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Abstract— The stability of alternating current microgrids (AC 

MGs) is significantly affected by the procedure of collecting 

precise and sufficient information of the system and tightly 

controlling power inverters. Whereas using many sensors 

increases AC MG ripples and cost, integrating cost-effective and 

low number of sensors is preferred. Further, assuring the stability 

and tracking issue of AC MGs in different operating modes and in 

the presence of unknown time-varying loads is a hard task. Aiming 

at these issues, this paper proposes an improved augmented-

Kalman filter to estimate the state vector and disturbance inputs 

and a nonlinear backstepping controller with a command filter to 

design the control law. Compared to the conventional Kalman 

filters, the developed approach is able to estimate the external 

disturbances, which improves the state estimation performance 

and provides extra information about the power system. The 

proposed command filter-based backstepping has the key feature 

of avoiding the calculation of time-derivatives of desired 

references of virtual inputs, which is a common drawback of 

conventional approaches. Whereas the dynamics of the 

disturbance time-varying load are not available, the command 

filter is utilized to avoid the time derivatives terms of the 

disturbance inputs. Simulation results illustrate the estimation 

performance of the augmented Kalman filter and the tracking 

performance of the command filter-based backstepping 

controller.  
 

Keywords— AC microgrid (MG), Backstepping controller, 

Kalman filter, Unknown time-varying load, Command filter. 

NOMENCLATURE 

A. AC MG system parameters 
𝑟𝑓, 𝐶𝑓, 𝐿𝑓                  Filter resistance, capacitance, and inductance 

𝑣𝑜𝑑, 𝑣𝑜𝑞                      Bus voltages in the 𝑑𝑞 framework 

𝑖𝑜𝑑, 𝑖𝑜𝑞               Load currents in the 𝑑𝑞 framework 

𝑖𝑖𝑑, 𝑖𝑖𝑞                        Inverter currents in the 𝑑𝑞 framework 

𝑣𝑖𝑑, 𝑣𝑖𝑞                     Inverter voltages in the 𝑑𝑞 framework 

𝜔                    AC MG frequency 
 

B. Kalman filter parameters 
𝑥                     System state vector 

𝑑                      Parameter vector 

 
N. Vafamand and M.M. Arefi are with the School of Electrical and Computer 
Engineering, Shiraz University, Shiraz, Iran (e-mails: {n.vafamand, arefi 

}@shirazu.ac.ir). 

𝑥𝐾𝐹                       Kalman state vector  

𝑢                    Control input vector 

𝐴, 𝐵, 𝐻                     Continuous-time system matrices  

𝑤𝑘, 𝑣𝑘                    System and measurement noises 

𝑄𝑘, 𝑅𝑘 System and measurement noise covariances 

𝑇𝑠 Discretizing constant 

�̂�𝐾𝐹  Estimation of the Kalman state vector 

𝑃𝐾𝐹 Covariance of the estimation  

𝐾𝐾𝐹  Kalman gain matrix 
 

C. Backstepping controller 
𝑥1,𝑑, … , 𝑥4,𝑑 Desired references for the states  

𝑧1, … , 𝑧4 Tracking errors 

𝑞1, … , 𝑞4 Command filter states 

ℎ3, ℎ4  Virtual control input laws 

𝛾1, … , 𝛾4 Control design parameters 

I. INTRODUCTION 

Delivering electricity from the main grid to far 

consumptions, such as isolated communication stations or 

remote villages/islands, via transmission lines is technically 

hard and/or economically inappropriate [1]–[3]. In this regard, 

an economical solution is supplying power via an islanding 

mode MG topology, which often includes renewable energy 

resources (RERs) [4]. In this circumstance, distributed 

generators (DGs) have the key role of regulating the current, 

voltage, and maybe the frequency of the MG without any 

support from the main grid [4], [5]. MGs can be established in 

the form of AC or direct current (DC) types, solely or jointly 

[6], [7]. In the AC MGs, the key challenging point is regulating 

the frequency and voltage of the main bus to supply the load 

reliably and firmly [4]. It is appropriate that the AC MG control 

mechanism should deliver sinusoidal output voltages and 

currents with low total harmonic distortion (THD) [8]–[10], be 

robust against grid disturbances, and provide fast and effective 

voltage and frequency regulation. As yet, to achieve such 

characteristics, different linear and nonlinear control methods 

have already been recommended in the literature [11], [12]. 

Some of the linear control approaches are proportional-integral-

derivative (PID) [13], robust dynamical state-feedback [14], 

and internal model principle [15]. Nevertheless, the AC MG 
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control action is more of a time-varying and nonlinear system 

owing to DG uncertainties, unknown load disturbances, 

switching behaviors of the inverters, and operation mode 

transitions. Hence, linear control methods are less possible to 

satisfy the desired performance and control objectives. 

Thereby, most of the conventional linear control approaches 

only provide average performance in some limited operating 

situations. To tackle this issue, nonlinear control methods such 

as feedback linearization [16], active disturbance rejection [17], 

state bounds constrained dynamic [18], model predictive [8], 

and sliding mode [2], [19] are suggested in the literature. 

Although the above nonlinear methods can theoretically assure 

the AC MG stability, their control laws are functions of the state 

vector. Since any estimation mechanism to construct the state 

vector form the measured output vector is not given in those 

approaches, their developed controllers necessitate measuring 

all states. In [20], a model reference adaptive backstepping 

controller is suggested for voltage mode control of AC MGs. A 

two-state power system is considered and a state observer is 

presented. However, the above control approaches require the 

instantaneous values of the loads' currents and even their time-

derivative evolutions. On the other hand, to measure the state 

vector as well as the system time-varying parameters, several 

current and voltage sensors must be installed. This is 

undesirably increases the system complexity and total cost, and 

degrades the performance owning to the ripple filtering effect 

of current sensors [21]. Moreover, for unknown time-varying 

loads, computing their time-derivative evolutions in prior is not 

trivial. Consequently, it is preferred to I) use sensors as low as 

possible and instead estimate the other information involved in 

the controller input; II) avoid the time-derivative of unknown 

loads in the stability analysis.  

One effective way to perform the parameters estimation and 

reduce the number of sensors is the Kalman filter (KF). 

