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Approximating the set of reachable states of a dynamical system is an algorithmic way 
to rigorously reason about its safety. Despite progress on efficient algorithms for affine 
dynamical systems, available algorithms still lack scalability to ensure their wide adoption 
in practice. While modern linear algebra packages are efficient for matrices with tens of 
thousands of dimensions, set-based image computations are limited to a few hundred. We 
propose to decompose reach-set computations such that set operations are performed in 
low dimensions, while matrix operations are performed in the full dimension. Our method 
is applicable in both dense- and discrete-time settings. For a set of standard benchmarks, 
we show a speed-up of up to two orders of magnitude compared to the respective state-
of-the-art tools, with only modest loss in accuracy. For the dense-time case, we show an 
experiment with more than 10,000 variables, roughly two orders of magnitude higher than 
possible before.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Verifying safety properties for dynamical systems is an important and intricate task. For bounded time it is well known 
that the problem can be reduced to the computation of the reachable states. We are interested in the set-based reachability 
problem for affine dynamical systems [1]. Here, recurrence relations of the form

X (k + 1) = �X (k) ⊕ V(k), k = 0,1, . . . , N (1)

arise naturally. In the context of control engineering, the sequence of sets {V(k)}k usually represents nondeterministic inputs 
or noise, ⊕ denotes the Minkowski sum between sets, � is a real n×n matrix, and the set X (0) accounts for uncertain 
initial states.

Numerous works present strategies for solving (1) with set representations like ellipsoids [2,3], template polyhedra such 
as zonotopes [4,5] or support functions [6–10], or a combination [11]. The problem also generalizes to hybrid systems with 
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piecewise affine dynamics [12,13]. A key difficulty is scalability, as the cost of some set operations increases superlinearly 
with the dimension [14, Table 1]. A second challenge is the error accumulation for increasing values of N , known as the 
wrapping effect.

In this paper we extend the approach of the partial decomposition algorithm for solving (1) first presented in [15]. 
The complexity of non-decomposition approaches is mostly affected by the dimension n. Our method partially shifts this 
dependence on n to other structural properties: We perform set operations in low dimensions (unaffected by n); we ef-
fectively omit variables from the analysis if they are not involved in the property of interest; and we exploit the sparsity 
of � and its higher-order powers. However, unlike other decomposition approaches, we keep the matrix computations in 
high dimensions, which allows us to produce precise approximations. The strategy consists in decomposing the discrete 
recurrence relation (1) into subsystems of low dimensions. Then we compute the reachable states for each subsystem; these 
low-dimensional set operations can be performed efficiently. Finally, we compose the low-dimensional sets symbolically and 
project onto the desired output variables. The analysis scales to systems with tens of thousands of variables, which are out 
of scope of state-of-the-art tools for dense-time reachability.

We apply our method to compute reachable states and verify safety properties of affine dynamical systems,

x′(t) = Ax(t) + Bu(t), t ∈ [0, T ], (2)

where T > 0 is a given time horizon. The initial state can be any point in a given set X0, and u(t) ∈ U(t) ⊂ Rm is a 
nondeterministic input. Both the initial set and the set of input functions are assumed to be compact and convex. We also 
consider observable outputs,

y(t) = Cx(t) + Du(t), (3)

where C and D are matrices of appropriate dimension. In mathematical systems theory, equations (2)-(3) define what is 
known as a linear time-invariant (LTI) system.

Contribution. We present a method to solve the reachability problem for affine dynamical systems with nondeterministic 
inputs and experimentally show that it is highly scalable under modest loss of accuracy. More precisely:

• We discuss and extend the decomposition approach from [15], which combines low-dimensional sets with high-
dimensional matrices to solve (1), and we analyze the approximation error.

• We address both the dense-time and the discrete-time reachability problem for general LTI systems of the form (2)-(3).
• We implement our approach efficiently and demonstrate its scalability on real engineering benchmarks. The tool, source 

code, and benchmark scripts are publicly available [16].

This article is the first in a two-part series on the decomposition of the symbolic analysis of linear dynamical systems. 
The present article provides the foundation by decomposing the symbolic analysis of a linear ODE. A preliminary version 
previously appeared in [15]. The second article extends the approach to systems with discrete state changes that can modify 
the ODE and the state vector [17].

New content for the extended version. This article is based on [15]. We have included all the proofs1 among other major 
contributions:

• We extend the approach to arbitrarily-sized decompositions into subspaces (the approach in [15] was restricted to 
subspaces of size two).

• We extend the implementation to arbitrary low-dimensional set representations (the previous method in [15] was 
restricted to box directions).

• We perform an empirical evaluation of the approximation error.
• We improve the algorithm’s precision when approximating the nondeterministic inputs.
• We improve the scalability of the discretization, using an efficient implementation of Krylov subspace methods, by 

several orders of magnitude.
• We investigate the influence of set approximations in the context of decomposition, and the influence of decompositions 

in higher dimension.

Combining these contributions, we are able to verify more benchmark problems and solve the previous ones faster.

Related work. Kaynama and Oishi consider a Schur-based decomposition to compute the reach set [18,19]. They approximate 
the result for subsystems by nondeterministic inputs using a static (i.e., time-unaware) box approximation. The authors also 
address approximation errors by solving a Sylvester equation to obtain a similarity transformation that minimizes the sub-
matrix coupling. For systems where variables are linearly correlated in the initial states and inputs are constant, Han and 

1 The conference paper [15] did not include proofs.
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Krogh propose an approximation method that uses Krylov subspace approximations [20] without explicitly decomposing 
the system. If the system is singularly perturbed with different time scales (“slow and fast variables”), time-scale decompo-
sition can be applied [21,22]. We do not consider this setting here. The reachability analysis tool Coho uses projectahedra
– a possibly non-convex polyhedron consisting of the intersection of prisms, back-projected from 2D polygons – for set 
representation [23,24]. Seladji and Bouissou define a sub-polyhedra abstract domain based on support functions [25]. Our 
approach can choose directions dynamically, and independently for each subsystem.

An orthogonal approach to reduce the complexity of system analysis is known as model order reduction (MOR) [26]. The 
idea is to construct a lower-dimensional model with similar behavior. Recently there have been efforts to combine MOR and 
abstraction techniques to obtain a sound overapproximation [27]. In a further approach, Bogomolov et al. [28] suggest an 
abstraction technique that employs dwell time bounds. Moreover, Bogomolov et al. [29] introduce a system transformation 
to reduce the state space dimension based on the notion of quasi-dependent variables, which captures the dependencies 
between system state variables. In principle, such methods could be used as a preprocessing for our approach, where the 
approximation errors would then be combined.

Bak and Duggirala check safety properties and compute counterexample traces for LTI systems in a “simulation equivalent 
manner” [30]. A reachable set computed in this way consists of all the states that can be reached by a fixed-step simulation 
for any choice of the initial state and piecewise constant input. This set, however, does not include all trajectories of (2). The 
simulation equivalent reachability also involves a recurrence of the type (1), and we study its decomposed form in this work 
as well. Bak et al. have extended this approach to exploit specific problem structure, namely low input or output dimension. 
Using Krylov simulations, the approach can scale up to a billion dimensions [31].

Decomposition methods have also been designed for the reachability problem of nonlinear ODEs. Chen et al. consider 
controller synthesis and show that, using Hamilton-Jacobi methods, the (analytically) exact reach set can be reconstructed 
from an analysis of the subsystems for general ODE systems [32]. The system needs, however, to be composed of so-called 
self-contained subsystems, which is a strong assumption. In our setting of LTI systems, this corresponds to a dynamics matrix 
with block structure⎛⎝ A1 0 A3

0 B2 B3
0 0 C3

⎞⎠
in case of two subsystems. Our approach cannot make use of this structure due to a discretization, which results in a (dis-
crete) system that in general does not preserve the structure. The technique is based on [33] which has no such limitation 
but suffers from a projection error.

Asarin and Dang propose a decomposition approach that projects variables away and abstracts them by time-unaware 
differential inclusions [34]. To address the overapproximation, the authors split these variables again into several subdo-
mains. Chen and Sankaranarayanan apply uniform hybridization to analyze the subsystems over time and feed the results to 
the other subsystems as time-varying interval-shaped inputs [35]. Their method needs to iteratively check that the selected 
variables lie in the given intervals. A key difference with our work is that we do not replace variables by unknown inputs; 
instead we decompose the reach sets into subspaces. Moreover, our reachability algorithm is specific for LTI systems and 
exploits the system structure to be more efficient and more precise; our method also needs not be performed iteratively 
because the analysis of the subspaces is completely decoupled. Schupp et al. decompose a system by syntactic indepen-
dence [36]. In our setting, this corresponds to dynamics matrices of block diagonal form. For such systems the dynamical 
error is zero in both approaches.

Our approach can handle blocks of arbitrary size, including blocks of different sizes in the same model. In the special case 
of 1-dimensional blocks, the approach is in a sense equivalent to a reach set approximation using interval arithmetic (see, 
e.g., [37] for a comprehensible overview). This connection merits some comments: One difference is that the traditional 
version is not free of the wrapping effect [38]. This is due to the fact that it targets nonlinear dynamics, for which the 
wrapping effect cannot be entirely avoided. The analytic error bounds given in this paper provide an indication of the kind 
of precision that can be achieved when combining interval arithmetic with a wrapping-free reach set algorithm. To achieve 
the soundness that traditional interval arithmetic reachability provides, we would have to construct the matrix exponential 
as an interval matrix and compute a sound upper bound on the support function in order to carry out the projection. For 
the matrix exponential, several sound implementations exist, either based on sound ODE solvers (e.g., VNODE-LP [39]) or 
directly on sound arithmetic (e.g., Arb [40]). For the computation of the support function, this is equivalent to finding sound 
upper bounds on the solution of a linear program. An efficient solution of this problem has been proposed, e.g., by Chen et 
al. [41].

