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Abstract 

Purpose: To develop and validate an accelerometer-based algorithm classifying physical activity 

in people with acquired brain injury (ABI) in a laboratory setting resembling a real home 

environment. 

Materials and methods: A development and validation study was performed. Eleven healthy 

participants and 25 patients with ABI performed a protocol of transfers and ambulating activities. 

Activity measurements were performed with accelerometers and with thermal video camera as gold 

standard reference. A machine learning-based algorithm classifying specific physical activities 

from the accelerometer data was developed and cross-validated in a training sample of 11 healthy 

participants. Criterion validity of the algorithm was established in 3 models classifying the same 

protocol of activities in people with ABI.  

Results: Modelled on data from 11 healthy and 15 participants with ABI, the algorithm had a good 

precision for classifying transfers and ambulating activities in data from 10 participants with ABI. 

The weighted sensitivity for all activities was 89.3% (88.3-90.4%) and the weighted positive 

predictive value was 89.7% (88.7-90.7%). The algorithm differentiated between lying and sitting 

activities. 
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Conclusion: An algorithm to classify physical activities in populations with ABI was developed 

and its criterion validity established. Further testing of precision in home settings with continuous 

activity monitoring is warranted. 

1.0 Introduction 

1.1 Physical activity in neurorehabilitation 

Acquired brain injury (ABI) results in a range of cognitive, physical, emotional and 

behavioural problems [1,2]. It also affects one’s ability to transfer and ambulate [3,4], 

which are prerequisites for all physical activity and participation in activities of daily 

living. Rehabilitation after ABI (neuro-rehabilitation) aims at furthering patients’ ability to 

regain the highest possible level of functional independence to resume meaningful and 

independent daily living [5,6].  

Physical activity has been defined as “any bodily movement produced by skeletal muscles 

that requires energy expenditure” [7], which naturally includes human transfers and 

ambulation. These mobility aspects of physical activity is part of a person’s functioning 

defined in the WHO framework International Classification of Functioning and Health 

(ICF) [5]. The framework explicates how activity & participation situated in the context of 

personal and environmental factors are central and dynamic components of a person’s 

health [5].  

Therefore, assessment of transfers and ambulation as part of physical activity performance 

are central intervention targets and outcome measures in neuro-rehabilitation [8,9].  

Although test and treatment of physical activity after ABI often starts at in-hospital 
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facilities [10,11], activity assessment methods need to be applicable in both hospital and 

home settings to measure patient recovery.  

In addition to reduced physical ability, people with ABI may suffer from attention deficits, 

confusion, spatial disturbances and other cognitive disorders, which should be taken in 

careful consideration when assessing their physical activity. This poses a challenge to 

methods relying on self-assessment or observation. 

Self-assessment is prone to recall bias; especially so for people with cognitive deficits. 

Divergence of self-reported and objectively measured physical activity has been 

established, especially for men at lower education levels [12] indicating social desirability 

bias, which could well be the case for patients with ABI who depend on assistance and 

training.  

Observer dependent methods like behaviour mapping are frequently used in hospital 

settings [13] and have been used to clarify distributions of physical activity in stroke 

populations showing active vs. sedentary time and time in assisted training vs. self-training 

or passive time [14,15]. Patients can participate in such observation-based studies 

regardless of functional capacity [14,15]. However, this method is time-consuming and 

costly and can be too intrusive for observations in home settings considering privacy rights 

and vulnerability after ABI. 

Due to these risk of bias and ethical considerations from self-assessment and observational 

methods, elucidating physical activity during and after discharge encounter methodological 

difficulties and is largely unexplored in home settings [13].  

Kinematic measurements from accelerometers have been used to explore physical activity 
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in various populations [13,16-18] and among patients with stroke [19-21]. Accelerometer-

based activity monitoring assess performed activity and has the advantage of eliminating 

bias from any self-reported monitoring or observational methods [12,13].  

