

Aalborg Universitet

Decomposing reach set computations with low-dimensional sets and high-dimensional
matrices (extended version)

Bogomolov, Sergiy; Forets, Marcelo; Frehse, Goran; Podelski, Andreas; Schilling, Christian

Published in:
Information and Computation

DOI (link to publication from Publisher):
10.1016/j.ic.2022.104937

Creative Commons License
CC BY 4.0

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Bogomolov, S., Forets, M., Frehse, G., Podelski, A., & Schilling, C. (2022). Decomposing reach set
computations with low-dimensional sets and high-dimensional matrices (extended version). Information and
Computation, 289, Article 104937. Advance online publication. https://doi.org/10.1016/j.ic.2022.104937

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1016/j.ic.2022.104937
https://vbn.aau.dk/en/publications/9da21556-d574-426e-98a6-d10d8f94b8b9
https://doi.org/10.1016/j.ic.2022.104937

Information and Computation 289 (2022) 104937
Contents lists available at ScienceDirect

Information and Computation

journal homepage: www.elsevier.com/locate/yinco

Decomposing reach set computations with low-dimensional
sets and high-dimensional matrices (extended version)

Sergiy Bogomolov a, Marcelo Forets b, Goran Frehse c, Andreas Podelski d,
Christian Schilling e,∗
a Newcastle University, Newcastle upon Tyne, United Kingdom
b CURE, Universidad de la República, Uruguay
c ENSTA Paris, Paris, France
d University of Freiburg, Freiburg, Germany
e Aalborg University, Aalborg, Denmark

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 September 2021
Received in revised form 17 June 2022
Accepted 19 June 2022
Available online 30 June 2022

Keywords:
Linear time-invariant systems
Reachability analysis
Safety verification
Set recurrence relation

Approximating the set of reachable states of a dynamical system is an algorithmic way
to rigorously reason about its safety. Despite progress on efficient algorithms for affine
dynamical systems, available algorithms still lack scalability to ensure their wide adoption
in practice. While modern linear algebra packages are efficient for matrices with tens of
thousands of dimensions, set-based image computations are limited to a few hundred. We
propose to decompose reach-set computations such that set operations are performed in
low dimensions, while matrix operations are performed in the full dimension. Our method
is applicable in both dense- and discrete-time settings. For a set of standard benchmarks,
we show a speed-up of up to two orders of magnitude compared to the respective state-
of-the-art tools, with only modest loss in accuracy. For the dense-time case, we show an
experiment with more than 10,000 variables, roughly two orders of magnitude higher than
possible before.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Verifying safety properties for dynamical systems is an important and intricate task. For bounded time it is well known
that the problem can be reduced to the computation of the reachable states. We are interested in the set-based reachability
problem for affine dynamical systems [1]. Here, recurrence relations of the form

X (k + 1) = �X (k) ⊕ V(k), k = 0,1, . . . , N (1)

arise naturally. In the context of control engineering, the sequence of sets {V(k)}k usually represents nondeterministic inputs
or noise, ⊕ denotes the Minkowski sum between sets, � is a real n×n matrix, and the set X (0) accounts for uncertain
initial states.

Numerous works present strategies for solving (1) with set representations like ellipsoids [2,3], template polyhedra such
as zonotopes [4,5] or support functions [6–10], or a combination [11]. The problem also generalizes to hybrid systems with

* Corresponding author.
E-mail addresses: sergiy.bogomolov@newcastle.ac.uk (S. Bogomolov), mforets@gmail.com (M. Forets), goran.frehse@ensta-paris.fr (G. Frehse),

podelski@informatik.uni-freiburg.de (A. Podelski), christianms@cs.aau.dk (C. Schilling).
https://doi.org/10.1016/j.ic.2022.104937
0890-5401/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.ic.2022.104937
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2022.104937&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:sergiy.bogomolov@newcastle.ac.uk
mailto:mforets@gmail.com
mailto:goran.frehse@ensta-paris.fr
mailto:podelski@informatik.uni-freiburg.de
mailto:christianms@cs.aau.dk
https://doi.org/10.1016/j.ic.2022.104937
http://creativecommons.org/licenses/by/4.0/

S. Bogomolov, M. Forets, G. Frehse et al. Information and Computation 289 (2022) 104937
piecewise affine dynamics [12,13]. A key difficulty is scalability, as the cost of some set operations increases superlinearly
with the dimension [14, Table 1]. A second challenge is the error accumulation for increasing values of N , known as the
wrapping effect.

In this paper we extend the approach of the partial decomposition algorithm for solving (1) first presented in [15].
The complexity of non-decomposition approaches is mostly affected by the dimension n. Our method partially shifts this
dependence on n to other structural properties: We perform set operations in low dimensions (unaffected by n); we ef-
fectively omit variables from the analysis if they are not involved in the property of interest; and we exploit the sparsity
of � and its higher-order powers. However, unlike other decomposition approaches, we keep the matrix computations in
high dimensions, which allows us to produce precise approximations. The strategy consists in decomposing the discrete
recurrence relation (1) into subsystems of low dimensions. Then we compute the reachable states for each subsystem; these
low-dimensional set operations can be performed efficiently. Finally, we compose the low-dimensional sets symbolically and
project onto the desired output variables. The analysis scales to systems with tens of thousands of variables, which are out
of scope of state-of-the-art tools for dense-time reachability.

We apply our method to compute reachable states and verify safety properties of affine dynamical systems,

x′(t) = Ax(t) + Bu(t), t ∈ [0, T], (2)

where T > 0 is a given time horizon. The initial state can be any point in a given set X0, and u(t) ∈ U(t) ⊂ Rm is a
nondeterministic input. Both the initial set and the set of input functions are assumed to be compact and convex. We also
consider observable outputs,

y(t) = Cx(t) + Du(t), (3)

where C and D are matrices of appropriate dimension. In mathematical systems theory, equations (2)-(3) define what is
known as a linear time-invariant (LTI) system.

Contribution. We present a method to solve the reachability problem for affine dynamical systems with nondeterministic
inputs and experimentally show that it is highly scalable under modest loss of accuracy. More precisely:

• We discuss and extend the decomposition approach from [15], which combines low-dimensional sets with high-
dimensional matrices to solve (1), and we analyze the approximation error.

• We address both the dense-time and the discrete-time reachability problem for general LTI systems of the form (2)-(3).
• We implement our approach efficiently and demonstrate its scalability on real engineering benchmarks. The tool, source

code, and benchmark scripts are publicly available [16].

This article is the first in a two-part series on the decomposition of the symbolic analysis of linear dynamical systems.
The present article provides the foundation by decomposing the symbolic analysis of a linear ODE. A preliminary version
previously appeared in [15]. The second article extends the approach to systems with discrete state changes that can modify
the ODE and the state vector [17].

New content for the extended version. This article is based on [15]. We have included all the proofs1 among other major
contributions:

• We extend the approach to arbitrarily-sized decompositions into subspaces (the approach in [15] was restricted to
subspaces of size two).

• We extend the implementation to arbitrary low-dimensional set representations (the previous method in [15] was
restricted to box directions).

• We perform an empirical evaluation of the approximation error.
• We improve the algorithm’s precision when approximating the nondeterministic inputs.
• We improve the scalability of the discretization, using an efficient implementation of Krylov subspace methods, by

several orders of magnitude.
• We investigate the influence of set approximations in the context of decomposition, and the influence of decompositions

in higher dimension.

Combining these contributions, we are able to verify more benchmark problems and solve the previous ones faster.

Related work. Kaynama and Oishi consider a Schur-based decomposition to compute the reach set [18,19]. They approximate
the result for subsystems by nondeterministic inputs using a static (i.e., time-unaware) box approximation. The authors also
address approximation errors by solving a Sylvester equation to obtain a similarity transformation that minimizes the sub-
matrix coupling. For systems where variables are linearly correlated in the initial states and inputs are constant, Han and

1 The conference paper [15] did not include proofs.
2

S. Bogomolov, M. Forets, G. Frehse et al. Information and Computation 289 (2022) 104937
Krogh propose an approximation method that uses Krylov subspace approximations [20] without explicitly decomposing
the system. If the system is singularly perturbed with different time scales (“slow and fast variables”), time-scale decompo-
sition can be applied [21,22]. We do not consider this setting here. The reachability analysis tool Coho uses projectahedra
– a possibly non-convex polyhedron consisting of the intersection of prisms, back-projected from 2D polygons – for set
representation [23,24]. Seladji and Bouissou define a sub-polyhedra abstract domain based on support functions [25]. Our
approach can choose directions dynamically, and independently for each subsystem.

An orthogonal approach to reduce the complexity of system analysis is known as model order reduction (MOR) [26]. The
idea is to construct a lower-dimensional model with similar behavior. Recently there have been efforts to combine MOR and
abstraction techniques to obtain a sound overapproximation [27]. In a further approach, Bogomolov et al. [28] suggest an
abstraction technique that employs dwell time bounds. Moreover, Bogomolov et al. [29] introduce a system transformation
to reduce the state space dimension based on the notion of quasi-dependent variables, which captures the dependencies
between system state variables. In principle, such methods could be used as a preprocessing for our approach, where the
approximation errors would then be combined.

Bak and Duggirala check safety properties and compute counterexample traces for LTI systems in a “simulation equivalent
manner” [30]. A reachable set computed in this way consists of all the states that can be reached by a fixed-step simulation
for any choice of the initial state and piecewise constant input. This set, however, does not include all trajectories of (2). The
simulation equivalent reachability also involves a recurrence of the type (1), and we study its decomposed form in this work
as well. Bak et al. have extended this approach to exploit specific problem structure, namely low input or output dimension.
Using Krylov simulations, the approach can scale up to a billion dimensions [31].

Decomposition methods have also been designed for the reachability problem of nonlinear ODEs. Chen et al. consider
controller synthesis and show that, using Hamilton-Jacobi methods, the (analytically) exact reach set can be reconstructed
from an analysis of the subsystems for general ODE systems [32]. The system needs, however, to be composed of so-called
self-contained subsystems, which is a strong assumption. In our setting of LTI systems, this corresponds to a dynamics matrix
with block structure⎛⎝ A1 0 A3

0 B2 B3
0 0 C3

⎞⎠
in case of two subsystems. Our approach cannot make use of this structure due to a discretization, which results in a (dis-
crete) system that in general does not preserve the structure. The technique is based on [33] which has no such limitation
but suffers from a projection error.

Asarin and Dang propose a decomposition approach that projects variables away and abstracts them by time-unaware
differential inclusions [34]. To address the overapproximation, the authors split these variables again into several subdo-
mains. Chen and Sankaranarayanan apply uniform hybridization to analyze the subsystems over time and feed the results to
the other subsystems as time-varying interval-shaped inputs [35]. Their method needs to iteratively check that the selected
variables lie in the given intervals. A key difference with our work is that we do not replace variables by unknown inputs;
instead we decompose the reach sets into subspaces. Moreover, our reachability algorithm is specific for LTI systems and
exploits the system structure to be more efficient and more precise; our method also needs not be performed iteratively
because the analysis of the subspaces is completely decoupled. Schupp et al. decompose a system by syntactic indepen-
dence [36]. In our setting, this corresponds to dynamics matrices of block diagonal form. For such systems the dynamical
error is zero in both approaches.

Our approach can handle blocks of arbitrary size, including blocks of different sizes in the same model. In the special case
of 1-dimensional blocks, the approach is in a sense equivalent to a reach set approximation using interval arithmetic (see,
e.g., [37] for a comprehensible overview). This connection merits some comments: One difference is that the traditional
version is not free of the wrapping effect [38]. This is due to the fact that it targets nonlinear dynamics, for which the
wrapping effect cannot be entirely avoided. The analytic error bounds given in this paper provide an indication of the kind
of precision that can be achieved when combining interval arithmetic with a wrapping-free reach set algorithm. To achieve
the soundness that traditional interval arithmetic reachability provides, we would have to construct the matrix exponential
as an interval matrix and compute a sound upper bound on the support function in order to carry out the projection. For
the matrix exponential, several sound implementations exist, either based on sound ODE solvers (e.g., VNODE-LP [39]) or
directly on sound arithmetic (e.g., Arb [40]). For the computation of the support function, this is equivalent to finding sound
upper bounds on the solution of a linear program. An efficient solution of this problem has been proposed, e.g., by Chen et
al. [41].

