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Overview of the presentation
• Why fixed-point is (still) an extremely useful implementation paradigm

• 2′𝑠𝑠 complement number representation

• Truncation and Rounding – a linear noise model of the variables in the filter

• The noise model applied in Linear Time Invariant filters, and output SNR

• Filter coefficients in fixed point number representation – both for IIR and for FIR filters

• Scaling in recursive filters – the compromise between overflow and SNR

• Noise optimal filter structures – Direct Canonic Form and the State Space Form

So, for some of you it will be a walk down memory lane – for others, it may be a valuable extension
to what you have already studied in terms of digital filters and how they are efficiently prepared for
real-time implementation.
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Floating-point is easily available these
days, so why bother about fixed-point…?

Digital hardware is becoming the primary means by which control systems and signal processing filters are 
implemented. Digital hardware can be classified as either off-the-shelf hardware (for example, microcontrollers, 
microprocessors, general-purpose processors, and digital signal processors) or custom hardware. Within these 
two types of hardware, there are many architecture designs. These designs range from systems with a single 
instruction, single data stream processing unit to systems with multiple instruction, multiple data stream 
processing units.

Within digital hardware, numbers are represented as either fixed-point or floating-point data types. For both 
these data types, word sizes are fixed at a set number of bits. However, the dynamic range of fixed-point values 
is much less than floating-point values with equivalent word sizes. Therefore, in order to avoid overflow or 
unreasonable quantization errors, fixed-point values must be scaled. Since floating-point hardware can greatly
simplify the real-time implementation of a control or signal processing systems, and floating-point numbers can 
effectively approximate real-world numbers, then why should we bother about processors or custom hardware 
solutions with fixed-point hardware support?
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Size and Power Consumption — The logic circuits of fixed-point hardware are much less complicated than those 
of floating-point hardware. This means that the fixed-point chip size is significantly smaller and with less power 
consumption when compared with floating-point hardware. One of the major design goals in portable devices is to 
achieve an extended battery life-time which is therefore best accommodated using fixed-point hardware.

Memory Usage — In general, fixed-point calculations require less memory because in floating-point numbers 
more bits are needed to hold information on both mantissa and exponent.

Speed — The significantly larger complexity of floating-point circuitry, as compared to similar fixed-point 
counterparts, enables a lower propagation delay and thus a shorter execution time.

AI can solve so many things by today – however, the computational complexity is still so large (even with efficient
prooning of the network) that real-time execution on portable battery-powered platforms is not really possible.

A prominent example of a challenge application domain is Hearing Assistive Devices.

Floating-point is easily available these
days, so why bother about fixed-point…?
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Cost — Fixed-point hardware is more effective when cost is an important consideration – there are simply 
fewer transistors in the circuit, thus leading to a smaller die size which is normally equivalent to lower cost.

There is one important downside though, which relates to the fact that designing fixed-point algorithms is a 
significantly more complicated task as compared to similar floating-point based algorithms. This fact 
essentially has two major consequences;

1) The designer must have an extended mathematical knowledge about the numerical characteristics of 
the algorithms, and

2) The development time is in some cases longer than for equivalent floating-point systems.

THEREFORE; Today we will survey some of the most important and useful topics related to the design 
and analysis of fixed-point recursive digital filters.

Floating-point is easily available these
days, so why bother about fixed-point…?
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A few words on 𝟐𝟐′𝒔𝒔 complement numbers
2′𝑠𝑠 complement is by far the most applied fixed-point number representation in real-time signal processing.

𝑥𝑥 = 𝑋𝑋𝑚𝑚(−𝑏𝑏0 + ∑𝑖𝑖=1∞ 𝑏𝑏𝑖𝑖 � 2−𝑖𝑖) where 𝑋𝑋𝑚𝑚 is a scaling factor determining the dynamic range, and 𝑏𝑏𝑗𝑗 are the
individual bits in the number 𝑥𝑥, (normally also refered to as the word). The bit 𝑏𝑏0 is the sign bit.

With an upper limit equal to ∞, the number 𝑥𝑥 is be represented with with infinite accuracy.

This however, is not practically feasible, and thus we restrict the upper limit to 𝐵𝐵 − 1 bits, i.e.;

�𝑥𝑥 = 𝑄𝑄𝐵𝐵 𝑥𝑥 = 𝑋𝑋𝑚𝑚(−𝑏𝑏0 + ∑𝑖𝑖=1𝐵𝐵−1 𝑏𝑏𝑖𝑖 � 2𝑖𝑖)

Fixed decimal point (can be shifter right, but for now we assume this position).

Sign bit; 𝑥𝑥 is positive for 𝑏𝑏0 = 0 and negative for 𝑏𝑏0 = 1.

𝑏𝑏0 𝑏𝑏1 𝑏𝑏2 𝑏𝑏𝐵𝐵−1𝑏𝑏3 � � �
MSB LSB
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A few words on 𝟐𝟐′𝒔𝒔 complement numbers

𝑏𝑏0 𝑏𝑏1 𝑏𝑏2 𝑏𝑏𝐵𝐵−1𝑏𝑏3 � � �
MSB LSB

The word consists of 𝐵𝐵 bits, i.e., 2𝐵𝐵 different representations. The numerical distance between
two adjacent numbers is known as the ”quantization step”; ∆= 𝑋𝑋𝑚𝑚 � 2−(𝐵𝐵−1).

In many practical situations we are interested in 𝑋𝑋𝑚𝑚 = 1, i.e., the dynamic range is [−1; 1[.

1 − Δ−1 −1 + Δ −2Δ −Δ 0 Δ 2Δ

1.000 1.001 1.110 1.111 0.000 0.001 0.010 0.111

� � � � � �

Here the dynamic range [−1; 1[ is examplified for a 4 bit 2′𝑠𝑠 complement number.
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𝟐𝟐′𝒔𝒔 complement numbers in digital filters
Real-time implementation of digital filters is (in most cases) done in terms of difference equations;

𝑦𝑦 𝑛𝑛 = �
𝑖𝑖=1

𝑁𝑁

𝑎𝑎𝑖𝑖 � 𝑦𝑦 𝑛𝑛 − 𝑖𝑖 + �
𝑗𝑗=0

𝑀𝑀

𝑏𝑏𝑗𝑗 � 𝑥𝑥[𝑛𝑛 − 𝑗𝑗]

The overall computation here is ”sum of products”, i.e., we need to conduct multiplication and addition.

In a binary scenario, and thus also for 2′𝑠𝑠 complement numbers, the following characteristics holds;

Multiplication:
• Multiplying a 𝐵𝐵1 bit number with a 𝐵𝐵2 bit number leads to a 𝐵𝐵1 + 𝐵𝐵2 bit product.
• For a dynamic range [−1; 1[, the product does not exceed this interval.

Addition:
• Adding a 𝐵𝐵1 bit number to a 𝐵𝐵2 bit number leads to a 𝑚𝑚𝑎𝑎𝑥𝑥{𝐵𝐵1,𝐵𝐵2} bit sum.
• The sum may exceed the dynamic range, thus potentially leading to overflow.
• Overflow can occur only if the two operands have identical sign.

We now want to discuss how to handle 1) word-length extension, and later on 2) overflow.
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Word-length reduction of binary numbers –
Truncation and Rounding

Truncation is a quantization proces where a 𝐵𝐵1 bit number is sreduced in word length to a 𝐵𝐵 bit number. 

𝑏𝑏0 𝑏𝑏1 𝑏𝑏2 𝑏𝑏𝐵𝐵1−1𝑏𝑏3 � � �
MSB LSB

𝑏𝑏0 𝑏𝑏1 𝑏𝑏2 𝑏𝑏𝐵𝐵−1𝑏𝑏3 � � �
MSB LSB

The error 𝑒𝑒 introduced (for 2′𝑠𝑠 complement) is: −(2−(𝐵𝐵−1) − 2−(𝐵𝐵1−1)) ≤ 𝑒𝑒 ≤ 0
So, the error is always non-positive no matter the the sign of 𝑥𝑥.

Similarly, we can state that |𝑄𝑄 𝑥𝑥 | ≥ |𝑥𝑥| for 𝑥𝑥 < 0. This observation indicates that truncation does not
lead to ”magnitude truncation” for negative 2′𝑠𝑠 complement numbers.
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Truncation, contd.
• If we assume that 𝑥𝑥 is a uniform distributed stochastic variable, and
• If 𝐵𝐵 and 𝐵𝐵1 − 𝐵𝐵 are ”sufficiently” large, then

The quantization error 𝑒𝑒 can be modelled as a stochastic variable with constant, i.e., 
uniform probability density-fuction;

In a digital filter, where an internal variable is truncated (using truncation arithmetic), the quantization
noise 𝑒𝑒 can be observed directly on the output of the filter, and therefore we conclude;

At the filter output, the mean of the quantization noise is ”non-zero”, and therefore truncation leads
to a bias of the output signal.  

𝑒𝑒

𝑃𝑃(𝑒𝑒)

−∆

1/Δ 𝜇𝜇𝑒𝑒 = − ⁄Δ 2 mean

𝜎𝜎𝑒𝑒2 = �Δ2
12 variance

−∆ ≤ 𝑒𝑒 ≤ 0 quantization error
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Rounding
Rounding is a quantization mechanism where the word-length reduction from 𝐵𝐵1 to 𝐵𝐵 bits is implemented
by choosing the most ”near by” 𝐵𝐵 bit number.

𝐵𝐵 bit scaleΔRound down Round up

The 𝐵𝐵1 bit number

The quantization error 𝑒𝑒 is thus; − ⁄∆ 2 ≤ 𝑒𝑒 ≤ ⁄∆ 2 where the sign of 𝑒𝑒 is un-correlated with 𝑥𝑥.