Though accelerometer-based monitoring of physical activity after stroke has been 

thoroughly assessed [22], criterion validity was established as poor, and no methods have 

previously been validated to cover the full range of ABI diagnoses. Consequently, no 

accurate method exists to assess physical activity in neuro-rehabilitation during activities 

of daily living in both hospital and home settings. 

1.2 Objective 

To develop and validate an accelerometer-based algorithm to classify transfers and 

ambulation used in activities of daily living for people with ABI in both hospital and home 

environments. 

To achieve this, we developed an algorithm to classify the following physical activities: 

walking, sitting, standing, lying and transfers. The algorithm was validated in a fully 

furnished apartment to resemble a home setting. 

We hypothesized that the sensitivity and positive predictive value would be moderate to 

good, showing a 70-90% correct classification of activities when tested on the target 

population.  

2.0 Methods and materials 

A development and validation study classifying physical activity was conducted in two 

parts: Firstly, an algorithm to classify specific categories of physical activity was 
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developed using machine learning. This was cross-validated based on a training data 

sample from 11 healthy participants performing a protocol of transfers and ambulating 

activities. Secondly, the criterion validity of the algorithm was assessed when classifying 

the same activities in people with ABI in three models by splitting the dataset in three 

different ways (more details below). Measurement properties were assessed and reported 

according to the Guidelines for Developing and Reporting Machine Learning Predictive 

Models in Biomedical Research [23] and the Standards for Reporting of Diagnostic 

Accuracy Studies (STARD) guideline [24]. 

2.1 Participants and recruitment 

Eleven healthy adult participants with no functional disabilities were recruited among 

auxiliary staff at Hammel Neurorehabilitation Centre and University Research Clinic, 

Denmark (HNURC). From the HNURC, a convenience test sample was collected 

comprising 25 patients admitted for rehabilitation after ABI, with 22-515 days since the 

ABI event. The sample size allowed for a drop-out of up to 7 patients equalling the 

expected 4-25% found in previous studies due to technical equipment problems, dislike of 

wearing accelerometers or being monitored, or functional incapability to complete 

protocols [25] while still retaining at least 18 patients; a sample size exceeding similar 

development studies [26,27], and large enough to likely present a wide range of 

sensorimotor deficits after ABI.  Patients were included according to the following criteria: 

age ≥18 years; able to speak and understand Danish language; able to walk 10 meters 

independently or with the aid of an assistive device (no person support); able to give 

informed consent; and able to understand and respond to instructions to follow the protocol 

with or without supportive communication. Comorbidities like chronic obstructive 
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pulmonary disease, diabetes, psychiatric diagnosis or other diseases were not exclusion 

criteria; nor were mild cognitive deficits like memory deficits, confusion or aphasia. The 

inclusion of patients with cognitive deficits was decided, because kinematic trajectories 

and gait characteristics could be affected by distraction, momentary pauses to re-orientate, 

decreased gait speed or affected ability to adjust the body to environment feedback. 

Participation was supplementary to usual rehabilitation and care and planned with minimal 

interference into daily rehabilitation. Nurses, therapists and the first author assessed patient 

eligibility. After having identified eligible patients, the first author introduced the patients 

to the study protocol and invited them to volunteer their participation. 

All participants gave informed, written consent to be monitored with video and 

accelerometer, and patients consented to their demographics and medical record data being 

used for the study. The study was part of a PhD project registered at the Danish Data 

Protection Agency (Ref. No. 662580, case No. 1-16-02-320-19) and exempt from approval 

requirements by The Central Denmark Region Committee on Biomedical Research 

(Request No. 141/2019. Ref. No. 1-10-72-148-19).  

2.2 Protocol  

Healthy participants and patients performed the same protocol of specific physical 

activities in a fixed order: sitting down on chair; standing up; walking to wall; turning with 

back to wall; standing; walking to couch; lying down on couch; getting up from couch; 

walking to chair; and sitting down on chair. When standing, sitting or lying down, the 

participants were verbally guided to remain in the same position for 5 seconds before 

proceeding. To promote natural movements, speed and gait patterns, participants were 

otherwise encouraged to perform activities at any speed and manner of their convenience 
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and functional capacity. Verbal step-by-step guidance was offered for all participants 

throughout the protocol performance as therapeutic support in case of disturbances in 

attention or memory. All participants performed the protocol twice. Between the protocol 

sessions, either the participant or the observer clapped 3 times on the accelerometer with a 

movement easily detectable by the camera to synchronize the two recordings.   