Structure of the article. The paper is organized as follows. In Sect. 2 we recall some basics on approximating convex sets with
polyhedra and a state-of-the-art algorithm for approximating the reach sets of affine systems using the affine recurrence
relation (1). In Sect. 3, we start by considering the decomposition of a single affine map, and then develop the more general
case of an affine recurrence. The approximation error is discussed in Sect. 4. We present our reachability algorithm in Sect. 5,
discuss the different techniques used to gain performance, and evaluate it experimentally in Sect. 6. Finally, we draw the
conclusions in Sect. 7.
3

S. Bogomolov, M. Forets, G. Frehse et al. Information and Computation 289 (2022) 104937
2. Approximate reachability of affine systems

In this section, we recall the state-of-the-art in approximating the reachable set of an affine dynamical system.

2.1. Preliminaries

Let In be the identity matrix of dimension n×n. For p ≥ 1, the p-norm of an n-dimensional vector x ∈ Rn is denoted
‖x‖p . The p-norm of a set X ⊂ Rn is ‖X‖p = supx∈X ‖x‖p , and the diameter is �p = supx,y∈X ‖x − y‖p . Let Bn

p be the
unit ball of the p-norm in n dimensions, i.e., Bn

p = {x : ‖x‖p ≤ 1}. The Minkowski sum of sets X and Y is X ⊕ Y :=
{x + y : x ∈ X and y ∈ Y}. Their Cartesian product, X × Y , is the set of ordered pairs (x, y), with x ∈ X and y ∈ Y . The
origin in Rn is written 0n . There is a relation between products of sets and the Minkowski sum: If X ⊆ Rn and Y ⊆ Rm ,
then X × Y = (X × {0m}) ⊕ ({0n} × Y). The convex hull operator is written CH. Let �(·) be the symmetric interval hull
operator, defined for any X ⊂ Rn as the n-fold Cartesian product of the intervals [−|x̄i |, |x̄i |] for all i = 1, . . . , n, where
|x̄i | := supx∈X |xi |.

2.2. Polyhedral approximation of a convex set

We recall some basic notions for approximating convex sets. Let X ⊂ Rn be a compact convex set. The support function
of X is the function ρX :Rn →R,

ρX (�) := max
x∈X �Tx.

The farthest points of X in the direction � are the support vectors

σX (�) := {
x ∈ X : �Tx = ρX (�)

}
. (4)

When we speak of the support vector, we mean the choice of any support vector in (4). The following properties of support
functions and support vectors are well-known [42] and will be used in the sequel.

Lemma 1. For all compact convex sets X , Y ⊂Rn, for all n×n real matrices M, all scalars λ, and all vectors � ∈Rn, we have:

• ρλX (�) = ρX (λ�), σλX (�) = λσX (λ�)

• ρMX (�) = ρX (MT�), σMX (�) = MσX (MT�)

• ρX⊕Y (�) = ρX (�) + ρY (�), σX⊕Y (�) = σX (�) ⊕ σY (�)

• ρX×Y (�) = �TσX×Y (�),
σX×Y (�) = (σX (�1), σY (�2)), � = (�1, �2)

• ρCH(X∪Y)(�) = max(ρX (�), ρY (�)),
σCH(X∪Y)(�) = arg max

x,y
(�Tx, �T y), x ∈ σX (�), y ∈ σY (�)

In particular, the projection of a set into a low-dimensional space (a special case of MX) can be conveniently evaluated
using support functions, since σMX (�) = MσX (MT�). Given directions �1, . . . , �m , a tight overapproximation of X is the
outer polyhedron given by the constraints∧

i

�T
i x ≤ ρX (�i). (5)

For instance, a bounding box involves evaluating the support function in 2n directions. More precise approximations can
be obtained by adding directions. To quantify approximations, we use the following distance measure. A set X̂ is within
Hausdorff distance ε of X if and only if

X̂ ⊆ X ⊕ εBn
p and X ⊆ X̂ ⊕ εBn

p . (6)

The infimum ε ≥ 0 that satisfies (6) is called the Hausdorff distance between X and X̂ with respect to the p-norm, and is
denoted dp

H

(
X , X̂

)
. Another useful characterization of the Hausdorff distance is the following. Recall that a compact set X

is a polytope if there is a finite set of half-spaces whose intersection is X . If X , Y ⊂Rn are polytopes, then

dp
H (X ,Y) = max

�∈Bn
p

|ρY (�) − ρX (�)|. (7)

In the special case X ⊆Y , the absolute value can be removed.
By adding directions using Kamenev’s method [43,44], the outer polyhedron in (5) is within Hausdorff distance ε‖X‖p

for O(1/εn−1) directions, and this bound is optimal. It follows that accurate outer polyhedral approximations are only feasible
in low dimensions. It is well-known that for n = 2, the bound can be lowered to O(1/√

ε) directions [43].
4

S. Bogomolov, M. Forets, G. Frehse et al. Information and Computation 289 (2022) 104937
Fig. 1. Illustration of a reach tube (orange) with a set of initial states (green) and an approximation (yellow) that shows absence of error states (red). (For
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

2.3. Trajectory, reach set, and reach tube

A trajectory of the affine ODE with time-varying inputs (2) is the unique solution xx0,u(t) : [0, T] →Rn , for a given initial
condition x0 at time t = 0, and a given input signal u,

xx0,u(t) = e At x0 +
t∫

0

e A(t−s)u(s)ds,

where we map Bu(t) to u(t) without loss of generality. Here T is the time horizon, which we consider to be finite in this
paper. Given a set of initial states X0 and an input signal u, the reach set at time t is R(X0, u, t) := {xx0,u(t) : x0 ∈ X0}. This
extends to a family of solutions as

R(X0,U, t) =
⋃{

R(X0, u, t) : u(s) ∈ U(s) ∀ s ∈ [0, t]}.
The reach tube for a given time interval [t1, t2] ⊆ [0, T] is the set

R(X0,U, [t1, t2]) :=
⋃

t1≤t≤t2

R(X0,U, t). (8)

In general, the reach tube can be computed only approximately. An example reach tube and an overapproximation using
boxes is shown in Fig. 1. In the next section we discuss how to compute such an overapproximation of the reach tube.

2.4. Approximation model

The standard numerical approach for the reachability problem is to reduce it to computing a finite sequence of sets,
{X (k)}N

k=0, that overapproximates the exact reach tube (8). We assume a given constant time step size δ > 0 over the
time horizon T = Nδ, where N is the number of time steps. With respect to the inputs, we assume that the time-varying
function U(·) from Sect. 2.3 is piecewise constant, i.e., we consider a possibly time-varying discrete sequence {U(k)}k for
all k = 0, 1, . . . , N . Note that while the input set U(k) is constant, the input signal u(t) can still vary nondeterministically at
arbitary times.

Starting from the continuous system (2)-(3), we are interested in reducing the reachability problem to the recurrence (1),
with suitably transformed initial states and nondeterministic inputs. Such transformations are called approximation models
(see [45] for a review). One can consider two distinct problems, which we call dense-time and discrete-time reachability,
respectively. In the discrete-time case, the reach tube of the continuous system is only covered at finitely many time points,
but not necessarily in between. On the other hand, the dense-time case corresponds to covering all possible trajectories of
the given continuous system for every point between [0, T]. Next we describe the approximation models used in this article
in more detail.

First, we recall the dense-time case. All continuous trajectories are covered by the discrete approximation if

R(X0,U, [kδ, (k + 1)δ]) ⊆ X (k), ∀ k = 0,1, . . . , N. (9)

Previous works have provided approximation models such that (9) holds [42,6,7]. In particular, in [7, Lemma 3] the authors
intersect a first-order approximation of the interpolation error going forward in time from t = 0 with one that goes back-
ward in time from t = δ. Note that this forward-backward approximation is used in SpaceEx, to which we will compare
our method later. Here, we consider the forward-only approximation. To guarantee that the overapproximation covers the
interval between time steps, the initial set and the input sets are bloated by additive terms
5

S. Bogomolov, M. Forets, G. Frehse et al. Information and Computation 289 (2022) 104937
Eψ(U(k), δ) := �(�2(|A|, δ)� (AU(k))) (10)

E+(X0, δ) := �(�2(|A|, δ)� (A2X0)), (11)

where |A| represents the component-wise absolute value of A and the matrices �1(A, δ) and �2(A, δ) are defined via

�1(A, δ) :=
∞∑

i=0

δi+1

(i + 1)! Ai, �2(A, δ) :=
∞∑

i=0

δi+2

(i + 2)! Ai .

The required transformations for dense time are:⎧⎪⎨⎪⎩
� ← e Aδ

X (0) ← CH
(
X0,�X0 ⊕ δU(0) ⊕ Eψ(U(0), δ) ⊕ E+(X0, δ)

)
V(k) ← δU(k) ⊕ Eψ(U(k), δ), ∀ k = 0,1, . . . , N

(12)

For discrete-time reachability the transformations are:⎧⎪⎪⎨⎪⎪⎩
� ← e Aδ

X (0) ← X0

V(k) ← �1(A, δ)U(k), ∀ k = 0,1, . . . , N

(13)

Note that there is no bloating of the initial states, and that the inputs are assumed to remain constant between sampling
times.

The cost of solving the general recurrence (1) with either the data (12) or (13), to compute an approximation of the reach
set or the reach tube, increases superlinearly with the dimension of the system and the desired approximation error [14].
In the rest of this paper, we will consider a decomposition of the system to reduce the computational cost.

3. Decomposition

In this section, we present our approach for solving the general recurrence (1) using block decompositions.

3.1. Cartesian decomposition

From now on, let X ⊂Rn be a compact and convex set. We characterize the decomposition of X into b sets as follows.
Let x ∈ Rn and let {πi}b

i=1 be a set of contiguous projectors onto the coordinates of x, i.e., such that any x ∈ X can be
uniquely written as x = [π1x, . . . , πbx]. We call the set

dcp(X) := π1X × · · · × πbX

the Cartesian decomposition of X . We call a set decomposed if it is identical to its Cartesian decomposition for some {πi}b
i=1.

For instance, the symmetric interval hull �(X) is a decomposed set, since it is the Cartesian product of one-dimensional
sets, i.e., intervals. Throughout the paper, we will highlight decomposed sets with the symbol ·̂ (as in X̂ , Ŷ). Note that
decomposition distributes over Minkowski sum:

dcp(X ⊕Y) = dcp(X) ⊕ dcp(Y). (14)

If X is a polytope in constraint form, the projections can be very costly to compute, as this amounts to quantifier
elimination. However, using the methods in Sect. 2.2, we can efficiently compute an overapproximation. The overapproxi-
mation can be coarse, e.g., a bounding box, or ε-close in the Hausdorff norm for a given value of ε. Since the choice of the
approximation is of no particular importance to the remainder of the paper, we simply assume an operator

d̂cp(X) := X̂1 × · · · × X̂b

that overapproximates the Cartesian decomposition with a decomposed set X̂1 × · · · × X̂b such that dcp(X) ⊆ d̂cp(X).

3.2. Decomposing an affine map

Let V ⊂Rn be a compact and convex set and � be a real n×n matrix. Consider the n-dimensional affine map

X ′ = �X ⊕ V =
⎛⎜⎝�11 · · · �1b

...
. . .

...

� · · · �

⎞⎟⎠X ⊕ V, (15)
b1 bb

6

S. Bogomolov, M. Forets, G. Frehse et al. Information and Computation 289 (2022) 104937
Fig. 2. The Cartesian decomposition of X into two blocks of size one is the set d̂cp(X) = X̂1 × X̂2 (red). The decomposed image of the map X ′ = �X is
the set X̂ ′ (blue) obtained by applying (16) to each interval X̂ j .

Table 1
Complexity of set operations involved in the affine map computation by decomposition.

Polytopes Zonotopes
m generat.

Supp. fun.
m direct.m constraints m vertices

C�(n,m) O(mn2 + n3) O(mn2) O(mn2) O(mn2L)

C⊕(n,m) O(2n) O(m2n) O(n) O(mL)

L is the cost of evaluating the support function of X . For polytopes in constraint representation we assume that � is invertible; otherwise the complexity
is O(mn). Note that m is not comparable between different representations.

where �i j denotes the submatrix of � in row i and column j, counting from top to bottom and from left to right. We call
such a submatrix a block, and [�i1�i2 · · ·�ib] a row-block. Note that the dimension of each block is determined by the given
Cartesian decomposition of the set X , i.e., dim �i j = dimπiX × dimπ jX .