Mathematically, the KFs are robust against the stochastic 

system and measurement white noises [22]. Originally, the 

Kalman filter was used to estimate the state vector of linear and 

nonlinear systems. After that, it was extended to the case that 

system parameters are also estimated in the context of 

augmented Kalman filter [23], Kalman filter with unknown 

inputs [24], or a more general class of Kalman filter [25]. The 

KFs have been used in power system applications, including 

estimating the arc fault in microgrids [26] and actuator and 

sensor faults in microgrids [27], the state-of-charge in energy 

storage systems [28], and primary winding current in power 

transformers [29]. More specifically, for the MGs, the KFs have 

been developed to estimate the currents and voltages. For 

example, in [30], [31], and [32] the state vector of a typical DC 

MG is estimated by extended-KF and cubature-KF, 

respectively. In [33], an improved KF is applied to a three-

phase AC MG to estimate the currents of the AC MG and 

unknown load power in DC MGs [31]. However, in [33] and 

[30], the control issue of MG is not studied. Furthermore, the 

controller of [31] does not assure the closed-loop stability 

theoretically and the linear controller of [32] leads to poor 

performance dealing with external disturbance. On the other 

hand, in order to deal with unknown disturbance dynamics, the 

command-filter-based backstepping approach can be utilized 

[34], [35]. In [36], the command filter backstepping controller 

is considered for an AC MG connected to photovoltaic cells and 

energy storage units. However, that approach requires that all 

states, including those of photovoltaic cells and energy storage 

units, are measurable, which is not practical. Reviewing the 

above references illustrate that each issue of state estimation 

and controller design with known load time-derivatives are 

considered solely. Almost all of the conventional controllers 

require that dynamics of the loads are given or they are 

measured via additional sensors. This confines the applicability 

of the available methods or increases sensor installation and 

maintenance costs. Besides, the simultaneous consideration of 

Kalman filter and advanced controller with the assumption that 

load dynamics are unknown have not been studied yet, which is 

the key motivating point of this work. More precisely, since the 

load and its dynamic are unknown, it is required that the 

controller design procedure is developed so that the closed-loop 

stability is guaranteed without the need of the load dynamics.   

To sum up, this paper proposes a cost-effective augmented-

Kalman filter and command-filter-based backstepping 

controller for AC MGs. The developed Kalman filter estimates 

both the states and disturbance vectors, simultaneously from the 

noisy measured output vector. The estimated information is 

then utilized in the nonlinear backstepping controller to regulate 

the AC MG bus voltage. Whereas the dynamics of the load are 

not known, a command-filter technique is developed to avoid 

them and assure the closed-loop stability and reference 

tracking, theoretically. This is the main contribution of the 

proposed approach over the conventional backstepping 

controllers, which require the dynamics of loads. Assuming that  

the dynamics of loads are given prior may spoil the theoretical 

establishment of closed-loop stability in the conventional 

backstepping controllers. Besides, the proposed approach is 

robust against noisy measurements, requires a low number of 

sensors, and is robust against uncertainties and linear and 

nonlinear loads. It also offers a low online computational 

burden and complexity, which makes it practical. Numerical 

simulations are given to show the efficiency of the proposed 

approach for system state and disturbance estimation, fast 

regulation, and high-quality power.  

This paper is continued by the following sections. Section II 

presents the mathematical state-space modeling of the three-

phase of an AC MG. Section III studies the concept of joint state 

and disturbance estimation based on an augmented-Kalman 

filter. Section IV deals with designing a command-filter-based 

backstepping controller. In Section V, some discussions on the 

novelty and advantages of the developed approach of Sections 

III and IV are given. In Section VI, the proposed approach is 

used to estimate states and disturbance input and control of the 

AC MG. The suggested future works besides the related 

conclusion are also summarized in Section VII. 

II. AC MICROGRID TOPOLOGY AND DYNAMICS 

An AC MG involves linear and nonlinear loads, DGs, RERs, 

and energy storage systems, which are incorporated in Fig. 1. 

Ignoring the RERs and energy storages of the DC MG side, a 

typical stand-alone three-phase AC MG can be fed using a 

tightly regulated DC/AC inverter that connects a DC source to 

the stand-alone AC MG. For simplicity, a diagram of one leg of 

the three-phase AC MG is given in Fig. 2. The DC/AC inverter 

is constructed by anti-parallel IGBTs and diode-based 
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bidirectional switches to provide a controllable voltage output 

𝑣𝑖 from the DC source with 𝑉𝐷𝐶 voltage level. The AC MG 

feeds several unknown three-phase loads 𝑅𝐿 and 𝐿𝐿, which in 

general can be nonlinear, unbalanced, and time-varying.  
 

 
Fig. 1: The diagram of a stand-alone AC MG with different 

elements. 

 

The dynamics of the stand-alone AC MG of Fig. 2 within the 

𝑑𝑞0 rotating reference frame are obtained as follows [33]: 

{
 
 

 
 
𝐶𝑓𝑣𝑜𝑑̇ = −𝑖𝑜𝑑 + 𝜔𝐶𝑓𝑣𝑜𝑞 + 𝑖𝑖𝑑             

𝐶𝑓𝑣𝑜𝑞̇ = −𝑖𝑜𝑞 −𝜔𝐶𝑓𝑣𝑜𝑑 + 𝑖𝑖𝑞              

𝐿𝑓𝑖̇𝑖�̇� = −𝑣𝑜𝑑 − 𝑟𝑓𝑖𝑖𝑑 +𝜔𝐿𝑓𝑖𝑖𝑞 + 𝑣𝑖𝑑

𝐿𝑓𝑖̇𝑖�̇� = −𝑣𝑜𝑞 − 𝑟𝑓𝑖𝑖𝑞 − 𝜔𝐿𝑓𝑖𝑖𝑑 + 𝑣𝑖𝑞

 (1) 

where 𝑖𝑜𝑑 and 𝑖𝑜𝑞  are the load currents, 𝑖𝑖𝑑 and 𝑖𝑖𝑞  are the 

inverter currents, and 𝑣𝑜𝑑 and 𝑣𝑜𝑞  are the bus voltages. Also, 

𝑅𝑓, 𝐶𝑓, and 𝐿𝑓 stand for the resistor, capacitor, and inductor of 

the RLC filter. By introducing the state vector 𝑥 =

[𝑥1  𝑥2  𝑥3  𝑥4]
𝑇 = [𝑣𝑜𝑑    𝑣𝑜𝑞    𝑖𝑖𝑑    𝑖𝑖𝑞]