𝑒𝑒

𝑃𝑃(𝑒𝑒)

− ⁄∆ 2

1/Δ 𝜇𝜇𝑒𝑒 = 0 mean

𝜎𝜎𝑒𝑒2 = �Δ2
12 variance

⁄∆ 2

Here it is worth noting that |𝑄𝑄 𝑥𝑥 | not nessesarily is less than |𝑥𝑥| - rounding may increase the numerical value.
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Linear noise model

𝑃𝑃 = 𝑋𝑋 � 𝑌𝑌
2𝐵𝐵 Q 𝐵𝐵

𝑄𝑄[𝑃𝑃]

𝑃𝑃 = 𝑋𝑋 � 𝑌𝑌 Σ 𝑄𝑄[𝑃𝑃]

𝑒𝑒 (𝜇𝜇𝑒𝑒 ,𝜎𝜎𝑒𝑒2)

2𝐵𝐵 𝐵𝐵

Onwards, we will assume that the quantizer 𝑄𝑄 is implemented using rounding arithmetic.
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So, multiplication is a noisy operation

As related to the difference equation, 𝑦𝑦 𝑛𝑛 = ∑𝑖𝑖=1𝑁𝑁 𝑎𝑎𝑖𝑖 � 𝑦𝑦 𝑛𝑛 − 𝑖𝑖 + ∑𝑗𝑗=0𝑀𝑀 𝑏𝑏𝑗𝑗 � 𝑥𝑥[𝑛𝑛 − 𝑗𝑗], the sum-of-products
operations can be done as either ”single precision” or ”double precision”.

• Single precision: The quantization to 𝐵𝐵 bit is conducted immediately after each multiplication, and
thus the addition is performed in 𝐵𝐵 bit.

• Double precision: The quantization to 𝐵𝐵 bit is conducted only after the addition, which can then be
performed in 2𝐵𝐵 bit.

• Choosing Single vs. Double precision is a trade-off between accuracy, execution time, power
comsumption, and physical size of the circuit. 
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An example
𝟏𝟏𝒔𝒔𝟏𝟏 order IIR filter, 𝑩𝑩 bit single precision

+

+ +

+

+𝑥𝑥[𝑛𝑛]

𝑧𝑧−1𝑧𝑧−1

𝑦𝑦[𝑛𝑛]
𝑏𝑏0

𝑏𝑏1 𝑎𝑎1
𝑒𝑒1[𝑛𝑛] 𝑒𝑒2[𝑛𝑛]

𝑒𝑒0[𝑛𝑛]

𝑦𝑦 𝑛𝑛 = �
𝑖𝑖=1

1

𝑎𝑎𝑖𝑖 � 𝑦𝑦 𝑛𝑛 − 𝑖𝑖 + �
𝑗𝑗=0

1

𝑏𝑏𝑗𝑗 � 𝑥𝑥[𝑛𝑛 − 𝑗𝑗]

+ ++𝑥𝑥[𝑛𝑛]

𝑧𝑧−1𝑧𝑧−1

𝑦𝑦[𝑛𝑛]
𝑏𝑏0

𝑏𝑏1 𝑎𝑎1

𝑒𝑒[𝑛𝑛]

Since the system is LTI, the three noise sources 𝑒𝑒𝑘𝑘[𝑛𝑛] can propagate through the network and act
as a single noise sorce 𝑒𝑒 𝑛𝑛 = ∑𝑘𝑘=13 𝑒𝑒𝑘𝑘[𝑛𝑛] directly at the output.

From this we observe that the Signal-to-Noise-Ratio (SNR), at the output is not infinite.
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Assumption concerning the noise 𝒆𝒆[𝒏𝒏]

• 𝑒𝑒[𝑛𝑛] is a Wide-Sense Stationary (WSS) random process, i.e., mean and autocovariance of 𝑒𝑒[𝑛𝑛]
are independent of 𝑛𝑛.

• 𝑒𝑒[𝑛𝑛] is ”white”, i.e., the autocorrelation 𝑟𝑟𝑒𝑒𝑒𝑒 𝑚𝑚 = 𝐸𝐸 𝑒𝑒 𝑛𝑛 � 𝑒𝑒 𝑛𝑛 + 𝑚𝑚 = 𝜎𝜎𝑒𝑒2𝛿𝛿 𝑛𝑛 + 𝜇𝜇𝑒𝑒2.

• 𝑒𝑒[𝑛𝑛] is un-correlated with other signals in the filter, i.e., input, output, and internal variables.

• 𝑒𝑒[𝑛𝑛] is uniform distributed over one quantization step ∆.  
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The filter also processes the noise
+ ++𝑥𝑥[𝑛𝑛]

𝑧𝑧−1𝑧𝑧−1

𝑦𝑦[𝑛𝑛]
𝑏𝑏0

𝑏𝑏1 𝛼𝛼

𝑒𝑒[𝑛𝑛]

The signal 𝑒𝑒[𝑛𝑛] passes through the filter, similarly as the signal 𝑥𝑥[𝑛𝑛] does. In the 1′𝑠𝑠𝑠𝑠 order IIR example,
the noise attack at the output, and thus it is only the recursive part of the filter, which modify the noise.

This can be analyzed in terms of the noise transfer function;  

𝑌𝑌(𝑧𝑧)
𝐸𝐸(𝑧𝑧) =

1
1 − 𝛼𝛼𝑧𝑧−1

given that 𝑥𝑥 𝑛𝑛 = 0.
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The noise transfer function
𝑌𝑌(𝑧𝑧)
𝐸𝐸(𝑧𝑧)

= 𝐺𝐺 𝑧𝑧 =
1

1 − 𝛼𝛼𝑧𝑧−1

Conducting an inverse z-transform, we derive the expression;

𝑔𝑔 𝑛𝑛 = 𝛼𝛼𝑛𝑛 � 𝑢𝑢[𝑛𝑛] which is the impulse response from the point where the noise attacks and to the output.

Knowing the impulse response, we can now specify the noise contribution at the output;

𝑦𝑦𝑒𝑒 𝑛𝑛 = ∑𝑚𝑚=0
∞ 𝑔𝑔[𝑚𝑚] � 𝑒𝑒[𝑛𝑛 − 𝑚𝑚]

This signal is also a WWS process, and is characterized by a mean and a variance;

𝜇𝜇𝑦𝑦𝑒𝑒 = 𝜇𝜇𝑒𝑒 � ∑𝑛𝑛=0∞ 𝑔𝑔[𝑛𝑛] and    𝜎𝜎𝑦𝑦𝑒𝑒
2 = 𝜎𝜎𝑒𝑒2 � ∑𝑛𝑛=0∞ 𝑔𝑔2[𝑛𝑛] (see next page).

Note that 𝑦𝑦𝑒𝑒[𝑛𝑛] is not a ”white” signal, but rather a signal which is colored through the filter.
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The noise variance on the output
𝑦𝑦𝑒𝑒 𝑛𝑛 = ∑𝑚𝑚=0

∞ 𝑔𝑔[𝑚𝑚] � 𝑒𝑒[𝑛𝑛 − 𝑚𝑚]

Using this expression for the noise at the output, we can calculate the corresponding variance;

𝜎𝜎𝑦𝑦𝑒𝑒
2 = 𝐸𝐸{(∑𝑚𝑚=0

∞ 𝑔𝑔 𝑚𝑚 � 𝑒𝑒 𝑛𝑛 − 𝑚𝑚 ) � (∑𝑙𝑙=0∞ 𝑔𝑔[𝑙𝑙] � 𝑒𝑒[𝑛𝑛 − 𝑙𝑙])}

= ∑𝑚𝑚=0
∞ ∑𝑙𝑙=0∞ 𝑔𝑔[𝑚𝑚] � 𝑔𝑔[𝑙𝑙] � 𝐸𝐸{𝑒𝑒 𝑛𝑛 − 𝑚𝑚 � 𝑒𝑒 𝑛𝑛 − 𝑙𝑙 }

= ∑𝑚𝑚=0
∞ ∑𝑙𝑙=0∞ 𝑔𝑔[𝑚𝑚] � 𝑔𝑔[𝑙𝑙] � 𝜎𝜎𝑒𝑒2 � 𝛿𝛿[𝑙𝑙 − 𝑚𝑚] (because 𝑒𝑒[𝑛𝑛] is a white signal with variance 𝜎𝜎𝑒𝑒2)

= 𝜎𝜎𝑒𝑒2 � ∑𝑚𝑚=0
∞ 𝑔𝑔2[𝑛𝑛]

So, basically what this result tells us is, that the noise variance at the output is equal to the noice
variance multiplied with the squared and summed impulse response from the point where the noise
attacks and to the output.

This is a general result which describes how a signal couples through an LTI system.

Since we know the impulse response, we can now calculate the noise variance.
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Noise variance at the output

𝜎𝜎𝑦𝑦𝑒𝑒
2 = 𝜎𝜎𝑒𝑒2 � ∑𝑛𝑛=0∞ 𝑔𝑔2[𝑛𝑛]

𝜎𝜎𝑦𝑦𝑒𝑒
2 = 𝜎𝜎𝑒𝑒2 � ∑𝑛𝑛=0∞ 𝛼𝛼𝑛𝑛 � 𝑢𝑢[𝑛𝑛] 2 Assuming that the filter is stable, then 𝛼𝛼 < 1 and thus we can write;

𝜎𝜎𝑦𝑦𝑒𝑒
2 = 𝜎𝜎𝑒𝑒2 � ∑𝑛𝑛=0∞ 𝛼𝛼2 𝑛𝑛 which is a geometric series, corverging towards

𝜎𝜎𝑦𝑦𝑒𝑒
2 = 𝜎𝜎𝑒𝑒2 �

1
1−𝛼𝛼2

So, in conclusion we see that the noise variance on the filter output is a function of the pole location.
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An example

Given a narrow-band LP-filter with 𝛼𝛼 = 0.997.

𝜎𝜎𝑦𝑦𝑒𝑒
2 = 𝜎𝜎𝑒𝑒2 �

1
1−𝛼𝛼2

= 167 � 𝜎𝜎𝑒𝑒2

Assuming a noise variance 𝜎𝜎𝑒𝑒2 = 1, the corresponding variance at the output (in 𝑑𝑑𝐵𝐵) is;

𝜎𝜎𝑦𝑦𝑒𝑒
2 = 10 � log 167 = 22 𝑑𝑑𝐵𝐵 noise gain…!!

We realize that poles located close to the unit circle are ”more noisy”, as compared to poles located
more towards origo.

This is an extremely important realisation.

x
𝛼𝛼

z-plane
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Signal to Noise Ration
The noise variance, as a stand-alone metric, is not very useful. Rather, we would like to measure the
filter noise performance in terms of the Signal to Noise Ration, SNR.

