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Communication
Transfer Learning assisted Multi-element Calibration

for Active Phased Antenna Arrays
Zhao Zhou, Zhaohui Wei, Jian Ren, Member, IEEE, Yingzeng Yin, Member, IEEE, Gert Frølund Pedersen, Senior

Member, IEEE, and Ming Shen, Senior Member, IEEE

Abstract—A transfer learning-based method for accelerating
power-only calibration of phased array antennas by combin-
ing conventional array theory with deep learning is presented
in this paper. Existing power-only calibration methods either
require a significant number of measurement cycles or have
restrictive phase shifter resolution requirements. The proposed
array calibration method uses a surrogate model to calibrate all
array elements in one pass without restricting phase resolution
requirements. We developed a novel feature extraction scheme
(FES) that picks out the most important power features resulting
in reduced measurement cycles. The burden of data acquisition
for model training is further reduced by relational knowledge
transfer learning. The surrogate model acquires its general
calibration capability from massive theoretical data, which is
easily collected by the radiation multiplication theorem, and
captures the detailed non-ideal response from a small number of
simulations. The proposed methodology has been demonstrated
and tested on several arrays for validation. The effectiveness and
performance of the method have been verified, hence it can serve
as a complementary tool to accelerate the calibration process of
phased antenna arrays.

Index Terms—calibration, feature extraction scheme, phased
antenna array, transfer learning.

I. INTRODUCTION

PHASED antenna arrays are becoming increasingly im-
portant and are widely used in wireless communication

systems. They rely on precise control of array excitation. In
practice, tolerances in component fabrication and aging effects
can cause non-negligible distortions. The actual array excita-
tion may deviate from the expected values and depreciate the
performance. Therefore, regular calibration must be performed
to maintain the performance.

The calibration methods can be divided into two groups:
single-element and multi-element methods. The typical single-
element methods calibrate only one element in one pass [1–
7], and the extended multi-element methods calibrate multiple
elements simultaneously during one calibration cycle [8–
17]. Moreover, depending on the methodology, they can be
further categorized as the mutual coupling-based method [1],
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the phase toggling method [2], [13], the rotating element
electric field vector (REV) method [3–5], [14], [15], and the
orthogonal code-based method, etc.

Since the typical single-element calibration methods [1–7]
calibrate each element individually, an array antenna with N
elements requires at least N calibration cycles. During each
calibration cycle, a target element to be calibrated is activated
and measured with different phase settings. Meanwhile, the
remaining elements are isolated as they are turned off or
terminated. Different calibration methods require measurement
at different sets of phase settings.

The mutual coupling-based method [1] technically makes a
phase adjustment during each measurement cycle. It measures
the mutual coupling between the target and reference elements
to determine the excitation error. The phase toggling method
[2] switches the phase shifter from 0 ◦ to 180 ◦ and measures
complex array signals to determine the error of each element.
If the complex signals are not retrievable, the REV method is
successful. The REV method [3–5] traverses all phase states of
each element to determine the minimum and maximum power
and the phase variation to determine the relative complex
excitation field of the element. Typical REV methods require
2m ×N measurement cycles to calibrate an N -element array
with an m-bit phase shifter [4]. The phase resolution m must
be at least 3 to achieve a clear sinusoidal representation.

The extended calibration methods [13–17] improve calibra-
tion efficiency by calibrating multiple elements simultaneously
in each calibration cycle. Assuming M elements, a phased
array antenna with N elements requires only ⌈N/M⌉ mea-
surement cycles. However, the number of elements in each
calibration cycle is limited by the mathematical constraints
and the number of bits of the phase shifter.

In [13], up to eight elements are calibrated simultaneously
by applying a fast Fourier transform to sixteen measured
signals, where the beamformer unit consists of sixteen phase
states. The extended REV method [14], [15] successively shifts
the phases of multiple elements with different phase intervals
and measures the combined power change of the array. Then,
the measured combined array power variation is converted into
a form identical to the typical REV method using a Fourier
transform.