𝑇
, and the input vector 

𝑢 = [𝑢1  𝑢2]
𝑇 = [𝑣𝑖𝑑    𝑣𝑖𝑞]

𝑇
, the external disturbance input 

𝑑 = [𝑑1    𝑑2]
𝑇 = [𝑖𝑜𝑑    𝑖𝑜𝑞]

𝑇
, the equivalent state-space 

representation of the dynamics (1) is derived as follows: 

{
 
 

 
 �̇�1 = 𝜔𝑥2 + 1/𝐶𝑓𝑥3 − 1/𝐶𝑓𝑑1                         

�̇�2 = −𝜔𝑥1 + 1/𝐶𝑓𝑥4 − 1/𝐶𝑓𝑑2                      

�̇�3 = −1/𝐿𝑓𝑥1 − 𝑟𝑓/𝐿𝑓𝑥3 + 𝜔𝑥4 + 1/𝐿𝑓𝑢1  

�̇�4  = −1/𝐿𝑓𝑥2 − 𝑟𝑓/𝐿𝑓𝑥4 − 𝜔𝑥3 + 1/𝐿𝑓𝑢2

 (2) 

 

 
Fig. 2: The diagram of one leg of the stand-alone AC MG.  

 

The objective is to regulate the AC MG bus voltage by using 

the measured output 𝑦 = [𝑦1  𝑦2]
𝑇 = [𝑥1  𝑥2]

𝑇 . In (2), the 

notation external disturbance input for the load currents is used 

because those terms are not the system states and are unknown. 

However, the external disturbance inputs can also involve 

occurring faults, and uncertainties of the RLC filter [2]. The 

developed controller comprises two parts of the state and 

disturbance estimation and the command-filter backstepping 

controller. In the following, these parts will be discussed in 

detail. 

III. AUGMENTED-KALMAN FILTER 

This section is devoted to extending the conventional 

Kalman filter to the AC MG with state and disturbance vectors. 

The developed augmented-Kalman filter should I) estimate the 

values of the states 𝑥3 and 𝑥4, II) smooth the noisy values of the 

states 𝑥1 and 𝑥2, and III) estimate the external disturbances 𝑑1 

and 𝑑2. To achieve this goal, the disturbance vector 𝑑 is 

incorporated with the state vector 𝑥 to produce an augmented 

state vector. This idea was originally presented in [37] and has 

been improved in [23]–[25] as follows: 

�̇�𝐾𝐹 = [�̇�𝑇 �̇�𝑇]
𝑇 (3) 

whereas the loads’ dynamics are unknown in general, one 

considers that [23]: 

�̇� = 0 (4) 

Letting 𝑑 = [𝑑1, 𝑑2]
𝑇 and considering (2)-(4), the augmented 

state-space model is obtained as follows: 
�̇�𝐾𝐹 = 𝐴𝑥𝐾𝐹 + 𝐵𝑢
𝑦 = 𝐻𝑥𝐾𝐹                

 (5) 

where 

𝐴 =

[
 
 
 
 
 

0 𝜔 1/𝐶𝑓 0 −1/𝐶𝑓 0

−𝜔 0 0 1/𝐶𝑓 0 −1/𝐶𝑓
−1/𝐿𝑓 0 −𝑟𝑓/𝐿𝑓 𝜔 0 0

0 −1/𝐿𝑓 −𝜔 −𝑟𝑓/𝐿𝑓 0 0

0 0 0 0 0 0
0 0 0 0 0 0 ]

 
 
 
 
 

, 

𝐻 = [1 0 0 0 0 0
0 1 0 0 0 0

] 

𝐵 = [
0 0 0 1/𝐿𝑓 0 0

0 0 1/𝐿𝑓 0 0 0
]

𝑇

 

By Applying the forward Euler technique and adding the 

system and measurement noises 𝑤 and 𝑣 to (5), the following 

discrete state-space model is achieved: 

{
𝑥𝐾𝐹,𝑘+1 = (𝐼 + 𝑇𝑠𝐴)𝑥𝐾𝐹,𝑘 + 𝑇𝐵𝑢𝑘 + 𝑤𝑘
𝑦𝑘 = 𝐻𝑥𝐾𝐹 + 𝑣𝑘                                             

 (6) 

where white noises 𝑤 and 𝑣 shave zero mean and covariance 

matrices Q and R, respectively, 𝑇𝑠 stands for the discretizing 

constant, and the discrete sample number is represented by 𝑘. 

The algorithm of the augmented-KF method is as below: 

• Time Update 
�̂�𝐾𝐹,𝑘
− = �̂�𝐾𝐹,𝑘−1 + (𝐼 + 𝑇𝑠𝐴)𝑥𝐾𝐹,𝑘 + 𝑇𝐵𝑢𝑘  

𝑃𝐾𝐹,𝑘
− = 𝐴𝑃𝐾𝐹,𝑘−1𝐴

𝑇 + 𝑄𝑘−1                            
 (7) 

• Measurement Update 

𝐾𝐾𝐹,𝑘 = 𝑃𝐾𝐹,𝑘
− 𝐻𝑘

𝑇(𝐻𝑘𝑃𝐾𝐹,𝑘
− 𝐻𝑘

𝑇 + 𝑅𝑘)
−1

�̂�𝐾𝐹,𝑘 = �̂�𝐾𝐹,𝑘
− + 𝐾𝑘(𝑦𝑘 − 𝐻�̂�𝐾𝐹,𝑘

− )        

𝑃𝐾𝐹,𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝐾𝐹,𝑘
−                          

    (8) 

where �̂�𝐾𝐹,𝑘
−  and 𝑃𝐾𝐹,𝑘

−  are predicted states vector and its 

corresponding predicted covariance matrix ahead of taking into 

account the system dynamics. Also, involving the 

measurements in the augmented-KF, the estimated states vector 

Renewable sources 

Storage units 

DC/DC 

DC/DC 

Filter 

Filter 

DC MG 

DC Line 

AC Line 

Three phase 

DC/AC 

 

Filter 

Linear load 

Nonlinear load 

Unknown 

load 
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𝐶𝑓 

𝑆𝑎
+ 

𝑆𝑎
− 

𝑉𝐷𝐶 
𝑖𝑖 
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𝑣𝑖 
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�̂�𝐾𝐹,𝑘  and the covariance matrix of the estimated state 𝑃𝐾𝐹,𝑘 are 

computed. The filter gain is also expressed by 𝐾𝐾𝐹,𝑘.     