𝑆𝑆𝑆𝑆𝑆𝑆 ≜ 𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑉𝑉𝑛𝑛𝑉𝑉𝑒𝑒 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑒𝑒 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛𝑉𝑉𝑙𝑙 𝑉𝑉𝑡𝑡 𝑡𝑡𝑡𝑒𝑒 𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡
𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑉𝑉𝑛𝑛𝑉𝑉𝑒𝑒 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑒𝑒 𝑛𝑛𝑜𝑜𝑖𝑖𝑠𝑠𝑒𝑒 𝑉𝑉𝑡𝑡 𝑡𝑡𝑡𝑒𝑒 𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡

So, let’s assume a filter 𝐻𝐻 𝑧𝑧 = 𝑌𝑌(𝑧𝑧)
𝑋𝑋(𝑧𝑧)

= 1
1−𝛼𝛼𝑧𝑧−1

, i.e., a filter with one pole in 𝑧𝑧 = 𝛼𝛼 and one zero in 𝑧𝑧 = 0.

The signal variance at the output is;

𝜎𝜎𝑦𝑦2 = 𝜎𝜎𝑥𝑥2 �
1

1−𝛼𝛼2

and thus the SNR is; 𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜎𝜎𝑦𝑦2

𝜎𝜎𝑦𝑦𝑒𝑒
2 =

𝜎𝜎𝑥𝑥2�
1

1−𝛼𝛼2

𝜎𝜎𝑒𝑒2�
1

1−𝛼𝛼2
= 𝜎𝜎𝑥𝑥2

𝜎𝜎𝑒𝑒2

This is an interesting result, since it indicates that the SNR at the filter output is independent of the
pole location 𝛼𝛼. This however, is a wrong interpretation – let’s argue why…

++
𝑧𝑧−1

𝑦𝑦[𝑛𝑛]

𝛼𝛼

𝑒𝑒[𝑛𝑛]

𝑥𝑥[𝑛𝑛]
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Output SNR depends on the pole location
• Let’s assume the filter is implemented using fixed-point arithmetic with a dynamic range [−1; 1[.

• Ideally, we want the output signal to utilize the complete dynamic range.

• At the same time, we want to avoid that the output signal variable overflows.

• These are conflicting requirements, and therefore we scale the input signal; 𝑥𝑥′ 𝑛𝑛 = 𝑠𝑠 � 𝑥𝑥[𝑛𝑛] to obtain
the best possible compromise between these two demands.

• The numerical value of the scaling factor 𝑠𝑠 however, depends on how much the signal 𝑥𝑥 is being amplified
throughout the filter – and this actually depends on the pole location, i.e., the value |𝛼𝛼|.

Therefore, if 𝛼𝛼 → 1, then the value of 1
1−𝛼𝛼2

increases, which calls for 𝑠𝑠 → 0 to reduce the probability for
overflow, and thus 𝜎𝜎𝑥𝑥′

2 decreases. 

Consequently, 𝑆𝑆𝑆𝑆𝑆𝑆′ =
𝜎𝜎𝑥𝑥′
2

𝜎𝜎𝑒𝑒2
→ 0 if 𝛼𝛼 → 1. We will address in more detail ”Scaling” later in the presentation (p.44).
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Considerations on Coefficient Quantization

Given a filter with transfer function 𝐻𝐻 𝑧𝑧 = 𝐵𝐵(𝑧𝑧)
𝐴𝐴(𝑧𝑧)

=
∑𝑗𝑗=0
𝑀𝑀 𝑏𝑏𝑗𝑗𝑧𝑧−𝑗𝑗

1+∑𝑖𝑖=1
𝑁𝑁 𝑉𝑉𝑖𝑖𝑧𝑧−𝑖𝑖

where all filter coefficients have to be represented

using a 𝐵𝐵 bit 2′𝑠𝑠 complement notation.

Therefore; �𝑏𝑏𝑗𝑗 = 𝑏𝑏𝑗𝑗 + 𝜀𝜀𝑗𝑗 and �𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑖𝑖 + 𝜀𝜀𝑖𝑖 where 𝜀𝜀 denotes quantization from floating point to 𝐵𝐵 bit fixed-point.

Now, the transfer function to be used for real-time implementation thus is �𝐻𝐻 𝑧𝑧 =
�𝐵𝐵(𝑧𝑧)
�𝐴𝐴(𝑧𝑧)

=
∑𝑗𝑗=0
𝑀𝑀 �𝑏𝑏𝑗𝑗𝑧𝑧−𝑗𝑗

1+∑𝑖𝑖=1
𝑁𝑁 �𝑉𝑉𝑖𝑖𝑧𝑧−𝑖𝑖

We will briefly illustrate what might be the effect of quantizing the filter coefficients…
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An  example –
preparat ion of  a  𝟕𝟕𝟏𝟏𝟕𝟕 order e l l ip t ic LP- f i l ter  w i th  𝝎𝝎𝑪𝑪 = 𝟎𝟎 . 𝟑𝟑𝝅𝝅 ,  

bandpass r ipple 𝟎𝟎 . 𝟓𝟓𝟓𝟓𝑩𝑩 ,  and s topband at tenuat ion 𝟓𝟓𝟎𝟎𝟓𝟓𝑩𝑩 .
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The filter coefficients – with 15 decimals

b_unquantized =

0.012218357882143  

-0.009700754662078   

0.024350450826845   

0.002532504848041   

0.002532504848041   

0.024350450826845  

-0.009700754662078   

0.012218357882143

a_unquantized =

1.000000000000000  

-4.288900601525730   

9.216957436091187 

-12.195350561406688  

10.633166152311439  

-6.062798190498842   

2.098067018562065  

-0.342340135743531

𝐻𝐻 𝑧𝑧 =
𝐵𝐵(𝑧𝑧)
𝐴𝐴(𝑧𝑧)

=
∑𝑗𝑗=0𝑀𝑀 𝑏𝑏𝑗𝑗𝑧𝑧−𝑗𝑗

1 + ∑𝑖𝑖=1𝑁𝑁 𝑎𝑎𝑖𝑖𝑧𝑧−𝑖𝑖

• Note the symmetry in the 𝐵𝐵 coefficients

• Note ”how small” the 𝐵𝐵 coefficients actually are

• Note ”how large” the 𝐴𝐴 coefficients actually are



P A G E
2 6

Pole-Zero locations, un-quantized filter
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Map the filter onto a 𝟏𝟏𝟎𝟎 bit 𝟐𝟐′𝒔𝒔
complement architecture

• The dynamic range exceeds [−1; 1[

• The numerically largest coefficient is 𝑎𝑎3 = −12.195350561406688

• We need to interpret the 2′𝑠𝑠 complement number a little different. 

𝑆𝑆 𝐼𝐼0 𝐼𝐼1 𝐼𝐼2 𝐼𝐼3 𝐹𝐹0 𝐹𝐹1 𝐹𝐹2 𝐹𝐹3 𝐹𝐹4

• 𝑆𝑆 is the sign bit

• 𝐼𝐼𝑖𝑖 is the integer part; 24 = 16 > | − 12.195 … |

• 𝐹𝐹𝑖𝑖 is the fractional part

This is known as 𝑄𝑄𝑄.5 format (some literatur denote it 𝑄𝑄𝑄.5)
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General interpretation of 𝑸𝑸 𝑰𝑰 + 𝟏𝟏 . 𝑭𝑭

𝑆𝑆 𝐼𝐼0 𝐼𝐼𝐼𝐼−1 𝐹𝐹0 𝐹𝐹𝐹𝐹−1𝐼𝐼1 𝐹𝐹1 𝐹𝐹2… …𝑋𝑋:
• 𝐵𝐵 bit word
• 𝐼𝐼 integer bits
• 𝐹𝐹 fractional bits

𝑥𝑥0 𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝐼𝐼 𝑥𝑥𝐼𝐼+1 𝑥𝑥𝐼𝐼+2 𝑥𝑥𝐼𝐼+3 𝑥𝑥𝐵𝐵−1

𝑋𝑋 = −2𝐼𝐼 � 𝑥𝑥0 + �
𝑗𝑗=1

𝐼𝐼

𝑥𝑥𝑗𝑗 � 2 𝐼𝐼−𝑗𝑗 + �
𝑗𝑗=𝐼𝐼+1

𝐵𝐵−1

𝑥𝑥𝑗𝑗 � 2−(𝑗𝑗−𝐼𝐼)

Now – back to our example, where we use 𝑄𝑄𝑄.5 for all coefficients…
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All coefficients quantized to 𝑸𝑸5.5

b_quantized_Q55=

0.000000000000000
0.000000000000000
0.031250000000000                   
0.000000000000000   
0.000000000000000
0.031250000000000                   
0.000000000000000    
0.000000000000000

a_quantized_Q55=

1.000000000000000  
-4.281250000000000   
9.218750000000000 

-12.187500000000000  
10.625000000000000  
-6.062500000000000   
2.093750000000000  

-0.343750000000000

�𝑏𝑏𝑘𝑘 = 𝑉𝑉𝑜𝑜𝑜𝑜𝑛𝑛𝑟𝑟(𝑏𝑏𝑘𝑘�25)
25

• There might be a challenge here… If 𝑏𝑏𝑘𝑘 � 25 < 0.5 then 𝑟𝑟𝑟𝑟𝑢𝑢𝑛𝑛𝑑𝑑 𝑏𝑏𝑘𝑘 � 25 = 0. True for most 𝑏𝑏𝑘𝑘 coefficients.

• Note that with only 5 fractional bits, there are similarly only 5 significant decimals.

• Also note that 𝐵𝐵(𝑧𝑧) has been reduced to a 𝑄𝑠𝑠𝑡 order polynomial.
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Amplitude response for the 𝑸𝑸5.5 filter

The amplitude response has changed dramatically, but that is not the only problem…
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Pole-Zero locations for the 𝑸𝑸5.5 filter
Before quantization After quantization

What is the cure…?
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Better utilization of the dynamic range
All un-quantized 𝑏𝑏𝑘𝑘 coefficients are numerically less than 1.

For a 10 bit architecture, we therefore could suggest to use 𝑄𝑄1.9 for the 𝐵𝐵 coefficients, i.e.,

�𝑏𝑏𝑘𝑘 = 𝑉𝑉𝑜𝑜𝑜𝑜𝑛𝑛𝑟𝑟(𝑏𝑏𝑘𝑘�29)
29

Now, since all 𝐵𝐵 coefficients are less than 2−5 = 0.03125, then we could scale all 
coefficients with 25, i.e., 𝑏𝑏𝑘𝑘′ = 𝑏𝑏𝑘𝑘 � 25 < 1.