The decomposed image of the map (15) is obtained in two steps: Cartesian decomposition and affine map in lower-
dimensional subspaces. The first step transforms the full-dimensional sets X and V into Cartesian products of low-
dimensional sets X̂1, . . . , X̂b , using the operator d̂cp described in the previous section. The second step constructs the
low-dimensional sets

X̂ ′
i :=

b⊕
j=1

�i jX̂ j ⊕ V̂i, ∀ i = 1, . . . ,b. (16)

We call the Cartesian product X̂ ′ = X̂ ′
1 × · · · × X̂ ′

b the decomposed image of (15). For each i, X̂ ′
i only depends on the i-th

row-block of �. In Fig. 2 we illustrate the decomposed image of an affine map over a polygon.
We now compare the cost of (15) and (16), assuming that every row-block of � is d-dimensional, and b = n/d is an

integer, without loss of generality. Let us denote the cost of computing the image of an n×n linear map by C�(n, m) and
the cost of computing the Minkowski sum of two n-dimensional sets by C⊕(n, m), where m is a parameter that depends
on the set representation. For example, a square has dimension n = 2 and m = 4 vertices (resp. constraints), but it can also
be represented as a zonotope with m = 2 generators. The asymptotic complexity of performing the above operations for
common set representations is shown in Table 1; we refer to [46,47,4,48] for further details. Since one Minkowski sum and
one linear map are involved in (15), we have that the cost (recall that n = db) is in

O(C�(db,m) + C⊕(db,m)).

On the other hand, the aggregated cost for the i-th block in (16) is bC⊕(d, m′) + bC�(d, m′), where m′ is the parameter for
complexity (m) in d dimensions. The total cost for all b blocks is thus in

O(b2C�(d,m′) + b2C⊕(d,m′)).

Whenever C� and C⊕ depend at least quadratically on the dimension, and given that m′ � m, the cost of the decomposed
image (16) is asymptotically smaller than the cost of the non-decomposed image (15).
7

S. Bogomolov, M. Forets, G. Frehse et al. Information and Computation 289 (2022) 104937
Fig. 3. Wrapping effect on the “Motor” example for variable x5 with 100 steps of size δ = 1e−4.

3.3. Decomposing an affine recurrence

Let us reconsider the affine recurrence (1). We can rewrite it into b row-blocks, as in Sect. 3.2, with given compact and
convex sequence {V(k)}k ⊂Rn for k ≥ 0, and an initial set X (0):

X (k + 1) =
⎛⎜⎝�11 · · · �1b

...
. . .

...

�b1 · · · �bb

⎞⎟⎠X (k) ⊕ V(k). (17)

In this recurrence, the approximation error of the k-th step is propagated, and possibly amplified, in step k +1 (known as
the wrapping effect). In Fig. 3 we show the impact on the example model “Motor” [49] (see Sect. 6). This effect can be partly
avoided by using a non-recursive form [1]. (In Section 5.5 we show how the wrapping effect can be avoided completely.)
We present two scenarios, which differ in whether the sequence of input sets is constant. Let �k

i j be the submatrix of �k ,
corresponding to the indices of the submatrix �i j of �.

Constant input sets. Assuming that the sets V do not depend on k, the non-recurrent form of (17) is:{
X (k) = �kX (0) ⊕W(k)

W(k + 1) = W(k) ⊕ �kV, W(0) := {0n}.
The decomposed map, for i = 1, . . . , b, is:⎧⎪⎪⎨⎪⎪⎩

X̂i(k) =
b⊕

j=1

�k
i jX̂ j(0) ⊕ Ŵi(k)

Ŵi(k + 1) = Ŵi(k) ⊕ [�k
i1 · · ·�k

ib]V, Ŵi(0) := {0n}.
(18)

Note that the set [�k
i1 · · ·�k

ib]V in (18) is of low dimension and corresponds to the i-th block.

Time-varying input sets. Assuming that the sequence of inputs depends on k, the non-recurrent form of (17) is:{
X (k) = �kX (0) ⊕W(k)

W(k + 1) = �W(k) ⊕ V(k), W(0) := {0n}.
The decomposed map, for i = 1, . . . , b, is:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

X̂i(k) =
b⊕

j=1

�k
i jX̂ j(0) ⊕ Ŵi(k)

Ŵi(k + 1) =
b⊕

j=1

�i jŴ j(k) ⊕ V̂i, Ŵi(0) := {0n}.
(19)

Compared to equation (17), the solutions of equations (18) and (19) are both more precise (due to non-recursiveness) and
more efficient to compute (due to low dimensionality). Fig. 4 visualizes the reach-tube computation in the two-dimensional
case.
8

S. Bogomolov, M. Forets, G. Frehse et al. Information and Computation 289 (2022) 104937
Fig. 4. Visualization of the first two reach tube computations in two dimensions. The first yellow set is the discretization X (0) of the initial states X0. The
second yellow set is the (high-dimensional) propagated set X (1). We decompose into one-dimensional intervals. The approximation X̂ (0) is the lower left
blue rectangle. Next we compute the propagated intervals. Their Cartesian product forms the approximation X̂ (1). Observe that X̂ (1) is not the smallest
axis-aligned box containing X (1), but the smallest axis-aligned box containing the set resulting from propagating X̂ (0) (purple).

4. Approximation error

In general, the reduction in the computational cost of the decomposed image comes at the price of an approximation
error for X̂i(k). We discuss the two sources of this error. The first one is due to the decomposition of the initial states.
For discrete-time reachability, the initial set X0 remains unchanged under the transformations (13). In practice, X0 often
has the shape of a hyperrectangle, and hence there is no approximation error. However, for dense-time reachability, the
transformations (12) do not preserve an initially decomposed set, and d̂cp invariably introduces an approximation error.
If the constraints on X (0) are known, an upper bound on the Hausdorff distance dp

H (X (0), X̂ (0)) can be obtained using
support functions [44]. The second source of the approximation error is the step-wise decomposition of the inputs. This can
be either a linear combination with respect to a row-block as in (18) or a single block as in (19). For a stable matrix �, in
either case, the error propagated to Ŵi(k + 1) goes to zero for k → ∞. In the rest of the section, we discuss these errors in
more detail.

4.1. Error of a decomposed affine map

We now turn to the question how big the decomposition error is in the decomposed affine map (16) compared to (15).
To simplify the discussion, we omit V without loss of generality, since we can rephrase (15) with an augmented state space
where X ∗ ←X × V and �∗ ← [� I]. Then X ′ = �∗X ∗ .

We proceed in two steps: first, we bound the error for a set that is already decomposed; then we bound the distance
between the image of the decomposed and the original set. The total error follows from a triangle inequality.

Proposition 1. Let X̂ be a decomposed set, X̄ ′ be the image of X̂ under the linear map X̄ ′ = �X̂ , and X̂ ′ be the image of X̂ under
the decomposed map (16). Then X̄ ′ ⊆ X̂ ′ and

dp
H (X̄ ′, X̂ ′) = max‖�‖p≤1

∑
i, j

ρX̂ j
(�T

i j�i) − ρX̂ j

(∑
k

�T
kj�k

)
(20)

where the max is taken over � = �1 × · · · × �b in the unit ball of the p-norm, and �T
i j := (�i j)

T .

Proof. The support function of X̄ ′ on � ∈Rn is, applying the properties in Lemma 1,

ρX̄ ′(�) = ρ
�X̂ (�) = ρX̂1×···×X̂b

(�T�)

=
∑

j

ρX̂ j

(
π j(�

T�)
)=

∑
j

ρX̂ j

(∑
k

�T
kj�k

)
.

On the other hand,

ρX̂ ′(�) = ρX̂ ′
1×···×X̂ ′

b
(�) =

∑
i

ρX̂ ′
i
(�i) =

∑
i, j

ρX̂ j

(
�T

i j�i

)
.

9

S. Bogomolov, M. Forets, G. Frehse et al. Information and Computation 289 (2022) 104937
The result is obtained plugging these expressions into (7). �
Corollary 1. If only one �i j per column is nonzero, then the error is zero. With two-dimensional blocks, a special case of such a matrix
is the (real) Jordan form if all eigenvalues have multiplicity 1.

Note that the converse is not true. For a simple counterexample, if X̂ = {x} consists of a single point, its image under
any map also consists of a single point.

We can simplify the bound from Proposition 1 to clarify the relationship between the error and the norm of the matrix
blocks �i j . To quantify the error associated with the i-th block, let us introduce the number �i to be the diameter of X̂i ,
i.e., the smallest number such that for any �, and some2 p ≥ 1,

ρX̂i
(�) + ρX̂i

(−�) ≤ ‖�‖ p
p−1

�i . (21)

For instance, if X̂i is an interval hull, then �i is the width of the largest interval. Intuitively, the approximation error is small
if the off-diagonal entries of � are small. Quantifying this influence using (20), we get that the error bound is a weighted
sum of the diameters of the state sets:

Proposition 2. For j = 1, . . . , b, let q j := arg maxi‖�i j‖p (the index of the block with the largest matrix norm in the j-th column-
block), so that α j := maxi �=q j ‖�i j‖p is the second largest matrix norm in the j-th column-block. Let αmax := max j α j and �sum :=∑b

j=1 � j . The error of the decomposed map is

dp
H

(
X̄ ′, X̂ ′)≤ (b − 1)

b∑
j=1

α j� j ≤ n

2
αmax�sum. (22)

For the proof of Proposition 2 we need the following intermediate result. We can reduce the bound on the approximation
error by freely selecting one specific row-block for each column-block of �. In the j-th column-block, we denote this
selection by q j .

Lemma 2. The approximation error is bounded by

dp
H (X̄ ′, X̂ ′) ≤ max‖�‖p≤1

∑
j

∑
i �=q j

ρX̂ j
(�T

i j�i) + ρX̂ j

(
−�T

i j�i

)
.

Proof. We use the property of support functions that

ρX (u + v) ≥ ρX (u) − ρX (−v).

With this we can bound, picking any q ∈ 1, . . . , b,

ρX̂ j

(∑
k

�T
kj�k

)
≥ ρX̂ j

(
�T

qj�q

)
−
∑
k �=q

ρX̂ j

(
−�T

kj�k

)
.

We let q be a function of j and substitute the above in (20) with k := i:

dp
H (X̄ ′, X̂ ′) ≤ max‖�‖p≤1

∑
j

∑
i

ρX̂ j
(�T

i j�i) − ρX̂ j

(
�T

q j j�q j

)
+
∑
i �=q j

ρX̂ j

(
−�T

i j�i

)
= max‖�‖p≤1

∑
j

∑
i �=q j

ρX̂ j
(�T

i j�i) + ρX̂ j

(
−�T

i j�i

)
− ρX̂ j

(
�T

q j j�q j

)
+ ρX̂ j

(
�T

q j j�q j

)
= max‖�‖p≤1

∑
j

∑
i �=q j

ρX̂ j
(�T

i j�i) + ρX̂ j

(
−�T

i j�i

)
. �

2 Here, ‖�‖ p is the Hölder conjugate to the norm ‖�‖p . Inequality (21) can be deduced from [42, Prop. 2.2].

p−1

10

S. Bogomolov, M. Forets, G. Frehse et al. Information and Computation 289 (2022) 104937
The bound is actually tight. Intuitively speaking, the judicious selection of q j allows us to eliminate the block �i j that
contributes most to the error bound. Then we can bound the approximation error by

dp
H

(
X̄ ′, X̂ ′)≤ max‖�‖p ≤ 1

∑
j

∑
i �=q j

‖�T
i j�i‖ p

p−1
� j. (23)

Proof of Proposition 2. First, we apply to (23) that

‖�T
i j�i‖ p

p−1
≤ ‖�T

i j‖ p
p−1

‖�i‖ p
p−1

= ‖�i j‖p‖�i‖ p
p−1

.

This gives us

dp
H

(
X̄ ′, X̂ ′)≤ max‖�‖p ≤ 1

∑
j

∑
i �=q j

α j‖�i‖ p
p−1

� j

= max‖�‖p ≤ 1

∑
j

α j� j

∑
i �=q j

‖�i‖ p
p−1

.

With
∑

i �=q j
‖�i‖ p

p−1
≤ (b − 1)‖�‖ p

p−1
we get

dp
H

(
X̄ ′, X̂ ′)≤ max‖�‖p ≤ 1

(b − 1)‖�‖ p
p−1

∑
j

α j� j.

