-limit of 5 hours do not yield
additional results indicating issues with the incompleteness of the methods rather than
missing computation-time. The relative efficiency of the ROFS method demonstrates
a potential for extending the MCTS method in the direction of a symbolic search, al-
lowing for an efficient and complete MCTS tree-search method, and overcoming the
current limitations of the discretized equivalents studied in this paper.

8 Conclusion

We have adapted the Monte Carlo Tree Search (MCTS) algorithm for the setting of
problems described as Priced Timed Automata (PTA) – a formalism that can capture
the behavior of a wide range of optimization problems such as resource-consumption
or -allocation problems. PTA is a very versatile modeling formalism, facilitating more
direct modeling of a problem domain. We introduced a number of complete and non-
complete policies that act as unfolding mechanism and decide the structure of the tree.
Some domain-independent enhancements to improve the performance and coverage of
the algorithm are suggested.

We have evaluated the performance of our MCTS algorithm adapted to PTA on
three benchmarks of Job-shop, Task graph and satellite mission scheduling problems
and compared it against other state-of-the-art methods and tools. For the first two bench-
marks, the results indicate that MCTS is able to find near-optimal solutions for all in-
vestigated problem instances. In general, we observed an up to 28.88% and 9.11% de-
viation (on average) from the best known solution in a set of Job-shop and Task graph
scheduling problems, respectively. For satellite models, MCTS methods have found the
best cost across all tested methods except for one model where only ROFS was able to
produce results, hinting at issues with the incompleteness of MCTS methods.

All this suggests that MCTS is a promising alternative that copes well with the
state-space explosion problem where other existing, exhaustive and complete methods
perform poorly or fail. We note that the Random Optimal First Search strategy of the
tool UPPAAL CORA performs well, even when compared to MCTS. The study of more
symbolic approaches to MCTS for PTA is left as future work.

Data availability. A reproducibility artifact, which contains binaries, models and scripts
to reproduce results can be found at https://doi.org/10.6084/m9.figshare.19772926



Monte Carlo Tree Search for Priced Timed Automata 17

References

1. Abdeddaı̈m, Y., Maler, O.: Job-Shop Scheduling Using Timed Automata? In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. pp. 478–492. Springer (2001)

2. Ahmad, W., Hölzenspies, P.K.F., Stoelinga, M., van de Pol, J.: Green Computing: Power Op-
timisation of VFI-Based Real-Time Multiprocessor Dataflow Applications. In: DSD 2015.
pp. 271–275. IEEE Computer Society (2015). https://doi.org/10.1109/DSD.2015.59

3. Alur, R., Dill, D.: The theory of timed automata. In: de Bakker, J.W., Huizing, C., de Roever,
W.P., Rozenberg, G. (eds.) Real-Time: Theory in Practice. pp. 45–73. Springer (1992)

4. Alur, R., La Torre, S., Pappas, G.J.: Optimal Paths in Weighted Timed Automata. In:
Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. pp. 49–62. Springer
(2001)

5. Banharnsakun, A., Sirinaovakul, B., Achalakul, T.: Job Shop Scheduling with the Best-
so-far ABC. Engineering Applications of Artificial Intelligence 25(3), 583–593 (2012).
https://doi.org/10.1016/j.engappai.2011.08.003

6. Behrmann, G., Fehnker, A., Hune, T., Larsen, K., Pettersson, P., Romijn, J.: Efficient Guiding
Towards Cost-Optimality in UPPAAL. In: Margaria, T., Yi, W. (eds.) TACAS 21. pp. 174–
188. Springer (2001)

7. Behrmann, G., Fehnker, A., Hune, T., Larsen, K., Pettersson, P., Romijn, J., Vaandrager,
F.: Minimum-Cost Reachability for Priced Time Automata. In: Di Benedetto, M.D.,
Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. pp. 147–161. Springer (2001), https://doi.
org/10.1007/3-540-45351-2 15

8. Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Optimal scheduling using priced
timed automata. SIGMETRICS Perform. Eval. Rev. 32(4), 34–40 (mar 2005).
https://doi.org/10.1145/1059816.1059823

9. Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Priced Timed Automata: Algorithms and Ap-
plications. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.P. (eds.) Formal Meth-
ods for Components and Objects. pp. 162–182. Springer (2005)

10. Bisgaard, M., Gerhardt, D., Hermanns, H., Krčál, J., Nies, G., Stenger, M.: Battery-aware
scheduling in low orbit: the GomX–3 case. Formal Aspects of Computing 31(2), 261–285
(2019)

11. Bøgholm, T., Larsen, K.G., Muñiz, M., Thomsen, B., Thomsen, L.L.: Analyzing Spread-
sheets for Parallel Execution via Model Checking, pp. 27–35. Springer International Pub-
lishing, Cham (2019), https://doi.org/10.1007/978-3-030-22348-9 3

12. Bouyer, P., Brihaye, T., Bruyère, V., Raskin, J.: On the optimal reachability prob-
lem of weighted timed automata. Formal Methods Syst. Des. 31(2), 135–175 (2007).
https://doi.org/10.1007/s10703-007-0035-4