�𝑏𝑏𝑘𝑘′ = 𝑉𝑉𝑜𝑜𝑜𝑜𝑛𝑛𝑟𝑟(𝑏𝑏𝑘𝑘
′ �29)

29
thus utilizing the full dynamic range, however…

𝐻𝐻 𝑧𝑧 = 𝐵𝐵(𝑧𝑧)
𝐴𝐴(𝑧𝑧)

b_unquantized =

0.012218357882143  

-0.009700754662078   

0.024350450826845   

0.002532504848041   

0.002532504848041   

0.024350450826845  

-0.009700754662078   

0.012218357882143

Using 𝑄𝑄𝑄.9

Using 𝑄𝑄𝑄.5

This is a problem – which can be alleviated by re-scaling the scaled and rounded coefficients.
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Re-scaling the scaled and rounded coef. 
�𝑏𝑏𝑘𝑘′ = 𝑉𝑉𝑜𝑜𝑜𝑜𝑛𝑛𝑟𝑟(𝑏𝑏𝑘𝑘

′ �29)
29

and thus �𝑏𝑏𝑘𝑘 = 2−5 � �𝑏𝑏𝑘𝑘′ = 2−5 𝑉𝑉𝑜𝑜𝑜𝑜𝑛𝑛𝑟𝑟 𝑏𝑏𝑘𝑘
′ �29

29
= 𝑉𝑉𝑜𝑜𝑜𝑜𝑛𝑛𝑟𝑟 𝑏𝑏𝑘𝑘

′ �29

29+5
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How to solve the pole problem..?
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How to solve the pole problem..?
Since the 𝐴𝐴 coefficients represent the recursive part of the filter, there are no other options than experimenting
with increased word-length – both for the 𝐴𝐴 and the 𝐵𝐵 polynomial.

We therefore increase the word-length with 2 bit, from 10 to 12, maintaining 4 bit for the integer part, i.e., 𝑄𝑄𝑄.7

The filter is now marginally stable,
so a further word-length increase
is needed…
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How to solve the pole problem..?
At a 16 bit 𝑄𝑄𝑄.11 representation, the filter is stable.

In conclusion, there are many possibilities for representing/adjusting the coefficients – with pros and cons…
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High-order filters
• Always consider a factorization of 𝐻𝐻 𝑧𝑧 in order to derive a cascaded version consisting of

2𝑛𝑛𝑑𝑑 order section, i.e., 𝐻𝐻 𝑧𝑧 = ∏𝑘𝑘=1
𝑁𝑁/2 𝐻𝐻𝑘𝑘(𝑧𝑧), where 𝐻𝐻𝑘𝑘 𝑧𝑧 = 𝐵𝐵𝑘𝑘(𝑧𝑧)

𝐴𝐴𝑘𝑘(𝑧𝑧)
is a rational 2𝑛𝑛𝑑𝑑 order function.

• Alternatively, using partial fraction expansion, 𝐻𝐻(𝑧𝑧) can be sub-divided into a parallel version
also consisting of 2𝑛𝑛𝑑𝑑 order section, i.e., 𝐻𝐻 𝑧𝑧 = ∑𝑘𝑘=1

𝑁𝑁/2 𝐶𝐶𝑘𝑘
𝐴𝐴𝑘𝑘(𝑧𝑧)

where 𝐴𝐴𝑘𝑘(𝑧𝑧) is a 2𝑛𝑛𝑑𝑑 order polynomial
and 𝐶𝐶𝑘𝑘 is a constant.

• Also however, be careful with 2𝑛𝑛𝑑𝑑 order sections…!

Given 𝐻𝐻 𝑧𝑧 = 𝑌𝑌(𝑧𝑧)
𝑋𝑋(𝑧𝑧)

= 1
𝐴𝐴(𝑧𝑧)

= 1
1+𝑉𝑉1𝑧𝑧−1+𝑉𝑉2𝑧𝑧−2

= 1
1−2𝑉𝑉�cos 𝜃𝜃 𝑧𝑧−1+𝑉𝑉2𝑧𝑧−2

where 𝑟𝑟 and 𝜃𝜃 respesent the complex
conjugated roots of 𝐴𝐴(𝑧𝑧), 𝑧𝑧 = 𝑟𝑟 � 𝑒𝑒±𝑗𝑗𝜃𝜃.

Quantizing the coefficient 𝑟𝑟 � cos 𝜃𝜃 , which is the real part of the poles, leads to linear spacing.
However, quantizing linearly the coefficient 𝑟𝑟2 leads to a square root spaced distances between
possible radii – so the larger the 𝑟𝑟-value, the more closely spaced are the possible pole locations.
The combined pattern is shown on the next page…     
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Possible pole locations in 𝟐𝟐𝒏𝒏𝟓𝟓 order sections

Poles located in this region of the z-plane are
prone to major dis-alignment in a fixed-point
implementation scenario.

Here shown for 𝐵𝐵 = 4.
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…and here shown for 𝑩𝑩 = 𝟕𝟕
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One possible solution is the
Coupled Form
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A few words on
Coefficient quantization in FIR filters

The general FIR filter is characterized by the transfer function 𝐻𝐻 𝑧𝑧 = 𝐵𝐵(𝑧𝑧)
1

= ∑𝑘𝑘=0𝑀𝑀 𝑏𝑏𝑘𝑘𝑧𝑧−𝑘𝑘.

Quantizing the coefficients, we obtain

�𝐻𝐻 𝑧𝑧 = �
𝑘𝑘=0

𝑀𝑀

�𝑏𝑏𝑘𝑘𝑧𝑧−𝑘𝑘 = �
𝑘𝑘=0

𝑀𝑀

(𝑏𝑏𝑘𝑘 + 𝜀𝜀𝑘𝑘)𝑧𝑧−𝑘𝑘 = �
𝑘𝑘=0

𝑀𝑀

𝑏𝑏𝑘𝑘𝑧𝑧−𝑘𝑘 + �
𝑘𝑘=0

𝑀𝑀

𝜀𝜀𝑘𝑘𝑧𝑧−𝑘𝑘 = 𝐻𝐻 𝑧𝑧 + Ε(𝑧𝑧)
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Coefficient quantization in FIR filters
�𝐻𝐻 𝑧𝑧 = 𝐻𝐻 𝑧𝑧 + Ε(𝑧𝑧)

So, the quantized FIR filter can be characterized as two causal FIR filters coupled in parallel.

Σ
𝐻𝐻(𝑧𝑧)

Ε(𝑧𝑧)

𝑥𝑥[𝑛𝑛]

𝑒𝑒[𝑛𝑛]

𝑦𝑦[𝑛𝑛]

�𝑦𝑦 𝑛𝑛 = 𝑦𝑦 𝑛𝑛 + 𝑒𝑒[𝑛𝑛]

Let’s denote Ε(𝑧𝑧) the ”error filter”. The frequency response of this filter is;

Ε 𝑒𝑒𝑗𝑗𝑗𝑗 = �
𝑘𝑘=0

𝑀𝑀

𝜀𝜀𝑘𝑘 � 𝑒𝑒−𝑗𝑗𝑗𝑗𝑘𝑘
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Ε 𝑒𝑒𝑗𝑗𝑗𝑗 = �
𝑘𝑘=0

𝑀𝑀

𝜀𝜀𝑘𝑘 � 𝑒𝑒−𝑗𝑗𝑗𝑗𝑘𝑘

Coefficient quantization in FIR filters

Assume now that the coefficient quantization is conducted by rounding, then − ⁄∆ 2 ≤ 𝜀𝜀𝑘𝑘 ≤ ⁄∆ 2, and thus; 

|Ε 𝑒𝑒𝑗𝑗𝑗𝑗 | = �
𝑘𝑘=0

𝑀𝑀

𝜀𝜀𝑘𝑘 � 𝑒𝑒−𝑗𝑗𝑗𝑗𝑘𝑘

≤ �
𝑘𝑘=0

𝑀𝑀

𝜀𝜀𝑘𝑘 � 𝑒𝑒−𝑗𝑗𝑗𝑗𝑘𝑘 ≤ �
𝑘𝑘=0

𝑀𝑀

𝜀𝜀𝑚𝑚𝑉𝑉𝑥𝑥 = �
𝑘𝑘=0

𝑀𝑀

�∆ 2 = (𝑀𝑀 + 1) � �∆ 2

This value represents an upper limit on the amplitude response of the error filter, and thus we conclude; 

𝐻𝐻(𝑒𝑒𝑗𝑗𝑗𝑗) −
𝑀𝑀 + 1 � ∆

2 ≤ �𝐻𝐻(𝑒𝑒𝑗𝑗𝑗𝑗) ≤ 𝐻𝐻 𝑒𝑒𝑗𝑗𝑗𝑗 +
(𝑀𝑀 + 1) � ∆

2

It can be shown that a more general expression for |Ε 𝑒𝑒𝑗𝑗𝑗𝑗 | (for linear phase filters with odd order 𝑀𝑀) is;

|Ε 𝑒𝑒𝑗𝑗𝑗𝑗 | ≤
∆
2

1 + 2 �
𝑘𝑘=1

�(𝑀𝑀−1)
2

cos(𝑘𝑘𝑘𝑘)
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Scaling in recursive filters
As we discussed earlier, we are very much interested in finding a compromise between best possible
utilization of the dynamic range, and the probability of overflow.

Before we search for this compromise, we need to realize a neat feature of 2′𝑠𝑠 complement numbers.

Assume that we add three numbers; 𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐.

If |𝑎𝑎 + 𝑏𝑏| > 1, then this partial sum overflows.

If |𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐| < 1, the it doesn’t matter that the
𝑎𝑎 + 𝑏𝑏 partial sum overflows – the total sum is

within the legal dynamic range.