For p ≤ 2, it is known that ‖�‖ p
p−1

≤ ‖�‖p , which leads to (22). The result holds for any p ≥ 1 since ‖x‖1 ≥ ‖x‖p . �

It remains to compare the image X ′ = �X with the decomposed image X̂ ′ , including both the decomposition error from
X to X̂ and the error introduced by the decomposed map (16). We use a simple lemma:

Lemma 3. Let X ′ = �X and X̄ ′ = �X̂ , where X ⊆ X̂ . The distance between the images is dp
H

(
X ′, X̄ ′)≤ ‖�‖pdp

H

(
X , X̂

)
.

Proof. The claim follows from the definition of the Hausdorff distance (Eq. (6)) and the property ‖�x‖p ≤ ‖�‖p‖x‖p , x ∈Rn ,
which holds for any compatible matrix norm. �

Combining Lemma 3 with Proposition 2 and the triangle inequality dp
H

(
X ′, X̂ ′) ≤ dp

H

(
X ′, X̄ ′)+ dp

H

(
X̄ ′, X̂ ′), we get the

following total error bound on the decomposed image computation:

Proposition 3.

dp
H

(
X ′, X̂ ′)≤ (b − 1)

b∑
j=1

α j� j + ‖�‖pdp
H

(
X , X̂

)
.

The above bound gives us an idea about the error of the decomposed affine map, without having to do any high-
dimensional set computations. We now apply the bound to affine recurrences.

4.2. Error of a decomposed affine recurrence

For any �, there exist constants K� and α� such that

‖�k‖p ≤ K�αk
�, k ≥ 0.

If � = e Aδ , one choice is α� = eλδ with λ the spectral abscissa (largest real part of any eigenvalue of A), although it may
not be possible to compute the corresponding K� efficiently. In this case, α� ≤ 1 if the system is stable. Another choice
is to let α� = eμδ , with μ the logarithmic norm of A and K� = 1. In this case, α� may be larger than 1 even for stable
systems. Note that in both cases α� → 1 as δ → 0. For conciseness we continue with the first formulation in the remaining
section.

For constant inputs sets, (18) is a linear map of the decomposed initial states X̂ (0) plus a decomposed input Ŵ(k),
which is itself obtained from a sequence of decomposed linear maps. Applying Proposition 3 gives the following result.
11

S. Bogomolov, M. Forets, G. Frehse et al. Information and Computation 289 (2022) 104937
Proposition 4. Let the decomposition error of the initial states X (0) be bounded by εx ≥ dp
H

(
X (0), X̂ (0)

)
, and let the decomposition

error of V be bounded by εv ≥ dp
H

(
V, V̂

)
. Let �x

j be the diameter of X̂ j(0), and �x
sum =∑b

j=1 �x
j . Let �v

j be the diameter of V̂ j , and
�v

sum =∑b
j=1 �v

j . Then the approximation error due to decomposition, at step k, ε(k) := dp
H

(
X̂ (k), X (k)

)
, is bounded by

ε(k) ≤ K�

(
αk

�

(
b�x

sum + εx)
+ (

b�v
sum + εv)α�

1 − αk−1
�

1 − α�

)
+ εv .

If α� < 1 (stable system), the error is bounded for all k by

ε(k) ≤ K�

(
b�x

sum + εx + (
b�v

sum + εv) α�

1 − α�

)
+ εv .

Proof. Using Eq. (18), and that d̂cp distributes over Minkowski sum,

dp
H

(
d̂cp(�kX (0)) ⊕ Ŵ(k)︸ ︷︷ ︸

X̂ (k)

,�kX (0) ⊕W(k)︸ ︷︷ ︸
X (k)

)
≤ dp

H

(
d̂cp(�kX (0)),�kX (0)

)+ dp
H

(
Ŵ(k),W(k)

)
.

Applying Proposition 3 with α j ≤ K�αk
� , we get the bound

dp
H

(
d̂cp(�kX (0)),�kX (0)

)
≤ (b − 1)

∑
j

α j�
x
j + ‖�k‖pdp

H

(
X̂ (0)),X (0)

)
≤ K�αk

�(b − 1)�x
sum + K�αk

�εx.

Similarly, we get

dp
H

(
Ŵ(k),W(k)

)≤ εv + K�((b − 1)�v
sum + εv)

k−1∑
s=1

αs
�

= εv + K�

(
(b − 1)�v

sum + εv)α�

1 − αk−1
�

1 − α�

.

The claim follows from combining both bounds. �
As a summary, the approximation error is linear in the width of the initial states and the inputs, and in the decompo-

sition errors of the initial states and the input sets. For unstable systems, or time steps not large enough, the input set can
become the dominating source of error, e.g., in cases with α� > 1

2 .

4.3. Error of a decomposed reach tube approximation

The decomposed reach tube approximation consists of the affine recurrence (18), with suitable sets X (0) and V . The
error bound follows from Proposition 4 and the decomposition errors for X (0) and V .

In the discrete-time case (13), the initial states X (0) of the affine recurrence (18) are identical to the initial states X0 of
the model, so their decomposition error is

εx = dp
H

(
X0, X̂0

)
.

However, V = �1(A, δ)U . Let Û = dcp(U). By Lemma 3 we get

εv = ‖�1(A, δ)‖pdp
H

(
U, Û

)
.

In the dense-time case (12), the initial states of the affine recurrence (18) are X (0) = CH
(
X0, �X0 ⊕ δU ⊕ Eψ(U , δ) ⊕

E+(X0, δ)
)
, and V = δU ⊕ Eψ(U , δ). Recall from (14) that decomposition distributes over Minkowski sum. We get

εv = δdp
H

(
U, Û

)
.

The decomposition error for the initial states is more complex and harder to estimate. We consider the idealized case where
the system is stable with α� = e−λδ , λ > 0, for an infinitesimal time step δ → 0. Then α� → 1 −λδ and α� → 1 , so that
1−α� λδ

12

S. Bogomolov, M. Forets, G. Frehse et al. Information and Computation 289 (2022) 104937
Fig. 5. Reach tubes for the “Building” example.

the decomposition error due to the inputs does not go to zero in Proposition 4. Let �X0 , �U be the sum of the diameters
of decomposed sets of X0 and U . Let εx

0 = dp
H

(
X0, X̂0

)
and εv

0 = dp
H

(
U , Û

)
. For both the discrete-time and the dense-time

case, εx → εx
0, �x

sum → �X0 , �v
sum → δ�U and εv → δεv

0 . Then Proposition 4 gives a nonzero upper bound

dp
H

(
X̂ (k),X (k)

)≤ K�

(
b�X0 + εx

0 + (
b�U + εv

0

)1

λ

)
+O(δ).

This indicates that a small time step may be problematic for systems with large time constants (small λ).
In practice, the approximation error is much more modest, as we illustrate in Fig. 5.

4.4. Empirical evaluation

We investigate the practical approximation error for the “Motor” model, which we first introduce below for the purpose
of discussion.

Motor model. The “Motor” model has eight state dimensions and two nondeterministic input dimensions. The dynamics
follow the differential equation x′(t) = Ax(t) + Bu(t) where A is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 −1.0865 8487.2 0 0 0 0 0

−2592.1 −21.119 −698.91 −141399 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 −1.0865 8487.2 0
0 0 0 0 −2592.1 −21.119 −698.91 −141399
0 0 0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B =
(

0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 −1

)T

,

the input domain U is [0.16, 0.3] × [0.2, 0.4], and the initial states X0 are defined as x1 ∈ [0.002, 0.0025], x5 ∈
[0.001, 0.0015], and xi = 0 for all other dimensions.

Observe that the blocks of dimensions 1 − 4 and 5 − 8 are completely decoupled from each other (both in X0 – at
least in a set view – and in the dynamics). The pattern of the particular block matrix A is also preserved under matrix
exponentiation, such that these blocks stay decoupled in the discretized matrix �. Thus we would consider decomposing
into these two blocks the natural choice.

Experimental setup. In the following we analyze the difference in precision for various ways to decompose this eight-
dimensional system. We fix the time step δ = 0.001 and use a completely lazy set approximation; this means that both
the result of the discretization following (12) and the iteration according to (18) are computed symbolically without inter-
mediate approximations. Since Ŵ quickly grows with the number of steps, we terminate the analysis after 50 steps.

The main parameter of the decomposition algorithm is the choice of the blocks, which is represented by a partition of
the numbers 1 to n = 8; we discuss the choice of the partitions later.
13

S. Bogomolov, M. Forets, G. Frehse et al. Information and Computation 289 (2022) 104937
Fig. 6. Maximum relative error for 128 different partitions, sorted in ascending order. Left: initial states X0. Right: initial states X L
0 .

In this model the initial set X0 is a hyperrectangle, i.e., the set is perfectly decomposed for all choices of the partition.
But we recall that a hyperrectangular shape is generally not preserved by the discretized initial states X (0), which is the
input to the decomposition algorithm; hence the decomposition still induces an approximation error in the initial states
here. To investigate the approximation error for a non-hyperrectangular initial set, we also choose an alternative initial set
X L

0 as the line segment between the lower-most and the upper-most vertex of X0, which can be considered the worst-case
scenario for the decomposition algorithm.

We consider full-dimensional decompositions, i.e., we compute (a Cartesian product of) reach tubes for all eight dimen-
sions. Recall again that we compute these reach tubes lazily here. As the reference we take the reach tube obtained for the
trivial partition with a single block (i.e., effectively no decomposition). We compare the reach tubes obtained for different
choices of the partition to this reference reach tube as follows. We fix a set of directions D ⊆ Rn and evaluate the support
function ρ(d, X (k)) for each direction d ∈ D and k = 0, . . . , 49. Also evaluating in the negative direction, we thus compute
the intervals (−ρ(−d, X (k)), ρ(d, X (k))). We then compare the approximation error in each direction by comparing the
corresponding intervals [l, u] and [lref, uref] using the following (relative) formula:

100 ∗
[

lref − l

uref − lref
,

u − uref

uref − lref

]
In the comparison we use octagon directions for D:

D = {(d1, . . . ,dn) ∈Rn | ∃i, j : di,d j ∈ {−1,1} ∧ ∀k : k = i ∨ k = j ∨ dk = 0}
Results. We begin with partitions that do not reorder dimensions. For example, in three dimensions these partitions are
[[1, 2, 3]], [[1, 2], [3]], [[1], [2, 3]], and [[1], [2], [3]]. In general there exist 2n−1 such partitions in n dimensions, so we
consider 128 partitions in our case.

In Fig. 6 we plot the maximum relative error for different choices of the partition (under all d ∈ D and steps k). For most
partitions the maximum error is above 100% with hyperrectangular X0 and goes up to over 400% with X L

0 . (The partition
with no error is the trivial one-block partition.) However, this bird-eye view is too coarse to draw conclusions.

Next we have a closer look at the approximation error over time. In Fig. 7 we show that the error can differ significantly
for different steps k of the recurrence. Interestingly, there is not much variation among the different partitions. Essentially
there are two characteristic patterns. The first pattern starts with a relatively large error (around 60% with X0 and over
400% with X L

0 (not shown in the plot)) but then quickly shrinks to almost no error; a representative of this pattern is the
partition into two four-dimensional blocks [[1, 2, 3, 4], [5, 6, 7, 8]] (blue triangles in the figure). As argued before, this is the
most natural choice to decompose the system at hand, as it does not involve errors in the dynamics. The other pattern
evolves to two higher peaks at k = 20 and k = 31; a representative of this pattern is the partition with one-dimensional
blocks [[1], [2], [3], [4], [5], [6], [7], [8]] (green circles in the figure). Note that the one-dimensional partition generally results
in the lowest precision.

Some partitions start with almost no approximation error for a hyperrectangular X0, e.g., the partition [[1, 2], [3, 4, 5,

6, 7, 8]] (yellow stars in the figure), but then follow the second pattern and overall result in a larger approximation error.
This illustrates that both the dynamics and the initial states can influence the approximation error independently. For the
line segment X L

0 most partitions induce a high initial error as expected; the exceptions are partitions that keep the relevant
dimensions (x1 and x5) in the same block. But surprisingly, this error quickly vanishes and the curves in the two plots soon
look identical.