Structure of the article. The paper is organized as follows. In Sect. 2 we recall some basics on approximating convex sets with 
polyhedra and a state-of-the-art algorithm for approximating the reach sets of affine systems using the affine recurrence 
relation (1). In Sect. 3, we start by considering the decomposition of a single affine map, and then develop the more general 
case of an affine recurrence. The approximation error is discussed in Sect. 4. We present our reachability algorithm in Sect. 5, 
discuss the different techniques used to gain performance, and evaluate it experimentally in Sect. 6. Finally, we draw the 
conclusions in Sect. 7.
3
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2. Approximate reachability of affine systems

In this section, we recall the state-of-the-art in approximating the reachable set of an affine dynamical system.

2.1. Preliminaries

Let In be the identity matrix of dimension n×n. For p ≥ 1, the p-norm of an n-dimensional vector x ∈ Rn is denoted 
‖x‖p . The p-norm of a set X ⊂ Rn is ‖X‖p = supx∈X ‖x‖p , and the diameter is �p = supx,y∈X ‖x − y‖p . Let Bn

p be the 
unit ball of the p-norm in n dimensions, i.e., Bn

p = {x : ‖x‖p ≤ 1}. The Minkowski sum of sets X and Y is X ⊕ Y :=
{x + y : x ∈ X and y ∈ Y}. Their Cartesian product, X × Y , is the set of ordered pairs (x, y), with x ∈ X and y ∈ Y . The 
origin in Rn is written 0n . There is a relation between products of sets and the Minkowski sum: If X ⊆ Rn and Y ⊆ Rm , 
then X × Y = (X × {0m}) ⊕ ({0n} × Y). The convex hull operator is written CH. Let �(·) be the symmetric interval hull 
operator, defined for any X ⊂ Rn as the n-fold Cartesian product of the intervals [−|x̄i |, |x̄i |] for all i = 1, . . . , n, where 
|x̄i | := supx∈X |xi |.

2.2. Polyhedral approximation of a convex set

We recall some basic notions for approximating convex sets. Let X ⊂ Rn be a compact convex set. The support function
of X is the function ρX :Rn →R,

ρX (�) := max
x∈X �Tx.

The farthest points of X in the direction � are the support vectors

σX (�) := {
x ∈ X : �Tx = ρX (�)

}
. (4)

When we speak of the support vector, we mean the choice of any support vector in (4). The following properties of support 
functions and support vectors are well-known [42] and will be used in the sequel.

Lemma 1. For all compact convex sets X , Y ⊂Rn, for all n×n real matrices M, all scalars λ, and all vectors � ∈Rn, we have:

• ρλX (�) = ρX (λ�), σλX (�) = λσX (λ�)

• ρMX (�) = ρX (MT�), σMX (�) = MσX (MT�)

• ρX⊕Y (�) = ρX (�) + ρY (�), σX⊕Y (�) = σX (�) ⊕ σY (�)

• ρX×Y (�) = �TσX×Y (�),
σX×Y (�) = (σX (�1), σY (�2)), � = (�1, �2)

• ρCH(X∪Y)(�) = max(ρX (�), ρY (�)),
σCH(X∪Y)(�) = arg max

x,y
(�Tx, �T y), x ∈ σX (�), y ∈ σY (�)

In particular, the projection of a set into a low-dimensional space (a special case of MX ) can be conveniently evaluated 
using support functions, since σMX (�) = MσX (MT�). Given directions �1, . . . , �m , a tight overapproximation of X is the 
outer polyhedron given by the constraints∧

i

�T
i x ≤ ρX (�i). (5)

For instance, a bounding box involves evaluating the support function in 2n directions. More precise approximations can 
be obtained by adding directions. To quantify approximations, we use the following distance measure. A set X̂ is within 
Hausdorff distance ε of X if and only if

X̂ ⊆ X ⊕ εBn
p and X ⊆ X̂ ⊕ εBn

p . (6)

The infimum ε ≥ 0 that satisfies (6) is called the Hausdorff distance between X and X̂ with respect to the p-norm, and is 
denoted dp

H

(
X , X̂

)
. Another useful characterization of the Hausdorff distance is the following. Recall that a compact set X

is a polytope if there is a finite set of half-spaces whose intersection is X . If X , Y ⊂Rn are polytopes, then

dp
H (X ,Y) = max

�∈Bn
p

|ρY (�) − ρX (�)|. (7)

In the special case X ⊆Y , the absolute value can be removed.
By adding directions using Kamenev’s method [43,44], the outer polyhedron in (5) is within Hausdorff distance ε‖X‖p

for O(1/εn−1) directions, and this bound is optimal. It follows that accurate outer polyhedral approximations are only feasible 
in low dimensions. It is well-known that for n = 2, the bound can be lowered to O(1/√

ε) directions [43].
4
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Fig. 1. Illustration of a reach tube (orange) with a set of initial states (green) and an approximation (yellow) that shows absence of error states (red). (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

2.3. Trajectory, reach set, and reach tube

A trajectory of the affine ODE with time-varying inputs (2) is the unique solution xx0,u(t) : [0, T ] →Rn , for a given initial 
condition x0 at time t = 0, and a given input signal u,

xx0,u(t) = e At x0 +
t∫

0

e A(t−s)u(s)ds,

where we map Bu(t) to u(t) without loss of generality. Here T is the time horizon, which we consider to be finite in this 
paper. Given a set of initial states X0 and an input signal u, the reach set at time t is R(X0, u, t) := {xx0,u(t) : x0 ∈ X0}. This 
extends to a family of solutions as

R(X0,U, t) =
⋃{

R(X0, u, t) : u(s) ∈ U(s) ∀ s ∈ [0, t]}.
The reach tube for a given time interval [t1, t2] ⊆ [0, T ] is the set

R(X0,U, [t1, t2]) :=
⋃

t1≤t≤t2

R(X0,U, t). (8)

In general, the reach tube can be computed only approximately. An example reach tube and an overapproximation using 
boxes is shown in Fig. 1. In the next section we discuss how to compute such an overapproximation of the reach tube.

2.4. Approximation model

The standard numerical approach for the reachability problem is to reduce it to computing a finite sequence of sets, 
{X (k)}N

k=0, that overapproximates the exact reach tube (8). We assume a given constant time step size δ > 0 over the 
time horizon T = Nδ, where N is the number of time steps. With respect to the inputs, we assume that the time-varying 
function U(·) from Sect. 2.3 is piecewise constant, i.e., we consider a possibly time-varying discrete sequence {U(k)}k for 
all k = 0, 1, . . . , N . Note that while the input set U(k) is constant, the input signal u(t) can still vary nondeterministically at 
arbitary times.

Starting from the continuous system (2)-(3), we are interested in reducing the reachability problem to the recurrence (1), 
with suitably transformed initial states and nondeterministic inputs. Such transformations are called approximation models 
(see [45] for a review). One can consider two distinct problems, which we call dense-time and discrete-time reachability, 
respectively. In the discrete-time case, the reach tube of the continuous system is only covered at finitely many time points, 
but not necessarily in between. On the other hand, the dense-time case corresponds to covering all possible trajectories of 
the given continuous system for every point between [0, T ]. Next we describe the approximation models used in this article 
in more detail.

First, we recall the dense-time case. All continuous trajectories are covered by the discrete approximation if

R(X0,U, [kδ, (k + 1)δ]) ⊆ X (k), ∀ k = 0,1, . . . , N. (9)

Previous works have provided approximation models such that (9) holds [42,6,7]. In particular, in [7, Lemma 3] the authors 
intersect a first-order approximation of the interpolation error going forward in time from t = 0 with one that goes back-
ward in time from t = δ. Note that this forward-backward approximation is used in SpaceEx, to which we will compare 
our method later. Here, we consider the forward-only approximation. To guarantee that the overapproximation covers the 
interval between time steps, the initial set and the input sets are bloated by additive terms
5
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Eψ(U(k), δ) := �(�2(|A|, δ)� (AU(k))) (10)

E+(X0, δ) := �(�2(|A|, δ)� (A2X0)), (11)

where |A| represents the component-wise absolute value of A and the matrices �1(A, δ) and �2(A, δ) are defined via

�1(A, δ) :=
∞∑

i=0

δi+1

(i + 1)! Ai, �2(A, δ) :=
∞∑

i=0

δi+2

(i + 2)! Ai .

The required transformations for dense time are:⎧⎪⎨⎪⎩
� ← e Aδ

X (0) ← CH
(
X0,�X0 ⊕ δU(0) ⊕ Eψ(U(0), δ) ⊕ E+(X0, δ)

)
V(k) ← δU(k) ⊕ Eψ(U(k), δ), ∀ k = 0,1, . . . , N

(12)

For discrete-time reachability the transformations are:⎧⎪⎪⎨⎪⎪⎩
� ← e Aδ

X (0) ← X0

V(k) ← �1(A, δ)U(k), ∀ k = 0,1, . . . , N

(13)

Note that there is no bloating of the initial states, and that the inputs are assumed to remain constant between sampling 
times.

