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ABSTRACT
Purpose: The advances in artificial intelligence have started to reach a level where
autonomous systems are becoming increasingly popular as a way to aid people
in their everyday life. Such intelligent systems may especially be beneficially for
people struggling to complete common everyday tasks, such as individuals with
movement-related disabilities. The focus of this paper is hence to review recent
work in using computer vision for semi-autonomous control of assistive robotic
manipulators (ARMs).

Methods: Four databases were searched using a block search, yielding 257
papers which were reduced to 14 papers after apply-ing various filtering criteria.
Each paper was reviewed with focus on the hardware used, the autonomous
behaviour achieved using computer vision and the scheme for semi-autonomous
control of the system. Each of the reviewed systems were also sought characterized
by grading their level of autonomy on a pre-defined scale.

Conclusions: A re-occurring issue in the reviewed systems was the inability
to handle arbitrary objects. This makes the systems unlikely to perform well
outside a controlled environment, such as a lab. This issue could be addressed by
having the systems recognize good grasping points or primitive shapes instead
of specific pre-defined objects. Most of the reviewed systems did also use a
rather simple strategy for the semi-autonomous control, where they switch either
between full manual control or full automatic control. An alternative could be a
control scheme relying on adaptive blending which could provide a more seamless
experience for the user

KEYWORDS
computer vision; assistive robotic manipulators; ARM; semi-autonomous control;
shared control; robotics; machine learning; exoskeleton

1. Introduction

Machines are becoming increasingly smarter and the effort invested into research in
artificial intelligence is at an all time high. This large interest in artificial intelligence
is triggered by its ability to make smart decision to aid us in our everyday life.

The healthcare sector is one area which could benefit immensely from artificial
intelligence by enabling assistive devices to act autonomously. Autonomous machines
could for instance assist the elderly and disabled individuals in feeding, getting dressed
and other activities of daily living. This is especially of interest given the increasing



demand for caregivers [1, 2].
Persons suffering from quadriplegia, i.e. total or partial loss of control of all four

limbs, would especially benefit from such assistance due to the severity of their dis-
ability. For instance, a study found that the use of an assistive robotic manipulator
(ARM) could reduce the need for assistance with 1.25 hours per day for persons with
upper-extremity disabilities [3]. Another study confirmed these findings as their results
showed that the use of an ARM could reduce the need for assistance by 41% [4]. This
reduced need for assistance would not only be economically beneficial but also increase
the users’ quality of life by empowering them and providing them with some privacy.
Furthermore, a survey on disabled persons found that 86% of the participants would
consider purchasing an ARM given the possibility [5] .

Another factor making autonomous control of ARMs increasingly interesting is how
readily available the necessary hardware is becoming. For instance, the commercially
available ARMs, which are specifically targeted at empowering users with movement
impairments, such as JACO from Kinova [6] or iARM from Exact Dynamics [7].

However, any system which is to behave autonomously must rely on some sort of
input to make informed decision, for instance knowledge of its immediate environment.
Computer vision is hence often a part of such autonomous systems as it enables the
system to capture and understand visual information. For instance, recognizing objects
in an image and figuring out how to grasp said object [8, 9, 10].

The purpose of introducing autonomous behaviour into these systems is to reduce
both the time it takes to execute a task and to reduce the cognitive burden on the user.
This research has been expanded to other types of ARMs as well, such as exoskeletons
[11, 12]. The idea of using an exoskeleton is to provide a more integrated solution than
e.g. a robotic arm mounted on a wheelchair.

However, having an ARM act autonomously is not necessarily a bliss for the user,
even though it might reduce the time it takes to execute different tasks [13, 14]. An
important aspect of using this technology is hence how the control is shared between
the human and the machine, i.e. the design of a scheme allowing for semi-autonomous
control of the ARM.

The contribution of this paper is hence a review of recent efforts in employing com-
puter vision for semi-autonomous control of ARMs, such as exoskeletons or robotic
arms. The goal of this review is to: (1) provide an overview of existing efforts in using
computer vision for semi-autonomous control of ARMs; (2) highlight the current chal-
lenges associated with this area of research; and thereby (3) point out new directions
of interest for this field.

2. Methods

The following outlines how the review was conducted in the terms of the literature
search and subsequent sorting of found material. The extraction of data from each
reviewed paper is described as well.

2.1. Data sources

The literature search was based on the following databases: Engineering Village, Web
of Science, Scopus, and Embase. The search was conducted by constructing blocks of
keywords related to computer vision, robotic manipulators and people with disabilities.
A paper had to match at least one keyword from each of these blocks to show up when
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searching each database.
The keywords in each of these blocks were as follows:

• Block 1 - computer vision: (”computer vision” OR ”robot vision” OR ”robotic
vision” OR ”object detection” OR ”image-based” OR ”grasp detection” OR
”vision-based” OR perception*)

• Block 2 - robotic manipulators: (”robot arm” OR ”robotic arm” OR ”robot
manipulator” OR ”robotic manipulator” OR exoarm OR exoskeleton OR ”per-
sonal robot”)

• Block 3 - people with disabilities: (disab* OR impair* OR adl* OR ”activ-
ities of daily living” OR handicap* OR ”personal robot” OR rehabilitat*)

It should be noted that the asterisk * serves as a wildcard for unknown terms and
different inflections of the same word.

Only the titles, abstracts and keywords were used while searching and any results
not in English were removed. Publications before 2008 and duplicates were removed
as well. Only conference proceedings, reports and journals were included during the
literature search and book chapters or book reviews were removed from the list of
results. This initial search resulted in 257 results after applying the above filters, as
illustrated in figure (1).

Enginnering
Village

Scopus

Web of
Science

combined

215

204

68

531
257

Embase
44

Remove
duplicates

Remove
books

Remove
pre-2008

Figure 1. Databases and exclusion criteria used during the initial literature search.

2.2. Filtering Criteria

Additional criteria were imposed on the initial search to further narrow down the
amount of relevant papers. Each paper should fulfil each of the following criteria to be
considered relevant:

(1) Purpose: The intended use of the system described in the paper should be
object manipulation tasks. Papers focusing on e.g. rehabilitation and wheelchair
navigation were discarded. This criterion was imposed to focus the scope of the
review.