We also looked at partitions that reorder the dimensions. In general this can help bring dimensions together that are
coupled in the initial states or the dynamics. In this particular model, however, the dimensions are already ordered in
14

S. Bogomolov, M. Forets, G. Frehse et al. Information and Computation 289 (2022) 104937
Fig. 7. Maximum relative error for 128 different partitions. Most curves overlay each other. Some selected partitions are drawn with markers on top. Left:
initial states X0. Right: initial states X L

0 . We cut off the y values to the same limit and omitted the trivial one-block partition (which would be a straight
line at zero).

Fig. 8. Maximum relative error for six different partitions. Left: initial states X0. Right: initial states X L
0 . We cut off the y values to the same limit.

alignment with the coupling in the dynamics, so a reordering is not helpful. In Fig. 8 we show three selected reordering
partitions in comparison with three canonical ordered partitions. We observe that the precision stays the same. The notable
exception is the partition that puts dimension x5 into the first block (yellow stars in the figure), which induces almost no
initial error; however, with time this partition follows the second (less precise) pattern because it separates some of the
dynamically coupled variables.

In conclusion we can say that the decomposition error in the initial states becomes negligible compared to the decompo-
sition error in the dynamics rather quickly. Of course whether a large initial error is acceptable also depends on the system
properties one is interested in.

5. Algorithm & implementation

We now describe the decomposition method from Sect. 3 from an algorithmic point of view and discuss some crucial
details of our implementation in Julia [50]. Given an LTI system of the form (2)-(3), we first apply a suitable approximation
model from Sect. 2.4. Then we execute the corresponding decomposed recurrence from Sect. 3.3 to compute the reach tube
or to check a safety property.

5.1. Lazy set representation

It is well known that the computational complexity of common set operations such as Minkowski sum, linear map, and
Cartesian product crucially depend on two factors: the dimension and the set representation used (see, e.g., [14, Table 1]).
Hence, to address scalability, our implementation exploits the principle of lazy (i.e., symbolic) evaluation. Common sets such
as hypercubes in different norms or general polytopes each are represented by specific types. Each type has to provide a
procedure to compute the support function in a given direction. The operations can be nested symbolically without actually
evaluating them. Based on Lemma 1, this allows to compute the support function of the (nested) lazy set on demand. More
details on our implementation of lazy operations can be found in [51]. The advantage of lazy data structures is that we may
15

S. Bogomolov, M. Forets, G. Frehse et al. Information and Computation 289 (2022) 104937
save unnecessary evaluations, at the cost of higher memory consumption. In practice, we use a careful balance between
lazy sets and concrete sets, i.e., the nesting depth is fixed (depending on the model dimension n; but see also Section 5.5).
The alternative to using lazy data structures is to make the representation explicit after each operation, typically involving
an overapproximation.

5.2. Discretization and approximation in the Krylov subspace

Recall from Sect. 2.4 that in the case of a dense-time model, we transform the system (A, U(·), X0) into its discrete
counterpart (�, V(·), X (0)). As said above, our implementation uses lazy set computations. However, operations of the form
e AδX0 require to compute the matrix exponential, which can be prohibitively expensive if the dimension of the system is
large. Krylov subspace methods [52,53] are widely used to compute such operations lazily, i.e., by computing the action of
the matrix exponential acting on vectors, the explicit computation of e Aδ is avoided. Such methods are particularly effective
when applied to large and sparse matrices (we apply them for n > 500 in this work). While previous works have used
Krylov subspace methods for discrete-time reachability [30] or dense-time reachability with zonotopes [54], we are not
aware of a method using the support function. We introduce such a method below.

Let us recall the definition of E+ in (11).

E+(X0, δ) := �(

M2︷ ︸︸ ︷
�2(|A|, δ)

H2︷ ︸︸ ︷
�(A2︸︷︷︸

M1

X0︸︷︷︸
H1

)) (24)

We assume here the common case that X0 is a hyperrectangle, respectively with center and radius cX0 , rX0 ∈Rn . First we
observe that Eq. (24) has two common substructures of the form �(MH), where M ∈Rn×n and H ⊆Rn is a hyperrectangle,
respectively with center and radius cH, rH ∈Rn . The hyperrectangle �(MH) has center 0n (the origin) and radius |McH| +
|M|rH , where | · | takes the entry-wise absolute value. Thus �(A2X0) is the hyperrectangle with center cinner = 0n and
radius rinner = |A2cX0 | + |A2|rX0 . We can apply this idea a second time (to M2 and H2 in (24)) to compute E+ . But we can
do even better: We know that �2(|A|, δ)cinner = 0n , and we can compute |�2(|A|, δ)|rinner = �2(|A|, δ)rinner using Krylov
methods. The evaluation in Section 6 shows that this technique has a major impact on runtime performance and memory
cost.3 The procedure to compute Eψ in (10) is almost identical, except that the matrix is not squared. In our implementation
we use the Krylov methods implemented in the library ExponentialUtilities.jl [55].

It remains to compute X (0) and V(k) from (12). The non-scalable part is the computation of �X0. We can com-
bine Krylov methods with the support function to evaluate the expression for a set of a direction vectors: ρeMX0

(d) =
ρX0 ((eM)T d) = ρX0 (e(MT)d) for any direction d ∈ Rn (cf. Lemma 1). We use axis-aligned (“box”) directions in the evalua-
tion.

5.3. Reach tube approximation

After we have obtained a discrete system, we use Algorithm 1 to compute an approximation of the reach tube. As an
additional input the algorithm receives an array of block indices (blocks) that we are interested in.

The result, a reach tube for each time interval of index k, is represented by the array {X̂ (k)}k . The type of each entry
X̂ (k) itself is an array of sets representing the low-dimensional reach tubes. To reconstruct the full-dimensional reach tube
for time interval k, the result has to be interpreted as a Cartesian product, i.e.,

⊗
bi
X̂ (k)[bi]. Initially, X̂ (0) just contains the

decomposed initial states (line 1).
The list all_blocks consists of all low-dimensional block indices; in particular it contains the blocks from blocks. We

maintain the matrix Q to be the matrix � raised to the power of k, i.e., Q = �k at step k; similarly, P = �k−1. For clarity,
we use Q [bi, b j] instead of Q ij as in Sect. 3, and similarly, P [bi, :] denotes the whole row-block bi . We write ⊕ and � to
denote lazy set representation of Minkowski sum and linear map, respectively.

The main loop starting in line 9 computes the reach tubes for each k. The array X̂tmp is filled with low-dimensional
reach tubes in the inner loop (lines 11 to 18) for each block in blocks. Line 16 computes the term associated with inputs,
which is added in line 17. The function approx overapproximates its argument (a lazy set) to a concrete set representation,
e.g., a polygon or an interval. The function approx_input will be explained in Sect. 5.5, and by default it is identical to
approx.

5.4. Checking safety properties

For checking safety properties, we can improve Algorithm 1. If we are only interested in tracking a handful of variables,
our approach naturally supports the computation of only some of the blocks. Complexity-wise this saves us a factor of b

3 In [15] we used lazy matrix exponentiation for the largest benchmark model because the explicit approach would run out of memory. But our imple-
mentation was not efficient enough to be used in smaller cases. Our new implementation is several orders of magnitude faster.
16

S. Bogomolov, M. Forets, G. Frehse et al. Information and Computation 289 (2022) 104937
Algorithm 1: Function reach.
Input: D = (�, V(·), X (0)): discrete system
N: total number of steps
blocks: list of block indices

Output: {X̂ (k)}k : array of low-dimensional reach tubes

1 X̂ (0) ← d̂cp(X (0)); // see Eq. (14)
2 all_blocks ← get_all_block_indices(dim(�));
3 P ← Idim(�);
4 Q ← �;

5 V̂tmp ← [];
6 for bi ∈ blocks do
7 V̂tmp[bi] ← {0dim(bi)};
8 end
9 for k = 1 to N − 1 do

10 X̂tmp ← [];
11 for bi ∈ blocks do // compute Eq. (16)
12 X̂tmp[bi] ← {0dim(bi)};
13 for b j ∈ all_blocks do
14 X̂tmp[bi] ← X̂tmp[bi] ⊕ Q [bi , b j] � X̂ (0)[b j];
15 end

16 V̂tmp[bi] ← approx_input(V̂tmp[bi] ⊕ P [bi , :] �V(k − 1)); // see Sect. 5.5

17 X̂tmp[bi] ← approx(X̂tmp[bi] ⊕ V̂tmp[bi]); // see Sect. 5.3

18 end

19 X̂ (k) ← X̂tmp;
20 P ← Q ;
21 Q ← Q · �;
22 end

when tracking a constant number of blocks. Consider a six-dimensional model with the property 2x1 −3x5 < 10, and assume
that we use two-dimensional blocks. A naive approach would compute the reachable states for blocks 1 and 3, i.e., upper
and lower bounds for x1, x2, x5, and x6. However, we are only interested in the upper bound for x1 and the lower bound
for x5. We modify the algorithm in two ways: First, we replace line 19 by a function that computes the support for the
direction of interest. Second, we can compute the support vector directly from a lazy set, and so we replace the approx
function in line 17 by the identity (i.e., keep the lazy set).

5.5. Lazy set propagation

As mentioned in the previous paragraph, we can keep the set representation lazy if we are only interested in verifying
a safety property. However, for systems with inputs, the inputs still incur a wrapping effect if we overapproximate them
in each iteration. To address this issue, the approx_input function in line 16 abstracts from the concrete choice of
overapproximation. By default we just call the approx function, but we can also instantiate the function with the identity,
i.e., keep the elements of V̂tmp a lazy set, as it is proposed in the original LGG algorithm [6]. Observe that if we unroll the
recurrence for the inputs in (18) resp. (19) then in iteration k we obtain a Minkowski sum of k summands. In general it
becomes prohibitely expensive to work with such a deeply nested lazy set as k grows. However, recall from Lemma 1 that
the support function of a Minkowski sum is ρX⊕Y (�) = ρX (�) + ρY (�). Furthermore, assume that we evaluate the sets in
the same directions � in each iteration; this assumption is satisfied if we consider approximation with a template polytope
or if we want to check a safety property. Then in each iteration we can reuse the result from the previous iterations and
just need to evaluate the support function on the new summand. We note that we do not use this lazy approach by default
and explicitly mention its use in the evaluation.

5.6. Sparse and dense matrices

We use a different implementation for models with dense and sparse matrices �, respectively. For instance, the loop
around line 14 only has to be executed if the submatrix �k[bi, b j] is non-zero. As the linear algebra back-end we use
either a BLAS-compatible library [56] or a native Julia implementation for sparse matrices following Gustavson [57]. These
specializations have a major impact on the runtime (around one order of magnitude).

5.7. Parallelization

Our approach can be parallelized, since the computations for each block are independent (see the loop in line 11 of
Algorithm 1). Using a separate thread for each block and assuming uniform blocks of size b, this will give a speedup of n/b.
SpaceEx can also be parallelized, for bounding boxes with a theoretical speedup of up to 2n. Comparing a parallelized
17

S. Bogomolov, M. Forets, G. Frehse et al. Information and Computation 289 (2022) 104937
Fig. 9. Refining the “Motor” example in phase space for variables x1 and x2. On the right, ε = 1e−4.

Algorithm 1 with parallelized SpaceEx, we could theoretically see the speedup in Table 3 reduced from 64× to 32× (“ISS”
benchmark). However, in practice, the speedup from parallelizing the LGG algorithm used in SpaceEx turns out to be much
more modest [58].

5.8. Quality of the set approximation

Fixing the set X (0), there are three main factors that control the quality of the reach tube approximation X̂ (k) at step k.
The first factor is the block partition, since inter-block dependencies in both X (0) and X̂ (k) are lost; a finer partition thus
results in a more precise result.

The other two factors are the precision of the functions d̂cp and approx, respectively. Assuming that approx uses
box directions, any block partition and d̂cp function that together satisfy X (0) = X̂ (0) will result in the same reach tube
(and hence be equivalent to the output of the LGG algorithm with box approximation). Note that X (0) = X̂ (0) holds if
the inter-block dimensions are independent in both X0 and the dynamics. On the other hand, if using box approximation
in both d̂cp and approx, the block partition becomes irrelevant because all dependencies will be lost. In this case the
precision cannot improve over one-dimensional blocks.

For more precision, one can use ε-close polytope approximation, possibly with different values of ε for different blocks.
In Fig. 9 we plot the reach tube for the “Motor” example in the x1 − x2 plane. Using ε-close approximation, we can show
tight relational properties like non-reachability of states beyond the indicated half-spaces.