While these extended methods improve the efficiency of
calibration, still the improvement is limited due to the high
mathematical computation requirements and phase resolution
requirements. The number of elements calibrated simultane-
ously must be limited to ensure mathematical computation
ability so that they provide independent contributions to the
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Fig. 1. The proposed calibration method based on the surrogate model.

composite array radiation and can be successfully decom-
posed. The bit-number of the phase shifter usually determines
the ability to be independent. For this reason, the extended
methods often have non-negotiable hardware requirements for
the bit-number of the phase shifter. In the case of the classic
extended REV method, only two elements can be calibrated
simultaneously when using a 4-bit phase shifter.

In this communication, a surrogate model is proposed to
calibrate all elements of a phased antenna array at once. It
requires much fewer measurement cycles than the existing
REVs. This powerful technique does not require phase res-
olution, phase tuning, on-off elements, and equation manip-
ulation. The surrogate model feeds from a few power-only
features measured under the default phase state and directly
determines the complex excitation field. A feature extraction
scheme (FES) was thoroughly investigated to filter out the
most informative features while keeping number of features
small. As a result, measurement cycles could be significantly
reduced. Training of the surrogate model alleviates the tedious
data acquisition that existing machine-learning approaches
often suffer from [18–20]. Unlike [18–20], which output
only amplitude or phase, our model determines both the
excitation amplitudes as well as phases for calibration. As
shown in Fig. 1, using relational-knowledge-transfer learning,
we divide the model training into two stages. The first-stage
learning acquires knowledge about the general calibration from
the array superposition theorem. The second-stage learning
focuses on unexpected concrete properties such as coupling
effects and other non-analytical behavior. We have verified the
effectiveness and efficiency of the proposed method on several
arrays.

The remainder is organized as follows. Section II examines
the FES for feature selection. Section III explains the devel-
opment and optimization of the surrogate model. Validation
of the proposed method is presented in Section IV while
conclusion is drawn in Section V.

II. FEATURE EXTRACTION SCHEME

The input of the surrogate model is the features extracted by
the feature extraction scheme (FES), while the output of the
surrogate model is the complex excitation field. This section
explains the FES to extract the fewest and most informative
radiation features.

e.

a.

e. e.

Fig. 2. (a) 3DRP; (b) ERPs; (c) Sampling the front region of an ERP.

A. Theoretical Basis

The phased antenna array regularly radiates according to
two main rules: (a) the radiation intensity varies more dra-
matically with elevation (e.) angle θ than azimuth (a.) angle
ϕ. Thus, the elevation radiation pattern (ERP) provides more
informative features, and it is reasonable to represent radiation
only by collecting multiple ERPs. And, (b) most of the energy
is radiated forward, so the most important features of each
ERP are mainly confined to the forward region.

B. Strategy of FES

The antenna array usually expresses its radiations in a three-
dimensional far-field radiation pattern (3DRP) as shown in
Fig. 2 (a). A small number of features result in a small number
of measurement cycles and high calibration efficiency. The
above analysis leads to a general strategy of the FES: capturing
several ERPs and sampling the front range, as exhibited in
Fig. 2 (b) and (c). We consider the radiation as a continuous
function F versus the elevational angle θ and the azimuthal
angle ϕ. Then each ERP can be expressed as Fi(θ, ϕi). Each
feature (Featij) can be expressed as Fij(θj , ϕi), where θj is
selected by both Range ERP and Step ERP. Here, Num ERPs
means the number of captured ERPs; Range ERP defines
the sampling range of each ERP; and Step ERP decides the
sampling intensity of each ERP. They customize the FES and
decide the number of features (Num Feats).

C. The Optimal FES

FES can be parameterized by three coefficients, i.e.,
Range ERP, Step ERP, and Num Feats. Variation in these
coefficients results in different FESs. There are two indicators
to assess an FES, one is Num Feats and the other is the
consequent surrogate model’s loss represented as L. Roughly,
fewer features lead to worse performance. To quantify the
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Fig. 3. Loss train with (a) Num ERPs, Range ERP, and Step ERP varying, (a-1) Range ERP varying, (a-2) Step ERP varying, (a-3) Num ERPs varying;
Loss test with (b) Num ERPs, Range ERP, and Step ERP varying, (b-1) Range ERP varying, (b-2) Step ERP varying, (b-3) Num ERPs varying.

trade-off between the two indicators, we evaluated 80 different
FESs.

For simplicity and fairness, the fifty thousand samples
are used by 80 different FESs to generate 80 corresponding
training data sets. A deep neural network is trained separately
with the 80 data sets. During training, the mean squared error
between the prediction and label of the complex excitation
field was set as the loss function. The final loss represents L.