The cost of solving the general recurrence (1) with either the data (12) or (13), to compute an approximation of the reach 
set or the reach tube, increases superlinearly with the dimension of the system and the desired approximation error [14]. 
In the rest of this paper, we will consider a decomposition of the system to reduce the computational cost.

3. Decomposition

In this section, we present our approach for solving the general recurrence (1) using block decompositions.

3.1. Cartesian decomposition

From now on, let X ⊂Rn be a compact and convex set. We characterize the decomposition of X into b sets as follows. 
Let x ∈ Rn and let {πi}b

i=1 be a set of contiguous projectors onto the coordinates of x, i.e., such that any x ∈ X can be 
uniquely written as x = [π1x, . . . , πbx]. We call the set

dcp(X ) := π1X × · · · × πbX

the Cartesian decomposition of X . We call a set decomposed if it is identical to its Cartesian decomposition for some {πi}b
i=1. 

For instance, the symmetric interval hull �(X ) is a decomposed set, since it is the Cartesian product of one-dimensional 
sets, i.e., intervals. Throughout the paper, we will highlight decomposed sets with the symbol ·̂ (as in X̂ , Ŷ). Note that 
decomposition distributes over Minkowski sum:

dcp(X ⊕Y) = dcp(X ) ⊕ dcp(Y). (14)

If X is a polytope in constraint form, the projections can be very costly to compute, as this amounts to quantifier 
elimination. However, using the methods in Sect. 2.2, we can efficiently compute an overapproximation. The overapproxi-
mation can be coarse, e.g., a bounding box, or ε-close in the Hausdorff norm for a given value of ε. Since the choice of the 
approximation is of no particular importance to the remainder of the paper, we simply assume an operator

d̂cp(X ) := X̂1 × · · · × X̂b

that overapproximates the Cartesian decomposition with a decomposed set X̂1 × · · · × X̂b such that dcp(X ) ⊆ d̂cp(X ).

3.2. Decomposing an affine map

Let V ⊂Rn be a compact and convex set and � be a real n×n matrix. Consider the n-dimensional affine map

X ′ = �X ⊕ V =
⎛⎜⎝�11 · · · �1b

...
. . .

...

� · · · �

⎞⎟⎠X ⊕ V, (15)
b1 bb

6
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Fig. 2. The Cartesian decomposition of X into two blocks of size one is the set d̂cp(X ) = X̂1 × X̂2 (red). The decomposed image of the map X ′ = �X is 
the set X̂ ′ (blue) obtained by applying (16) to each interval X̂ j .

Table 1
Complexity of set operations involved in the affine map computation by decomposition.

Polytopes Zonotopes
m generat.

Supp. fun. 
m direct.m constraints m vertices

C�(n,m) O(mn2 + n3) O(mn2) O(mn2) O(mn2L)

C⊕(n,m) O(2n) O(m2n) O(n) O(mL)

L is the cost of evaluating the support function of X . For polytopes in constraint representation we assume that � is invertible; otherwise the complexity 
is O(mn). Note that m is not comparable between different representations.

where �i j denotes the submatrix of � in row i and column j, counting from top to bottom and from left to right. We call 
such a submatrix a block, and [�i1�i2 · · ·�ib] a row-block. Note that the dimension of each block is determined by the given 
Cartesian decomposition of the set X , i.e., dim �i j = dimπiX × dimπ jX .

The decomposed image of the map (15) is obtained in two steps: Cartesian decomposition and affine map in lower-
dimensional subspaces. The first step transforms the full-dimensional sets X and V into Cartesian products of low-
dimensional sets X̂1, . . . , X̂b , using the operator d̂cp described in the previous section. The second step constructs the 
low-dimensional sets

X̂ ′
i :=

b⊕
j=1

�i jX̂ j ⊕ V̂i, ∀ i = 1, . . . ,b. (16)

We call the Cartesian product X̂ ′ = X̂ ′
1 × · · · × X̂ ′

b the decomposed image of (15). For each i, X̂ ′
i only depends on the i-th 

row-block of �. In Fig. 2 we illustrate the decomposed image of an affine map over a polygon.
We now compare the cost of (15) and (16), assuming that every row-block of � is d-dimensional, and b = n/d is an 

integer, without loss of generality. Let us denote the cost of computing the image of an n×n linear map by C�(n, m) and 
the cost of computing the Minkowski sum of two n-dimensional sets by C⊕(n, m), where m is a parameter that depends 
on the set representation. For example, a square has dimension n = 2 and m = 4 vertices (resp. constraints), but it can also 
be represented as a zonotope with m = 2 generators. The asymptotic complexity of performing the above operations for 
common set representations is shown in Table 1; we refer to [46,47,4,48] for further details. Since one Minkowski sum and 
one linear map are involved in (15), we have that the cost (recall that n = db) is in

O(C�(db,m) + C⊕(db,m)).

On the other hand, the aggregated cost for the i-th block in (16) is bC⊕(d, m′) + bC�(d, m′), where m′ is the parameter for 
complexity (m) in d dimensions. The total cost for all b blocks is thus in

O(b2C�(d,m′) + b2C⊕(d,m′)).

Whenever C� and C⊕ depend at least quadratically on the dimension, and given that m′ � m, the cost of the decomposed 
image (16) is asymptotically smaller than the cost of the non-decomposed image (15).
7
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Fig. 3. Wrapping effect on the “Motor” example for variable x5 with 100 steps of size δ = 1e−4.

3.3. Decomposing an affine recurrence

Let us reconsider the affine recurrence (1). We can rewrite it into b row-blocks, as in Sect. 3.2, with given compact and 
convex sequence {V(k)}k ⊂Rn for k ≥ 0, and an initial set X (0):

X (k + 1) =
⎛⎜⎝�11 · · · �1b

...
. . .

...

�b1 · · · �bb

⎞⎟⎠X (k) ⊕ V(k). (17)

In this recurrence, the approximation error of the k-th step is propagated, and possibly amplified, in step k +1 (known as 
the wrapping effect). In Fig. 3 we show the impact on the example model “Motor” [49] (see Sect. 6). This effect can be partly 
avoided by using a non-recursive form [1]. (In Section 5.5 we show how the wrapping effect can be avoided completely.) 
We present two scenarios, which differ in whether the sequence of input sets is constant. Let �k

i j be the submatrix of �k , 
corresponding to the indices of the submatrix �i j of �.

Constant input sets. Assuming that the sets V do not depend on k, the non-recurrent form of (17) is:{
X (k) = �kX (0) ⊕W(k)

W(k + 1) = W(k) ⊕ �kV, W(0) := {0n}.
The decomposed map, for i = 1, . . . , b, is:⎧⎪⎪⎨⎪⎪⎩

X̂i(k) =
b⊕

j=1

�k
i jX̂ j(0) ⊕ Ŵi(k)

Ŵi(k + 1) = Ŵi(k) ⊕ [�k
i1 · · ·�k

ib]V, Ŵi(0) := {0n}.
(18)

Note that the set [�k
i1 · · ·�k

ib]V in (18) is of low dimension and corresponds to the i-th block.

Time-varying input sets. Assuming that the sequence of inputs depends on k, the non-recurrent form of (17) is:{
X (k) = �kX (0) ⊕W(k)

W(k + 1) = �W(k) ⊕ V(k), W(0) := {0n}.
The decomposed map, for i = 1, . . . , b, is:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

X̂i(k) =
b⊕

j=1

�k
i jX̂ j(0) ⊕ Ŵi(k)

Ŵi(k + 1) =
b⊕

j=1

�i jŴ j(k) ⊕ V̂i, Ŵi(0) := {0n}.
(19)

Compared to equation (17), the solutions of equations (18) and (19) are both more precise (due to non-recursiveness) and 
more efficient to compute (due to low dimensionality). Fig. 4 visualizes the reach-tube computation in the two-dimensional 
case.
8
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Fig. 4. Visualization of the first two reach tube computations in two dimensions. The first yellow set is the discretization X (0) of the initial states X0. The 
second yellow set is the (high-dimensional) propagated set X (1). We decompose into one-dimensional intervals. The approximation X̂ (0) is the lower left 
blue rectangle. Next we compute the propagated intervals. Their Cartesian product forms the approximation X̂ (1). Observe that X̂ (1) is not the smallest 
axis-aligned box containing X (1), but the smallest axis-aligned box containing the set resulting from propagating X̂ (0) (purple).

4. Approximation error

In general, the reduction in the computational cost of the decomposed image comes at the price of an approximation 
error for X̂i(k). We discuss the two sources of this error. The first one is due to the decomposition of the initial states. 
For discrete-time reachability, the initial set X0 remains unchanged under the transformations (13). In practice, X0 often 
has the shape of a hyperrectangle, and hence there is no approximation error. However, for dense-time reachability, the 
transformations (12) do not preserve an initially decomposed set, and d̂cp invariably introduces an approximation error. 
If the constraints on X (0) are known, an upper bound on the Hausdorff distance dp

H (X (0), X̂ (0)) can be obtained using 
support functions [44]. The second source of the approximation error is the step-wise decomposition of the inputs. This can 
be either a linear combination with respect to a row-block as in (18) or a single block as in (19). For a stable matrix �, in 
either case, the error propagated to Ŵi(k + 1) goes to zero for k → ∞. In the rest of the section, we discuss these errors in 
more detail.