(2) Camera: The system described in the paper should make use of a camera or a
similar visual sensor, such as a laser scanner. Any papers failing this criterion
are not doing computer vision and are hence outside the scope of this review.

(3) Disabled user: The intended user of the system described in the paper should
be a person suffering some kind of movement impairment, such that they would
benefit from an ARM.
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(4) Autonomous behaviour: The papers should describe a system capable of ex-
hibiting some degree of autonomous behaviour. Papers solely describing a way
of directly controlling an ARM are discarded.

(5) Details: The paper should be described in a sufficiently detailed way. A paper
is considered sufficiently detailed if it is possible to identify the parameters and
information described in the next section.

The initial set of 257 papers was reduced to 14 papers after applying the above criteria.
Papers which were of interest, even though they failed the criteria, are included in the
discussion part later.

2.3. Data Extraction

The first set of parameters extracted from each of the included papers relates to the
platform and the hardware used in the system, namely: the type of sensor(s) used,
the placement of the sensor(s), the type of robotic manipulator and the associated
number of degrees of freedom. These parameters are of interest as they impact how
both the computer vision and the semi-autonomous control functions. Furthermore,
this information could reveal interesting tendencies in terms of hardware selection.
It should be noted that the technologies for the user to interface with the different
systems are not covered in this review.

The second set of parameters extracted from each paper focuses on the semi-
autonomous behaviour of the different systems. This is done by identifying which
parts of the system that acts autonomous, using computer vision, and in which part
the human is still in control. These parameters are extracted in systematic way by
using the widely cited framework proposed by Parasuraman et al. [15].

This framework suggests that a semi-autonomous system can be split into four
stages, as shown in figure (2). This model is based on a simple model of the way
humans process information and act on it. The model is hence not intended to be
perfect and all-encompassing but rather a simplification making it possible to impose
some structure when analysing a system.

Information Acquisition

Data acquisition
Sensor position

Action Implementation

Actuation of links
Actuation of gripper

Information Analysis

Data segmentation
Object recognition

Cup

Mug

Ball

Decision Selection

Make decision
Grasp detection

Target

Figure 2. The four-stage model originally proposed by Parasuraman et al. [15], with examples of the tasks

associated with each individual stage. The figure is adapted from Pitzer et al. [16].

The different stages of this four-stage model are:

• Stage 1: Information acquisition
This stage contains functions related to sensing the environment such as gath-
ering raw data from e.g. a camera. Calculations related to depth estimation can
also be considered to belong in this step, for instance the registration between
two cameras in a stereo vision setup. This stage can also include strategies for au-
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tomatically moving the sensor(s) to better observe certain things. For instance,
re-positioning the camera to get a better view of an object.

• Stage 2: Information analysis
This stage is associated with the cognitive functions of the system. This is es-
sentially the stage where the system interprets the information acquired during
the previous stage. An example of such could be recognition of an object in an
image, i.e. detecting an object’s position and classifying the type of object.

• Stage 3: Decision selection
The focus of this stage is to make a decision based on the multiple alternative
options identified in the previous stage. The decision could for instance be which
of the detected objects to pick-up and how to grasp said object. A system with
a low level of autonomy would for instance offer the user all possible options. A
system with a high level of autonomy would, on the other hand, act without user
input and grab an object based on some pre-defined measure, e.g. the nearest
object.

• Stage 4: Action implementation
The final stage encompasses the actual execution of the necessary actions once a
decision has been made. This includes sending the correct signals to the actua-
tors, i.e. motors, of the robot to reach the desired goal such as the position of an
object. It is also the stage responsible for actuating the gripper during grasping
of objects.

Furthermore, Parasuraman et al. [15] also suggests a continuum when speaking of
autonomous behaviour, ranging from a low-level to a high-level of autonomy. The au-
thors specifically suggest 10 levels of autonomy, as outlined in table (1). This autonomy
scale mainly relates to the last two stages of the four-stage model, i.e. decision selec-
tion and action implementation, and will hence only be applied in relation to these
two stages.

Table 1. The different levels of autonomy. Adapted from Parasuraman et al. [15].

Levels of autonomy

1) The system offers no assistance.
2) - offers a complete set of decisions/actions.

3) - narrows down the selection to a few.
4) - suggests one alternative.
5) - executes the suggestion if the human approves.

6) - allows the human a restricted time to veto before executing.
7) - executes automatically, then necessarily informs the human.

8) - informs the human only if asked.

9) - informs the human only if it, the system, decides to.
10) - decides everything, ignoring the human.

3. Results

The first part of this section summarizes the different hardware used in each of the
reviewed papers. The second part outlines the semi-autonomous behaviour of each
reviewed system by following the four-stage model presented earlier.
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Table 2. Overview of the hardware used in the different reviewed papers. Hardware such as wheelchairs have

been omitted from the table as the focus of this review is object manipulation using an ARM.
Year Sensor Robotic platform

[17] 2008
Sensor: Passive stereo vision (custom).
Placement: End-effector.

Platform: MANUS (Exact Dynamics)
Degrees of freedom: 6

[8] 2009
Sensor: Passive stereo vision (custom).
Placement: End-effector.

Platform: MANUS (Exact Dynamics)
Degrees of freedom: 6

[16] 2011
Sensor: Active stereo vision (Kinect v1).
Placement: Robot’s head.

Platform: PR2 (Willow Garage)
Degrees of freedom: 8

[18] 2012
Sensor: Passive stereo vision (custom) and force sensor.
Placement: End-effector.

Platform: MANUS (Exact Dynamics)
Degrees of freedom: 6

[19] 2013
Sensor: 2x Monocular RGB cameras.
Placement: End-effector and overhead.

Platform: iARM (Exact Dynamics)
Degrees of freedom: 6

[9] 2013
Sensor: Active stereo vision (2x Kinect v1).
Placement: Table. Towards user and towards objects.