IV. BACKSTEPPING CONTROLLER 

A. Command filter approach 

The AC MG system contains unknown loads, which can 

comprise the AC MG loads and/or the grid-connected sharing 

current. Although the current 𝑖𝑜 is estimated by the augmented-

Kalman in Section III, its time-derivative is still unknown. To 

assure closed-loop stability, in this paper, a novel backstepping 

controller is proposed such that it does not require the time-

derivatives of loads. Moreover, to avoid the complex 

calculation of derivative terms and the need to know the 

dynamics of the loads, in this paper a command filter approach 

[34], [35], [38] is developed. By using the command filter in the 

design procedure, instead of computing their time derivatives, 

the virtual inputs are filtered by a first-order stable filter and its 

outputs will be used. 

The design procedure of the proposed controller for the AC 

MG system is decomposed into three parts. The first two parts 

suggest stabilizing control laws for 𝑢1 and 𝑢2. In this regard, 

the state-space representation (2) is split into two strict-

feedback forms, where the dynamics of states 𝑥1 and 𝑥2 possess 

virtual control input states 𝑥3 and 𝑥4. Such dynamics can be 

regulated by the proposed backstepping control method. The 

simplified strict feedback structure of the dynamics (2) is 

presented in Fig. 3. As can be seen in Fig. 3, the desired outputs 

are 𝑥1 and 𝑥2, which are influenced by the states 𝑥3 and 𝑥4, 

respectively. The states 𝑥3 and 𝑥4 are called virtual inputs for 

the dynamics �̇�1 and �̇�2. Therefore, the desired values of the 

virtual inputs are found so that the outputs track their desired 

values. After that, the actual control inputs should be designed 

such that the virtual inputs 𝑥3 and 𝑥4 reach to their desired 

value. Finally, the overall stability proof based on the Lyapunov 

theorem is discussed in the third part. 
 

 
Fig. 3: The AC MG system with the strict feedback form.   

B. Controller design of 𝑢1 = 𝑣𝑖𝑑 

Consider that the state 𝑥1 tracks the desired differentiable 

reference 𝑥1,𝑑. Define the first tracking error as 𝑧1 = 𝑥1 −

𝑥1,𝑑 − 𝑞1 where 𝑞1  is updated by 

�̇�1 = −𝛾1𝑞1 + 𝑥3,𝑑 − ℎ3 (9) 

𝑥3,𝑑̇ = −
1

𝑇𝑓1
(𝑥3,𝑑 − ℎ3) (10) 

where 𝛾1 > 0, 𝑇𝑓1, and ℎ3 will be defined later. Time derivative 

of 𝑧1 is 

�̇�1 = 𝜔𝑥2 +
1

𝐶𝑓
𝑥3 −

1

𝐶𝑓
𝑑1 − �̇�1,𝑑 + 𝛾1𝑞1 − 𝑥3,𝑑 + ℎ3 (11) 

Defining the third tracking error 𝑧3 =
1

𝐶𝑓
𝑥3 − 𝑥3,𝑑 − 𝑞3 

results in 

�̇�1 = 𝑧3 + 𝑞3 −
1

𝐶𝑓
𝑑1 + 𝜔𝑥2 − �̇�1,𝑑 + 𝛾1𝑞1 + ℎ3 (12) 

Now, design the virtual control law ℎ3  as follows: 

ℎ3 = −𝛾1(𝑥1 − 𝑥1,𝑑) − 𝑞3 +
1

𝐶𝑓
𝑑1 − 𝜔𝑥2 + �̇�1,𝑑 (13) 

Substituting (13) into (12) provides 

�̇�1 = −𝛾1𝑧1 + 𝑧3 (14) 

By choosing �̇�3 = −𝛾3𝑞3 with 𝛾3 > 0, the time derivative of 

𝑧3 is 

�̇�3 = −
1

𝐶𝑓𝐿𝑓
𝑥1 −

𝑟𝑓

𝐶𝑓𝐿𝑓
𝑥3 +

𝜔

𝐶𝑓
𝑥4 +

1

𝐶𝑓𝐿𝑓
𝑢1 − 𝑥3,𝑑̇

+ 𝛾3𝑞3 

(15) 

The actual control law is designed as follows: 

𝑢1 = 𝐶𝑓𝐿𝑓 (−𝛾3 (
1

𝐶𝑓
𝑥3 − 𝑥3,𝑑) +

1

𝐶𝑓𝐿𝑓
𝑥1 +

𝑟𝑓

𝐶𝑓𝐿𝑓
𝑥3

−
𝜔

𝐶𝑓
𝑥4 + 𝑥3,𝑑̇ − 𝑧1) 

(16) 

Substituting (16) into (15) results in  

�̇�3 = −𝛾3𝑧3 − 𝑧1 (17) 

C. Controller design of 𝑢2 = 𝑣𝑖𝑞  

Consider that the state 𝑥2 tracks the desired differentiable 

reference 𝑥2,𝑑. Let the second tracking error as 𝑧2 = 𝑥2 −

𝑥2,𝑑 − 𝑞2 where 𝑞2 is updated by 

�̇�2 = −𝛾2𝑞2 + 𝑥4,𝑑 − ℎ4 (18) 

𝑥4,𝑑̇ = −
1

𝑇𝑓2
(𝑥4,𝑑 − ℎ4) (19) 

where 𝛾2 > 0, 𝑇𝑓2 > 0, and ℎ4 will be defined later. Time 

derivative of 𝑧2 is 

�̇�2 =
1

𝐶𝑓
𝑥4 −

1

𝐶𝑓
𝑑2 − 𝜔𝑥1 − �̇�2,𝑑 + 𝛾2𝑞2 − 𝑥4,𝑑 + ℎ4 (20) 

Defining the third tracking error 𝑧4 =
1

𝐶𝑓
𝑥4 − 𝑥4,𝑑 − 𝑞4 

results in 

�̇�2 = 𝑧4 + 𝑞4 −
1

𝐶𝑓
𝑑2 − 𝜔𝑥1 − �̇�2,𝑑 + 𝛾2𝑞2 + ℎ4 (21) 