5.9. Changes of coordinates

Our block decomposition consists of packing variables into blocks, e.g., of size two, starting from the top to the bottom.
As mentioned above, if we output variables from different blocks, e.g., x1 and x3, we will always obtain a box-shaped set.
An ε-close approximation as described above is only possible between variables in the same block. Consequently, we may
increase the precision by reordering variables such that variables that “belong together” stay in the same block.

Reordering can be implemented with a change of coordinates. If x′ = Ax + Bu, and we let w = Sx with S an n × n
permutation matrix (in particular, S is orthogonal), then we consider the new dynamical system with state matrix A �
S A ST and inputs B � S B , respectively.

In Fig. 10 we plot the reach tubes of the “Motor” example in the x1 − x3 dimensions before and after such a transforma-
tion, with two-dimensional block decomposition. Here we swap the variables x2 and x3, which amounts to mixing blocks 1
and 2 of the original system.

In principle, other similarity transformations, such as a Schur decomposition, can be applied to the system’s dynamics.
In this case, the number of non-zero blocks may change, having an impact on the accumulated error, performance, or both.
Our experiments suggest that it is not beneficial to apply a Schur decomposition to the “Motor” example.

5.10. Efficient 2D approximation

In many reachability tools the reach tube consists of a list of polytopes. For non-decomposed approaches, manipulating
polytopes involves using an external linear programming (LP) back-end, possibly in high-dimensional space. When using 2D
polygon approximations in Algorithm 1, we can employ the following efficient implementation for evaluating the support
vector. This is particularly helpful when using non-template directions (e.g., epsilon-close approximation) (cf. Section 5.5) or
if we need to post-process the reach tube (e.g., as part of a hybrid reachability loop).

Since vectors in the plane can be ordered by the angle with respect to the positive real axis, we can efficiently evaluate
the support vector of a polygon in constraint representation by comparing normal directions, provided that its edges are
18

S. Bogomolov, M. Forets, G. Frehse et al. Information and Computation 289 (2022) 104937
Fig. 10. Phase space plot of the “Motor” example for variables x1 and x3 with two-dimensional blocks, before (left) and after (right) a coordinate transfor-
mation. In both plots we use ε-close approximation with ε = 1e−4.

Table 2
Common benchmark statistics. “Model” stands for the benchmark name. “n” stands for the
benchmark dimension. “Variable” stands for the dimension that is analyzed in Table 3. Vari-
ables yi in the safety properties denote outputs, as in (3), consisting of linear combinations of
state variables xi (involving all variables for the models PDE/FOM and half of the variables for
the model ISS).

Model n Variable Safety property

Motor 8 x5 x1 /∈ [0.35,0.4] ∨ x5 /∈ [0.45,0.6]
Building 48 x25 x25 < 6e−3
PDE 84 x1 y1 < 12
Heat 200 x133 x133 < 0.1
ISS 270 x182 y3 ∈ [−7,7] × 10−4

Beam 348 x89 x89 < 2100
MNA1 578 x1 x1 < 0.5
FOM 1006 x1 y1 < 185
MNA5 10913 x1 x1 < 0.2 ∧ x2 < 0.15

ordered. We use the symbol � to compare directions, where the increasing direction is counter-clockwise. The following
lemma provides an algorithm to find the support, e.g., using binary search.

Lemma 4. Let X be a polygon described by m linear constraints aT
i x ≤ bi , ordered by the normal vectors (ai), i.e., ai � ai+1 for all

i ∈ {1, . . . , m}, where we identify am+1 with a1 . Let � ∈ R2 \ {02}. Then there exists i ∈ {1, . . . , m} such that ai � � � ai+1 and an
optimal solution x̄ of the linear program ρX (�) = maxx∈X �Tx is given by x̄ ∈ {x : aT

i x ≤ bi} ∩ {x : aT
i+1x ≤ bi+1}.

The lemma follows from the fact that a linear program has an optimal solution in a vertex.

6. Evaluation

We evaluate our implementation called JuliaReach [59] on a set of SLICOT benchmarks [60,61,49] which reflect “real
world” applications. Some of the original models are differential algebraic equations (DAEs), in which case we only kept the
ODE part, i.e., the coefficient matrices A and B , which is consistent with related literature. The basic model statistics are
outlined in Table 2. We use a machine with an Intel i5 3.50 GHz CPU and 16 GB RAM, running Linux. For matrix functions
of exponential type, ExponentialUtilitiles.jl is used [62].

6.1. Reach tube computation

We compare JuliaReach to the state-of-the-art support function algorithm LGG implemented in SpaceEx. We consider
two cases: one dimension, where we only compute the reach tube in one variable, and full dimensions, where we com-
pute the whole reach tube. For our approach we use one-dimensional blocks in both cases. We note that we do not use
parallelization or coordinate transformations in the evaluation. The results are given in Table 3.

We compare the precision using the bounds on a single variable (column “Var.” in the table) at the last time step.
The SpaceEx bounds are taken as the baseline, and we report the relative deviation. We expect a lower precision than
SpaceEx for two reasons: First, we decompose X (0) into a Cartesian product, which induces an error that is inherent to
the decomposition method, as explained in Sect. 4. Second, SpaceEx uses a forward-backward interpolation model, which is
19

S. Bogomolov, M. Forets, G. Frehse et al. Information and Computation 289 (2022) 104937
Table 3
Reach tube computation in dense time. The model statistics are given in Table 2. The number of time steps is 2e4 with step size δ = 1e−3 for both
JuliaReach (abbreviated JReach in this table) and SpaceEx.

Model Discretize
(sec)

Runtime (sec) one variable Runtime (sec) all variables O.A. %

JReach SpaceEx Spdup JReach SpaceEx Spdup

Motor 3.31e−4 5.12e−1 1.90 3.7 3.85 9.29 2.4 21.53
Bldng 9.99e−3 1.71 9.54 5.6 6.65e1 2.24e2 3.4 6.62
PDE 1.55e−2 3.56 6.17e1 17.3 1.97e2 4.75e3 24.1 81.59
Heat 7.30e−2 8.28 1.02e2 12.3 1.05e3 5.68e3 5.4 0.05
ISS 1.25e−1 9.57e−1 7.91e1 82.7 1.26e2 8.12e3 64.4 14.52
Beam 5.21e−1 2.67e1 3.32e2 12.4 2.96e3 3.80e4 12.8 -30.35
MNA1 1.67e−1 8.75e1 † n/a 7.58e3 † n/a n/a
FOM 5.69e−2 3.40 † n/a 1.06e3 † n/a n/a
MNA5 1.92e−1 8.93e1 † n/a T.O. † n/a n/a

“Discretize” stands for the discretization time in JuliaReach. “Runtime” stands for the total runtime. “Spdup” stands for the relative speedup of JuliaReach

over SpaceEx. “O.A. %” stands for overapproximation in percent, which is computed as the increase in the bounds computed with JuliaReach for the variable
reported in Table 2, measured at the last time step, relative to the SpaceEx bounds. “†” marks a crash and “T.O.” marks a timeout (1e5 sec). “” marks the
optimized algorithm described in Section 5.2.

Table 4
Verification of safety properties in discrete time. The model statistics are given in Table 2. The number of time steps is 4e3 with step size δ = 5e−3 for
both JuliaReach and Hylaa.

Model Runtime (sec)

JuliaReach Hylaa Speedup

Discretize Check Total

Motor 2.53e−4 1.29e−1 1.29e−1 1.6 12.4
Building 1.52e−3 3.59e−1 3.61e−1 2.5 6.9
PDE 1.20e−2 2.86e1 2.87e1 3.5 0.1
Heat 9.63e−2 2.03 2.12 1.38e1 6.5
ISS ⊥ 1.99e−1 6.68 6.88 1.53e2 22.2
ISS @135D 1.99e−1 2.74 2.93 1.53e2 52.2
Beam 3.14e−1 5.83 6.14 1.69e2 27.5
MNA1 4.06e−2 1.78e1 1.79e1 2.88e2 16.1
FOM ⊥ 2.25e−1 8.83e1 8.85e1 3.30e2 3.7
FOM @6D 2.25e−1 1.10e2 1.10e2 3.30e2 3.0
MNA5 1.64e−1 1.87e2 1.87e2 3.44e4 183.9

“ ⊥” marks a benchmark for that we could not verify the property for the given time step. For these benchmarks we show a second row with a successful
run with different block sizes and lazy inputs (called @kD where k is the block size). “” marks the optimized algorithm described in Section 5.2.

Table 5
Verification of safety properties in dense time.

Model n Safety property δ Runtime (sec)

Motor 8 x1 /∈ [0.35,0.4] ∨ x5 /∈ [0.45,0.6] 1e−3 6.66e−1
Building 48 x25 < 6e−3 2e−3 9.01e−1
PDE 84 y1 < 12 3e−4 8.63e2
Heat 200 x133 < 0.1 1e−3 1.15e1
ISS @135D 270 y3 ∈ [−7,7] × 10−4 6e−4 2.17e1
Beam 348 x89 < 2100 5e−5 6.37e2
MNA1 578 x1 < 0.5 4e−4 2.50e2
MNA5 10913 x1 < 0.2 ∧ x2 < 0.15 3e−1 7.22e2

Step sizes are selected such that the property is satisfied. The time horizon is 20. For ISS we use different block sizes and lazy inputs.

more sophisticated than the forward-only model from Sect. 2.4; we note that our method could also use the SpaceEx model
without requiring any other changes. In most experiments, the precision is moderately below that of SpaceEx. Only for the
PDE model the approximation error is relatively high. For the Beam model our analysis is not only faster but also more
precise. For all models we observe a speedup; as expected, the improvement is more evident for large and sparse models.
SpaceEx gave up or crashed with a segmentation fault for the three largest models.

6.2. Verification of safety properties

As described in Sect. 5.4, we can check safety properties in the form of (Boolean combinations of) linear inequalities over
the state variables. In Table 4 we compare our results to those of Hylaa [30], a simulation-based verification tool in discrete
time. Hylaa assumes that the inputs are constant between time steps, and we stick to this assumption for the purpose of
comparison. We use the same time step as in the evaluation of [30] and again only look at one-dimensional blocks. With
20

S. Bogomolov, M. Forets, G. Frehse et al. Information and Computation 289 (2022) 104937
Fig. 11. Safety property output (in dense time) for the ISS model with mixed 1D/135D blocks, without and with lazy input representation.

these settings we are able to verify all safety properties except for the models ISS and FOM. Hylaa verifies all benchmarks.4

For eight out of the nine examples we observe a speedup, which ranges from ×3 up to ×87. As expected, our approach
scales best for the models whose properties only involve a few variables; PDE and FOM involve all variables, and for PDE (a
dense model) Hylaa is faster; ISS involves half of the variables, and here we still achieve a ×22 speedup.

We also apply JuliaReach to the benchmarks in dense time, which Hylaa does not handle. With one-dimensional blocks
we are able to verify seven out of the nine benchmarks. The results are shown in Table 5. In particular, we are able to verify
the MNA5 model with 10,913 variables in 12 minutes, where 46% of the time is spent in the discretization.

Improving precision

In both the discrete-time and dense-time cases, JuliaReach fails to verify the same instances with one-dimensional
block decomposition, namely ISS and FOM, because it is not precise enough. For both models, the property involves a linear
combination of state variables from different blocks. It is not surprising that this leads to a high approximation error.

We thus increase the block size for a more precise analysis: For the ISS model, we wrap the output variables x136 to x270
in one 135-dimensional block. For FOM we use uniform six-dimensional blocks (plus one 4D block in the end). Additionally,
we represent the inputs lazily (see Section 5.5) in order to get rid of the wrapping effect in the inputs. Fig. 11 shows the
output function corresponding to the safety property for the ISS model.

With these settings we are able to verify the safety properties in discrete time and in dense time (ISS only). We report
the performance in the respective Tables 4 and 5. Note that the analysis of the ISS model with lazy input representation is
even faster, while the analysis of the FOM model is slower; we explain this observation with the fact that the ISS model has
three inputs, and thus avoiding unnecessary overapproximations pays off, while the FOM model has only one input.