13. Bouyer, P., Colange, M., Markey, N.: Symbolic Optimal Reachability in Weighted Timed
Automata. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. pp. 513–530. Springer (2016)

14. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Quantitative analysis of real-
time systems using priced timed automata. Commun. ACM 54(9), 78–87 (2011).
https://doi.org/10.1145/1995376.1995396

15. Bozga, M., Maler, O., Tripakis, S.: Efficient Verification of Timed Automata Using Dense
and Discrete Time Semantics. In: Pierre, L., Kropf, T. (eds.) Correct Hardware Design and
Verification Methods. pp. 125–141. Springer Berlin Heidelberg, Berlin, Heidelberg (1999),
https://doi.org/10.1007/3-540-48153-2 11

16. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of monte carlo tree search meth-
ods. IEEE Transactions on Computational Intelligence and AI in Games 4(1), 1–43 (2012).
https://doi.org/10.1109/TCIAIG.2012.2186810



18 A. Kiviriga et al.

17. Čaušević, A., Seceleanu, C., Pettersson, P.: Checking correctness of services modeled as
priced timed automata. In: International Symposium On Leveraging Applications of Formal
Methods, Verification and Validation. pp. 308–322. Springer (2012)

18. Dirks, H.: Finding Optimal Plans for Domains with Restricted Continuous Effects with UP-
PAAL CORA. ICAPS 2005, American Association for Artificial Intelligence (2005)

19. Edelkamp, S.: Heuristic Search Planning with BDDs. In: PuK2000 (2000), http://www.puk-
workshop.de/puk2000/papers/edelkamp.pdf

20. Ejsing, A., Jensen, M., Muñiz, M., Nørhave, J., Rechter, L.: Near Optimal Task Graph
Scheduling with Priced Timed Automata and Priced Timed Markov Decision Processes
(2020)

21. Geuze, N.: Energy management in smart grids using timed automata. Master’s thesis, Uni-
versity of Twente (2019)

22. Helmert, M., Domshlak, C.: Landmarks, critical paths and abstractions: what’s the difference
anyway? In: Nineteenth International Conference on Automated Planning and Scheduling
(2009)

23. Hermanns, H., Krcál, J., Nies, G.: How Is Your Satellite Doing? Battery Kinetics
with Recharging and Uncertainty. Leibniz Trans. Embed. Syst. 4(1), 04:1–04:28 (2017).
https://doi.org/10.4230/LITES-v004-i001-a004

24. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through heuristic
search. Journal of Artificial Intelligence Research 14, 253–302 (2001)

25. Huang, J., Liu, Z., Lu, B., Xiao, F.: Pruning in uct algorithm. In: 2010 International Con-
ference on Technologies and Applications of Artificial Intelligence. pp. 177–181 (2010).
https://doi.org/10.1109/TAAI.2010.38

26. Jain, A., Meeran, S.: Deterministic job-shop scheduling: Past, present and future. European
Journal of Operational Research 113(2), 390–434 (1999). https://doi.org/10.1016/S0377-
2217(98)00113-1

27. Jongerden, M.R., Haverkort, B.R., Bohnenkamp, H.C., Katoen, J.: Maximizing system life-
time by battery scheduling. In: IEEE/IFIP Int. Conf. DSN 2009. pp. 63–72. IEEE Computer
Society (2009). https://doi.org/10.1109/DSN.2009.5270351

28. Kiviriga, A., Larsen, K.G., Nyman, U.: Randomized Reachability Analysis in Uppaal: Fast
Error Detection in Timed Systems. In: Lluch Lafuente, A., Mavridou, A. (eds.) FMICS 2021.
pp. 149–166. Springer (2021)

29. Kocsis, L., Szepesvári, C.: Bandit Based Monte-Carlo Planning. In: Fürnkranz, J., Scheffer,
T., Spiliopoulou, M. (eds.) Machine Learning: ECML 2006. pp. 282–293. Springer (2006)

30. Korvell, A., Degn, K.: Designing a Tool-Chain for Generating Battery-Aware Contact Plans
Using UPPAAL. Aalborg University, Master Thesis (2019)

31. Kørvell, A., Degn, K.: Designing a Tool-Chain For Generating Battery-Aware Contact Plans
Using UPPAAL (2019)

32. Laboratory, K.: Standard task graph set, https://www.kasahara.cs.waseda.ac.jp/schedule/
index.html

33. Saddem-Yagoubi, R., Naud, O., Godary-Dejean, K., Crestani, D.: Model-Checking precision
agriculture logistics: the case of the differential harvest. In: Discrete Event Systems. Springer
(2020)

34. Tobita, T., Kasahara, H.: A standard task graph set for fair evaluation of mul-
tiprocessor scheduling algorithms. Journal of Scheduling 5(5), 379–394 (2002).
https://doi.org/10.1002/jos.116

35. Vulgarakis, A., Čaušević, A.: Applying REMES behavioral modeling to PLC systems. In:
2009 XXII International Symposium on Information, Communication and Automation Tech-
nologies. pp. 1–8. IEEE (2009)