Platform: JACO (Kinova)
Degrees of freedom: 6

[11] 2014
Sensor: Active stereo vision (Kinect v1).
Placement: Table. Facing the user.

Platform: L-Exos, active wrist and
hand orthosis (custom)
Degrees of freedom: 8

[20] 2015
Sensor: Active stereo vision (Kinect v1).
Placement: Overhead.

Platform: JACO (Kinova)
Degrees of freedom: 6

[21] 2016
Sensor: Active stereo vision (2x Kinect v1).
Placement: Table. Towards user and towards objects.

Platform: JACO (Kinova)
Degrees of freedom: 6

[22] 2017
Sensor: Active stereo vision (Carmine).
Placement: End-effector.

Platform: Baxter (Rethink Robotics)
Degrees of freedom: 7

[10] 2017
Sensor: Passive stereo vision (Bumblebee).
Placement: Overhead.

Platform: WAM Arm (Barrett Tech)
Degrees of freedom: 7

[23] 2017
Sensor: Time-of-flight camera (2x Kinect v2).
Placement: Table. Towards user and Towards objects.

Platform: JACO (Kinova)
Degrees of freedom: 6

[24] 2017
Sensor: Time-of-flight camera (Kinect v2).
Placement: Table. Towards user.

Platform: JACO (Kinova)
Degrees of freedom: 6

[25] 2017
Sensor: Eye-tracking (EyeX) and RGB camera.
Placement: Table.

Platform: Dobot Magician (Dobot)
Degrees of freedom: 4

3.1. Hardware Selection Overview

The hardware associated with each of the reviewed systems are summarized in ta-
ble (2). It should be noted that the stated degrees of freedom (DoF) in the table
refers to the ARM only. DoFs gained from mounting on mobile platforms, such as
wheelchairs, are not included.

3.1.1. Sensor

Looking at the choice of sensor, most of the papers rely on some form of stereo vision
to gather depth information with several of the papers using the Kinect v1 from
Microsoft. This is a sensible choice given how easy the it is to acquire and work with,
but it does impose restrictions in terms of possible mounting locations as it has a
minimum distance of ≈ 0.5 m [26]. Any object closer than that is unlikely to be
captured by the sensor.

The newer model, Kinect v2, is used in some of the more recent papers such as
[23, 24]. This model relies on a time-of-flight (ToF) camera, instead of stereo vision, to
acquire depth information but its minimum working distance is identical to the Kinect
v1. These restrictions in terms of minimum distance is also clearly visible in the table,
as no one mounts their Kinect sensors near the end-effector for this exact same reason.

A few of the reviewed papers, [9, 21, 23], even use two Kinects with the second
one being orientated towards the user of the system. The purpose being either gesture
recognition and/or detection of the user’s face to move e.g. food to the mouth of the
user.
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The papers which mount their sensor near the end-effector primarily rely on cus-
tomized stereo vision setups, likely because it allows them to control the baseline
distance and hence their minimum distance. The only exception being [22] utilizing
the Carmine camera from PrimeSense but this device is also marketed as having a
minimum distance of ≈ 0.35 m, making it more suitable for such a mounting location
than the Kinect.

Another discerning characteristics in terms of sensor choice is whether active or
passive stereo vision is used. Active stereo vision relies on a light source, e.g. infrared
light, to actively illuminate the scene whereas passive stereo vision relies on the ambient
light only. Active stereo vision is hence more robust in terms of lacking illumination.
Another benefit of active stereo vision is its ability to handle lack of texture as the
active light source can be used to introduce texture in the scene. Lack of texture is a
general problem in stereo vision as it makes it harder to recognize the same point in
two images, which is needed to estimate the depth to said point. However, most of the
reviewed systems using passive stereo vision are tested using highly textured objects,
for instance [17, 8, 18], and may hence not experience this problem during the tests.

Furthermore, all the custom stereo vision setups found in the review are of the
passive variety. This is not surprising as active stereo vision setups are generally more
complicated to implement due to the active light source.

3.1.2. Robotic platform

There is a clear tendency of using robotic arms amongst the selected papers, as only
one of them relies on an exoskeleton as their platform. This tendency can likely be
explained by the accessibility of robotic arms, as they are generally cheaper than
an exoskeleton and more readily available in the market. This observation is further
emphasized by the fact that all the robotic arms listed in table (2) are commercially
available.

The single exoskeleton, the L-Exos, is on the other hand custom made by one of
the co-authors of the paper as described in [27]. This exoskeleton is also notable in the
sense of its high number of degrees of freedom in comparison to the other system. It
should however be noted that Loconsole et al. [11] states the redundancy of some of
these DoFs.

Another outlier in terms of platform selection is the PR2 fromWillow Garage, which
is a full-blown robot featuring two arms and multiple sensors, such as the Kinect. This
robot is intended to be used for teleoperation, i.e. being controlled remotely from a
distance. Baxter from Rethink Robotics is a full-blown robot as well, intended for
industrial purposes. Gualtieri et al. [22] did however describe that they salvaged an
arm from a Baxter robot, essentially reducing it to an ARM on-par with e.g. JACO
from Kinova. A few of the mentioned robotic platforms are shown in figure (3).

3.2. Semi-autonomous Control Overview

The aspects related to the semi-autonomous behaviour of each reviewed system is
summarized in table (2). The table follows the four-stage model from earlier and seeks
to characterize the autonomous behaviour of each system by highlighting how each
of them deals with certain aspects associated with each stage. Note that the system
presented by Quintero et al.[20] can function in two distinct ways when considering
the information analysis stage and the decision selection stage. This is signified by the
notation [20]a and [20]b which is used to distinguish between these two configurations
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(a) L-Exos[27]. (b) PR2 robot. (c) JACO.

Figure 3. Example of ARMs used in the reviewed papers.

of the same system.

3.2.1. Information Acquisition

Two parameters where emphasized in this stage; 1) the type of data acquired by the
system and 2) the ability to adapt the position of the sensors. Knowing the type of
data gathering is important as it imposes restrictions on the system later. The ability
to change the position is an important factor as well, as it influences what data that
can be acquired.