6.3. Sparsity

Each LTI system has its own structural properties, describing how each state influences the system dynamics. The SLICOT
models have different sparsity patterns, which we effectively exploited in JuliaReach. We measure the sparsity of � as the
number of low-dimensional blocks with at least one non-zero element, divided by the total number of blocks. Observe that
line 14 of Algorithm 1 simplifies to a no-op for each zero block, and thus, as a rule of thumb, for a given row-block the
cost increases linearly in the number of occupied blocks. Consider the case of 1×1 blocks. For models such as Heat and
Beam the sparsity is 0%, meaning that the matrix is completely dense, while for models such as ISS and FOM the sparsity is
99.3% and 99.9%, respectively. We note that the matrix power operation does not necessarily preserve the sparsity pattern,
although it does in some particular cases, e.g., if � is block upper-triangular.

The efficiency with respect to the sparsity pattern is manifest in the small runtimes for sparse models, compared to
higher runtimes for dense models. In contrast, non-decomposed methods cannot make full use of the sparsity since they
rely on a high-dimensional LP even for evaluating the support vector in a single direction. This explains the very high
speedup of ×64 for the ISS model.

For the largest models (MNA1, FOM and MNA5), we have used the optimized discretization method described in Sec-
tion 5.2. The size of the Krylov subspace is m = 30, which is a common default value [63]. The runtimes obtained are up
to three orders of magnitude faster than those obtained with the previous approach in [15] (times were 2.62, 3.26e−1 and
3.28e2 respectively). This illustrates the improved scalability of our method. For an overview of the sparsity patterns of the
benchmark models used in the evaluation, see Table 6.

4 We had to modify Hylaa to prevent out-of-memory problems for the FOM model; specifically, we reduced the time horizon chunk size
max_steps_in_mem from 527 to 400.
21

S. Bogomolov, M. Forets, G. Frehse et al. Information and Computation 289 (2022) 104937
Table 6
Sparsity characteristics of the SLICOT benchmarks. The sparsity of A (�), denoted as “sp A” (“sp �”), is the relative number of zero entries.

Model n sp A sp � Sparsity
plot (A)

Sparsity
plot (�)

Motor 8 75.0% 50.0%

Building 48 48.9% 0.0%

PDE 84 94.6% 0.0%

Heat 200 98.5% 0.0%

ISS 270 99.4% 99.3%

Beam 384 49.9% 0.0%

MNA1 578 99.5% 4.1%

FOM 1006 99.9% 99.9%

MNA5 10913 99.9% 99.7% † †

For the MNA5 model the plotting engine crashed (†).

7. Conclusions

We have revisited the fundamental set-based recurrence relation that arises in the study of reachability problems with
affine dynamics and nondeterministic inputs. We integrated high-dimensional matrix computations with low-dimensional
set computations in a state-of-the-art reachability algorithm. Our approach is advantageous against the “curse of dimension-
ality”: Reformulating the recurrence as a sequence of independent low-dimensional problems, we can effectively scale to
high-order systems. The overapproximation is conservative due the decomposition, and we have characterized the influence
of initial states, inputs, dynamics, and time step with an analytic upper bound. We have evaluated our method on a set
of real-world models from control engineering, involving many coupled variables. Numerical results show a speedup of up
to two orders of magnitude with respect to state-of-the-art approaches that are non-decomposed. With one exception, the
overapproximation is within 22% of the non-decomposed solution. In the dense-time case, our approach can handle systems
with substantially (almost two orders of magnitude) more variables than the state-of-the-art tool SpaceEx.

Note that in this paper we have only used box directions to represent low-dimensional sets. The accuracy was suf-
ficient because, for our benchmark suite, all the low-dimensional properties are axis-aligned. In general, more accurate
low-dimensional projections, arbitrarily close to the exact projection, may be required, and we have illustrated how to
efficiently work with two-dimensional approximations.
22

S. Bogomolov, M. Forets, G. Frehse et al. Information and Computation 289 (2022) 104937
We have only discussed uniform block structures that are not overlapping. Allowing blocks to overlap may give additional
precision (for instance, it leads to relative completeness for software [64]). However, to make use of overlaps, we would have
to intersect reach tubes, which is an operation that is difficult when using support functions.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

M.F. acknowledges stimulating discussions with Alexandre Rocca and Cesare Molinari. We are thankful to Daniel Freire
and Jorge Pérez for discussions with the scalable discretization approach. This work was partially supported by the European
Commission under grant no. 643921 (UnCoVerCPS), by the Metro Grenoble through the project NANO2017, by the Air Force
Office of Scientific Research under award no. FA2386-17-1-4065, by the ARC project DP140104219 (Robust AI Planning for
Hybrid Systems), by the Austrian Science Fund (FWF) under grants S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein
Award), by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant
agreement No 754411, and by a grant from Toyota Motors North America R&D. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the United
States Air Force.

References

[1] A. Girard, C.L. Guernic, O. Maler, Efficient computation of reachable sets of linear time-invariant systems with inputs, in: HSCC, in: LNCS, vol. 3927,
Springer, 2006, pp. 257–271.

[2] A.B. Kurzhanski, P. Varaiya, Ellipsoidal techniques for reachability analysis, in: HSCC, in: LNCS, vol. 1790, Springer, 2000, pp. 202–214.
[3] A.A. Kurzhanskiy, P. Varaiya, Ellipsoidal toolbox (ET), in: CDC, 2006, pp. 1498–1503.
[4] A. Girard, Reachability of uncertain linear systems using zonotopes, in: HSCC, in: LNCS, vol. 3414, Springer, 2005, pp. 291–305.
[5] M. Althoff, B.H. Krogh, Reachability analysis of nonlinear differential-algebraic systems, IEEE Trans. Autom. Control 59 (2) (2014) 371–383, https://

doi .org /10 .1109 /TAC .2013 .2285751.
[6] C. Le Guernic, A. Girard, Reachability analysis of linear systems using support functions, Nonlinear Anal. Hybrid Syst. 4 (2) (2010) 250–262, https://

doi .org /10 .1016 /j .nahs .2009 .03 .002, iFAC World Congress 2008.
[7] G. Frehse, C.L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang, O. Maler, SpaceEx: scalable verification of hybrid systems,

in: CAV, in: LNCS, vol. 6806, Springer, 2011, pp. 379–395.
[8] G. Frehse, R. Kateja, C.L. Guernic, Flowpipe approximation and clustering in space-time, in: HSCC, ACM, 2013, pp. 203–212.
[9] G. Frehse, S. Bogomolov, M. Greitschus, T. Strump, A. Podelski, Eliminating spurious transitions in reachability with support functions, in: HSCC, ACM,

2015, pp. 149–158.
[10] S. Bogomolov, G. Frehse, M. Giacobbe, T.A. Henzinger, Counterexample-guided refinement of template polyhedra, in: TACAS, in: LNCS, vol. 10205,

Springer, 2017, pp. 589–606.
[11] M. Althoff, G. Frehse, Combining zonotopes and support functions for efficient reachability analysis of linear systems, in: CDC, IEEE, 2016,

pp. 7439–7446.
[12] E. Asarin, T. Dang, O. Maler, O. Bournez, Approximate reachability analysis of piecewise-linear dynamical systems, in: HSCC, in: LNCS, vol. 1790,

Springer, 2000, pp. 20–31.
[13] C.L. Guernic, A. Girard, Reachability analysis of hybrid systems using support functions, in: CAV, in: LNCS, vol. 5643, Springer, 2009, pp. 540–554.
[14] M. Althoff, G. Frehse, A. Girard, Set propagation techniques for reachability analysis, Annu. Rev. Control, Robot. Auton. Syst. 4 (1) (2021) 369–395,

https://doi .org /10 .1146 /annurev-control -071420 -081941.
[15] S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, C. Schilling, Reach set approximation through decomposition with low-dimensional sets and

high-dimensional matrices, in: HSCC, ACM, 2018, pp. 41–50.
[16] JuliaReach, https://juliareach .github .io /JuliaReach -website/, 2019.
[17] S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, C. Schilling, Reachability analysis of linear hybrid systems via block decomposition, IEEE Trans. Com-

put.-Aided Des. Integr. Circuits Syst. 39 (11) (2020) 4018–4029, https://doi .org /10 .1109 /TCAD .2020 .3012859.
[18] S. Kaynama, M. Oishi, Overapproximating the reachable sets of LTI systems through a similarity transformation, in: ACC, 2010, pp. 1874–1879.
[19] S. Kaynama, M. Oishi, Complexity reduction through a Schur-based decomposition for reachability analysis of linear time-invariant systems, Int. J.

Control 84 (1) (2011) 165–179, https://doi .org /10 .1080 /00207179 .2010 .543703.
[20] Z. Han, B.H. Krogh, Reachability analysis of large-scale affine systems using low-dimensional polytopes, in: HSCC, in: LNCS, vol. 3927, Springer, 2006,

pp. 287–301.
[21] A.L. Dontchev, Time-scale decomposition of the reachable set of constrained linear systems, Math. Control Signals Syst. 5 (3) (1992) 327–340, https://

doi .org /10 .1007 /BF01211565.
[22] E.V. Goncharova, A.I. Ovseevich, Asymptotics for singularly perturbed reachable sets, in: LSSC, in: LNCS, vol. 5910, Springer, 2009, pp. 280–285.
[23] M.R. Greenstreet, I. Mitchell, Reachability analysis using polygonal projections, in: HSCC, in: LNCS, vol. 1569, Springer, 1999, pp. 103–116.
[24] C. Yan, M.R. Greenstreet, Faster projection based methods for circuit level verification, in: ASP-DAC, IEEE, 2008, pp. 410–415.
[25] Y. Seladji, O. Bouissou, Numerical abstract domain using support functions, in: NASA Formal Methods, in: LNCS, vol. 7871, Springer, 2013, pp. 155–169.
[26] A.C. Antoulas, D.C. Sorensen, S. Gugercin, A survey of model reduction methods for large-scale systems, Contemp. Math. 280 (2001) 193–220.
[27] H. Tran, L.V. Nguyen, W. Xiang, T.T. Johnson, Order-reduction abstractions for safety verification of high-dimensional linear systems, Discrete Event

Dyn. Syst. 27 (2) (2017) 443–461, https://doi .org /10 .1007 /s10626 -017 -0244 -y.
[28] S. Bogomolov, C. Mitrohin, A. Podelski, Composing reachability analyses of hybrid systems for safety and stability, in: ATVA, in: LNCS, vol. 6252,

Springer, 2010, pp. 67–81.
[29] S. Bogomolov, C. Herrera, M. Muñiz, B. Westphal, A. Podelski, Quasi-dependent variables in hybrid automata, in: HSCC, ACM, 2014, pp. 93–102.
[30] S. Bak, P.S. Duggirala, Simulation-equivalent reachability of large linear systems with inputs, in: CAV, in: LNCS, vol. 10426, Springer, 2017, pp. 401–420.
23

http://refhub.elsevier.com/S0890-5401(22)00092-X/bib22936F7FB67A9B66757B5FBF88955CA2s1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib22936F7FB67A9B66757B5FBF88955CA2s1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib27FBEB25CA7CE65B0B4659B3310C36BBs1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bibD1ACC5954EC3D1348CFA803C557EEC43s1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bibDB7F8A78DF983FE0E33F6BBFA99F8FDBs1
https://doi.org/10.1109/TAC.2013.2285751
https://doi.org/10.1109/TAC.2013.2285751
https://doi.org/10.1016/j.nahs.2009.03.002
https://doi.org/10.1016/j.nahs.2009.03.002
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib3F703860001E3756DAA37038CF49E5B2s1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib3F703860001E3756DAA37038CF49E5B2s1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib7339829A92D9E9FA5B6EB27CFC0CF27Cs1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib9EC45B69889E179679F7B00DDCBFE52Bs1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib9EC45B69889E179679F7B00DDCBFE52Bs1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bibD3EE2521642A34D5C4B444B53ADEEF59s1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bibD3EE2521642A34D5C4B444B53ADEEF59s1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bibC00412219CA6D8EB8F085636BE1C90F3s1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bibC00412219CA6D8EB8F085636BE1C90F3s1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib83E6DAE8349B292E4F64981E582AB75Ds1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib83E6DAE8349B292E4F64981E582AB75Ds1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib4C82A2869CB71F712E0834735FD5C212s1
https://doi.org/10.1146/annurev-control-071420-081941
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib2B7CA8FBD791BC4629F4E8C01F07298Cs1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib2B7CA8FBD791BC4629F4E8C01F07298Cs1
https://juliareach.github.io/JuliaReach-website/
https://doi.org/10.1109/TCAD.2020.3012859
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib3B94A438F189A92365BD9FE456855481s1
https://doi.org/10.1080/00207179.2010.543703
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib1500095BD472D0DB08F21EED4DFFC658s1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib1500095BD472D0DB08F21EED4DFFC658s1
https://doi.org/10.1007/BF01211565
https://doi.org/10.1007/BF01211565
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib94CAE4601C96E846411B1D7BB058758Bs1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bibB5DBEA010D91B914D62C7E99E6413074s1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bibD63F92E29D1992234F41AA089A33ABD7s1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bibFDC459F1EA6F64687C924C77C481B8FDs1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bibB16C06E2ECBF496FA54233FF19D635BEs1
https://doi.org/10.1007/s10626-017-0244-y
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib6DC43A4416C8BC7EA94CAD0205234242s1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib6DC43A4416C8BC7EA94CAD0205234242s1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib0E5326F15ABAE1D8DBF94783B5CAFAE2s1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib85A0103B7313B16A775774697F69ED08s1

S. Bogomolov, M. Forets, G. Frehse et al. Information and Computation 289 (2022) 104937
[31] S. Bak, H. Tran, T.T. Johnson, Numerical verification of affine systems with up to a billion dimensions, in: HSCC, ACM, 2019, pp. 23–32.
[32] M. Chen, S.L. Herbert, C.J. Tomlin, Exact and efficient Hamilton-Jacobi guaranteed safety analysis via system decomposition, in: ICRA, IEEE, 2017,

pp. 87–92.
[33] I.M. Mitchell, C. Tomlin, Overapproximating reachable sets by Hamilton-Jacobi projections, J. Sci. Comput. 19 (1–3) (2003) 323–346, https://doi .org /10 .