2.3 Setting 

Protocol sessions took place in a training apartment at the HNURC to resemble a home 

activity context. The setting was furnished with a couch, a dining area, a bed, etc., and 

though the order of the protocol activities was fixed, the patients could individually make 

minor variations in their route. For example, to walk to a couch, the patients chose at 

random to pass by a table from the right or the left side.   

2.4 Physical activity measurements 

Consecutive and simultaneous data were collected from thermal cameras and 

accelerometers by both the first and the second author. Study data was stored and managed 

using REDCap electronic data capture tools hosted at Aarhus University, Denmark [28,29]. 

2.4.1 Thermal video as gold standard 

Video recording from a thermal camera (Axis Q1922 Thermal Network Camera, Lund, 

Sweden) ensured gold standard data collection with no immediate distraction for 

participants. Thermal cameras were chosen due to their excellent qualities in human 

movement studies [30]; thermal video recording generated real-time visual output like 

normal video format, in low resolution for easy data processing. Thermal video output 
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offered clear contrast and color grading related to thermal variation only. This meant that 

participants with normal body temperature appeared as white silhouettes against the darker 

(colder) surroundings. Resolutions at 640x480 pixels gave recording outputs that revealed 

no facial features or other identification marks, thus protecting participant privacy, while 

indubitable disclosure of transfer and ambulation activities remained clear on visual 

inspection. Activities identified from the thermal video recording were considered gold 

standard for the subsequent manual annotation of activities based on accelerometer data.  

2.4.2 Accelerometer-based measurements  

Protocol sessions were co-recorded with a commercially available triaxial accelerometer 

(Axivity, Newcastle upon Tyne, UK). The specific accelerometer was chosen for well-

proven validity [31] and accelerometer-based methods for frequent use in stroke 

populations [22]. The accelerometer was taped on the lateral side of each participant's least 

affected or (in case of symmetric gait) dominant leg, with the patient seated and knee joint 

flexed to 90 degrees, 10cm proximal from the centre of the patella (Figure 1).  
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Figure 1. Positioning of the accelerometer. 

 

Raw data recorded at a sampling rate of 100 Hz consisted of three-dimensional vectors 

representing the acceleration in each direction.  

2.5 Development of the algorithm 

Data analysis involved assessment of the sensitivity and predictive validity of the 

algorithm regarding the physical activities classified as transfers, sitting, standing, walking, 

lying down and clapping. Raw data from the accelerometers was processed in a custom 

made MATLAB (version R2019b, The MathWorks, Inc., Natuck, MA, USA) script for 

manual label annotation (denoted as trans, sit, stand, walk, lie and clap) for each sample 
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period of 1 second with sample overlap of 0.5 seconds. The annotation was based on visual 

inspection of the accelerometer data and the thermal video recording. All manual 

annotation and classification were done by the same rater (the first author).  

A Random Forest Classifier1 was used to optimize the robustness of the algorithm by 

majority vote for each 1 second sample in the machine learning software Weka (Weka, 

University of Waikato, New Zealand) [32,33]. The following features were extracted for 

all 1-second samples as recommended by Yan et al. [34]: mean values; standard 

deviations; root mean square values; maximum number of peaks; lowest and highest value 

of X, Y and Z axes; number of distinctive points; and estimates of Pearson’s correlation 

between X and Y, X and Z, and Y and Z.  

                                                 

1 Description of the Random Forest Algorithm:  

1. If the number of cases in the training set is N, sample N cases at random but with 

replacement from the original data. This sample will be the training set for growing 

the tree. 

2. If there are M input variables/features, a number m<<M is specified such that at 

each node, m variables are selected at random out of the M and the best split on 

these m is used to split the node. The value of m is held constant during the forest 

growing. 