All the reviewed papers collect RGB information, even though some system does
not directly use it during the subsequent information analysis stage. This information
is however used during the decision selection stage, to visualize different options to the
user. Most of the reviewed papers do also acquire depth information, which is sensible
given that the systems are expected to navigate in three dimensions to complete their
task. The depth information are either represented as a point cloud or as a range
image, as shown in figure (4).

(a) Color (RGB). (b) Range image.

(c) Point cloud with RGB data.

Figure 4. Different types of data from the same scene.

However, a few systems do not gather any depth information at all, which should
in theory complicate tasks such as grasping objects. Remazeilles et al. [17] solves this
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Table 2. Overview of the semi-autonomous aspects of the different reviewed papers.
Year Information Acquisition Information analysis Decision selection Action implementation

[17] 2008
Data: RGB. Optical and force sensors in
gripper.
Position: User controlled.

Segmentation: Object bounding box from
user.
Recognition: None.

Selection: User draws object bounding
box.
Grasping: Estimates position but not
orientation.

Actuation: Automatic but user can stop it
at any time.

[8] 2009

Data: RGB and point cloud. Force sensors
in gripper.
Position: Automatic centering of user’s
selection.

Segmentation: Object point from user.
Recognition: Template matching against
database.

Selection: User selects single point on
object.
Grasping: Estimates position and
orientation.

Actuation: User controls the gripper and
the rate of link actuation.

[16] 2011
Data: RGB, point cloud and range images.
Position: User controlled.

Segmentation: Object bounding box from
user.
Recognition: Matches point cloud against
database.

Selection: User draws object bounding
box.
Grasping: Pre-computed for objects in the
database.

Actuation: Automatic.

[18] 2012

Data: RGB and point cloud. Force sensors
in gripper.
Position: User controlled. Automatic
centering of user’s selection.

Segmentation: Object point from user.
Recognition: Matches RGB image against
database.

Selection: User selects single point on
object.
Grasping: Estimates position and
orientation.

Actuation: Automatic.

[19] 2013
Data: RGB and point cloud.
Position: Overhead camera is fixed.
System controls end-effector camera.

Segmentation: None.
Recognition: Matches RGB image against
database.

Selection: Presents multiple graspable
objects. User selects one object.
Grasping: Pre-defined for objects in the
database.

Actuation: Automatic.

[9] 2013
Data: RGB and range image.
Position: Fixed.

Segmentation: None.
Recognition: Matches RGB image against
database.

Selection: Object(s) to be grasped was
pre-defined.
Grasping: Done by the user.

Actuation: Coarse control done automatic.
Fine control done by user.

[11] 2014
Data: RGB and point cloud.
Position: Fixed.

Segmentation: Distance thresholding.
Recognition: Recognizes cylinder-shaped
objects.

Selection: Any cylinder-
shaped objects detected.
Grasping: Estimates position and
orientation.

Actuation: Automatic.

[20]a 2015
Data: RGB and point cloud.
Position: Fixed.

Segmentation: Object bounding box from
user.
Recognition: None.

Selection: User draws object bounding
box.
Grasping: Estimates position and
orientation.

Actuation: Either fully automatic or the
user controls the rate of actuation.

[20]b 2015
Data: RGB and point cloud.
Position: Fixed.

Segmentation: Remove main planar
surface.
Recognition: None.

Selection: User Selects from list of
detected objects.
Grasping: Estimates position and
orientation.

Actuation: Either fully automatic or the
user controls the rate of actuation

[21] 2016
Data: RGB and point cloud.
Position: Fixed.

Segmentation: Remove main planar
surface.
Recognition: Matches image and point
cloud against database.

Selection: User selects from a set of
pre-defined actions.
Grasping: Pre-defined for objects in the
database.

Actuation: Automatic. User input is
queued until the robot is done executing.

[22] 2017
Data: RGB and point cloud.
Position: Automatic. System gathers data
from multiple viewpoints.

Segmentation: None.
Recognition: None.

Selection: User selects object using laser
pointer.
Grasping: Estimates position and
orientation.

Actuation: Automatic.

[10] 2017
Data: RGB and point cloud.
Position: User controlled.

Segmentation: Remove main planar
surface.
Recognition: Matches point cloud against
database.

Selection: Intent infered using
end-effectors position and orientation.
Grasping: Pre-defined for objects in the
database.

Actuation: Blending between system and
user based on confidence of infered intent.

[23] 2017
Data: RGB and point cloud.
Position: Fixed.

Segmentation: Region growing using
normals.
Recognition: Matches image against
database.

Selection: User selects from a set of
pre-defined actions.
Grasping: Estimates position but not
orientation.

Actuation: Automatic.

[24] 2017
Data: RGB and point cloud.
Position: Fixed.

Segmentation: None.
Recognition: Marker-based.

Selection: User selects from a set of
pre-defined actions.
Grasping: Estimates position. Orientation
is pre-defined.

Actuation: Automatic.

[25] 2017
Data: RGB and gaze points.
Position: Fixed.

Segmentation:
Color thresholding.
Recognition: None. All objects are
cuboids.

Selection: User selects from detected
objects using gaze.
Grasping: Estimates position and
orientation.

Actuation: Coarse control done automatic.
Fine control done by user.
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issue by employing an optical sensor to detect when an object is inside the gripper and
force sensors to ensure sufficient force when picking up the object. Another approach,
used by Zeng et al. [25], is to make the simplifying assumption that all objects are
cuboids and placed on a table.

Looking at the positioning of the sensors, over half of the reviewed systems employ
a fixed position, which could make them susceptible to blind spots. For instance, the
ARM occluding the view of the camera. A strategy to avoid such issue is to enable
the user to influence the position of the sensor by mounting it on the end-effector as
done in several of the reviewed systems (see table (2) from earlier). A third option is
to have the system automatically position the camera [8, 18, 19, 22].

3.2.2. Information Analysis

This stage can generally be characterized by two important tasks; 1) segmentation
of data into what is of interest and what is not and 2) recognizing patterns in the
data to recognize e.g. an object. Computer vision-systems will often have well-defined
strategies for these tasks which is why it was chosen to focus on these two aspects for
this stage.