This feature is utilized in fixed-pont implementation
of digital filters…
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Scaling in recursive filters

|𝑦𝑦 𝑛𝑛 | = �
𝑖𝑖=1

𝑁𝑁

𝑎𝑎𝑖𝑖 � 𝑦𝑦 𝑛𝑛 − 𝑖𝑖 + �
𝑗𝑗=0

𝑀𝑀

𝑏𝑏𝑗𝑗 � 𝑥𝑥[𝑛𝑛 − 𝑗𝑗] < 1

Implementing a digital filter means that we have to conduct a sum-of-product. If the resulting sum
is within the legal dynamic range, i.e., without overflow, then we allow the partial sums to overflow;  

Overflow is allowed in these partial sums

Note that the actual implementation structure (Direct Form I, Direct Form II, etc.) dictates which
internal variables which may overflow, and which may not…!!!
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Scaling in recursive filters
Now, we can search for a compromise between best possible utilization of the dynamic range, and the 
minimal probability of overflow – in those variable where overflow is not allowed.

The idea is to determine a scaling constant 𝑠𝑠 which is multiplied onto the input variable; 𝑥𝑥′ 𝑛𝑛 = 𝑠𝑠 � 𝑥𝑥[𝑛𝑛]

There exists several methodologies for finding 𝑠𝑠 – the most immediate one is denoted ”Abs-value scaling”
or 𝐿𝐿1 scaling. The idea being that 𝑠𝑠 is calculated in such a way that overflow cannot occur in those variable
where overflow is not allowed. At a first glance, a very attractive idea – but unfortunately also leading to a 
very conservative result in the sense that 𝑠𝑠 is often so small that the SNR suffers significantly.

Better though is to allow overflow in a tiny amount of the overall processing time, thus accepting unwanted
numerical behavior in the implementation, but at the same time improving significantly on the SNR – i.e., 
introducing a larger input signal, and thus obtain a better utilization of the dynamic range.    

𝑦𝑦[𝑛𝑛]𝑥𝑥[𝑛𝑛]

𝑠𝑠

𝑥𝑥′[𝑛𝑛] 𝑡[𝑛𝑛]x
No overflow Low SNR
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Scaling in recursive filters –
Variance / Energy / 𝑳𝑳𝟐𝟐 scaling

The idea here is to require, that the energy in all those variables 𝑤𝑤𝑘𝑘, where overflow is not allowed,
is less than the energy in the input signal 𝑥𝑥. 

𝑥𝑥[𝑛𝑛]
𝑡𝑘𝑘[𝑛𝑛]

𝑤𝑤𝑘𝑘[𝑛𝑛] 𝑡𝑘𝑘[𝑛𝑛] represents the impulse response
from the input to the variable 𝑤𝑤𝑘𝑘.

Using Parseval’s identity, we now introduce an expression for the energy in the internal variable 𝑤𝑤𝑘𝑘.

𝜎𝜎𝑤𝑤𝑘𝑘
2 < 𝜎𝜎𝑥𝑥2 ⇒

𝜎𝜎𝑤𝑤𝑘𝑘
2

𝜎𝜎𝑥𝑥2
< 1

𝜎𝜎𝑤𝑤𝑘𝑘
2 = �

𝑛𝑛=−∞

∞

𝑤𝑤𝑘𝑘[𝑛𝑛] 2 =
1

2𝜋𝜋�−𝜋𝜋

𝜋𝜋
𝑊𝑊𝑘𝑘(𝑒𝑒𝑗𝑗𝑗𝑗) 2𝑑𝑑𝑘𝑘

Since 𝑤𝑤𝑘𝑘 𝑛𝑛 = 𝑡𝑘𝑘[𝑛𝑛] ∗ 𝑥𝑥[𝑛𝑛], the Fourier transform is 𝑊𝑊𝑘𝑘 𝑒𝑒𝑗𝑗𝑗𝑗 = 𝐻𝐻𝑘𝑘(𝑒𝑒𝑗𝑗𝑗𝑗) � 𝑋𝑋(𝑒𝑒𝑗𝑗𝑗𝑗)
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Scaling in recursive filters
𝜎𝜎𝑤𝑤𝑘𝑘
2 = ∑𝑛𝑛=−∞∞ 𝑤𝑤𝑘𝑘[𝑛𝑛] 2 = 1

2𝜋𝜋 ∫−𝜋𝜋
𝜋𝜋 𝑊𝑊𝑘𝑘(𝑒𝑒𝑗𝑗𝑗𝑗) 2𝑑𝑑𝑘𝑘 and  𝑊𝑊𝑘𝑘 𝑒𝑒𝑗𝑗𝑗𝑗 = 𝐻𝐻𝑘𝑘(𝑒𝑒𝑗𝑗𝑗𝑗) � 𝑋𝑋(𝑒𝑒𝑗𝑗𝑗𝑗)

𝜎𝜎𝑤𝑤𝑘𝑘
2 =

1
2𝜋𝜋

�
−𝜋𝜋

𝜋𝜋
𝐻𝐻𝑘𝑘(𝑒𝑒𝑗𝑗𝑗𝑗) � 𝑋𝑋(𝑒𝑒𝑗𝑗𝑗𝑗) 2𝑑𝑑𝑘𝑘

Now, using Cauchy–Schwarz inequality and Parseval (in reverse) we rewrite the expression to;    

𝜎𝜎𝑤𝑤𝑘𝑘
2 ≤ �

𝑛𝑛=∞

∞

𝑥𝑥[𝑛𝑛] 2 �
1

2𝜋𝜋�−𝜋𝜋

𝜋𝜋
𝐻𝐻𝑘𝑘(𝑒𝑒𝑗𝑗𝑗𝑗) 2𝑑𝑑𝑘𝑘

We can always fulfill this inequality by multiplying 𝑥𝑥[𝑛𝑛] by a proper constant 𝑠𝑠. 
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Scaling in recursive filters

𝜎𝜎𝑤𝑤𝑘𝑘
2 ≤ 𝑠𝑠2 �

𝑛𝑛=∞

∞

𝑥𝑥 𝑛𝑛 2 �
1

2𝜋𝜋
�
−𝜋𝜋

𝜋𝜋
𝐻𝐻𝑘𝑘 𝑒𝑒𝑗𝑗𝑗𝑗 2𝑑𝑑𝑘𝑘 = 𝑠𝑠2 � 𝜎𝜎𝑥𝑥2 �

1
2𝜋𝜋

�
−𝜋𝜋

𝜋𝜋
𝐻𝐻𝑘𝑘 𝑒𝑒𝑗𝑗𝑗𝑗 2𝑑𝑑𝑘𝑘

𝜎𝜎𝑤𝑤𝑘𝑘
2

𝜎𝜎𝑥𝑥2
≤ 𝑠𝑠2 �

1
2𝜋𝜋

�
−𝜋𝜋

𝜋𝜋
𝐻𝐻𝑘𝑘 𝑒𝑒𝑗𝑗𝑗𝑗 2𝑑𝑑𝑘𝑘 < 1

𝑠𝑠2 <
1

1
2𝜋𝜋 ∫−𝜋𝜋

𝜋𝜋 𝐻𝐻𝑘𝑘 𝑒𝑒𝑗𝑗𝑗𝑗 2𝑑𝑑𝑘𝑘
=

1
∑𝑛𝑛=−∞∞ 𝑡𝑘𝑘[𝑛𝑛] 2

𝑠𝑠 <
1

∑𝑛𝑛=−∞∞ 𝑡𝑘𝑘[𝑛𝑛] 2

𝑠𝑠 =
1

max
𝑘𝑘

{ ∑𝑛𝑛=−∞∞ 𝑡𝑘𝑘[𝑛𝑛] 2}
𝑘𝑘 represents variables in the filter structure where overflow is not allowed.
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Probability for overflow
Assume that the signal 𝑥𝑥[𝑛𝑛] is a WSS stochastic process.

The Power Density Spectrum for 𝑥𝑥[𝑛𝑛] is defined as;

𝑆𝑆𝑥𝑥𝑥𝑥 𝑒𝑒𝑗𝑗𝑗𝑗 = �
𝑚𝑚=−∞

∞

𝑟𝑟𝑥𝑥𝑥𝑥(𝑚𝑚) � 𝑒𝑒−𝑗𝑗𝑗𝑗𝑚𝑚 where 𝑟𝑟𝑥𝑥𝑥𝑥 𝑚𝑚 = 𝐸𝐸{𝑥𝑥 𝑛𝑛 � 𝑥𝑥 𝑛𝑛 + 𝑚𝑚 } is the Autocorrelation sequence for 𝑥𝑥[𝑛𝑛].

𝑥𝑥[𝑛𝑛]
𝑡𝑘𝑘[𝑛𝑛]

𝑤𝑤𝑘𝑘[𝑛𝑛]

The energy (variance) in variable 𝑤𝑤𝑘𝑘 can be determined from the relation; 

Given the impulse response 𝑡𝑘𝑘[𝑛𝑛] between the input and a variable 𝑤𝑤𝑘𝑘:

𝜎𝜎𝑤𝑤𝑘𝑘
2 =

1
2𝜋𝜋�0

2𝜋𝜋
𝐻𝐻𝑘𝑘(𝑒𝑒𝑗𝑗𝑗𝑗) 2 � 𝑆𝑆𝑥𝑥𝑥𝑥 𝑒𝑒𝑗𝑗𝑗𝑗 𝑑𝑑𝑘𝑘 ≤ 𝐻𝐻𝑘𝑘2 2 � 𝑆𝑆𝑥𝑥𝑥𝑥 2 where � 2 is the 𝐿𝐿2 norm.

Due to the ≤ relation, this equation represents an upper limit on the energy of the signal 𝑤𝑤𝑘𝑘[𝑛𝑛].
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Probability for overflow
A realistic assumption is that the signal 𝑤𝑤𝑘𝑘[𝑛𝑛] represents a sequence which (in amplitude) is a normal distribution. 

𝑤𝑤𝑘𝑘

𝑃𝑃(𝑤𝑤𝑘𝑘)

𝜇𝜇𝑤𝑤𝑘𝑘 = 0

−1 1Dynamic range

overflow overflow

Given the upper limit on 𝜎𝜎𝑤𝑤𝑘𝑘
2 , we similarly have an upper limit on the standard deviation 𝜎𝜎𝑤𝑤𝑘𝑘.