4.1. Error of a decomposed affine map

We now turn to the question how big the decomposition error is in the decomposed affine map (16) compared to (15). 
To simplify the discussion, we omit V without loss of generality, since we can rephrase (15) with an augmented state space 
where X ∗ ←X × V and �∗ ← [� I]. Then X ′ = �∗X ∗ .

We proceed in two steps: first, we bound the error for a set that is already decomposed; then we bound the distance 
between the image of the decomposed and the original set. The total error follows from a triangle inequality.

Proposition 1. Let X̂ be a decomposed set, X̄ ′ be the image of X̂ under the linear map X̄ ′ = �X̂ , and X̂ ′ be the image of X̂ under 
the decomposed map (16). Then X̄ ′ ⊆ X̂ ′ and

dp
H (X̄ ′, X̂ ′) = max‖�‖p≤1

∑
i, j

ρX̂ j
(�T

i j�i) − ρX̂ j

(∑
k

�T
kj�k

)
(20)

where the max is taken over � = �1 × · · · × �b in the unit ball of the p-norm, and �T
i j := (�i j)

T .

Proof. The support function of X̄ ′ on � ∈Rn is, applying the properties in Lemma 1,

ρX̄ ′(�) = ρ
�X̂ (�) = ρX̂1×···×X̂b

(�T�)

=
∑

j

ρX̂ j

(
π j(�

T�)
)=

∑
j

ρX̂ j

(∑
k

�T
kj�k

)
.

On the other hand,

ρX̂ ′(�) = ρX̂ ′
1×···×X̂ ′

b
(�) =

∑
i

ρX̂ ′
i
(�i) =

∑
i, j

ρX̂ j

(
�T

i j�i

)
.

9
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The result is obtained plugging these expressions into (7). �
Corollary 1. If only one �i j per column is nonzero, then the error is zero. With two-dimensional blocks, a special case of such a matrix 
is the (real) Jordan form if all eigenvalues have multiplicity 1.

Note that the converse is not true. For a simple counterexample, if X̂ = {x} consists of a single point, its image under 
any map also consists of a single point.

We can simplify the bound from Proposition 1 to clarify the relationship between the error and the norm of the matrix 
blocks �i j . To quantify the error associated with the i-th block, let us introduce the number �i to be the diameter of X̂i , 
i.e., the smallest number such that for any �, and some2 p ≥ 1,

ρX̂i
(�) + ρX̂i

(−�) ≤ ‖�‖ p
p−1

�i . (21)

For instance, if X̂i is an interval hull, then �i is the width of the largest interval. Intuitively, the approximation error is small 
if the off-diagonal entries of � are small. Quantifying this influence using (20), we get that the error bound is a weighted 
sum of the diameters of the state sets:

Proposition 2. For j = 1, . . . , b, let q j := arg maxi‖�i j‖p (the index of the block with the largest matrix norm in the j-th column-
block), so that α j := maxi �=q j ‖�i j‖p is the second largest matrix norm in the j-th column-block. Let αmax := max j α j and �sum :=∑b

j=1 � j . The error of the decomposed map is

dp
H

(
X̄ ′, X̂ ′)≤ (b − 1)

b∑
j=1

α j� j ≤ n

2
αmax�sum. (22)

For the proof of Proposition 2 we need the following intermediate result. We can reduce the bound on the approximation 
error by freely selecting one specific row-block for each column-block of �. In the j-th column-block, we denote this 
selection by q j .

Lemma 2. The approximation error is bounded by

dp
H (X̄ ′, X̂ ′) ≤ max‖�‖p≤1

∑
j

∑
i �=q j

ρX̂ j
(�T

i j�i) + ρX̂ j

(
−�T

i j�i

)
.

Proof. We use the property of support functions that

ρX (u + v) ≥ ρX (u) − ρX (−v).

With this we can bound, picking any q ∈ 1, . . . , b,

ρX̂ j

(∑
k

�T
kj�k

)
≥ ρX̂ j

(
�T

qj�q

)
−
∑
k �=q

ρX̂ j

(
−�T

kj�k

)
.

We let q be a function of j and substitute the above in (20) with k := i:

dp
H (X̄ ′, X̂ ′) ≤ max‖�‖p≤1

∑
j

∑
i

ρX̂ j
(�T

i j�i) − ρX̂ j

(
�T

q j j�q j

)
+
∑
i �=q j

ρX̂ j

(
−�T

i j�i

)
= max‖�‖p≤1

∑
j

∑
i �=q j

ρX̂ j
(�T

i j�i) + ρX̂ j

(
−�T

i j�i

)
− ρX̂ j

(
�T

q j j�q j

)
+ ρX̂ j

(
�T

q j j�q j

)
= max‖�‖p≤1

∑
j

∑
i �=q j

ρX̂ j
(�T

i j�i) + ρX̂ j

(
−�T

i j�i

)
. �

2 Here, ‖�‖ p is the Hölder conjugate to the norm ‖�‖p . Inequality (21) can be deduced from [42, Prop. 2.2].

p−1

10
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The bound is actually tight. Intuitively speaking, the judicious selection of q j allows us to eliminate the block �i j that 
contributes most to the error bound. Then we can bound the approximation error by

dp
H

(
X̄ ′, X̂ ′)≤ max‖�‖p ≤ 1

∑
j

∑
i �=q j

‖�T
i j�i‖ p

p−1
� j. (23)

Proof of Proposition 2. First, we apply to (23) that

‖�T
i j�i‖ p

p−1
≤ ‖�T

i j‖ p
p−1

‖�i‖ p
p−1

= ‖�i j‖p‖�i‖ p
p−1

.

This gives us

dp
H

(
X̄ ′, X̂ ′)≤ max‖�‖p ≤ 1

∑
j

∑
i �=q j

α j‖�i‖ p
p−1

� j

= max‖�‖p ≤ 1

∑
j

α j� j

∑
i �=q j

‖�i‖ p
p−1

.

With 
∑

i �=q j
‖�i‖ p

p−1
≤ (b − 1)‖�‖ p

p−1
we get

dp
H

(
X̄ ′, X̂ ′)≤ max‖�‖p ≤ 1

(b − 1)‖�‖ p
p−1

∑
j

α j� j.

For p ≤ 2, it is known that ‖�‖ p
p−1

≤ ‖�‖p , which leads to (22). The result holds for any p ≥ 1 since ‖x‖1 ≥ ‖x‖p . �

It remains to compare the image X ′ = �X with the decomposed image X̂ ′ , including both the decomposition error from 
X to X̂ and the error introduced by the decomposed map (16). We use a simple lemma:

Lemma 3. Let X ′ = �X and X̄ ′ = �X̂ , where X ⊆ X̂ . The distance between the images is dp
H

(
X ′, X̄ ′)≤ ‖�‖pdp

H

(
X , X̂

)
.

Proof. The claim follows from the definition of the Hausdorff distance (Eq. (6)) and the property ‖�x‖p ≤ ‖�‖p‖x‖p , x ∈Rn , 
which holds for any compatible matrix norm. �

Combining Lemma 3 with Proposition 2 and the triangle inequality dp
H

(
X ′, X̂ ′) ≤ dp

H

(
X ′, X̄ ′)+ dp

H

(
X̄ ′, X̂ ′), we get the 

following total error bound on the decomposed image computation:

Proposition 3.

dp
H

(
X ′, X̂ ′)≤ (b − 1)

b∑
j=1

α j� j + ‖�‖pdp
H

(
X , X̂

)
.

The above bound gives us an idea about the error of the decomposed affine map, without having to do any high-
dimensional set computations. We now apply the bound to affine recurrences.

4.2. Error of a decomposed affine recurrence

For any �, there exist constants K� and α� such that

‖�k‖p ≤ K�αk
�, k ≥ 0.

If � = e Aδ , one choice is α� = eλδ with λ the spectral abscissa (largest real part of any eigenvalue of A), although it may 
not be possible to compute the corresponding K� efficiently. In this case, α� ≤ 1 if the system is stable. Another choice 
is to let α� = eμδ , with μ the logarithmic norm of A and K� = 1. In this case, α� may be larger than 1 even for stable 
systems. Note that in both cases α� → 1 as δ → 0. For conciseness we continue with the first formulation in the remaining 
section.

For constant inputs sets, (18) is a linear map of the decomposed initial states X̂ (0) plus a decomposed input Ŵ(k), 
which is itself obtained from a sequence of decomposed linear maps. Applying Proposition 3 gives the following result.
11



S. Bogomolov, M. Forets, G. Frehse et al. Information and Computation 289 (2022) 104937
Proposition 4. Let the decomposition error of the initial states X (0) be bounded by εx ≥ dp
H

(
X (0), X̂ (0)

)
, and let the decomposition 

error of V be bounded by εv ≥ dp
H

(
V, V̂

)
. Let �x

j be the diameter of X̂ j(0), and �x
sum =∑b

j=1 �x
j . Let �v

j be the diameter of V̂ j , and 
�v

sum =∑b
j=1 �v

j . Then the approximation error due to decomposition, at step k, ε(k) := dp
H

(
X̂ (k), X (k)

)
, is bounded by

ε(k) ≤ K�

(
αk

�

(
b�x

sum + εx)
+ (

b�v
sum + εv)α�

1 − αk−1
�

1 − α�

)
+ εv .