The colored dots of different sizes represents the 80 FESs
in Fig. 3 (a) and (b). Here, the size indicates the number of
features (Num Feats) required as the bigger dot corresponds
to the small number of required features. Whereas, the color
represents the loss value as green means the loss value meets
certain criteria (less than 0.03). The green color transforms to
orange and gradually lighter orange as the loss value increases.
Note that the threshold value for testing exceeds for training
because models often behave slightly inferior during testing.
It can be observed that the biggest green dots in Fig. 3 (a) and
(b) represent the optimal FES (Num ERPs = 6, Range ERP
= 120, Step ERP = 20).

The 2D plots on the right of Fig. 3, shows the trade-
off when two of the coefficients are fixed at their optimal
values. Fig. 3 (a-1), (a-2), and (a-3) represents trade-off for
training while Fig. 3 (b-1), (b-2), and (b-3) shows trade-off
for testing. According to the optimal FES, six ERPs and six
far-field radiation values on each ERP are selected as the input
parameters for the surrogate model.

For larger uniform planar arrays, the number of ERPs and
the fineness of the FES proportionally rise to deliver the
radiation of higher resolution. For non-uniform arrays with
special arrangements, there is the need to adjust the ERPs
distribution accordingly to fit the radiation distribution. The
number of candidate FESs depends on the sweep ranges of
Num ERPs, Range ERP, and Step ERP.

 Initialize model         (Initial weights w = w0; initial biases b = b0) 
 (Loss: mean squared error)

 (Optimizer: Adam)

Characterize non-ideal responseAcquire generic knowledge Relational-knowledge-transfer
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Fig. 4. The workflow to develop the surrogate model.

III. THE SURROGATE MODEL

A. Workflow

The evolution of the surrogate model, as illustrated in Fig. 4,
arises from combining the conventional array theory and deep
learning. The purpose of the surrogate model is to imitate the
mapping from the power-only far-field radiation values to the
excitation field. The mapping has its general relationship de-
cided by the radiation multiplication theorem, and the coupling
effects mainly generate undesirable variations.

The model can learn the generic knowledge of the radiation
multiplication from theoretical calculation results; however,
the non-ideal response originated from the coupling effects
only exposes itself in simulation or measurement results.
Thus, the relational-knowledge-transfer approach is used to
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Fig. 5. Loss versus epochs during the first stage using different amounts of
calculation datasets. (a) Loss train. (b) Loss test.

decompose the learning process into two stages. The first-stage
learning grasps the generic knowledge from theoretical calcu-
lation results. The second-stage learning further characterizes
the detailed non-ideal variations from a few simulation results.

This two-stage learning mode renders the model having
generalizability, robustness, and interpretability. Also, our ap-
proach improves efficiency by significantly alleviating the need
for stimulation by transferring knowledge from the calculation.
The following section introduces the first/second-stage learn-
ing.

B. Acquire Generic Knowledge

After fine tuning and optimization, a fully-connected neural
network is initialized, as shown in Fig. 4, which consists of an
input layer, an output layer, and four hidden layers of 300, 200,
200, and 100 neurons. Each hidden layer is attached with the
leaky rectified linear unit (LeakyReLU) [21] as the activation
function and a batch normalization layer. The Adam [22] is
employed as the optimizer to upgrade the weights and biases
of the neurons. The mean squared error between the predicted
complex excitation field and its theoretical label is used as the
loss function to evaluate the model during training.

In the first stage, the model is trained with theoretical data
to grasp the generic knowledge where the deviations were
excluded. The theoretical data were obtained via the formula
established in [23]:

Fcal(θ, ϕ) =

M−1∑
m=0

N−1∑
n=0

Fe,mn(θ, ϕ)e
−jπ sin θ(m cosϕ+n sinϕ). (1)

Here, Fe,mn(θ, ϕ) represents the independent radiation pattern
of the antenna element; m and n point at the index of the
antenna element in two orthogonal directions while M and
N are the numbers of the elements along with these two
directions. The unbalanced magnitudes and phases for all the
elements were initialized to generate the first-stage training
data and then fed into the Eq. 1 to calculate the theoretical
array of radiation. The amplitude can be deviated by ±3 dB,
and the phase varies from −40 ◦ to 40 ◦. The theoretical array
radiation was the input, and the initialized magnitudes and
phases were its output label.