3. Each tree is grown to the largest extent possible. There is no pruning. 

4. Predict new data by aggregating the predictions of the n trees (majority voting) 
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A K-fold leave-one-out cross-validation was performed to estimate the misclassification 

error proportion in data from the healthy participants in which the least variance could be 

expected. Averages were weighted by number of classified events to give greater weight to 

the folds with more data as 

Weighted average = 
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑖∗ 𝑤𝑖

∑ 𝑤
, w= weight (number of events), i=fold number 

Each fold consisted of test data from 1 participant and training data from 10 participants, 

and an average of classification errors was estimated (Figure in Appendix 1).  

Criterion validity of the accelerometer-based algorithm was then assessed using the data 

from participants with ABI. Sensitivity and specificity were calculated as concurrence or 

mismatch with the classification of the 1-second extractions from the gold standard 

reference. Positive and negative predictive values were calculated as the proportions of 1-

second extractions correctly or incorrectly classified in the test data set by the algorithm2. 

                                                 

2 Sensitivity was the proportion of events classified as the specific physical activity by the 

algorithm (“positive” events) among events classified as the same activity by the gold 

standard reference (“true positive” events).  

Specificity was the proportion of events not classified as the specific physical activity by 

either method (“negative” events) among events not classified as the same activity by the 

gold standard reference (“true negative” events). 

Positive predictive value was the proportion of events correctly classified as the specific 

physical activity by the algorithm (“positive” events) among events classified as the same 
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Positive predictive value (PPV) is also referred to as the precision [24].   

Three models were tested to optimize the algorithm. To add variance to the training data 

set, the test data set from the patients was split in two as recommended in similar 

populations by O’Brien et al. [35]. Data from ten patients (patient one-ten) were added to 

the training data set in model 2, and data from 15 patients (patient one-fifteen) were added 

to the training data set in model 3. The criterion validity was assessed again using test data 

from patient 11-25 and 15-25 in model 2 and 3, respectively (Figure 2).  

 

Figure 2. The 3 models with varying data splits between training and test data sets. 

 

3.0 Results 

No data was lost or excluded due to technical issues from either monitoring method 

(accelerometer or thermal camera), and neither healthy participants nor eligible 

                                                 

activity by the algorithm (“predicted” events). 

Negative predictive value was the proportion of events not classified as the specific 

physical activity by either method (“negative” events) among events not classified as the 

same activity by the algorithm (“not predicted” events).  
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participants declined or dropped out. The healthy cohort consisted of two men and nine 

women, ranging from 21-60 years of age (median 36). The patients were 25 individuals of 

whom 18 were males with a median age of 51 (18-74) years were invited to participate at a 

median of 63 (22-515) days post injury; they accepted and performed the full range of 

activities in the protocol, except for 1 patient (p12) who did not lie down due to post-

fracture movement restrictions (Table 1). 

 

 

Diagnosis of ABI categorized as stroke (ischaemic or haemorrhagic), traumatic brain 

injury (trauma), subarachnoid haemorrhage (SAH), encephalopathic brain injury and other 

injuries (i.e. injuries secondary to infection or tumour) according to Danish Health 

Authorities’ registry based on ICD-10 codes. The largest group represented was patients 

with stroke (52%). In order of size, the next largest groups were trauma (20%) and SAH 
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(8%). Level of functioning was assessed with the Modified Ranking Scale (mRs), the most 

widely used clinical outcome measure for stroke trials [9,36], and cognitive level with 

Functional Independence Measure (FIM), with a cognitive subscale ranging from 5 to 35 

as a sum of 5 items rated on a 7-point scale from 1 = total assistance to 7 = complete 

independence [37]. Functional mRs level ranged from no significant disability (20%) to 

moderate disability (52%), indicating that the patients required some help but were able to 

walk without assistance. FIM cognitive level ranged from 12-35, with only 3 patients 

below a total of 20, indicating that most patients would need minimal contact assistance, 

supervision or less assistance due to cognitive dysfunction in their activities of daily living. 