Knowing the upper limit on 𝜎𝜎𝑤𝑤𝑘𝑘, we can also tell accurately the upper limit on the probability for overflow.
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Probability for overflow

The dynamic range is fixed

𝜎𝜎 smaller

𝜎𝜎 large

𝜎𝜎 small

Therefore, when 𝜎𝜎 is continuously reduced, the distribution becomes more narrow, and thus a continuously
larger part of the distribution becomes centered around the mean, leading to a continuously smaller area
outside the dynamic range, i.e., continuously reduced probability for overflow…   
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Probability for overflow
Upper limit on 𝜎𝜎𝑤𝑤𝑘𝑘 Upper limit on the overflow probability

1.0                                                0.318
0.8                                                0.212
0.6                                                0.096
0.4                                                0.012
0.333                                            0.0028
0.3                                                0.00092
0.25                                              6.4e-5
0.20                                              6.0e-7

If we choose 𝜎𝜎𝑤𝑤𝑘𝑘 < ⁄1 3 then the probability for overflow is less than 0.003, i.e., in such a case, statistically
there is overflow in 3 ⁄0 00 of the overall execution time – this is normally seen as an acceptable rate.

One way to accomplish this is to introduce a safety factor 𝛿𝛿 = 3 on the input after 𝐿𝐿2 scaling, i.e.,
the input signal 𝑥𝑥[𝑛𝑛] is multiplied by ⁄1 𝛿𝛿 (assuming that 𝜎𝜎𝑥𝑥2 = 1). 
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Noise-optimal filter structures
We now turn into a brief discussion on realization structures for recursive filters which can be transformed
into noise-optimale topologies.

Given the transfer function 𝐻𝐻(𝑧𝑧);

𝐻𝐻 𝑧𝑧 =
𝑌𝑌(𝑧𝑧)
𝑈𝑈(𝑧𝑧)

=
𝑄𝑄(𝑧𝑧)
𝑃𝑃(𝑧𝑧)

=
∑𝑘𝑘=0𝑀𝑀 𝑞𝑞𝑘𝑘𝑧𝑧−𝑘𝑘

1 + ∑𝑘𝑘=1𝑁𝑁 𝑝𝑝𝑘𝑘𝑧𝑧−𝑘𝑘

For 𝑆𝑆 = 𝑀𝑀 = 2, the inverse z-transform leads to the difference equation;

𝑦𝑦 𝑛𝑛 = 𝑞𝑞0𝑢𝑢 𝑛𝑛 + 𝑞𝑞1𝑢𝑢 𝑛𝑛 − 1 + 𝑞𝑞2𝑢𝑢 𝑛𝑛 − 2 − 𝑝𝑝1𝑦𝑦 𝑛𝑛 − 1 − 𝑝𝑝2𝑦𝑦[𝑛𝑛 − 2],  here illustrated as a Signal Flow Graph

This is known as the Canonic Structure
due to the minimal number of delays.
(Direct Form II)
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Noise-optimal filter structures –
the Direct Canonic Form

Through a series of manipulations, the general transfer function 𝐻𝐻(𝑧𝑧) can be re-structured into;

𝐻𝐻 𝑧𝑧 =
𝑌𝑌(𝑧𝑧)
𝑈𝑈(𝑧𝑧)

= 𝑞𝑞0 + 𝑏𝑏𝑁𝑁 �
∑𝑘𝑘=1𝑁𝑁 𝑞𝑞𝑘𝑘 + 𝑞𝑞0 � 𝑝𝑝𝑘𝑘

𝑏𝑏𝑁𝑁
𝑧𝑧−𝑘𝑘

1 + ∑𝑘𝑘=1𝑁𝑁 𝑝𝑝𝑘𝑘𝑧𝑧−𝑘𝑘

𝑌𝑌 𝑧𝑧 = 𝑞𝑞0 � 𝑈𝑈 𝑧𝑧 + 𝑏𝑏2 �
𝑐𝑐2𝑧𝑧−1 + 𝑐𝑐1𝑧𝑧−2

1 + 𝑝𝑝1𝑧𝑧−1 + 𝑝𝑝2𝑧𝑧−2
� 𝑈𝑈(𝑧𝑧)

𝑐𝑐𝑁𝑁+1−𝑘𝑘

which for 𝑆𝑆 = 2 reduces to

Σ
𝑞𝑞0

𝑏𝑏2
𝑆𝑆(𝑧𝑧)
𝐷𝐷(𝑧𝑧)

𝑈𝑈(𝑧𝑧) 𝑌𝑌(𝑧𝑧)

This is a very interesting version of the
general 2𝑛𝑛𝑑𝑑 order transfer function –
because there is a direct coupling from
input to output.  
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Noise-optimal filter structures –
the Direct Canonic Form

The advantages of this structure – here shown
as a signal flow graph…

• The direct coupling from input to output.

• The Direct Canonic Form is a special case
of the State Space structure.

• The SS structure has the interesting feature
that it can be transformed, with respect to the
internal variable, such that it becomes optimal
with regard to quantization noise…!  
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Scaling the Direct Canonic Form
Remember that we previously made the assumption that quantization noise (rounding from 2𝐵𝐵 to 𝐵𝐵 bit)
is a ”white noise” source 𝑒𝑒[𝑛𝑛].

Coupling of a white signal through an LTI system;

𝑒𝑒[𝑛𝑛]
𝑔𝑔𝑥𝑥,𝑤𝑤[𝑛𝑛]

𝑤𝑤[𝑛𝑛]

The internal variable where
the noise 𝑒𝑒[𝑛𝑛] attacs

An internal variable

The causal impulse response
from the variable 𝑥𝑥 to variable 𝑤𝑤.

𝜎𝜎𝑤𝑤2 = 𝜎𝜎𝑒𝑒2�
𝑛𝑛=0

∞

𝑔𝑔𝑥𝑥,𝑤𝑤
2 [𝑛𝑛]

This is the noise variance in the internal variable 𝑤𝑤.

𝑥𝑥[𝑛𝑛]
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Realistically assuming that the individual noise noises, 𝑒𝑒𝑖𝑖[𝑛𝑛] are independent (un-correlated), then
the total noise variance at the output of the filter can be calculated as a sum of the individual noise
contributions (here single precision);

Here we assume identical
word-length in all variables.

𝜎𝜎𝑜𝑜𝑜𝑜𝑡𝑡,𝑡𝑡𝑜𝑜𝑡𝑡𝑉𝑉𝑙𝑙
2 = �

𝑖𝑖=1

# 𝑚𝑚𝑜𝑜𝑙𝑙𝑡𝑡
∆2

12
� �
𝑛𝑛=0

∞

𝑔𝑔𝑖𝑖,𝑜𝑜𝑜𝑜𝑡𝑡2 [𝑛𝑛]

Similarly, if the calculation is conducted in double precision, the total noise variance at the output is; 

𝜎𝜎𝑜𝑜𝑜𝑜𝑡𝑡,𝑡𝑡𝑜𝑜𝑡𝑡𝑉𝑉𝑙𝑙
2 = �

𝑖𝑖=1

# 𝑜𝑜𝑉𝑉𝑜𝑜𝑟𝑟𝑜𝑜𝑉𝑉𝑡𝑡 𝑠𝑠𝑜𝑜𝑚𝑚𝑠𝑠
∆2

12 � �
𝑛𝑛=0

∞

𝑔𝑔𝑖𝑖,𝑜𝑜𝑜𝑜𝑡𝑡2 [𝑛𝑛]

Scaling the Direct Canonic Form
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Scaling the Direct Canonic Form
Again, we want to avoid overflow… Essentially, there are two different approaches; 1) apply Saturation
Arithmetic, or 2) conduct proper scaling of the filter structure, which means;

1. enable full utilization of the dynamic range in all variables where overflow is not allowed, and

2. adjust the input amplitude level, i.e., tune the standard deviation on the input signal using a safety factor. 

Ad 1)    The 𝐿𝐿2 scaling paradigm: 𝜎𝜎𝑜𝑜𝑜𝑜𝑡𝑡2 = 𝜎𝜎𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝑉𝑉𝑛𝑛2 = 𝜎𝜎𝑖𝑖𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡2

𝑤𝑤1

𝑤𝑤2

𝑓𝑓1[𝑛𝑛]

𝑓𝑓2[𝑛𝑛]

𝑔𝑔1[𝑛𝑛]

𝑔𝑔2[𝑛𝑛]

𝑡[𝑛𝑛] y[𝑛𝑛]u[𝑛𝑛]

We will now use the symbolic SFG to explain the procedure; 

The impulse response from input to output is 𝑡[𝑛𝑛].

Internally in the structure, there are two variables
where overflow is not allowed, 𝑤𝑤1 and 𝑤𝑤2.
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Scaling the Direct Canonic Form
We start by scaling from input 𝑢𝑢 and to the internal variable 𝑤𝑤𝑖𝑖, where overflow is not allowed, i.e., we seek
to obtain 𝜎𝜎𝑤𝑤𝑖𝑖

2 = 1. Since scaling with a factor 𝑘𝑘 must not change the total inpulse response from input to output,
we afterwards compensate by multiplying with ⁄1 𝑘𝑘;

𝑤𝑤𝑖𝑖

𝑘𝑘𝑖𝑖𝑓𝑓𝑖𝑖[𝑛𝑛]
1
𝑘𝑘𝑖𝑖
𝑔𝑔𝑖𝑖[𝑛𝑛]

𝑦𝑦𝑖𝑖 𝑛𝑛 = 𝑢𝑢[𝑛𝑛] ∗ (𝑓𝑓𝑖𝑖[𝑛𝑛] ∗ 𝑔𝑔𝑖𝑖[𝑛𝑛])u[𝑛𝑛]

We next scale from input 𝑢𝑢 and to output 𝑦𝑦. This is possible since 𝜎𝜎𝑤𝑤𝑖𝑖
2 = 1. The factor 𝑠𝑠 (see p. 49) is introduced

between 𝑤𝑤𝑖𝑖 and 𝑦𝑦.   

y 𝑛𝑛u[𝑛𝑛]
𝑠𝑠 � 𝑡 𝑛𝑛

Ad 2)    As discussed earlier, to bring the standard deviation of the input signal within ”safe bounds”, we
finally multiply 𝑥𝑥[𝑛𝑛] by ⁄1 𝛿𝛿, where 𝛿𝛿 is the safety factor (see p. 53).
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Scaling the Direct Canonic Form –
the totally scaled structure

Note that there is only one internal variable 𝑤𝑤[𝑛𝑛].