The training and testing loss convergence curves versus
the learning epoch are exhibited in Fig. 5. Here, the loss
indicates the mean squared error between the first-stage model
estimation and the theoretical label of the complex excitation
field. Generally, more data results in minor loss, consequently

Fig. 6. Loss versus epochs during the second stage using different amounts
of simulation datasets. (a) Loss train. (b) Loss test.

better performance. Nevertheless, this improvement is satu-
rated when the data size reaches four million, as in Fig. 5,
and the curves indicate that four million could ensure good
performance. Hence, four million calculation results are used
for the first-stage training. After the first-stage learning, the
initial model is referred as the intermediate model which has
learned the generic knowledge of radiation multiplication.

C. Characterize Non-ideal Response

The second-stage learning focuses on characterizing the
detailed non-ideal response, including the coupling effects and
other non-analytical behavior. This stage relies on the learning
by the intermediate model as it holds the generic calibration
knowledge. Therefore, in the second stage, the aim is to
capture the non-ideal characteristics due to mutual coupling
and other non-analytical behavior. Similarly, the mean square
error between the second-stage prediction and the simulation
of the complex excitation field is set as the loss function for
evaluating the second-stage model.

Alike the first stage, then unbalanced magnitudes and phases
for all elements were initialized and randomly chosen for the
second-stage data collection. They are fed into the simulation
setup supported by Computer Simulation Technology®(CST)
to yield the non-ideal array radiation. A few arbitrary elements
had the amplitudes deviated by ±3 dB, and the phases varied
from −40 ◦ to 40 ◦. The simulated array radiation was the
input, and the initialized magnitudes and phases were its
output.

Following this scheme, the model was trained with different
numbers of simulation results as shown in Fig. 6. Here, the
loss represented the mean squared error between the simulated
magnitudes and phases and the output during the second-stage
iterations. As indicated by the curves, ten thousand simulation
data are sufficient for the second-stage learning.

IV. VALIDATION AND DISCUSSION

A. Virtual Validation

The proposed method is applied on a three-by-three planar
phased patch antenna array to verify its effectiveness and
performance. At first, arbitrary excitation distortions were pre-
imposed on the array as amplitudes were deviated by ±3 dB,
and phases deviated from −40 ◦ to 40◦.

The optimal FES consisted of six ERPs. For each ERP, six
power radiation points within the front region were collected.
The collected features were fed into the well-established surro-
gate model to determine the actual excitation. Fig. 7 exhibits
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Fig. 7. Implementation A: 5 samples randomly chosen from 100 cases.
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Fig. 8. (a) Schematic diagram of the measurement setup. (b) Photograph of
the measurement setup in an anechoic chamber.

5 validation samples randomly chosen from 100 validation
cases. The well-trained model is validated with 100 different
unbalanced samples. The root mean square errors (RMSEs) of
amplitude and phase of the 100 validation cases are 0.36 dB
and 4.51 ◦. As observed, the proposed surrogate model can
precisely determine the unbalanced variations in amplitude and
phase.

The method is firstly verified using a virtual scenario in
a similar manner to other existing machine learning-based
works [19], [20]. The measurement results agree with the
simulation via CST as long as the setup is accurate. It is
worth mentioning that a three-by-three phased antenna array
was chosen to balance the time and computing recourse needed
for validation and the complexity level of the array.

B. Experimental Validation

The robustness of the proposed method is validated by
implementing it on a one-by-eight linear patch array at 3.5
GHz in an experimental scenario. The experimental setup is
shown in Fig. 8, with a one-by-eight linear patch array, 8

Fig. 9. Implementation B: 5 samples randomly chosen from 100 cases.

V aunix LPS−402 phase shifters, a V aunix LDA−906V−8
8-channel attenuator, an 8-channel power divider, and a laptop
to adjust the phase shifters and attenuator all placed in an
anechoic chamber of 14m×9.9m×11.05m. The elements are
aligned in ϕ = 0◦ direction. Therefore, only took one ERP
ϕ = 0◦ was taken and had 32 features within this ERP because
the radiation variation focused in the ERP of ϕ = 0◦.