Now, design the virtual control law ℎ4  as 

ℎ4 = −𝛾2(𝑥2 − 𝑥2,𝑑) − 𝑞4 +
1

𝐶
𝑑2 +𝜔𝑥1 + �̇�2,𝑑 (22) 

Substituting (22) into (21) provides 

�̇�2 = −𝛾2𝑧2 + 𝑧4 (23) 

By choosing �̇�4 = −𝛾4𝑞4 with 𝛾4 > 0, the time derivative of 

𝑧4 is 

�̇�4 = −
1

𝐶𝑓𝐿𝑓
𝑥2 −

𝑟𝑓

𝐶𝑓𝐿𝑓
𝑥4 −

𝜔

𝐶𝑓
𝑥3 +

1

𝐶𝑓𝐿𝑓
𝑢2 − 𝑥4,𝑑̇

+ 𝛾4𝑞4 

(24) 

The actual control law is designed as 

𝑢2 = 𝐶𝑓𝐿𝑓 (𝛾4 (
1

𝐶𝑓
𝑥4 − 𝑥4,𝑑) +

1

𝐶𝑓𝐿𝑓
𝑥2 +

𝑟𝑓

𝐶𝑓𝐿𝑓
𝑥3

−
𝜔

𝐶𝑓
𝑥3 + 𝑥4,𝑑̇ − 𝑧2) 

(25) 

𝑦2 = 𝑥2 
�̇�4 �̇�2 

�̇�3 

𝑢2 𝑥4 

𝑥3 𝑢1 𝑦1 = 𝑥1 
�̇�1 

𝑑1 

𝑑2 
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Substituting (16) into (15) results in  

�̇�4 = −𝛾4𝑧4 − 𝑧2 (26) 

D. Stability analysis of the closed-loop system 

In Sub-sections B and C, by substituting the virtual and actual 

control inputs, the dynamics of the 𝑧𝑖 for 𝑖 = 1,… ,4 are 

obtained. Now, in order to theoretically assure the asymptotic 

stability of the tracking errors 𝑧𝑖, consider a Lyapunov function 

candidate as follows: 

𝑉 =
1

2
(𝑧1
2 + 𝑧2

2 + 𝑧3
2 + 𝑧4

2) (27) 

The time derivative of (27) along (14), (17), (23), and (26) is 

equivalent to 

�̇� = −𝛾1𝑧1
2 − 𝛾2𝑧2

2 − 𝛾3𝑧3
2 − 𝛾4𝑧4

2 (28) 

Now, let 𝛾 = min
𝑖=1,…,4

𝛾𝑖. Thereby, (28) leads into 

�̇� ≤ −𝛾(𝑧1
2 + 𝑧2

2 + 𝑧3
2 + 𝑧4

2) = −2𝛾𝑉 < 0 (29) 

Thereby, the exponential stability with the decay rate 𝛾  [39] 

is assured.  

V. CONTRIBUTIONS AND IMPLEMENTATION OF THE PROPOSED 

CONTROLLER 

Remark 1 (Comparing the proposed backstepping 

controller with state-of-the-art methods): Although several 

backstepping control approaches have been presented for 

voltage source control in AC MGs, the conventional 

backstepping control approach has a common drawback of 

appearing the time-derivatives of desired references of virtual 

inputs in the next step of the design procedure. For the VSC of 

inverters with unknown loads, it is vital to have the time-

derivatives of currents of unknown loads and disturbances. 

Three general backstepping-based methods dealing with the 

time-derivative terms are presented in the literature. 
1. The trivial assumption is that the time derivatives of the 

currents of unknown loads are given [40]. However, 

measuring the time-derivative of currents is not cost-effective 

and increases the effect of noise on the closed-loop control 

system. 

2. The second category considers that the time derivatives terms 

are zero [41]. This assumption restricts the applicability of 

the control approach to almost constant and smooth loads. 

However, if the loads change fast over time, the control 

system performance degrades. 

3. In the third category, conventional backstepping control 

methods are equipped with robust schemes to avoid the time-

derivative terms in their control laws [42]. In [42], a sliding 

mode-based backstepping controller is suggested which is 

resilient against mismatched uncertainties and disturbance 

inputs. That approach assumes that the upper bound of time 

derivatives of the load currents are given and this value is 

then used in the switching law of the controller. Though, 

using the sliding mode controller produces chattered control 

input law, which mandates a high frequency switching in the 

PWM signal of the inverters. 

In contrast to state-of-the-art backstepping controllers, this 

paper equips the conventional backstepping controller with the 

so-called command filter approach. In this approach, instead of 

using the time derivatives of desired references of virtual 

inputs, the virtual inputs are subjected to a first-order stable 

filter to approximately compute their time derivatives. As can 

be seen in (16) and (25), the only derivative terms are 𝑥3,𝑑̇  and 

𝑥4,𝑑̇ , which are available from two stable first-order filters (10) 

and (19). Also, the error between the real-value and 

approximation of the time derivative is compensated in the 

design procedure to assure the closed-loop stability, 

theoretically. This is the key benefit of the proposed 

backstepping controller over the state-of-the-art approaches, 

which make it robust against unknown time-varying loads. 

Besides, the proposed approach has the following merits:  

1. The proposed approach exponentially stabilizes the AC MG 

voltage to any desired value. The achieved type of stability is 

rougher stability than the conventional asymptotic one. Based 

on the exponential stability, the tracking errors converge to 

zero with an exponential term push. However, the 

conventional model predictive methods [6], [31] cannot 

assure stability theoretically. 

2. The developed approach does not need the information of all 

system states and parameters. whereas the augmented-

Kalman filter is developed to estimate the current of the AC 

MG system, only based on the measured bus voltage. 

Compared to the conventional Kalman filters [43], [44], the 

considered augmented Kalman filter can estimate the 

disturbance input 𝑑 = [𝑑1    𝑑2]
𝑇 = [𝑖𝑜𝑑    𝑖𝑜𝑞]

𝑇
 and other 

states [𝑥3  𝑥4]
𝑇 = [𝑖𝑖𝑑    𝑖𝑖𝑞]

𝑇
, simultaneously. 