P A G E
6 2

The State Space notation
We now extend to the general case, where the filter structure is described using a SS notation.
A State Space filter can modified into a noise-optimal structure.

The idea is to transform the signal flow graph by introducing ”State Variables”, 𝑥𝑥𝑖𝑖∗ and 𝑥𝑥𝑖𝑖. 

𝑧𝑧−1 𝑧𝑧−1 11

𝑥𝑥𝑖𝑖∗ 𝑥𝑥𝑖𝑖

In any transformed SFG, there are ”a number” of such state variable, and thus it makes sense to
introduce a vector notation based on the state vectors 𝑋𝑋 and 𝑋𝑋∗.

𝑈𝑈 𝑋𝑋, 𝑋𝑋∗ 𝑌𝑌

𝑋𝑋∗ = 𝑨𝑨𝑋𝑋 + 𝑩𝑩𝑈𝑈

𝑌𝑌 = 𝑪𝑪𝑋𝑋 + 𝑫𝑫𝑈𝑈

𝑋𝑋∗ = 𝑧𝑧𝑋𝑋
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𝑋𝑋∗ = 𝑨𝑨𝑋𝑋 + 𝑩𝑩𝑈𝑈

𝑌𝑌 = 𝑪𝑪𝑋𝑋 + 𝑫𝑫𝑈𝑈

𝑋𝑋∗ = 𝑧𝑧𝑋𝑋

The State Space notation

For an 𝑆𝑆′𝑠𝑠𝑡 order filter we have 1 input 𝑢𝑢[𝑛𝑛], 1 output 𝑦𝑦[𝑛𝑛], and 𝑆𝑆 state variables 𝑋𝑋, and in the time domain
the state description is;

𝑋𝑋∗ 𝑛𝑛 = 𝑋𝑋 𝑛𝑛 + 1 = 𝑨𝑨𝑋𝑋 𝑛𝑛 + 𝑏𝑏𝑢𝑢 𝑛𝑛

𝑦𝑦 𝑛𝑛 = 𝑐𝑐 𝑋𝑋 𝑛𝑛 + 𝑑𝑑𝑢𝑢[𝑛𝑛]

Computation of output 

Computation of next state
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𝑋𝑋∗ 𝑛𝑛 = 𝑋𝑋 𝑛𝑛 + 1 = 𝑨𝑨𝑋𝑋 𝑛𝑛 + 𝑏𝑏𝑢𝑢 𝑛𝑛

𝑦𝑦 𝑛𝑛 = 𝑐𝑐 𝑋𝑋 𝑛𝑛 + 𝑑𝑑𝑢𝑢[𝑛𝑛]

The State Space notation for 𝑵𝑵 = 𝟐𝟐

𝑦𝑦 𝑛𝑛 = 𝑐𝑐1𝑥𝑥1 𝑛𝑛 + 𝑐𝑐2𝑥𝑥2 𝑛𝑛 + 𝑑𝑑𝑢𝑢 𝑛𝑛

𝑥𝑥1 𝑛𝑛 + 1 = 𝑎𝑎11𝑥𝑥1 𝑛𝑛 + 𝑎𝑎12𝑥𝑥2 𝑛𝑛 + 𝑏𝑏1𝑢𝑢 𝑛𝑛

𝑥𝑥2 𝑛𝑛 + 1 = 𝑎𝑎21𝑥𝑥1 𝑛𝑛 + 𝑎𝑎22𝑥𝑥2 𝑛𝑛 + 𝑏𝑏2𝑢𝑢[𝑛𝑛]

For the Direct Canonic Form, we see that

𝑏𝑏 = 0
𝑏𝑏2

𝑨𝑨 = 0
−𝑜𝑜2

1
−𝑜𝑜1

𝑐𝑐 =
𝑞𝑞2−𝑞𝑞1𝑝𝑝2

𝑏𝑏2
𝑞𝑞1−𝑞𝑞0𝑝𝑝1

𝑏𝑏2

𝑑𝑑 = 𝑞𝑞0
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State Space –
Transfer function and Transformation

In order to establish a transfer function, we 𝑧𝑧 transform the SS equations; 𝑋𝑋 𝑛𝑛 + 1 = 𝑨𝑨𝑋𝑋 𝑛𝑛 + 𝑏𝑏𝑢𝑢 𝑛𝑛
𝑦𝑦 𝑛𝑛 = 𝑐𝑐 𝑋𝑋 𝑛𝑛 + 𝑑𝑑𝑢𝑢[𝑛𝑛]

𝑧𝑧𝑋𝑋 𝑧𝑧 = 𝑨𝑨𝑋𝑋 𝑧𝑧 + 𝑏𝑏𝑈𝑈 𝑧𝑧
𝑌𝑌 𝑧𝑧 = 𝑐𝑐 𝑋𝑋 𝑧𝑧 + 𝑑𝑑𝑈𝑈(𝑧𝑧)

which can be manipulated into; 𝐻𝐻 𝑧𝑧 = 𝑌𝑌(𝑧𝑧)
𝑈𝑈(𝑧𝑧)

= 𝑑𝑑 + 𝑐𝑐 𝑧𝑧𝑰𝑰 − 𝑨𝑨 −1𝑏𝑏

Without changing the transfer function 𝐻𝐻(𝑧𝑧), we now search for a transformation which can modify the 
internal variable in the filter.

The idea is to derive new internal variables, using a Transform Matrix 𝑻𝑻;

𝑋𝑋𝑛𝑛𝑒𝑒𝑤𝑤[𝑛𝑛] = 𝑋𝑋′ 𝑛𝑛 = 𝑻𝑻−1𝑋𝑋[𝑛𝑛] where 𝑻𝑻 is a non-singular matrix.

We now apply 𝑋𝑋 𝑛𝑛 = 𝑻𝑻𝑋𝑋′[𝑛𝑛] into which leads to;

∗

∗
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State Space – Variable Transformation 

𝑋𝑋′ 𝑛𝑛 + 1 = 𝑨𝑨′𝑋𝑋′ 𝑛𝑛 + 𝑏𝑏′𝑢𝑢 𝑛𝑛

𝑦𝑦′ 𝑛𝑛 = 𝑐𝑐′𝑋𝑋′ 𝑛𝑛 + 𝑑𝑑′𝑢𝑢[𝑛𝑛]
where

𝑨𝑨′ = 𝑻𝑻−1𝑨𝑨𝑻𝑻
𝑏𝑏′ = 𝑻𝑻−1𝑏𝑏
𝑐𝑐′ = 𝑐𝑐𝑻𝑻
𝑑𝑑′ = 𝑑𝑑

Inserting this expression for the transformed SS equations into the expression
for the transfer function 𝐻𝐻 𝑧𝑧 , p.65, it can be shown that 𝑇𝑇 is neutral to 𝐻𝐻(𝑧𝑧).   

Question is; Can we find any helpful 𝑇𝑇 which can now be used to modify the State Space structure..??
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State Space – Systems Matrices K and W

𝑤𝑤1

𝑤𝑤2

𝑓𝑓1[𝑛𝑛]

𝑓𝑓2[𝑛𝑛]

𝑔𝑔1[𝑛𝑛]

𝑔𝑔2[𝑛𝑛]

𝑡[𝑛𝑛] y[𝑛𝑛]u[𝑛𝑛]

Definition of two new matrices, 𝑲𝑲 and 𝑾𝑾.

𝐾𝐾𝑖𝑖𝑗𝑗 = �
𝑛𝑛=0

∞

𝑓𝑓𝑖𝑖[𝑛𝑛] � 𝑓𝑓𝑗𝑗[𝑛𝑛]

𝑊𝑊𝑖𝑖𝑗𝑗 = �
𝑛𝑛=0

∞

𝑔𝑔𝑖𝑖[𝑛𝑛] � 𝑔𝑔𝑗𝑗[𝑛𝑛]

We normally can find the impulse responses 𝑓𝑓 and 𝑔𝑔, and since we look
only at stable filters then (from a numerical point of you), both 𝑓𝑓 and 𝑔𝑔 are
finite length, and thus we can determine 𝐾𝐾𝑖𝑖𝑗𝑗 and 𝑊𝑊𝑖𝑖𝑗𝑗.

The two matrices 𝐾𝐾 and 𝑊𝑊 can now be used for 𝐿𝐿2 scaling.
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State Space – internal variable scaling, 𝑿𝑿
𝜎𝜎𝑥𝑥𝑖𝑖
2 = 𝜎𝜎𝑜𝑜2 � �

𝑛𝑛=0

∞

𝑘𝑘𝑖𝑖 � 𝑓𝑓𝑖𝑖 𝑛𝑛 2 ⇒ 𝑘𝑘𝑖𝑖 =
1

∑𝑛𝑛=0∞ 𝑓𝑓𝑖𝑖2[𝑛𝑛]
=

1
𝐾𝐾𝑖𝑖𝑖𝑖

𝑢𝑢[𝑛𝑛]

𝑥𝑥𝑖𝑖[𝑛𝑛]
𝑓𝑓𝑖𝑖[𝑛𝑛]

𝑢𝑢[𝑛𝑛]

𝑥𝑥𝑖𝑖′[𝑛𝑛]
𝑘𝑘𝑖𝑖𝑓𝑓𝑖𝑖[𝑛𝑛]

Un-scaled filter Scaled filter

Defining the scaling Matrix; 𝑻𝑻𝑠𝑠 =
𝐾𝐾11 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐾𝐾𝑁𝑁𝑁𝑁

=
�1
𝑘𝑘1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ �1

𝑘𝑘𝑁𝑁
Since 𝑻𝑻𝑠𝑠 is a diagonal matrix, the inverse matrix, 𝑻𝑻𝑠𝑠−1, is easily found;

𝑻𝑻𝑠𝑠−1 =

�1 𝐾𝐾11
⋯ 0

⋮ ⋱ ⋮
0 ⋯ �1 𝐾𝐾𝑁𝑁𝑁𝑁

=
𝑘𝑘1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑘𝑘𝑁𝑁
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State Space – internal variable scaling, 𝑿𝑿
The transformation of the internal variables is conducted as;                               c.f., p.65, and thus;𝑋𝑋′ 𝑛𝑛 = 𝑻𝑻𝑠𝑠−1𝑋𝑋[𝑛𝑛]

𝑨𝑨′ = 𝑻𝑻𝑠𝑠−1𝑨𝑨𝑻𝑻𝑠𝑠
𝑏𝑏′ = 𝑻𝑻𝑠𝑠−1𝑏𝑏
𝑐𝑐′ = 𝑐𝑐𝑻𝑻𝑠𝑠
𝑑𝑑′ = 𝑑𝑑

which represents the internally scaled filter.