If α� < 1 (stable system), the error is bounded for all k by

ε(k) ≤ K�

(
b�x

sum + εx + (
b�v

sum + εv) α�

1 − α�

)
+ εv .

Proof. Using Eq. (18), and that d̂cp distributes over Minkowski sum,

dp
H

(
d̂cp(�kX (0)) ⊕ Ŵ(k)︸ ︷︷ ︸

X̂ (k)

,�kX (0) ⊕W(k)︸ ︷︷ ︸
X (k)

)
≤ dp

H

(
d̂cp(�kX (0)),�kX (0)

)+ dp
H

(
Ŵ(k),W(k)

)
.

Applying Proposition 3 with α j ≤ K�αk
� , we get the bound

dp
H

(
d̂cp(�kX (0)),�kX (0)

)
≤ (b − 1)

∑
j

α j�
x
j + ‖�k‖pdp

H

(
X̂ (0)),X (0)

)
≤ K�αk

�(b − 1)�x
sum + K�αk

�εx.

Similarly, we get

dp
H

(
Ŵ(k),W(k)

)≤ εv + K�((b − 1)�v
sum + εv)

k−1∑
s=1

αs
�

= εv + K�

(
(b − 1)�v

sum + εv)α�

1 − αk−1
�

1 − α�

.

The claim follows from combining both bounds. �
As a summary, the approximation error is linear in the width of the initial states and the inputs, and in the decompo-

sition errors of the initial states and the input sets. For unstable systems, or time steps not large enough, the input set can 
become the dominating source of error, e.g., in cases with α� > 1

2 .

4.3. Error of a decomposed reach tube approximation

The decomposed reach tube approximation consists of the affine recurrence (18), with suitable sets X (0) and V . The 
error bound follows from Proposition 4 and the decomposition errors for X (0) and V .

In the discrete-time case (13), the initial states X (0) of the affine recurrence (18) are identical to the initial states X0 of 
the model, so their decomposition error is

εx = dp
H

(
X0, X̂0

)
.

However, V = �1(A, δ)U . Let Û = dcp(U). By Lemma 3 we get

εv = ‖�1(A, δ)‖pdp
H

(
U, Û

)
.

In the dense-time case (12), the initial states of the affine recurrence (18) are X (0) = CH
(
X0, �X0 ⊕ δU ⊕ Eψ(U , δ) ⊕

E+(X0, δ)
)
, and V = δU ⊕ Eψ(U , δ). Recall from (14) that decomposition distributes over Minkowski sum. We get

εv = δdp
H

(
U, Û

)
.

The decomposition error for the initial states is more complex and harder to estimate. We consider the idealized case where 
the system is stable with α� = e−λδ , λ > 0, for an infinitesimal time step δ → 0. Then α� → 1 −λδ and α� → 1 , so that 
1−α� λδ

12
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Fig. 5. Reach tubes for the “Building” example.

the decomposition error due to the inputs does not go to zero in Proposition 4. Let �X0 , �U be the sum of the diameters 
of decomposed sets of X0 and U . Let εx

0 = dp
H

(
X0, X̂0

)
and εv

0 = dp
H

(
U , Û

)
. For both the discrete-time and the dense-time 

case, εx → εx
0, �x

sum → �X0 , �v
sum → δ�U and εv → δεv

0 . Then Proposition 4 gives a nonzero upper bound

dp
H

(
X̂ (k),X (k)

)≤ K�

(
b�X0 + εx

0 + (
b�U + εv

0

)1

λ

)
+O(δ).

This indicates that a small time step may be problematic for systems with large time constants (small λ).
In practice, the approximation error is much more modest, as we illustrate in Fig. 5.

4.4. Empirical evaluation

We investigate the practical approximation error for the “Motor” model, which we first introduce below for the purpose 
of discussion.

Motor model. The “Motor” model has eight state dimensions and two nondeterministic input dimensions. The dynamics 
follow the differential equation x′(t) = Ax(t) + Bu(t) where A is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 −1.0865 8487.2 0 0 0 0 0

−2592.1 −21.119 −698.91 −141399 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 −1.0865 8487.2 0
0 0 0 0 −2592.1 −21.119 −698.91 −141399
0 0 0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B =
(

0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 −1

)T

,

the input domain U is [0.16, 0.3] × [0.2, 0.4], and the initial states X0 are defined as x1 ∈ [0.002, 0.0025], x5 ∈
[0.001, 0.0015], and xi = 0 for all other dimensions.

Observe that the blocks of dimensions 1 − 4 and 5 − 8 are completely decoupled from each other (both in X0 – at 
least in a set view – and in the dynamics). The pattern of the particular block matrix A is also preserved under matrix 
exponentiation, such that these blocks stay decoupled in the discretized matrix �. Thus we would consider decomposing 
into these two blocks the natural choice.

Experimental setup. In the following we analyze the difference in precision for various ways to decompose this eight-
dimensional system. We fix the time step δ = 0.001 and use a completely lazy set approximation; this means that both 
the result of the discretization following (12) and the iteration according to (18) are computed symbolically without inter-
mediate approximations. Since Ŵ quickly grows with the number of steps, we terminate the analysis after 50 steps.

The main parameter of the decomposition algorithm is the choice of the blocks, which is represented by a partition of 
the numbers 1 to n = 8; we discuss the choice of the partitions later.
13



S. Bogomolov, M. Forets, G. Frehse et al. Information and Computation 289 (2022) 104937
Fig. 6. Maximum relative error for 128 different partitions, sorted in ascending order. Left: initial states X0. Right: initial states X L
0 .

In this model the initial set X0 is a hyperrectangle, i.e., the set is perfectly decomposed for all choices of the partition. 
But we recall that a hyperrectangular shape is generally not preserved by the discretized initial states X (0), which is the 
input to the decomposition algorithm; hence the decomposition still induces an approximation error in the initial states 
here. To investigate the approximation error for a non-hyperrectangular initial set, we also choose an alternative initial set 
X L

0 as the line segment between the lower-most and the upper-most vertex of X0, which can be considered the worst-case 
scenario for the decomposition algorithm.

We consider full-dimensional decompositions, i.e., we compute (a Cartesian product of) reach tubes for all eight dimen-
sions. Recall again that we compute these reach tubes lazily here. As the reference we take the reach tube obtained for the 
trivial partition with a single block (i.e., effectively no decomposition). We compare the reach tubes obtained for different 
choices of the partition to this reference reach tube as follows. We fix a set of directions D ⊆ Rn and evaluate the support 
function ρ(d, X (k)) for each direction d ∈ D and k = 0, . . . , 49. Also evaluating in the negative direction, we thus compute 
the intervals (−ρ(−d, X (k)), ρ(d, X (k))). We then compare the approximation error in each direction by comparing the 
corresponding intervals [l, u] and [lref, uref] using the following (relative) formula:

100 ∗
[

lref − l

uref − lref
,

u − uref

uref − lref

]
In the comparison we use octagon directions for D:

D = {(d1, . . . ,dn) ∈Rn | ∃i, j : di,d j ∈ {−1,1} ∧ ∀k : k = i ∨ k = j ∨ dk = 0}
Results. We begin with partitions that do not reorder dimensions. For example, in three dimensions these partitions are 
[[1, 2, 3]], [[1, 2], [3]], [[1], [2, 3]], and [[1], [2], [3]]. In general there exist 2n−1 such partitions in n dimensions, so we 
consider 128 partitions in our case.

In Fig. 6 we plot the maximum relative error for different choices of the partition (under all d ∈ D and steps k). For most 
partitions the maximum error is above 100% with hyperrectangular X0 and goes up to over 400% with X L

0 . (The partition 
with no error is the trivial one-block partition.) However, this bird-eye view is too coarse to draw conclusions.

Next we have a closer look at the approximation error over time. In Fig. 7 we show that the error can differ significantly 
for different steps k of the recurrence. Interestingly, there is not much variation among the different partitions. Essentially 
there are two characteristic patterns. The first pattern starts with a relatively large error (around 60% with X0 and over 
400% with X L

0 (not shown in the plot)) but then quickly shrinks to almost no error; a representative of this pattern is the 
partition into two four-dimensional blocks [[1, 2, 3, 4], [5, 6, 7, 8]] (blue triangles in the figure). As argued before, this is the 
most natural choice to decompose the system at hand, as it does not involve errors in the dynamics. The other pattern 
evolves to two higher peaks at k = 20 and k = 31; a representative of this pattern is the partition with one-dimensional 
blocks [[1], [2], [3], [4], [5], [6], [7], [8]] (green circles in the figure). Note that the one-dimensional partition generally results 
in the lowest precision.

Some partitions start with almost no approximation error for a hyperrectangular X0, e.g., the partition [[1, 2], [3, 4, 5,

6, 7, 8]] (yellow stars in the figure), but then follow the second pattern and overall result in a larger approximation error. 
This illustrates that both the dynamics and the initial states can influence the approximation error independently. For the 
line segment X L

0 most partitions induce a high initial error as expected; the exceptions are partitions that keep the relevant 
dimensions (x1 and x5) in the same block. But surprisingly, this error quickly vanishes and the curves in the two plots soon 
look identical.

We also looked at partitions that reorder the dimensions. In general this can help bring dimensions together that are 
coupled in the initial states or the dynamics. In this particular model, however, the dimensions are already ordered in 
14
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Fig. 7. Maximum relative error for 128 different partitions. Most curves overlay each other. Some selected partitions are drawn with markers on top. Left: 
initial states X0. Right: initial states X L

0 . We cut off the y values to the same limit and omitted the trivial one-block partition (which would be a straight 
line at zero).