Remark 2 (Implementation of the overall controller): The 

overall closed-loop implementation of the AC MG (1) and the 

proposed controller is illustrated in Fig. 4. The AC bus voltage 

subjected to noisy measurement �̃�𝑜 is measured and discretized 

by a sampler to achieve �̃�𝑜,𝑘. Then, the Park’s transformation is 

utilized to derive the system outputs in the 𝑑𝑞0 framework. The 

suggested augmented-Kalman filter is utilized. It not only 

estimates the currents of the filter and unknown loads but also 

estimates the noisy-less information of the noisy measurements 

𝑣𝑜𝑑,𝑘 and 𝑣𝑜𝑞,𝑘. The output of the augmented-Kalman filter is 

the 𝑥𝐾𝐹,𝑘 = [𝑥𝑘
𝑇  𝑑𝑘

𝑇]𝑇. The value of the system states and 

distruabnces are then utilized in the command filter-based 

backstepping controller to compute the control inputs 𝑣𝑖𝑑,𝑘 and 

𝑣𝑖𝑜,𝑘. After that the inverse of the Park’s transformation is used 

to obtain the control input 𝑣𝑖,𝑘 in original framework. By using 

the zero-order-hold (ZOH), the continuous-time signal 𝑣𝑖 is 

achieved. Applying the pulse-width modulation (PWM) 

technique, the switching commands of the three-phase 

converter are achieved. It is worthy to note that the augmented-

Kalman filter is discrete-time; meanwhile, the command filter-

based backstepping controller is continuous-time. Since, in 

practice, digital processors are used to implement the overall 

controller, it is necessary to design a discrete-time controller 

based on the sampler and ZOH. Therefore, the command filter-

based backstepping controller uses the state information at a 

discrete-time to compute the control input. For sufficiently 

small values of discretizing and sampling constant, the 

performance of the overall controller will not degrade. 

The implementation of the augmented-Kalman filter and is 

given in Sections III and IV. The algorithm of the overall 

controller in the 𝑑𝑞0 is given in Algorithm 1.  

Remark 3 (Dealing the KF and backstepping controller 

with the load dynamics): The best case for designing an 

observer-based controller is to develop the observer and 
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controller independent of the unknown dynamics of the loads. 

However, the considered KF requires the dynamics of the load. 

As it is unknown, a trivial choice is to set it to be zero. On the 

other hand, the novel backstepping controller does not require 

the dynamics of the parameters. Also, it is inherently robust 

against uncertainties and inaccuracy state estimation. Thereby, 

the assumption of the KF that the load dynamics are zero does 

not spoil the closed-loop stability, as the estimation error is 

small and bounded. 

Remark 4 (Applicability of the proposed method to other 

power systems): The proposed augmented-KF and 

backstepping controller of this work can be utilized for other 

power systems with a given state-space representation. For 

example, the case study of distributed generators and power-

sharing and regulation issues based on droop control [45]. It is 

only required that the state-space representation should be of 

the strict-feedback form, as one example is given in Fig. 3. 

Remark 5 (Effects of the controller parameters on the 

system performance): The controller design procedure of 

Algorithm 1 comprises 5 steps of initialization. In these steps, 

the parameters of the augmented-Kalman filter, backstepping 

controller, and command filter should be selected.  

• For the augmented-KF, �̂�𝐾𝐹,0 and 𝑃𝐾𝐹,0 should be chosen 

based on the values of the power system states. If there is a 

pre-knowledge about the power system states, the initial 

condition �̂�𝐾𝐹,0 can be chosen to be near those of the power 

system and the error covariance matrix 𝑃𝐾𝐹,0 can be selected 

small. However, if there is no pre-knowledge of the power 

system states, the �̂�𝐾𝐹,0 and 𝑃𝐾𝐹,0 should be chosen arbitrarily 

and large enough, respectively. The matrices 𝑅 and 𝑄 are 

related to system and measurement noises. If there is not a 

pre-analysis of the noises (including the accuracy of the state-

space model and the precision of the measuring tools), they 

should be chosen large enough to cover their original value. 

The discretizing constant 𝑇𝑠 should be selected based on the 

sampling rate and the online computational burden. 

Generally, smaller values of 𝑇𝑠 make the estimation more 

accurate with the expense of fast processing. 

• The backstepping controller and command filter parameters 

𝛾𝑖 for 𝑖 = 1,… ,4 and 𝑇𝑓𝑗  for 𝑗 = 1,2 influence the tracking 

error (i.e. 𝑧𝑖 for 𝑖 = 1,… ,4) exponential convergence rate and 

command filter frequency response, respectively as well as 

the control input amplitude. Higher values of 𝛾𝑖 improve the 

convergence speed with the expense of increasing the 

controller input amplitude. Meanwhile, smaller values of 𝑇𝑓𝑗  

improve the command filter frequency with the expense of 

increasing the control input amplitude. 

The above effects should be considered to select appropriate 

values for the parameters of the controller of Algorithm 1. 

VI. SIMULATION RESULTS 

This section presents the results of the proposed Kalman-

based backstepping controller. In the first part, the accuracy and 

efficiency of the Kalman filter are studied in the 𝑑𝑞0 

framework. Two cases of slow and fast time-varying loads are 

considered. In the second part, the overall controller is utilized 

to compensate for the time-varying three-phase load. 

E. Augmented Kalman filter 

To evaluate the efficiency of the augmented Kalman filter, 

two cases are presented. In the former case, the load changes in 

a stepwise manner, which stands for the case that the loads are 

(dis)connected (from)to the AC MG. Meanwhile, in the latter 

case, the load changes smoothly. It is assumed that the 

switching commands of the inverter are fixed, so that 𝑣𝑖𝑑 =
𝑣𝑖𝑞 = 250 𝑉. The parameters and initial conditions of the 

augmented Kalman filter are as follows: 

{
𝑥𝐾𝐹,0 = [240   240    1.5    1.5    2   2]

𝑇

𝑅 = 104𝐼; 𝑄 = 5 × 10−4𝐼                      
 (30) 

 

 
Fig. 4: The closed-loop system implementation. 