Next, we need to conduct external scaling, i.e., scaling from input 𝑢𝑢 to output 𝑦𝑦.

External scaling must not interfer with the internal scaling just performed, and thus it can impact only
The vector 𝑐𝑐 and the scalar 𝑑𝑑.

𝑦𝑦′′ 𝑛𝑛 = 𝑠𝑠 � 𝑐𝑐′𝑥𝑥′ 𝑛𝑛 + 𝑠𝑠 � 𝑑𝑑′𝑢𝑢[𝑛𝑛] where the scaling factor 𝑠𝑠 is found via the impulse response from
input to output, i.e., 𝑠𝑠 = 1

∑𝑛𝑛=0∞ 𝑡2[𝑛𝑛]
(see p. 49).
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The totally scaled State Space filter
𝑨𝑨′′ = 𝑻𝑻𝑠𝑠−1𝑨𝑨𝑻𝑻𝑠𝑠
𝑏𝑏′′ = 𝑻𝑻𝑠𝑠−1𝑏𝑏
𝑐𝑐′′ = 𝑠𝑠 � 𝑐𝑐𝑻𝑻𝑠𝑠
𝑑𝑑′′ = 𝑠𝑠 � 𝑑𝑑

Note that despite we use ′′ on all coefficients (on the left hand side), representing
the totally scaled filter, 𝐴𝐴′′ and 𝑏𝑏′′ still denote the internally scaled filter.

Using the definitions of the system matrices 𝑲𝑲 and 𝑾𝑾, we can find expressions for their scaled versions; 

𝑲𝑲′ = 𝑻𝑻𝑠𝑠−1𝑲𝑲 𝑻𝑻𝑠𝑠𝑇𝑇 −1

𝑾𝑾′ = 𝑻𝑻𝑠𝑠𝑇𝑇𝑾𝑾𝑻𝑻𝑠𝑠

𝑲𝑲′′ = 𝑲𝑲′

𝑾𝑾′′ = 𝑠𝑠2𝑾𝑾′

Internal scaling External scaling

Again, note that external scaling does not impact matrix 𝑲𝑲.
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Totally scaled State Space filter –
noise variance

For a 2𝑛𝑛𝑑𝑑 order State Space filter, the quantization noise can attack in four variables;
1) at the input due to quantization in the ADC, 2) in the two internal variables, and 
finally 3) at the output.
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Noise variance at State Space filter output –
general 𝑵𝑵′𝟏𝟏𝟕𝟕 order case

We assume identical word-length throughout all variable 
in the filter, and product summation in double precision.

Thus the total noise variance at the output of an 𝑆𝑆′𝑠𝑠𝑡
order filter can be expressed as;

𝜎𝜎𝑜𝑜𝑜𝑜𝑡𝑡,𝑡𝑡𝑜𝑜𝑡𝑡𝑉𝑉𝑙𝑙
2 = 𝜎𝜎𝐴𝐴/𝐷𝐷

2 �
𝑛𝑛=0

∞

𝑡2 𝑛𝑛 + 𝜎𝜎𝑜𝑜𝑜𝑜𝑡𝑡2 + �
𝑖𝑖=1

𝑁𝑁

𝜎𝜎𝑥𝑥𝑖𝑖
2 � �

𝑛𝑛=0

∞

𝑔𝑔𝑖𝑖′′[𝑛𝑛] 2

𝜎𝜎𝑜𝑜𝑜𝑜𝑡𝑡,𝑡𝑡𝑜𝑜𝑡𝑡𝑉𝑉𝑙𝑙
2 =

∆2

12 2 + �
𝑖𝑖=1

𝑁𝑁

𝑤𝑤𝑖𝑖𝑖𝑖′′
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Noise-optimal State Space structure
𝑲𝑲′ = 𝑻𝑻𝑠𝑠−1𝑲𝑲 𝑻𝑻𝑠𝑠𝑇𝑇 −1

𝑾𝑾′ = 𝑻𝑻𝑠𝑠𝑇𝑇𝑾𝑾𝑻𝑻𝑠𝑠
From p. 70 we have that the System Matrices for the internally scaled filter are

The individual entries in 𝑲𝑲′ are therefore;   𝑲𝑲𝑖𝑖𝑖𝑖
′ = 𝑻𝑻𝑠𝑠−1𝑲𝑲 𝑻𝑻𝑠𝑠𝑇𝑇 −1

𝑖𝑖𝑖𝑖

From p.68 we have; 𝑻𝑻𝑠𝑠−1 =
𝑘𝑘1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑘𝑘𝑁𝑁

and since 𝑻𝑻𝑠𝑠 is diagonal, we also have 𝑻𝑻𝑠𝑠𝑇𝑇 = 𝑻𝑻𝑠𝑠 which leads to;

𝑲𝑲𝑖𝑖𝑖𝑖
′ = 𝑻𝑻𝑠𝑠−1𝑲𝑲 𝑻𝑻𝑠𝑠𝑇𝑇 −1

𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑖𝑖2 � 𝐾𝐾𝑖𝑖𝑖𝑖 = 1 because 𝐾𝐾𝑖𝑖𝑖𝑖 = 1
𝑘𝑘𝑖𝑖
2 (also derived at p.68).

𝑲𝑲′ =
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

The interpretation of this result is very important…! It tells us that the square-sum
of the impulse responses from input to ALL internal variables equals 1, and thus
𝜎𝜎𝑤𝑤𝑘𝑘
2 = 𝜎𝜎𝑖𝑖𝑛𝑛𝑜𝑜𝑜𝑜𝑡𝑡2 for 𝑘𝑘 = 1. .𝑆𝑆, and thus there is a full utilization of the dynamic range

in all internal variables, thus improving the SNR.

This is different as compared to 𝐿𝐿2 scaling of a Direct Form structure, where this
is true for only one internal variable (see p. 49). 
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Final remarks on the State Space filter

It can be shown that 𝑊𝑊𝑖𝑖𝑖𝑖
′ � 𝐾𝐾𝑖𝑖𝑖𝑖′ = 𝑊𝑊𝑖𝑖𝑖𝑖 � 𝐾𝐾𝑖𝑖𝑖𝑖, which we will denote; transformation in-variant products.

𝑢𝑢[𝑛𝑛] 𝑥𝑥𝑖𝑖[𝑛𝑛]

�𝑓𝑓𝑖𝑖2 �𝑔𝑔𝑖𝑖2

y[𝑛𝑛] 𝑢𝑢[𝑛𝑛] 𝑥𝑥𝑖𝑖′[𝑛𝑛]

� 𝑓𝑓𝑖𝑖′ 2

y[𝑛𝑛]

� 𝑔𝑔𝑖𝑖′ 2

Un-scaled filter Scaled filter

=

It tells us that internal scaling does not change the output variance.

So, for the State Space filter, we can modify the internal variable, independently from the output.
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Final remarks on the State Space filter

Further, it can be shown that there exists a noise-optimal transformation matrix, 𝑻𝑻𝑜𝑜𝑜𝑜𝑡𝑡, which enables the 
least possible noise variance at the output. The overall transformation scheme is the same as introduced
on p. 70;

𝑲𝑲′ = 𝑻𝑻𝑜𝑜𝑜𝑜𝑡𝑡−1 𝑲𝑲 𝑻𝑻𝑜𝑜𝑜𝑜𝑡𝑡𝑇𝑇 −1

𝑾𝑾′ = 𝑻𝑻𝑜𝑜𝑜𝑜𝑡𝑡𝑇𝑇 𝑾𝑾𝑻𝑻𝑜𝑜𝑜𝑜𝑡𝑡

Without further arguments, we claim that 𝑻𝑻𝑜𝑜𝑜𝑜𝑡𝑡 is the matrix, which transform 𝑲𝑲 and 𝑾𝑾 into diagonal matrices.  

Why is that…??

Let’s give an intuitive explanation.
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Final remarks on the State Space filter

Remember (p. 67) that

𝐾𝐾𝑖𝑖𝑗𝑗 = �
𝑛𝑛=0

∞

𝑓𝑓𝑖𝑖[𝑛𝑛] � 𝑓𝑓𝑗𝑗[𝑛𝑛]

𝑊𝑊𝑖𝑖𝑗𝑗 = �
𝑛𝑛=0

∞

𝑔𝑔𝑖𝑖[𝑛𝑛] � 𝑔𝑔𝑗𝑗[𝑛𝑛]

These are cross-correlations between the impulse responses 1) from input to the internal variables, and
2) from the internal variables to the output.

Therefore, if we can obtain 𝐾𝐾 =
𝐾𝐾11 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐾𝐾𝑁𝑁𝑁𝑁

and 𝑊𝑊 =
𝑊𝑊11 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑊𝑊𝑁𝑁𝑁𝑁

then all the cross-correlations

are equal to 0 (the diagonal represents the auto-correlations).

If the 𝐾𝐾 cross-correlations are all 0, then for a broad-band (”white”) input signal, the internal variables
𝑥𝑥𝑖𝑖[𝑛𝑛] and 𝑥𝑥𝑗𝑗[𝑛𝑛] are un-correlated. Similarly, if the 𝑊𝑊 cross-correlations are all 0, then all the sequences
being added at the output are also independent – and thus, the inherent noise sequences (which are also
”white”) will cancel each other, leading to the noise-optimal filter. We cannot design a fixed-point filter
which has a better SNR on the output.
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Final remarks on the State Space filter

-1

-1

1

1 𝑥𝑥1

𝑥𝑥2

If the State Space filter is ”𝐿𝐿2 scaled” using the 𝑻𝑻𝑠𝑠 matrix (p. 68), then we typically will see correlation
between the internal variables 𝑥𝑥1 and 𝑥𝑥2 which is elliptic shaped.

If, on the other hand, we scale the filter using the 𝑻𝑻𝑜𝑜𝑜𝑜𝑡𝑡 matrix, then the correlation ellipse becomes a circle.
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…and there is much more

However, it is enough for today, so..

Thanks a lot for your attention – and now please questions.
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