Fig. 8. Maximum relative error for six different partitions. Left: initial states X0. Right: initial states X L
0 . We cut off the y values to the same limit.

alignment with the coupling in the dynamics, so a reordering is not helpful. In Fig. 8 we show three selected reordering 
partitions in comparison with three canonical ordered partitions. We observe that the precision stays the same. The notable 
exception is the partition that puts dimension x5 into the first block (yellow stars in the figure), which induces almost no 
initial error; however, with time this partition follows the second (less precise) pattern because it separates some of the 
dynamically coupled variables.

In conclusion we can say that the decomposition error in the initial states becomes negligible compared to the decompo-
sition error in the dynamics rather quickly. Of course whether a large initial error is acceptable also depends on the system 
properties one is interested in.

5. Algorithm & implementation

We now describe the decomposition method from Sect. 3 from an algorithmic point of view and discuss some crucial 
details of our implementation in Julia [50]. Given an LTI system of the form (2)-(3), we first apply a suitable approximation 
model from Sect. 2.4. Then we execute the corresponding decomposed recurrence from Sect. 3.3 to compute the reach tube 
or to check a safety property.

5.1. Lazy set representation

It is well known that the computational complexity of common set operations such as Minkowski sum, linear map, and 
Cartesian product crucially depend on two factors: the dimension and the set representation used (see, e.g., [14, Table 1]). 
Hence, to address scalability, our implementation exploits the principle of lazy (i.e., symbolic) evaluation. Common sets such 
as hypercubes in different norms or general polytopes each are represented by specific types. Each type has to provide a 
procedure to compute the support function in a given direction. The operations can be nested symbolically without actually 
evaluating them. Based on Lemma 1, this allows to compute the support function of the (nested) lazy set on demand. More 
details on our implementation of lazy operations can be found in [51]. The advantage of lazy data structures is that we may 
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save unnecessary evaluations, at the cost of higher memory consumption. In practice, we use a careful balance between 
lazy sets and concrete sets, i.e., the nesting depth is fixed (depending on the model dimension n; but see also Section 5.5). 
The alternative to using lazy data structures is to make the representation explicit after each operation, typically involving 
an overapproximation.

5.2. Discretization and approximation in the Krylov subspace

Recall from Sect. 2.4 that in the case of a dense-time model, we transform the system (A, U(·), X0) into its discrete 
counterpart (�, V(·), X (0)). As said above, our implementation uses lazy set computations. However, operations of the form 
e AδX0 require to compute the matrix exponential, which can be prohibitively expensive if the dimension of the system is 
large. Krylov subspace methods [52,53] are widely used to compute such operations lazily, i.e., by computing the action of 
the matrix exponential acting on vectors, the explicit computation of e Aδ is avoided. Such methods are particularly effective 
when applied to large and sparse matrices (we apply them for n > 500 in this work). While previous works have used 
Krylov subspace methods for discrete-time reachability [30] or dense-time reachability with zonotopes [54], we are not 
aware of a method using the support function. We introduce such a method below.

Let us recall the definition of E+ in (11).

E+(X0, δ) := �(

M2︷ ︸︸ ︷
�2(|A|, δ)

H2︷ ︸︸ ︷
�( A2︸︷︷︸

M1

X0︸︷︷︸
H1

)) (24)

We assume here the common case that X0 is a hyperrectangle, respectively with center and radius cX0 , rX0 ∈Rn . First we 
observe that Eq. (24) has two common substructures of the form �(MH), where M ∈Rn×n and H ⊆Rn is a hyperrectangle, 
respectively with center and radius cH, rH ∈Rn . The hyperrectangle �(MH) has center 0n (the origin) and radius |McH| +
|M|rH , where | · | takes the entry-wise absolute value. Thus �(A2X0) is the hyperrectangle with center cinner = 0n and 
radius rinner = |A2cX0 | + |A2|rX0 . We can apply this idea a second time (to M2 and H2 in (24)) to compute E+ . But we can 
do even better: We know that �2(|A|, δ)cinner = 0n , and we can compute |�2(|A|, δ)|rinner = �2(|A|, δ)rinner using Krylov 
methods. The evaluation in Section 6 shows that this technique has a major impact on runtime performance and memory 
cost.3 The procedure to compute Eψ in (10) is almost identical, except that the matrix is not squared. In our implementation 
we use the Krylov methods implemented in the library ExponentialUtilities.jl [55].

It remains to compute X (0) and V(k) from (12). The non-scalable part is the computation of �X0. We can com-
bine Krylov methods with the support function to evaluate the expression for a set of a direction vectors: ρeMX0

(d) =
ρX0 ((eM)T d) = ρX0 (e(MT )d) for any direction d ∈ Rn (cf. Lemma 1). We use axis-aligned (“box”) directions in the evalua-
tion.

5.3. Reach tube approximation

After we have obtained a discrete system, we use Algorithm 1 to compute an approximation of the reach tube. As an 
additional input the algorithm receives an array of block indices (blocks) that we are interested in.

The result, a reach tube for each time interval of index k, is represented by the array {X̂ (k)}k . The type of each entry 
X̂ (k) itself is an array of sets representing the low-dimensional reach tubes. To reconstruct the full-dimensional reach tube 
for time interval k, the result has to be interpreted as a Cartesian product, i.e., 

⊗
bi
X̂ (k)[bi]. Initially, X̂ (0) just contains the 

decomposed initial states (line 1).
The list all_blocks consists of all low-dimensional block indices; in particular it contains the blocks from blocks. We 

maintain the matrix Q to be the matrix � raised to the power of k, i.e., Q = �k at step k; similarly, P = �k−1. For clarity, 
we use Q [bi, b j] instead of Q ij as in Sect. 3, and similarly, P [bi, :] denotes the whole row-block bi . We write ⊕ and � to 
denote lazy set representation of Minkowski sum and linear map, respectively.

The main loop starting in line 9 computes the reach tubes for each k. The array X̂tmp is filled with low-dimensional 
reach tubes in the inner loop (lines 11 to 18) for each block in blocks. Line 16 computes the term associated with inputs, 
which is added in line 17. The function approx overapproximates its argument (a lazy set) to a concrete set representation, 
e.g., a polygon or an interval. The function approx_input will be explained in Sect. 5.5, and by default it is identical to
approx.

5.4. Checking safety properties

For checking safety properties, we can improve Algorithm 1. If we are only interested in tracking a handful of variables, 
our approach naturally supports the computation of only some of the blocks. Complexity-wise this saves us a factor of b

3 In [15] we used lazy matrix exponentiation for the largest benchmark model because the explicit approach would run out of memory. But our imple-
mentation was not efficient enough to be used in smaller cases. Our new implementation is several orders of magnitude faster.
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Algorithm 1: Function reach.
Input: D = (�, V(·), X (0)): discrete system
N: total number of steps
blocks: list of block indices

Output: {X̂ (k)}k : array of low-dimensional reach tubes

1 X̂ (0) ← d̂cp(X (0)); // see Eq. (14)
2 all_blocks ← get_all_block_indices(dim(�));
3 P ← Idim(�);
4 Q ← �;

5 V̂tmp ← [];
6 for bi ∈ blocks do
7 V̂tmp[bi ] ← {0dim(bi )};
8 end
9 for k = 1 to N − 1 do

10 X̂tmp ← [];
11 for bi ∈ blocks do // compute Eq. (16)
12 X̂tmp[bi ] ← {0dim(bi )};
13 for b j ∈ all_blocks do
14 X̂tmp[bi ] ← X̂tmp[bi ] ⊕ Q [bi , b j] � X̂ (0)[b j];
15 end

16 V̂tmp[bi ] ← approx_input(V̂tmp[bi ] ⊕ P [bi , :] �V(k − 1)); // see Sect. 5.5

17 X̂tmp[bi ] ← approx(X̂tmp[bi ] ⊕ V̂tmp[bi ]); // see Sect. 5.3

18 end

19 X̂ (k) ← X̂tmp;
20 P ← Q ;
21 Q ← Q · �;
22 end

when tracking a constant number of blocks. Consider a six-dimensional model with the property 2x1 −3x5 < 10, and assume 
that we use two-dimensional blocks. A naive approach would compute the reachable states for blocks 1 and 3, i.e., upper 
and lower bounds for x1, x2, x5, and x6. However, we are only interested in the upper bound for x1 and the lower bound 
for x5. We modify the algorithm in two ways: First, we replace line 19 by a function that computes the support for the 
direction of interest. Second, we can compute the support vector directly from a lazy set, and so we replace the approx
function in line 17 by the identity (i.e., keep the lazy set).

5.5. Lazy set propagation

As mentioned in the previous paragraph, we can keep the set representation lazy if we are only interested in verifying 
a safety property. However, for systems with inputs, the inputs still incur a wrapping effect if we overapproximate them 
in each iteration. To address this issue, the approx_input function in line 16 abstracts from the concrete choice of 
overapproximation. By default we just call the approx function, but we can also instantiate the function with the identity, 
i.e., keep the elements of V̂tmp a lazy set, as it is proposed in the original LGG algorithm [6]. Observe that if we unroll the 
recurrence for the inputs in (18) resp. (19) then in iteration k we obtain a Minkowski sum of k summands. In general it 
becomes prohibitely expensive to work with such a deeply nested lazy set as k grows. However, recall from Lemma 1 that 
the support function of a Minkowski sum is ρX⊕Y (�) = ρX (�) + ρY (�). Furthermore, assume that we evaluate the sets in 
the same directions � in each iteration; this assumption is satisfied if we consider approximation with a template polytope 
or if we want to check a safety property. Then in each iteration we can reuse the result from the previous iterations and 
just need to evaluate the support function on the new summand. We note that we do not use this lazy approach by default 
and explicitly mention its use in the evaluation.