We measured 100 unbalanced far-field array radiations in
the chamber. The RMSE of 100 calibration results in the linear
array case is 0.47 dB/5.37 ◦ in terms of amplitude/phase.
Fig. 9 exhibits 5 random cases. The increment of error depends
on the accuracy of measurement.

C. Large Array Validation

The proposed method has the potential to calibrate any large
arrays with sufficient training samples available. The main
challenge is that, as the array size increases, the number of re-
quired training samples and the training time arise significantly
because the number of possible array excitation combinations
arises exponentially. In these validations, amplitudes were
deviated by ±3 dB, and phases from −30 ◦ to 30 ◦.

It was applied on a four-by-four planar array, with the FES
of Range ERP=180◦, Step ERP=22.5◦, and Num ERPs=8.
4 × 107 samples were used for training, and the RMSE was
0.57 dB/6.14 ◦ in terms of amplitude/phase.

For a linear array of 32 elements, the FES was set as
Range ERP=120◦, Step ERP=1◦, and Num ERPs=1. After
being trained using 4×108 samples, the RMSE for 10 thousand
test samples is 0.62 dB/6.65 ◦ in terms of amplitude/phase.

For a four-by-eight planar array, the FES was fixed at
Range ERP=180◦, Step ERP=15◦, and Num ERPs=10. It
took 8 × 108 samples for training to arrive at the RMSE of
0.67 dB/6.84 ◦ for 10 thousand test samples. Planar arrays
require more training samples than linear arrays of the same
amount of elements, because planar arrays have to consider
more complex 3D radiation variations than linear ones.

The propoosed method has the potential to calibrate larger
arrays and the calibration loss can be further reduced if more
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TABLE I
THE COMPARISON BETWEEN THE PROPOSED METHOD AND THE

EXISTING POWER-ONLY METHODS

Measurement times Root mean square error
(Amplitude/Phase)

phase shifter

[4] 2m × N – / – m-bit
[5] 4.5N + 1 0.1087 / 4.754 ◦ 4-bit
[15] 11.2N 0.37dB / 3.06 ◦ 5-bit
This 4N 0.07 (0.36 dB) / 4.51◦ No requirement
work 4N 0.10 (0.47 dB) / 5.37◦ No requirement

data and more powerful computing resources are provided.
However, powerful computing resources are not commonly
available. In future work, we will focus on reduction of re-
quired training samples and the need for computing resources
to facilitate large array calibration.

D. Comparison and Discussion

The proposed method is compared with existing ones in
Table I. As authors in [4] claimed, a normal REV requires
2m measurement times to calibrate each element using an m-
bit phase shifter. Works in [5] and [15] reduced the average
measurement cycles to around 4.5 and 11.2 by handling
multiple elements simultaneously using 4 or 5-bit number
phase shifters. Our method achieved comparable calibration
accuracy with only 4 measurement cycles. Furthermore, it does
not require phase shift resolution, repetitive phase shifting, or
equation manipulation.

Theoretically, the proposed method can calibrate larger
arrays by proportionally refining the FES. Consequently, the
measurement cycles arise proportionally. The number of re-
quired training samples increases exponentially to provide
sufficient informativeness and can exceeds the available com-
puting memory as the array size grows. In future work, we
will focus on further reduction of measurement cycles and data
requirements to facilitate calibration of larger-scaled arrays in
5G/6G scenarios.

V. CONCLUSION

In this communication, a calibration technique is presented
using the surrogate model that can calibrate all the elements
of phased antenna arrays at once. The surrogate model gets
insights from the combination of conventional array theory
and deep learning and gains its calibration ability through
relational-knowledge-transfer learning. The proposed method
requires a smaller number of measurement cycles than the
existing REVs and avoids repetitive phase shifting or equa-
tion manipulation. The experimental results show that the
approximation of the measurement times is 4N . The optimal
FES distinguishes the fewest points that deliver the most
informative power-only features. Fed by these features, the
surrogate model can directly determine amplitudes and phases
for all the elements. It also breaks through the limitation that
the conventional extended methods suffer from the bit-number
of the phase shifter or the mathematical computability. Once
trained, the surrogate model can serve convenient and efficient
periodical calibration for phased antenna arrays in 5G/6G
scenarios.
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