 

Algorithm 1: The controller implantation algorithm. 
Action Description  

1. Select the 𝑥𝐾𝐹,0 and 𝑃𝐾𝐹,0. 

2. Select the matrices 𝑅 and 𝑄. 

3. Select discretizing constant 𝑇𝑠 

augmented-

Kalman filter 

initialization 
4. Select the controller parameters 𝛾𝑖  for 𝑖 = 1,… ,4 

5. Select the command filter parameters 𝑇𝑓1 and 𝑇𝑓2. 

Controller 

initialization 
6. Remind the control input 𝑢𝑘. 

7. Use the time-update equation (7). 

8. Measure the system output 𝑦𝑘 by a sampler. 

9. Use the measurement-update equation (8). 

Kalman filter 

implementation 

to give 𝑥𝑘 and 

𝑑𝑘 

10. Compute ℎ3 and ℎ4 by (14) and (23). 

11. Use the command filter equation (10) and (19). 

12. Compute the time-derivatives (11) and (20). 

13. Compute 𝑢1,𝑘 and 𝑢2,𝑘 by (17) and (26). 

Controller 

implementation 

to give 𝑣𝑖𝑑,𝑘  and 

𝑣𝑖𝑞,𝑘  

14. Apply ZOH on 𝑢1,𝑘 and 𝑢2,𝑘 to obtain 𝑣𝑖  in. 

15. Apply dq/abs Transformation to 𝑣𝑖. 
16. Use the PWM block to generate switching signal 𝑆. 

17. Apply the switching signal 𝑆 to the inverter. 

18. Return to Step 6. 

Applying the 

control input to 

the three-phase 

inverter 

 

Additionally, Table I summarizes the values of the 

parameters in the AC MG.  
 

Table I. System and load parameters_Sub-section A. 
Parameter Value Parameter Value 

𝜔 50 𝐻𝑧 𝐶𝑓 15 𝜇𝐹 

𝑟𝑓 0.2 Ω 𝑟𝑙𝑜𝑎𝑑 40~120 Ω 

𝐿𝑓 2.4 𝑚𝐻 𝑣𝑖𝑑 , 𝑣𝑖𝑞 250 𝑉 

 

Figs. 5 and 6 illustrate AC MG states and disturbance load 

current for the case of stepwise load changes. Since the 

measured voltages are subjected to noise, in Figs. 5(a)-(b), the 

noisy measurements, estimated signal, and actual values of the 

voltages are given. Also, in Figs. 5(c)-(d), the actual and 

estimated values of current are provided.  

AC MG system 

Sampler 
 

Augmented-

Kalman Filter 

𝑣𝑜 
PWM 

 

Backstepping 

controller 
 

𝑢𝑘 = [
𝑣𝑖𝑑,𝑘
𝑣𝑖𝑞,𝑘

] 

𝑣𝑖 𝑆 

Proposed approach 

𝑎𝑏𝑐/𝑑𝑞 

ZOH 
 

𝑑𝑞/𝑎𝑏𝑐 

�̃�𝑜,𝑘 

𝑦𝑘 = [
�̃�𝑜𝑑,𝑘
�̃�𝑜𝑞,𝑘

] 𝑥𝑘 = ൦

𝑣𝑜𝑑,𝑘
𝑣𝑜𝑞,𝑘
𝑖𝑖𝑑,𝑘
𝑖𝑖𝑞,𝑘

൪ 

𝑑𝑘 = [
𝑖𝑜𝑑,𝑘
𝑖𝑜𝑞,𝑘

] 

𝑣𝑖,𝑘 

noise 

+ 
�̃�𝑜 
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(a) 

 

 
(b) 

 
(c) 

 
(d) 

Fig. 5: System state vector 𝑥_Case 1 (Noisy measured value 

by the green line, estimated value by the red line, and the 

actual value by the blue line). (a). 𝑥1 = 𝑣𝑜𝑑, (b). 𝑥2 = 𝑣𝑜𝑞, (c). 

𝑥3 = 𝑖𝑖𝑑 , (d). 𝑥4 = 𝑖𝑖𝑞 . 

From Fig. 5, one infers that the developed augmented 

Kalman filter reacts to the sudden change of load and the 

estimated states converge to their actual value in about 0.02 

seconds. Also, the proposed approach effectively mitigates the 

noise effect in the voltage measurements. By comparing the 

green and red lines, which stand for the noisy measurements 

and filtered states, it is observed that the augmented-Kalman 

filter provides a smooth and accurate estimation of voltages. 

This verifies the robustness of the augmented-KF against noisy 

measurements.  Moreover, in both Figs. 5 and 6, the steady-

state estimation error is zero. Fig. 6 reveals that the same 

transient performance is achieved for estimating the disturbance 

inputs i.e. (unknown loads currents). More precisely, unknown 

load currents 𝑑1 = 𝑖𝑜𝑑  and 𝑑2 = 𝑖𝑜𝑞  change stepwise and the 

Kalman filter estimates them in about 0.01 seconds.  

 
(a) 

 
(b) 

Fig. 6: System disturbance vector 𝑑 _Case 1 (Estimated value by 

the red line, and the actual value by the blue line). (a). 𝑑1 = 𝑖𝑜𝑑, 

(b). 𝑑2 = 𝑖𝑜𝑞 . 
 

The second case deals with the smooth and slowly varying 

load change. The same initial condition and parameter as given 

in (30) are considered. Figs. 7 and 8 depict the actual and 

estimated values of the states and disturbance. 

Figs. 7 and 8 reveal that the augmented-KF estimates slowly 

varying loads and the states with small and bounded estimation 

errors. This small estimation error arises from the fact that the 

estimators have always one step delay in response to the actual 

value. Fig. 8 indicates that the estimations of disturbance inputs 

track their corresponding time-varying actual values. However, 

there is a small delay between the estimation and actual values 

because the discrete-time Kalman filter initially senses the 

varying reference and then reacts to it by one step delay. 

F. Augmented Kalman filter-based Command filter 

Backstepping controller 

In this sub-section, the stabilizing effect of the proposed 

approach and its robustness against load variation are evaluated.  
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(a) 
 

 
(b) 

 
(c) 

 
(d) 

Fig. 7: System state vector 𝑥_Case 2. (Noisy measured value 

by the green line, estimated value by the red line, and the 

actual value by the blue line). (a). 𝑥1 = 𝑣𝑜𝑑, (b). 𝑥2 = 𝑣𝑜𝑞, (c). 

𝑥3 = 𝑖𝑖𝑑 , (d). 𝑥4 = 𝑖𝑖𝑞 . 
 