Looking at segmentation, a quite popular strategy is to remove the main planar
surface in the scene, leaving behind objects placed on e.g. a table. An example of such
is shown in figure (5). This planar surface is often found by using RANSAC (Random
Sample Consensus) [28] to fit a plane to the point cloud data. The main drawback of
this approach is the underlying assumption that the objects of interest are placed on
a single planar surface without much else in the scene.

(a) Before segmentation. (b) After segmentation.

Figure 5. Example of segmentation of objects in a scene.

Another often used strategy amongst the reviewed papers is to rely on the user to
manually perform the segmentation task. This is done either by drawing a bounding
box around the object of interest or by selecting a single point on said object. In case of
the latter, the point is used as the initial seed for segmentation algorithms such as the
system describes by Pitzer et al. [16]. However, some of the reviewed papers, such as
[19, 9], downright skip the segmentation step and are therefore processing information
from the entire scene during the subsequent recognition step. This is possible as these
systems relies on the SURF keypoint extractor and feature descriptor [29] which are
optimized to be fast.

In terms of recognition, many of the reviewed papers relies on matching against a
database of known objects. This is commonly done by extracting a set of features from
the input data and then applying machine learning to match the features against the
database of known objects. The majority of the papers either rely on point cloud or
image data during this process, with only Jiang et al. [21] making use of both infor-
mation sources in this step. Zhang et al. [23] combines both the feature extraction and
matching process by training a CNN (Convolutional Neural Network) to distinguish
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between four pre-defined objects.
The drawback of relying on a pre-defined set of known objects is the inability to

deal with objects which are not present in the database. Especially the approach
by Arrichiello et al. [24] suffers from this issue as it also requires the objects to be
physically marked using pre-defined tags. A much more general approach is to match
against primitive shapes, for instance cylinders [11]. In doing so, the system should be
able to handle anything cylinder-shaped.

An even more general approach is used by Gualtieri et al. [22] which relies on iden-
tifying good grasping points instead of detecting objects in the scene. This essentially
negates the need for both the segmentation and recognition steps for this system. The
main problem of this approach is the time it takes to detect the grasping points in the
scene, with the authors stating a processing time of two minutes on average.

3.2.3. Decision Selection

In this stage, each reviewed system was sought characterized based on; 1) how the
system selects what to do, for instance what object to grasp and 2) its approach when
deciding how to grasp an object. I.e. how to position and orient the end-effector of the
ARM for the grasping procedure.

In relation to the decision selection of each reviewed system it is quite natural to also
consider the associated level of autonomy. The scale presented earlier, see table (1),
have hence been used to determine the level of autonomy for each system. The result
is shown in table (3).

Table 3. The reviewed papers and their level of autonomy based on their decision selection behaviour (stage

3). The indicators (a,b) signifies different configurations of the same system, as outlined in Table 2.

Decision selection
(level of autonomy)

Level 1
[17, 8, 16, 18, 22] and
[20]a

Level 2 [25] and [20]b
Level 3 [19, 9, 21, 23, 24]
Level 6 [10]
Level 10 [11]

Many of the reviewed systems rely on the user directly selecting the object to
interact with. This is either done by having the user draw a bounding box around the
object or selecting a point on it, as mentioned above. Such approaches rely entirely on
the user and can hence be associated with the lowest level of autonomy. A few systems
are a bit more restrictive, as they narrow the user’s options down, either based on
the objects detected in the scene by the system or a pre-defined set of options. These
systems are given a rating of 2 and 3, respectively.

The system by Loconsole et al. [11] is however characterized by a high level of
autonomy, as it will try to grasp any cylinder-shaped object presented to it. This
system has been given a rating of 10, as the user has no say in the matter. Another
outlier is the system described by Mülling et al. [10], as it automatically infers the
intention of the user based on the end-effectors proximity to objects and how well the
end-effectors orientation aligns with these objects. The system will automatically start
to act on this estimated intention, but the user can still veto this decision by moving
the end-effector in another direction, hence the rating of 6.
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An important part of the decision selection stage is to figure out how to grasp an
object to manipulate it. This entails figuring out how to position and orient the end-
effector for the best grasp. How much to close the gripper is an important step in the
grasping procedure as well but this part is not included in this review.

Several of the reviewed systems rely on both grasp positions and poses being pre-
defined for a set of known objects. The drawback of relying on pre-defined information
for a small set of objects is the inability to handle unknown objects, as stated earlier.
Other papers ignore the problem of identifying a proper orientation of the end-effector
and only estimates where to position the end-effector for grasping. This approach is
possible as these systems makes assumptions like the objects always being placed such
that their major axis is aligned vertically with the ARM. Such assumptions restrict
the system’s ability to function in an uncontrolled environment, where the objects are
likely to be placed arbitrarily.

A few of the reviewed systems, like [8, 18], uses a PCA-based approach (Principal
Component Analysis) in order to estimate the major axis of each object. This ap-
proach relies on point cloud data for each object and are hence dependent on proper
segmentation of the object. Another drawback is that the estimated axis of the object
may easily be miscalculated in cases where parts of the object are not present in the
point cloud.

The approach used by Loconsole et al. [11] avoids this issue as it is quite straight-
forward to extract the major axis of a cylinder, which the system identified during
the information analysis step. The disadvantage of this approach is the underlying
assumption that every object is cylinder-shaped.

The only reviewed system which is truly able to grasp arbitrary objects is the one
described by Gualtieri et al. [22] as it relies on detecting good grasping poses. The
process of detecting these grasping poses is split into two stages; grasp synthesis and
grasp analysis, as illustrated in figure (6). The synthesis stage seeks to generate a large
number of grasp candidates whereas the analysis seeks to reduce the larger number of
candidates to a few good ones. It should be noted that Mülling et al. [10] describes a
similar extension of their system in their future works which enables them to handle
arbitrary objects as well.

(a) Grasp synthesis stage. (b) Grasp analysis stage.