5.6. Sparse and dense matrices

We use a different implementation for models with dense and sparse matrices �, respectively. For instance, the loop 
around line 14 only has to be executed if the submatrix �k[bi, b j] is non-zero. As the linear algebra back-end we use 
either a BLAS-compatible library [56] or a native Julia implementation for sparse matrices following Gustavson [57]. These 
specializations have a major impact on the runtime (around one order of magnitude).

5.7. Parallelization

Our approach can be parallelized, since the computations for each block are independent (see the loop in line 11 of 
Algorithm 1). Using a separate thread for each block and assuming uniform blocks of size b, this will give a speedup of n/b.
SpaceEx can also be parallelized, for bounding boxes with a theoretical speedup of up to 2n. Comparing a parallelized 
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Fig. 9. Refining the “Motor” example in phase space for variables x1 and x2. On the right, ε = 1e−4.

Algorithm 1 with parallelized SpaceEx, we could theoretically see the speedup in Table 3 reduced from 64× to 32× (“ISS” 
benchmark). However, in practice, the speedup from parallelizing the LGG algorithm used in SpaceEx turns out to be much 
more modest [58].

5.8. Quality of the set approximation

Fixing the set X (0), there are three main factors that control the quality of the reach tube approximation X̂ (k) at step k. 
The first factor is the block partition, since inter-block dependencies in both X (0) and X̂ (k) are lost; a finer partition thus 
results in a more precise result.

The other two factors are the precision of the functions d̂cp and approx, respectively. Assuming that approx uses 
box directions, any block partition and d̂cp function that together satisfy X (0) = X̂ (0) will result in the same reach tube 
(and hence be equivalent to the output of the LGG algorithm with box approximation). Note that X (0) = X̂ (0) holds if 
the inter-block dimensions are independent in both X0 and the dynamics. On the other hand, if using box approximation 
in both d̂cp and approx, the block partition becomes irrelevant because all dependencies will be lost. In this case the 
precision cannot improve over one-dimensional blocks.

For more precision, one can use ε-close polytope approximation, possibly with different values of ε for different blocks. 
In Fig. 9 we plot the reach tube for the “Motor” example in the x1 − x2 plane. Using ε-close approximation, we can show 
tight relational properties like non-reachability of states beyond the indicated half-spaces.

5.9. Changes of coordinates

Our block decomposition consists of packing variables into blocks, e.g., of size two, starting from the top to the bottom. 
As mentioned above, if we output variables from different blocks, e.g., x1 and x3, we will always obtain a box-shaped set. 
An ε-close approximation as described above is only possible between variables in the same block. Consequently, we may 
increase the precision by reordering variables such that variables that “belong together” stay in the same block.

Reordering can be implemented with a change of coordinates. If x′ = Ax + Bu, and we let w = Sx with S an n × n
permutation matrix (in particular, S is orthogonal), then we consider the new dynamical system with state matrix A �
S A ST and inputs B � S B , respectively.

In Fig. 10 we plot the reach tubes of the “Motor” example in the x1 − x3 dimensions before and after such a transforma-
tion, with two-dimensional block decomposition. Here we swap the variables x2 and x3, which amounts to mixing blocks 1 
and 2 of the original system.

In principle, other similarity transformations, such as a Schur decomposition, can be applied to the system’s dynamics. 
In this case, the number of non-zero blocks may change, having an impact on the accumulated error, performance, or both. 
Our experiments suggest that it is not beneficial to apply a Schur decomposition to the “Motor” example.

5.10. Efficient 2D approximation

In many reachability tools the reach tube consists of a list of polytopes. For non-decomposed approaches, manipulating 
polytopes involves using an external linear programming (LP) back-end, possibly in high-dimensional space. When using 2D 
polygon approximations in Algorithm 1, we can employ the following efficient implementation for evaluating the support 
vector. This is particularly helpful when using non-template directions (e.g., epsilon-close approximation) (cf. Section 5.5) or 
if we need to post-process the reach tube (e.g., as part of a hybrid reachability loop).

Since vectors in the plane can be ordered by the angle with respect to the positive real axis, we can efficiently evaluate 
the support vector of a polygon in constraint representation by comparing normal directions, provided that its edges are 
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Fig. 10. Phase space plot of the “Motor” example for variables x1 and x3 with two-dimensional blocks, before (left) and after (right) a coordinate transfor-
mation. In both plots we use ε-close approximation with ε = 1e−4.

Table 2
Common benchmark statistics. “Model” stands for the benchmark name. “n” stands for the 
benchmark dimension. “Variable” stands for the dimension that is analyzed in Table 3. Vari-
ables yi in the safety properties denote outputs, as in (3), consisting of linear combinations of 
state variables xi (involving all variables for the models PDE/FOM and half of the variables for 
the model ISS).

Model n Variable Safety property

Motor 8 x5 x1 /∈ [0.35,0.4] ∨ x5 /∈ [0.45,0.6]
Building 48 x25 x25 < 6e−3
PDE 84 x1 y1 < 12
Heat 200 x133 x133 < 0.1
ISS 270 x182 y3 ∈ [−7,7] × 10−4

Beam 348 x89 x89 < 2100
MNA1 578 x1 x1 < 0.5
FOM 1006 x1 y1 < 185
MNA5 10913 x1 x1 < 0.2 ∧ x2 < 0.15

ordered. We use the symbol � to compare directions, where the increasing direction is counter-clockwise. The following 
lemma provides an algorithm to find the support, e.g., using binary search.

Lemma 4. Let X be a polygon described by m linear constraints aT
i x ≤ bi , ordered by the normal vectors (ai), i.e., ai � ai+1 for all 

i ∈ {1, . . . , m}, where we identify am+1 with a1 . Let � ∈ R2 \ {02}. Then there exists i ∈ {1, . . . , m} such that ai � � � ai+1 and an 
optimal solution x̄ of the linear program ρX (�) = maxx∈X �Tx is given by x̄ ∈ {x : aT

i x ≤ bi} ∩ {x : aT
i+1x ≤ bi+1}.

The lemma follows from the fact that a linear program has an optimal solution in a vertex.

6. Evaluation

We evaluate our implementation called JuliaReach [59] on a set of SLICOT benchmarks [60,61,49] which reflect “real 
world” applications. Some of the original models are differential algebraic equations (DAEs), in which case we only kept the 
ODE part, i.e., the coefficient matrices A and B , which is consistent with related literature. The basic model statistics are 
outlined in Table 2. We use a machine with an Intel i5 3.50 GHz CPU and 16 GB RAM, running Linux. For matrix functions 
of exponential type, ExponentialUtilitiles.jl is used [62].

6.1. Reach tube computation

We compare JuliaReach to the state-of-the-art support function algorithm LGG implemented in SpaceEx. We consider 
two cases: one dimension, where we only compute the reach tube in one variable, and full dimensions, where we com-
pute the whole reach tube. For our approach we use one-dimensional blocks in both cases. We note that we do not use 
parallelization or coordinate transformations in the evaluation. The results are given in Table 3.

We compare the precision using the bounds on a single variable (column “Var.” in the table) at the last time step. 
The SpaceEx bounds are taken as the baseline, and we report the relative deviation. We expect a lower precision than
SpaceEx for two reasons: First, we decompose X (0) into a Cartesian product, which induces an error that is inherent to 
the decomposition method, as explained in Sect. 4. Second, SpaceEx uses a forward-backward interpolation model, which is 
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Table 3
Reach tube computation in dense time. The model statistics are given in Table 2. The number of time steps is 2e4 with step size δ = 1e−3 for both
JuliaReach (abbreviated JReach in this table) and SpaceEx.

Model Discretize 
(sec)

Runtime (sec) one variable Runtime (sec) all variables O.A. %

JReach SpaceEx Spdup JReach SpaceEx Spdup

Motor 3.31e−4 5.12e−1 1.90 3.7 3.85 9.29 2.4 21.53
Bldng 9.99e−3 1.71 9.54 5.6 6.65e1 2.24e2 3.4 6.62
PDE 1.55e−2 3.56 6.17e1 17.3 1.97e2 4.75e3 24.1 81.59
Heat 7.30e−2 8.28 1.02e2 12.3 1.05e3 5.68e3 5.4 0.05
ISS 1.25e−1 9.57e−1 7.91e1 82.7 1.26e2 8.12e3 64.4 14.52
Beam 5.21e−1 2.67e1 3.32e2 12.4 2.96e3 3.80e4 12.8 -30.35
MNA1 1.67e−1 8.75e1 † n/a 7.58e3 † n/a n/a
FOM 5.69e−2 3.40 † n/a 1.06e3 † n/a n/a
MNA5 1.92e−1 8.93e1 † n/a T.O. † n/a n/a

“Discretize” stands for the discretization time in JuliaReach. “Runtime” stands for the total runtime. “Spdup” stands for the relative speedup of JuliaReach

over SpaceEx. “O.A. %” stands for overapproximation in percent, which is computed as the increase in the bounds computed with JuliaReach for the variable 
reported in Table 2, measured at the last time step, relative to the SpaceEx bounds. “†” marks a crash and “T.O.” marks a timeout (1e5 sec). “” marks the 
optimized algorithm described in Section 5.2.