The patients with the lowest FIM cognitive scores had low attention span and memory 

deficits, but all were able to understand the purpose of their participation and follow verbal 

instructions. 

3.1 Physical activities classified by the algorithm 

The physical activities were classified as walking, sitting, standing, lying down and 

transfers as well as the clapping between recording sessions by the algorithm. The clapping 

activity has no relevance with regards to physical activity, but since no data was discarded 

from the analysis, it is part of the classified activities in the cross-validation.  

3.1.1. Cross-validation of the algorithm  

Results of the 11-fold cross-validation (Table 2) showed consistency between the gold 

standard classification and the classification performed by the algorithm at 88.9% (95% 

confidence interval (CI): 81.3-96.5) as a weighted average of PPV for all classifications 
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per participant.  

3.1.2. Criterion validity of the algorithm  

Classification of physical activity performed by the algorithm against the gold standard 

classification is shown in confusion matrixes (Table 3) for the three models illustrated in 

Figure 2. The validation metrics including sensitivity (Sens), specificity (Spec), positive 

predictive value (PPV) and negative predictive value (NPV) per physical activity are 

presented in Table 4. For each matrix, data are distributed with the highest values 

diagonally, showing consistency between the classifications performed by the algorithm 

and the gold standard reference. All three models classified more than two-thirds of 

activities correctly with a weighted PPV of 78.4%, 81.8% and 89.3%, respectively. 
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Difficulty in distinguishing between lying down and sitting activities is evident in Model 1, 

where 656 (30%) of lying down events were misclassified as sitting. Likewise, the 

algorithm only classified transfers correctly with a sensitivity of 64.4%. Standing was the 

most frequent correctly classified activity with concurrence in 1255 (95%) of the cases. 

In model 2, improvements were made by adding data from patients to the training data set 

to optimize algorithm classification precision. Lying down and sitting events were 

classified correctly in 84% and 91% of cases, respectively. In model 2, transfers were the 

activity with the lowest precision with only 873 (77%) correct classifications. Model 3 was 

the overall best performing model showing a total of 364 (11%) misclassified events and a 

PPV of 89.7%. Only 42 (8%) of lying down events were misclassified as sitting (6%) or 

transfers (1%), and the total error rate of sitting events was 11%.  
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4.0 Discussion 

The study aimed to develop and validate an accelerometer-based algorithm to classify 

physical activity in people with ABI. The best precision for the algorithm was obtained in 

Model 3 using data from 11 healthy and 15 patients as training data. The overall 

classification precision of 89.5% was in the upper end of the hypothesized 70-90% range. 

In the best performing model, classification precision was for sitting 93.6%, transfers 

83.4%, walking 90.0%, standing 96.9% and lying down 85.4%. 

4.1 An algorithm fit to people with ABI   

As recommended in stroke populations by Eysenbach et al., machine learning algorithms 

to classify activities should be trained on data from the target group in question and in a 

setting resembling free living to be of high quality for use in home settings [35]. The 

present study included participants with a broad range of diagnoses, functional abilities and 

movement patterns. Furthermore, physical activities were performed in an apartment 

resembling a home setting. Adding data from participants in the target group to the 

algorithm improved sensitivity from 78.4% in model 1 (based on data from participants 

only) to 89.3% in model 3 (with additional training data from 15 patients). Precision 

improvement can be explained by kinematic trajectories of people with ABI comprising 

more variation than healthy peers, improving classification correctness by adding data 

similar to the test data in the training data set. The overall precision was even better than in 

the study by Eysenbach et al., where average recall in classifying stationary and 

ambulatory activities was improved from 53% to 73% by adding data from the target group 

in the training data set [35], which is probably due to the variation in measurement 

methods by phone sensors and body-worn accelerometers.  
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4.2 Comparison to precision in algorithms in stroke populations 