Figure 6. Detecting grasping poses for an arbitrary object using the algorithm by Gualtieri et al. [22].
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3.2.4. Action Implementation

This stage is sought characterized by considering who is in control of the ARM’s
movement, i.e. who controls the actuation of the ARM’s links and its end-effector.
Factors like how trajectories are planned could have been considered as well in this
stage, but it is deemed outside the scope of this review.

The action implementation stage is also a good candidate for judging a system’s
level of autonomy and this stage have hence been mapped using the autonomy scale
as well. The result is shown in table (4).

Table 4. The reviewed papers and their level of autonomy based on their action implementation behaviour
(stage 4).

Action implementation
(level of autonomy)

Level 5 [8, 20]
Level 6 [17]
Level 7 [9, 25]

Level 10
[16, 18, 19, 11, 21, 22,
23, 24]

Adaptive [10]

The majority of the reviewed systems is assigned a score of 10, as the actuation of
both the ARM’s links and end-effector is fully automatic once a decision have been
made. Jiang et al. [9] and Zeng et al. [25] are assigned a lower score of 7, as these
two systems relies on the idea of dividing the control of the ARM into fine and coarse
control. Coarse control entails moving the end-effector to the general position of the
object to manipulate and is done automatically. Fine control deals with grasping the
object and is initiated by the system, which then asks the user to take over and perform
the grasping. It should be noted that Zeng et al. [25] does estimate the orientation of
the object to be grasped but this information is only used to guide the user during
fine control.

The system by Remazeilles et al. [17] is assigned a rating of 6 as it essentially allows
the user to veto the automatic actuation of the ARM. Kim et al. [8] and Quintero
et al.[20] employs a scheme where the user continuously have to allow the system to
operate automatically, for instance by holding down a button. This results in a score
of 5 as the system is essentially limited to only executing actions if the user approves.
Finally, the system by Mülling et al. [10] is not assigned a score as the automation level
changes depending of the system’s confidence in inferring the intention of the user.
For instance, the user will be completely in control if the system has no idea about the
intention of the user. Furthermore, it should be noted that authors of Parasuraman et
al. [15] do point out that their framework fails to encompass such adaptive automation
well.

3.3. Level of Autonomy Summary

The purpose of this section is to summarize the results related to the level of autonomy
of the reviewed systems to highlight tendencies. This is done by grouping each of the
reviewed papers, as shown in table (5).

These groups are created by grouping systems where the level of autonomy is iden-
tical for both the decision selection and action implementation stage. The resulting
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groups are then plotted, as shown in figure (7), with respect to their level of autonomy
for the decision selection and action implementation stage.

Table 5. Grouping of the reviewed systems based on their level of autonomy for the decision selection and
action implementation stage. The indicators (a,b) signifies different configurations of the same system, as

outlined in Table 2

Group Paper(s)

A [19, 21, 23, 24]
B [16, 18, 22]
C [8] and [20]a
D [17]
E [20]b
F [25]
G [10]
H [9]
I [11]

Looking at the plot in figure (7) it is quite clear that most of the reviewed systems
are placed in the upper left quadrant. Such systems are characterized by having a quite
clear-cut strategy for sharing control, as the user decides what to grasp whereas the
system performs the actual grasping. These approaches are hence quite similar to e.g.
the claw machines found at arcades; the user points the machine towards the object of
interest, the user presses a button and the machine takes over. A few of the reviewed
systems did however allow the user some control in such scenarios, for instance the
systems found in group C and E. These systems rely on constant confirmation from
the user, e.g. holding down a button, to continue executing the planned action.

An entirely different approach for semi-autonomous control can be seen in group G

consisting of only the system by Mülling et al. [10]. This group differs from the others
due to its adaptive nature which is also sought illustrated in figure (7) by having this
group span the entire action implementation continuum.

Another outlier is group I, consisting of the system by Loconsole et al. [11], which
have the highest possible level of autonomy for both its decision selection and action
implementation stage. It can hence be argued that this system is fully autonomous and
hence of no interest when discussing semi-autonomous systems. To be fair, it should
be noted that the focus of Loconsole et al. [11] is skewed towards computer vision and
not semi-autonomous control.

4. Discussion

The purpose of this section is to expand upon the findings in the previous sections
by pointing out challenges in relation to reviewed systems and suggest further po-
tential avenues to explore. Three challenges will be discussed; ensuring optimal semi-
autonomous control, handling arbitrary objects and sensing the environment.

4.1. Challenge: Optimal Semi-Autonomous Control

Most of the reviewed systems tend to rely on pre-defined roles for respectively the
human and the system, as shown earlier in figure (7). The user decides what to do
and the system takes over control, thereby creating this claw machine-like behaviour.
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Figure 7. Plot of the groups from table (5). The size of each circle increases with the number of members in
the group. The large span of group G signifies the adaptive nature of the action implementation stage for the
system by Mülling et al. [10].

The benefit of such schemes is that the user is never in doubt as to who is in control
at any time.

However, this behaviour could be problematic as the user has no or very limited
control once the system is in charge. This issue was outlined in a study by Chung et
al. [13] which found that the users felt less accomplished when relying entirely on the
system to complete the task automatically. The participants did in fact experience
a lower level of satisfaction, despite completing the task faster, due to this lack of
accomplishment. A similar observation was made by Kim et al. [14] where individuals
with movement impairment appeared less inclined to relinquish control of the ARM
than able-bodied persons.

A way to address the above issue could be to rely on adaptive semi-autonomous
control, as seen in the system by Mülling et al. [10]. Such a scheme will allow the user
some control throughout the entire process, thereby providing the user with some sense
of accomplishment when finishing a task, while still aiding the user to some extent.

This form of semi-autonomous control can be viewed as an arbitration of control
between the system and the user which can essentially be reduced to a linear blending,
controlled by the arbitration factor α, as shown in figure (8). This is also the approach
used by Mülling et al. [10] where α is computed using a sigmoid function dependent
on the confidence of the goal predicted by the system.

User Input U

Predicted goal P

Blending
(1-α)U + αP

ARM
actuation

Figure 8. Arbitration between the user U and the goal P predicted by system using linear blending. The
figure is adapted from [30].