Table 4
Verification of safety properties in discrete time. The model statistics are given in Table 2. The number of time steps is 4e3 with step size δ = 5e−3 for 
both JuliaReach and Hylaa.

Model Runtime (sec)

JuliaReach Hylaa Speedup

Discretize Check Total

Motor 2.53e−4 1.29e−1 1.29e−1 1.6 12.4
Building 1.52e−3 3.59e−1 3.61e−1 2.5 6.9
PDE 1.20e−2 2.86e1 2.87e1 3.5 0.1
Heat 9.63e−2 2.03 2.12 1.38e1 6.5
ISS ⊥ 1.99e−1 6.68 6.88 1.53e2 22.2
ISS @135D 1.99e−1 2.74 2.93 1.53e2 52.2
Beam 3.14e−1 5.83 6.14 1.69e2 27.5
MNA1 4.06e−2 1.78e1 1.79e1 2.88e2 16.1
FOM ⊥ 2.25e−1 8.83e1 8.85e1 3.30e2 3.7
FOM @6D 2.25e−1 1.10e2 1.10e2 3.30e2 3.0
MNA5 1.64e−1 1.87e2 1.87e2 3.44e4 183.9

“ ⊥” marks a benchmark for that we could not verify the property for the given time step. For these benchmarks we show a second row with a successful 
run with different block sizes and lazy inputs (called @kD where k is the block size). “” marks the optimized algorithm described in Section 5.2.

Table 5
Verification of safety properties in dense time.

Model n Safety property δ Runtime (sec)

Motor 8 x1 /∈ [0.35,0.4] ∨ x5 /∈ [0.45,0.6] 1e−3 6.66e−1
Building 48 x25 < 6e−3 2e−3 9.01e−1
PDE 84 y1 < 12 3e−4 8.63e2
Heat 200 x133 < 0.1 1e−3 1.15e1
ISS @135D 270 y3 ∈ [−7,7] × 10−4 6e−4 2.17e1
Beam 348 x89 < 2100 5e−5 6.37e2
MNA1 578 x1 < 0.5 4e−4 2.50e2
MNA5 10913 x1 < 0.2 ∧ x2 < 0.15 3e−1 7.22e2

Step sizes are selected such that the property is satisfied. The time horizon is 20. For ISS we use different block sizes and lazy inputs.

more sophisticated than the forward-only model from Sect. 2.4; we note that our method could also use the SpaceEx model 
without requiring any other changes. In most experiments, the precision is moderately below that of SpaceEx. Only for the 
PDE model the approximation error is relatively high. For the Beam model our analysis is not only faster but also more 
precise. For all models we observe a speedup; as expected, the improvement is more evident for large and sparse models.
SpaceEx gave up or crashed with a segmentation fault for the three largest models.

6.2. Verification of safety properties

As described in Sect. 5.4, we can check safety properties in the form of (Boolean combinations of) linear inequalities over 
the state variables. In Table 4 we compare our results to those of Hylaa [30], a simulation-based verification tool in discrete 
time. Hylaa assumes that the inputs are constant between time steps, and we stick to this assumption for the purpose of 
comparison. We use the same time step as in the evaluation of [30] and again only look at one-dimensional blocks. With 
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Fig. 11. Safety property output (in dense time) for the ISS model with mixed 1D/135D blocks, without and with lazy input representation.

these settings we are able to verify all safety properties except for the models ISS and FOM. Hylaa verifies all benchmarks.4

For eight out of the nine examples we observe a speedup, which ranges from ×3 up to ×87. As expected, our approach 
scales best for the models whose properties only involve a few variables; PDE and FOM involve all variables, and for PDE (a 
dense model) Hylaa is faster; ISS involves half of the variables, and here we still achieve a ×22 speedup.

We also apply JuliaReach to the benchmarks in dense time, which Hylaa does not handle. With one-dimensional blocks 
we are able to verify seven out of the nine benchmarks. The results are shown in Table 5. In particular, we are able to verify 
the MNA5 model with 10,913 variables in 12 minutes, where 46% of the time is spent in the discretization.

Improving precision

In both the discrete-time and dense-time cases, JuliaReach fails to verify the same instances with one-dimensional 
block decomposition, namely ISS and FOM, because it is not precise enough. For both models, the property involves a linear 
combination of state variables from different blocks. It is not surprising that this leads to a high approximation error.

We thus increase the block size for a more precise analysis: For the ISS model, we wrap the output variables x136 to x270
in one 135-dimensional block. For FOM we use uniform six-dimensional blocks (plus one 4D block in the end). Additionally, 
we represent the inputs lazily (see Section 5.5) in order to get rid of the wrapping effect in the inputs. Fig. 11 shows the 
output function corresponding to the safety property for the ISS model.

With these settings we are able to verify the safety properties in discrete time and in dense time (ISS only). We report 
the performance in the respective Tables 4 and 5. Note that the analysis of the ISS model with lazy input representation is 
even faster, while the analysis of the FOM model is slower; we explain this observation with the fact that the ISS model has 
three inputs, and thus avoiding unnecessary overapproximations pays off, while the FOM model has only one input.

6.3. Sparsity

Each LTI system has its own structural properties, describing how each state influences the system dynamics. The SLICOT 
models have different sparsity patterns, which we effectively exploited in JuliaReach. We measure the sparsity of � as the 
number of low-dimensional blocks with at least one non-zero element, divided by the total number of blocks. Observe that 
line 14 of Algorithm 1 simplifies to a no-op for each zero block, and thus, as a rule of thumb, for a given row-block the 
cost increases linearly in the number of occupied blocks. Consider the case of 1×1 blocks. For models such as Heat and 
Beam the sparsity is 0%, meaning that the matrix is completely dense, while for models such as ISS and FOM the sparsity is 
99.3% and 99.9%, respectively. We note that the matrix power operation does not necessarily preserve the sparsity pattern, 
although it does in some particular cases, e.g., if � is block upper-triangular.

The efficiency with respect to the sparsity pattern is manifest in the small runtimes for sparse models, compared to 
higher runtimes for dense models. In contrast, non-decomposed methods cannot make full use of the sparsity since they 
rely on a high-dimensional LP even for evaluating the support vector in a single direction. This explains the very high 
speedup of ×64 for the ISS model.

For the largest models (MNA1, FOM and MNA5), we have used the optimized discretization method described in Sec-
tion 5.2. The size of the Krylov subspace is m = 30, which is a common default value [63]. The runtimes obtained are up 
to three orders of magnitude faster than those obtained with the previous approach in [15] (times were 2.62, 3.26e−1 and 
3.28e2 respectively). This illustrates the improved scalability of our method. For an overview of the sparsity patterns of the 
benchmark models used in the evaluation, see Table 6.

4 We had to modify Hylaa to prevent out-of-memory problems for the FOM model; specifically, we reduced the time horizon chunk size
max_steps_in_mem from 527 to 400.
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Table 6
Sparsity characteristics of the SLICOT benchmarks. The sparsity of A (�), denoted as “sp A” (“sp �”), is the relative number of zero entries.

Model n sp A sp � Sparsity 
plot (A)

Sparsity 
plot (�)

Motor 8 75.0% 50.0%

Building 48 48.9% 0.0%

PDE 84 94.6% 0.0%

Heat 200 98.5% 0.0%

ISS 270 99.4% 99.3%

Beam 384 49.9% 0.0%

MNA1 578 99.5% 4.1%

FOM 1006 99.9% 99.9%

MNA5 10913 99.9% 99.7% † †

For the MNA5 model the plotting engine crashed (†).

7. Conclusions

We have revisited the fundamental set-based recurrence relation that arises in the study of reachability problems with 
affine dynamics and nondeterministic inputs. We integrated high-dimensional matrix computations with low-dimensional 
set computations in a state-of-the-art reachability algorithm. Our approach is advantageous against the “curse of dimension-
ality”: Reformulating the recurrence as a sequence of independent low-dimensional problems, we can effectively scale to 
high-order systems. The overapproximation is conservative due the decomposition, and we have characterized the influence 
of initial states, inputs, dynamics, and time step with an analytic upper bound. We have evaluated our method on a set 
of real-world models from control engineering, involving many coupled variables. Numerical results show a speedup of up 
to two orders of magnitude with respect to state-of-the-art approaches that are non-decomposed. With one exception, the 
overapproximation is within 22% of the non-decomposed solution. In the dense-time case, our approach can handle systems 
with substantially (almost two orders of magnitude) more variables than the state-of-the-art tool SpaceEx.

Note that in this paper we have only used box directions to represent low-dimensional sets. The accuracy was suf-
ficient because, for our benchmark suite, all the low-dimensional properties are axis-aligned. In general, more accurate 
low-dimensional projections, arbitrarily close to the exact projection, may be required, and we have illustrated how to 
efficiently work with two-dimensional approximations.
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We have only discussed uniform block structures that are not overlapping. Allowing blocks to overlap may give additional 
precision (for instance, it leads to relative completeness for software [64]). However, to make use of overlaps, we would have 
to intersect reach tubes, which is an operation that is difficult when using support functions.
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