Previous studies in stroke populations assessing similar measurement properties, with 

sample sizes varying from 5-27 subjects [19,26,27] have reported high concurrence 

between activities classified with accelerometry and gold standard references. The results 

are not directly comparable to those of our study, since no other studies classified the same 

transfers and ambulating activities. Dobkin et al. classified walking, exercising and cycling 

activities in blocks of unreported duration with perfect accuracy [35]. Lau et al. found a 

sensitivity of 86.1%-95.4% when classifying stair ascent, stair descent and a combined 

class of level, slope and walking activities [27], which was similar to the sensitivity 

obtained in our study. Lee et al. classified time spent in sedentary positions, light and 

moderate activity with a correlation between accelerometer data and behavior mapping as 

gold standard refence from 0.62 to 0.89 [19].  

4.3 Discerning complex and similar physical activities 

Some variation was seen in the classification precision between activities in the present 

study. With regards to transfers, the algorithm in model 3 misclassified 17% of events. The 

complex nature of transferring movements could be a likely explanation. When classifying 

events, all variations of transfers were classified in the same category. If better precision is 

warranted for clinical use, transfers from sit to stand could be separated from stand to sit, 

stand to lying down and lying down to stand.  

For lying down, the precision was 85.4%. The confusion matrix showed that 35 of 42 

misclassifications of lying events were “sitting”, which could be explained by the position 

of the knee being in a similar position when participants were lying or sitting down. For 
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sitting, the precision was 93.6%, which is enough to differentiate between sitting and lying 

down in a clinical assessment. While a single accelerometer placed on a thigh or wrist have 

failed to differentiate between lying and sitting positions [38,39], classification studies 

with the two activities collapsed as “sedentary” have shown excellent precision [40,41]; so 

have studies with combined positioning of multiple accelerometers [42,43]. Only one 

previous study has been able to differentiate between sitting and lying down as two 

separate categories using thigh rotation data from only one accelerometer [44]. This is the 

first study in a population with functional limitations to differentiate with acceptable 

precision; this is clinically valuable, because the use of just one device could enhance 

compliance [42]. 

4.4. Limitations  

The present study has some limitations that warrant discussion. The algorithm application 

was restricted to patients with ABI with independent gait function. The protocol sessions 

were conducted over short time in a training apartment, and the classification precision of 

transfers and ambulation in activities of daily living in longer periods of time has not yet 

been investigated. Although the activities were performed in an apartment, and at 

participant-selected speed and gait variation, classification precision can be expected to 

drop in a free-living setting [45].  

The algorithm was developed with machine learning. Though feature extraction was based 

on recommendations [34], a trade-off exist between complexity and interpretability using a 

Random Forest Classifier. Also, the algorithm is limited to classify the activities that were 

represented in the training data. 
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4.5 Clinical implications for physical activity assessment in neuro-rehabilitation  

If patients with ABI wear a triaxial accelerometer in the position shown in Figure 1 while 

performing daily life activities at home, an analysis based on this algorithm can classify 

their physical activity in the categories walking, sitting, standing, lying down and transfers.  

These basic functional activities are considered key for independent living [46]. Thus, the 

algorithm can help detect and analyse functional daily life parameters. For clinicians eager 

to use this algorithm, a small script can be applied to the existing algorithm to analyse 

continuous data. The source code can be requested from the corresponding author. 

Applying the algorithm could allow for easy data collection of resting periods, sedentary 

time, duration of walking time, or number of transfers per day. The algorithm could be 

expanded to classify other activities by repeating the study with other protocol activities 

such as stair climbing or running if required to cover a broader range of activities.  

The discerning ability in sedentary activities has positive implications for the clinical use 

of the algorithm when analysing data from people with ABI in daily life activity. It is 

reasonable to assume that there will be a distinct difference in functional indication 

between sitting and lying positions.  

5.0 Conclusion 

This is the first study to classify physical activities in people with ABI using a single 

accelerometer, and among other activities the developed algorithm was able to differentiate 

between sitting and lying positions. The algorithm can be used to analyse physical 

activities essential for daily living. Though the study was conducted in a home 

environment, further validation efforts may be required before applying the algorithm on 
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cohort data from people with ABI in community settings.  
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