The idea of viewing the arbitration as a blending problem is based on the work by
Dragan et al. [30], which also uses the plots of different arbitration factors α to charac-
terize the behaviour of semi-autonomous systems. An example of different arbitration
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(d) Constant function.

Figure 9. Examples of different functions which can be used to control the arbitration factor.

behaviours is shown in figure (9).
The idea of defining the behaviour of the system using arbitration functions may also

make it easier to customize the behaviour of the system to the preference of the user. A
lot of different behaviours can be achieved by simply changing the function governing
the arbitration factor used during the blending. For instance, the behaviour of the
system by Mülling et al. [10] can be characterized by figure (9b) whereas the behaviour
of e.g. [16, 18] can be characterized by figure (9d) as the action implementation stage
is always fully automatic for these systems. Customization through these arbitration
curves may also be beneficial due to their visual nature making it easier to understand
for people with a non-technical background.

However, an important prerequisite for adaptive semi-autonomous control is for the
system to be able to gauge its confidence. For instance, how confident the system is that
the user is reaching for object B and not object A. One way of inferring confidence in
this scenario could be to rely on proximity, i.e. how close is the end-effector of the ARM
to each object. Such proximity-based approaches is used in the work of [10, 30, 31].
A possible downside of proximity-based approaches is that they are memory-less, i.e.
they only consider the system in its current state. An example of why this lack of
memory can be problematic is shown in figure (10), where the user is reaching for
object A but the system misinterprets the user’s goal as being object B due to the
proximity-based approach.

A way to introduce memory into the process of inferring the intention of the user
is to consider the trajectory of the ARM, as done by [30, 32]. Looking at figure (10)
again, it is possible to see that considering the trajectories it would have been possible
to correctly infer that the user was reaching for object A.

B
A

S

U

Figure 10. A scenario with two objects, A and B, with an ARM denoted by the current position U and
initial position S of its end-effector. The figure is adapted from Dragan et al. [30].

The different measures of confidence, mentioned above, are all related to stage 3,
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i.e. decision selection. However, it is possible to expand the model to make use of
confidences derived from the other stages as well. For instance, the confidence of the
sensor data gathered during the information acquisition stage. Another idea could be
extract a confidence measure from the information analysis stage based on how certain
objects are commonly used.

This idea could be achieved through affordance detection, with affordance being
the notion that objects “invite” the user to interact with them in certain ways. A
handle on a mug would for instance be an obvious affordance for grasping. The idea
of grasp detection, as discussed earlier, could hence be considered a limited form
of affordance detection, which only focuses on the affordance related to grasping.
However, multiple other affordances exist, for instance; cutting, scooping, containing,
pounding and supporting. These affordances are the focus in the work by for instance
Myers et al. [33], which proposes a way of detecting different affordances using RGB
and depth information. An example of their results is shown in figure (11).

Affordance detection could hence be useful in scenario where the user is trying to
accomplish a task involving multiple objects. For instance, using a spoon to scoop
something or when the user wants to pour a liquid into a container.

Input scene. Grasp detection.

Support detection. Scoop detection.

Figure 11. Example of affordances detected in a scene. The input scene is from the dataset published by
Myers et al. [33].

Yet another possibility is to incorporate the system’s confidence in the user, which
is suggested by Dragan et al. [30] as well. An interesting addition to this idea could
be for the system to provide a level of assistance which keeps the user in a state of
flow or “being in the zone”. The idea of flow is described as a mental state where the
user would feel a sense of mastery and satisfaction by ensuring that the difficulty of
the tasks matches the skill of the user [34].

This idea is often illustrated as shown in figure (12), where a person is kept in a
state of mental flow by matching the difficulty of the task with the skill level of the
person. Failure to match these two parameters could cause a person to enter either a
state of boredom or anxiety, which is not desirable. The presence of the flow state can
hence influence a person’s sense of accomplishment and satisfaction which is why it
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could be interesting to consider it in relation to semi-autonomous control.

Task difficulty
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Figure 12. Illustration of how flow can be achieved by matching task difficulty and skill level. The figure is
adapted from Csikszentmihalyi et al. [34].

4.2. Challenge: Handling Arbitrary Objects

Another challenging aspect of using computer vision for semi-autonomous control of
ARMs is to be able to handle arbitrary objects, i.e. objects never encountered by the
system before. Most of the reviewed papers seem to agree that this is an important
issue but only a few of them actually address it.

Looking at the reviewed systems, both Gualtieri et al. [22] and Mülling et al. [10]
address this issue by discarding the notion of detecting separate objects and instead
rely on detecting good grasping points on arbitrary object. However, detecting good
grasping points can be rather slow [22] due to the synthesis stage which is time-
consuming because of the large search space (six variables; three for grasp position
and three for grasp orientation).

A way to speed up this process could be to look into approaches such as [35, 36],
which rely on a range image instead of a point cloud data during grasp synthesis. Do-
mae et al. [35] reports a processing time of 0.31 seconds or less, making it significantly
faster than Gualtieri et al. [22]. The work by [37, 38] relies on both RGB and range
images to infer grasping points using CNNs, with Redmon et al. [37] reporting pro-
cessing times of ≈ 77 milliseconds. The low processing time is likely because a GPU is
used to accelerate the computations by taking advantage of the highly parallelizable
nature of CNNs.

Another way of handling arbitrary objects is to decompose them into primitive
shapes like cylinders, cuboids and spheres, as illustrated in figure (13). This is some-
what similar to the idea used by Loconsole et al. [11], which focused on cylinder-shaped
objects only. The idea is to expand this approach to encompass any object by including
more shapes than just cylinders and by allowing these shapes to be combined [39, 40].

How to handle arbitrary objects is not necessarily limited to one of the approaches
mentioned above. In fact, combining multiple approaches could be a viable solution.
An example of such is the work by Ciocarlie et al. [41], which defines a grasping
procedure for known objects and a procedure for unknown objects not encountered
before. This idea is especially interesting in the scope of semi-autonomous control as
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Figure 13. Example of an object and its decomposition into primitive shapes. This approach was used by
Milleret al. [39].

an unknown object could be added to the set of known objects by the user showing
the system how to grasp said object. This is somewhat similar to the approach by
Herzog et al. [42], where the system learns grasp poses through demonstration by the
user. The work of Krainin et al. [43] could also help expand this idea as it describes an
approach for creating 3D models of objects once they have been grasped by a robotic
manipulator.