1023 /A :1025364227563.
[34] E. Asarin, T. Dang, Abstraction by projection and application to multi-affine systems, in: HSCC, in: LNCS, vol. 2993, Springer, 2004, pp. 32–47.
[35] X. Chen, S. Sankaranarayanan, Decomposed reachability analysis for nonlinear systems, in: RTSS, IEEE, 2016, pp. 13–24.
[36] S. Schupp, J. Nellen, E. Ábrahám, Divide and conquer: variable set separation in hybrid systems reachability analysis, in: QAPL@ETAPS, in: EPTCS,

vol. 250, 2017, pp. 1–14.
[37] M.J. Cloud, B.C. Drachman, L.P. Lebedev, A Brief Introduction to Interval Analysis, Springer, 2014, pp. 179–193.
[38] P. Collins, A. Goldsztejn, The reach-and-evolve algorithm for reachability analysis of nonlinear dynamical systems, Electron. Notes Theor. Comput. Sci.

223 (2008) 87–102, https://doi .org /10 .1016 /j .entcs .2008 .12 .033.
[39] N.S. Nedialkov, Interval tools for ODES and DAES, in: SCAN, 2006.
[40] F. Johansson, Arb: efficient arbitrary-precision midpoint-radius interval arithmetic, IEEE Trans. Comput. 66 (2017) 1281–1292, https://doi .org /10 .1109 /

TC .2017.2690633.
[41] L. Chen, A. Miné, P. Cousot, A sound floating-point polyhedra abstract domain, in: APLAS, in: LNCS, vol. 5356, Springer, 2008, pp. 3–18.
[42] C. Le Guernic, Reachability analysis of hybrid systems with linear continuous dynamics, Ph.D. thesis, Université Grenoble 1 - Joseph Fourier, 2009.
[43] G.K. Kamenev, An algorithm for approximating polyhedra, Comput. Math. Math. Phys. 36 (4) (1996) 533–544.
[44] A.V. Lotov, A.I. Pospelov, The modified method of refined bounds for polyhedral approximation of convex polytopes, Comput. Math. Math. Phys. 48 (6)

(2008) 933–941, https://doi .org /10 .1134 /S0965542508060055.
[45] M. Forets, C. Schilling, Conservative time discretization: a comparative study, in: iFM, in: LNCS, vol. 13274, Springer, 2022, pp. 149–167.
[46] K. Fukuda, From the zonotope construction to the Minkowski addition of convex polytopes, J. Symb. Comput. 38 (4) (2004) 1261–1272, https://

doi .org /10 .1016 /j .jsc .2003 .08 .007.
[47] D. Monniaux, Quantifier elimination by lazy model enumeration, in: CAV, in: LNCS, vol. 6174, Springer, 2010, pp. 585–599.
[48] A. Girard, C.L. Guernic, Efficient reachability analysis for linear systems using support functions, IFAC Proc. Vol. 41 (2) (2008) 8966–8971, https://

doi .org /10 .3182 /20080706 -5 -KR-1001.01514.
[49] H. Tran, L.V. Nguyen, T.T. Johnson, Large-scale linear systems from order-reduction, in: ARCH, EasyChair, in: EPiC Series in Computing, vol. 43, 2016,

pp. 60–67.
[50] J. Bezanson, A. Edelman, S. Karpinski, V.B. Shah, Julia: a fresh approach to numerical computing, SIAM Rev. 59 (1) (2017) 65–98, https://doi .org /10 .

1137 /141000671.
[51] M. Forets, C. Schilling, Lazysets.jl: scalable symbolic-numeric set computations, Proc. JuliaCon Conf. 1 (1) (2021) 11, https://doi .org /10 .21105 /jcon .00097.
[52] W.E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Q. Appl. Math. 9 (1) (1951) 17–29.
[53] Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal. 29 (1) (1992) 209–228.
[54] M. Althoff, Reachability analysis of large linear systems with uncertain inputs in the Krylov subspace, IEEE Trans. Autom. Control 65 (2) (2020) 477–492,

https://doi .org /10 .1109 /TAC .2019 .2906432.
[55] ExponentialUtilities.jl, https://github .com /SciML /ExponentialUtilities .jl, 2021.
[56] E. Anderson, Z. Bai, J.J. Dongarra, A. Greenbaum, A. McKenney, J.D. Croz, S. Hammarling, J. Demmel, C.H. Bischof, D.C. Sorensen, LAPACK: a portable

linear algebra library for high-performance computers, in: Supercomputing, IEEE Computer Society, 1990, pp. 2–11.
[57] F.G. Gustavson, Two fast algorithms for sparse matrices: multiplication and permuted transposition, ACM Trans. Math. Softw. 4 (3) (1978) 250–269,

https://doi .org /10 .1145 /355791.355796.
[58] R. Ray, A. Gurung, B. Das, E. Bartocci, S. Bogomolov, R. Grosu, XSpeed: accelerating reachability analysis on multi-core processors, in: HVC, Springer,

2015, pp. 3–18.
[59] S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, C. Schilling, Juliareach: a toolbox for set-based reachability, in: HSCC, ACM, 2019, pp. 39–44.
[60] P. Benner, V. Mehrmann, V. Sima, S. Van Huffel, A. Varga, SLICOT – a subroutine library in systems and control theory, in: Applied and Computational

Control, Signals, and Circuits, Springer, 1999, pp. 499–539.
[61] Y. Chahlaoui, P. Van Dooren, Benchmark examples for model reduction of linear time-invariant dynamical systems, in: Dimension Reduction of Large-

Scale Systems, Springer, 2005, pp. 379–392.
[62] C. Rackauckas, Q. Nie, Differentialequations.jl – a performant and feature-rich ecosystem for solving differential equations in Julia, J. Open Res. Softw.

5 (1) (2017), https://doi .org /10 .5334 /jors .151.
[63] J. Niesen, W.M. Wright, Algorithm 919: a Krylov subspace algorithm for evaluating the φ-functions appearing in exponential integrators, ACM Trans.

Math. Softw. 38 (3) (2012) 22:1–22:19, https://doi .org /10 .1145 /2168773 .2168781.
[64] J. Hoenicke, R. Majumdar, A. Podelski, Thread modularity at many levels: a pearl in compositional verification, in: POPL, ACM, 2017, pp. 473–485.
24

http://refhub.elsevier.com/S0890-5401(22)00092-X/bib55DB764EBA027C5CDC60FF9D6C20E365s1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bibC3E43BA2ABA84B3F5E4004A2759C2EE6s1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bibC3E43BA2ABA84B3F5E4004A2759C2EE6s1
https://doi.org/10.1023/A:1025364227563
https://doi.org/10.1023/A:1025364227563
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib48090E440C060F14BCCA00D3FFBB9720s1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bibC071E9AB017468547DC5BEE40853C898s1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib41EE77D56E3DF10ABD2E6F572823A3F4s1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib41EE77D56E3DF10ABD2E6F572823A3F4s1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib5A484B46B3E33E33471A5AB14FB66E34s1
https://doi.org/10.1016/j.entcs.2008.12.033
http://refhub.elsevier.com/S0890-5401(22)00092-X/bibC22D5653CF35587605BF3D659B7597A2s1
https://doi.org/10.1109/TC.2017.2690633
https://doi.org/10.1109/TC.2017.2690633
http://refhub.elsevier.com/S0890-5401(22)00092-X/bibE0502C3616A1F1A8199B5F9DE7D0FB6Ds1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib08C1585FCE9339CE236F5949793C9DF4s1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bibFDE31B9B16E456E1F1201C8E58D5EB22s1
https://doi.org/10.1134/S0965542508060055
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib7289E9210A1FE1AC5B0B1C88AD4B5089s1
https://doi.org/10.1016/j.jsc.2003.08.007
https://doi.org/10.1016/j.jsc.2003.08.007
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib17433875560C6B48F25842709CB9CF20s1
https://doi.org/10.3182/20080706-5-KR-1001.01514
https://doi.org/10.3182/20080706-5-KR-1001.01514
http://refhub.elsevier.com/S0890-5401(22)00092-X/bibAC75295C40C26D0DEED4771C6D27285As1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bibAC75295C40C26D0DEED4771C6D27285As1
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.21105/jcon.00097
http://refhub.elsevier.com/S0890-5401(22)00092-X/bibE94C27F379DEB92722B1C977FB91921Fs1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bibDAE3593FC792BDDBD5D96329A94C1880s1
https://doi.org/10.1109/TAC.2019.2906432
https://github.com/SciML/ExponentialUtilities.jl
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib20E6BBB317B263113DFE206A93C6DDB0s1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib20E6BBB317B263113DFE206A93C6DDB0s1
https://doi.org/10.1145/355791.355796
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib01135360165B3801FEA1CE52A0F2F04Ds1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib01135360165B3801FEA1CE52A0F2F04Ds1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bibB7A5CCCEC16C1B9A5DAA0798C15DA8C2s1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bibE940C957C97E7705199032527A389D82s1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bibE940C957C97E7705199032527A389D82s1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib63493452F465CFEB9968AF0A92C7C986s1
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib63493452F465CFEB9968AF0A92C7C986s1
https://doi.org/10.5334/jors.151
https://doi.org/10.1145/2168773.2168781
http://refhub.elsevier.com/S0890-5401(22)00092-X/bib4CC0FD481A2708A0D1F6A0A0E3B13DF4s1

	Decomposing reach set computations with low-dimensional sets and high-dimensional matrices (extended version)
	1 Introduction
	2 Approximate reachability of affine systems
	2.1 Preliminaries
	2.2 Polyhedral approximation of a convex set
	2.3 Trajectory, reach set, and reach tube
	2.4 Approximation model

	3 Decomposition
	3.1 Cartesian decomposition
	3.2 Decomposing an affine map
	3.3 Decomposing an affine recurrence

	4 Approximation error
	4.1 Error of a decomposed affine map
	4.2 Error of a decomposed affine recurrence
	4.3 Error of a decomposed reach tube approximation
	4.4 Empirical evaluation

	5 Algorithm & implementation
	5.1 Lazy set representation
	5.2 Discretization and approximation in the Krylov subspace
	5.3 Reach tube approximation
	5.4 Checking safety properties
	5.5 Lazy set propagation
	5.6 Sparse and dense matrices
	5.7 Parallelization
	5.8 Quality of the set approximation
	5.9 Changes of coordinates
	5.10 Efficient 2D approximation

	6 Evaluation
	6.1 Reach tube computation
	6.2 Verification of safety properties
	6.3 Sparsity

	7 Conclusions
	Declaration of competing interest
	Acknowledgments
	References