The proposed backstepping controller is implemented based 

on Figs. 3 and 4 with the parameters 𝛾1 = 𝛾2 = 100, 𝛾3 = 𝛾4 =
1000, 𝑇𝑓1 = 𝑇𝑓2 = 0.0001. Based on inverse park’s 

transformation and the control laws 𝑢1 = 𝑣𝑖𝑑  and 𝑢2 = 𝑣𝑖𝑞 , the 

PWM signals for the DC/AC inverter switches are generated. 

The DC source voltage is fixed at 500 𝑉 and the AC MG 

voltage is supposed to be 𝑉𝑜𝑟𝑚𝑠 = 200 𝑉 for 𝑡 ∈ [0, 0.3] 𝑠𝑒𝑐 

and 𝑉𝑜𝑟𝑚𝑠 = 100 𝑉 for 𝑡 ∈ [0.3, 0.4] 𝑠𝑒𝑐. Also, a resistive load 

𝑟𝑙𝑜𝑎𝑑 = 100 Ω for 𝑡 ∈ [0, 0.1]  ∪ [0.2, 0.4] 𝑠𝑒𝑐 and an RL load 

with 𝑟𝑙𝑜𝑎𝑑 = 40 Ω and 𝐿𝑙𝑜𝑎𝑑 = 1 𝐻 are considered for 𝑡 ∈
[0.1   0.2]. The AC MG parameters are listed in Table II. 

 

Table II: System and load parameter values_Sub-section B. 

Parameter Value Parameter Value 

𝑉𝑑𝑐 500 𝑉 𝑉𝑜𝑟𝑚𝑠 100~200 𝑉 

𝑟𝑓 0.2 Ω 𝐶𝑓 15 𝜇𝐹 

𝐿𝑓 2.4 𝑚𝐻 𝑟𝑙𝑜𝑎𝑑 40~100 Ω 

𝐿𝑙𝑜𝑎𝑑 1 𝐻 𝜔 50 𝐻𝑧 

 

 
(a) 

 
(b) 

Fig. 8: System disturbance vector 𝑑_Case 2 (Estimated value 

by the red line, and the actual value by the blue line). (a). 𝑑1 =
𝑖𝑜𝑑, (b). 𝑑2 = 𝑖𝑜𝑞 . 

 

Fig. 9 shows the voltages 𝑣𝑎,𝑜, 𝑣𝑏,𝑜, and 𝑣𝑐,𝑜 and the currents 

𝑖𝑎,𝑜, 𝑖𝑏,𝑜, and 𝑖𝑐,𝑜 of the AC MG with marks A, B, C, and D. The 

detail of choosing the marks A, B, C, and D is summarized in 

Table III. 

 

Table III: The detail of the marks A, B, C, and D in the 

presence of linear load and desired voltage variation. 

Mark Detail 

A Trainset phase at the start of simulation 

B Load changes from 120[Ω] to 80[Ω] 
C Load changes from 80[Ω] to 120[Ω] 
D Desired voltage changes from 200[V] into 100[𝑉] 

 

Whereas the suggested command filter handles the issue of 

unknown loads dynamics, the overall controller is robust 

against the load demand variations, and the voltage is barely 
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affected. At the initial transient phase and the instances of 

changing the load and the desired reference voltage, AC MG 

voltage experiences some perturbations and variations as shown 

in Fig. 9.  
 

 
(a) 

 
(b) 

Fig. 9: The voltages and currents of the AC MG- linear load in 

the abc framework (the blue, red, and green lines stand for the 

a, b, and c elements of the AC voltage and current, 

respectively). (a). Voltages, (b). Currents. 
 

To further challenge the developed approach, it is used to 

regulate the AC bus voltage in the presence of nonlinear 

constant power loads (CPLs). The RMS voltage is set as 

𝑉𝑜𝑟𝑚𝑠 = 200 𝑉. And a nonlinear load is connected to the AC 

gird for the time interval 𝑡 ∈ [0.1   0.3] 𝑠𝑒𝑐. The bus voltages 

and load currents achieved by the proposed controller are given 

in Fig. 10. As can be seen in Fig. 10, the controller acts to 

unbalanced and time-varying nonlinear load and regulates the 

bus voltage with small distortion. Also, the proposed approach 

is compared with [46] and [40]. The reason for choosing those 

approaches is that they do not use load current sensors same as 

in this paper. In [46], the controller is designed based on the 

Jacobian linear matrix of the system and by using the voltage 

information. In [40], the current of the load is estimated and an 

adaptive backstepping with the assumption that the time-

derivatives of unknown loads are zero is developed. 
 

  
(a) 

 
(b) 

Fig. 10: The voltages and currents of the AC MG- nonlinear 

load in the abc framework (the blue, red, and green lines stand 

for the a, b, and c elements of the AC voltage and current, 

respectively). (a). Voltages, (b). Currents. 

Table IV provides the total harmonic distortion (THD) of the 

mentioned controllers. The results reveal that the proposed 

approach outperforms [46] and [40]. 

 

Table IV: THD of different controllers in the presence of 

unbalanced nonlinear load. 

Approach [46] [40] Prop. App. 

THD 1.466% 1.194% 0.905% 

VII. CONCLUSION 

  In this paper, a state and disturbance observer-based 

nonlinear controller was developed to overcome the complexity 

and heavy computing design of power electronic converters. 

The filters’ and loads’ currents in AC MGs are estimated by 

using an augmented Kalman filter, which is resilient against 

noisy measurements. Thereby, it avoids installing expensive 

current sensors. Furthermore, an adaptive robust backstepping 

controller based on the concept of the command filter 

backstepping technique was proposed. By deploying the 

command filter approach, it was theoretically proved that the 

closed-loop system voltage tracks the reference signal 

precisely. Simulation results show that the augmented Kalman 

filter estimates the system states and disturbances for both cases 

of smooth and prompt variations of loads. Compared to state-

of-the-art methods, this approach uses a low number of sensors 

and theoretically assures the closed-loop system exponential 

stability. Also, the overall controller is robust against system 

uncertainties, changes in the value, and type of loads. The 

presented technique in this paper can be extended as follows: 

I), other types of estimators such as Luenberger observer or 

disturbance observer can be utilized. II), Considering the grid-

connection operating mode and controlling active and reactive 

power flows. 
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