4.3. Challenge: Sensing the Environment

The last challenge which this paper will touch upon is how to acquire complete and
precise data about the environment that the ARM is to operate in. These aspects
are important as the subsequent stages in any system will suffer if the information
acquisition stage is not up to par.

Roughly half of the reviewed papers decided to mount their sensors near or on
the end-effector, a configuration sometimes called eye-in-hand. Such as configuration
is advantageous as it is near impossible for the ARM to occlude the view of the
sensor and it offers some flexibility, as the sensor can be re-positioned using the ARM.
Allowing the user to re-position the sensor, by controlling the end-effector, could also
make it easier to infer the intention of the users as they would likely orient the end
effector towards the object they are interested in. A few of the reviewed papers, see
[8, 18], utilize this option by having the system automatically re-positioning the end-
effector such that the user’s selection is centred in the view of the camera. The idea is
to get a better view of the object to interact with.

The work by Gualtieri et al. [22] takes this approach a step further by re-positioning
the sensor to gather information from multiple viewpoints in order to increase the
quality of the gathered point cloud. The authors specifically states that doing so have
shown an improvement in grasp detection according to their prior work [44]. This idea
is somewhat similar to the work by Klingensmith et al. [45] where an end-effector
mounted depth sensor is used to map the nearby environment using a SLAM-like
approach (Simultaneous Localization And Mapping). The authors demonstrate that
their approach improves the quality of the data gathered while continuously estimating
the position of the end-effector, i.e. the localization part of SLAM. Employing some
strategy for accumulating data from multiple viewpoints may hence be beneficial when
dealing with an eye-in-hand configuration [22, 45].

Another way to improve upon the depth information acquired by the system could
be to use techniques for depth completion [46]. The idea is to use information from
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a colour image to estimate the missing depth information, as shown in figure (14).
The colour image is used to estimate surface normals for the entire scene which are
then combined with the sparse set of depth measurements to infer depth for the entire
scene.

The main drawback of this work is the processing time, as the authors states a
processing time of between 0.3 and 1.5 seconds, depending on the hardware used. It
can be argued that the processing time is not a big issue as it may not be necessary
to use depth completion on every single frame received from the sensor. However, a
benefit of this approach is that it will work with sensors mounted in a fixed position,
as opposed to the SLAM-like approaches mentioned earlier.

(a) Color information. (b) Depth information. (c) Completed depth.

Figure 14. Example of depth completion using the algorithm from Zhang and Funkhouser [46].

An area which could also improve the system’s ability to sense its immediate envi-
ronment is the actual sensors employed by each system. Most of the reviewed systems
rely on stereo vision to gather depth information and it may hence be interesting to
explore other options such a ToF cameras like the Kinect v2 used by [23, 24]. The
absence of ToF cameras amongst the other reviewed paper can likely be attributed to
the available ToF cameras at the time, which were likely expensive and bulky.

A general difference between ToF cameras and stereo vision cameras is that the
former does not rely on a baseline to estimate depth. ToF cameras can hence be made
more compact, making it possible to mount them in location not possible for stereo
vision cameras. For instance, inside the gripper of the ARM. An example of such is
the CamBoard Pico flexx camera from PMD Technologies [47] which is significantly
smaller than the Kinect sensors while featuring a minimum working distance of 0.1 m.

5. Conclusion

The focus of this review paper was on computer vision systems enabling movement
impaired individuals to do object manipulation using an assistive robotic manipulator
(ARM). The initial literature search yielded 257 results which were narrowed down
to 14 relevant papers. These papers where reviewed in relation to their selection of
hardware and their use of computer vision for the semi-autonomous behaviour of the
system. Different schemes for the semi-autonomous control were reviewed as well.
A four-stage model was used during the review of each system to characterize their
behaviours in terms of; information acquisition, information analysis, decision selection
and action implementation. A scale, consisting of 10 levels[15], was used to rate the
autonomy of each system as well.

The reviewed papers mainly made use of stereo vision-based sensors to capture
depth information. Many of the papers used the Kinect from Microsoft which was
often mounted near the shoulder or head of the user, viewing the scene from a distance.
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The second most popular sensor placement was at the end-effector, making it possible
for both the user and the system to re-position the sensor. However, only a few of the
reviewed systems fully utilized this option by mapping the immediate environment
using data from multiple viewpoints. Furthermore, exploring other options in terms
of sensor choice may be interesting as well. For instance, a small ToF camera which
could be mounted inside the gripper of the ARM.

Handling of arbitrary objects was found to be a general issue with only a few of
the reviewed systems being able to do so. The majority made simplifying assumptions
such as all objects having a certain shape or all object being in a database of pre-
defined objects. A way to approach the issue of handling arbitrary objects could be to
reduce it to a problem of detecting good grasping points or decomposing objects into
primitive shapes.

Most of the reviewed papers rely on a clear switch between the user and the system
for the semi-autonomous control of said system. Adaptable automation, in the form of
linear blending, is used in one of the reviewed papers but should be explored further.
Such a scheme could be beneficial as it allows the user some control at all times which
is especially important for movement impaired users. A scheme based on linear blend-
ing may also allow for easy customization of the semi-autonomous control. Such an
adaptive approach may also benefit from the concept of flow, known from psychology,
to adjust the level of assistance based on the skill level of the user and the difficulty
of the task at hand.

To summarize; there is a substantial amount of on-going research focusing on using
computer vision for semi-autonomous control of ARMs. Several working prototypes
have demonstrated that this idea can work in a controlled environment, such as a lab.
The next big step is to advance the technology to a point where it is possible to move
beyond the labs and into the home of the actual user. The benefit of doing so would
be priceless for the individual user, and society in general may benefit as well due to
less demand for caregivers.
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