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Abstract: In this paper, our objective is to design a distributed optimal control for pumping
stations operating in a Water Distribution Network (WDN), where we would like to satisfy
consumer demands with minimum energy consumption. The WDN has been modeled using
graph theory and stochastic differential equations. This leads to a non-zero sum stochastic
differential game. We have approximated the solution of the aforementioned game using Markov
chain approximation and combined it with Shapley’s algorithm so as to obtain Minimax mixed
strategies. Minimax solution can be obtained as a distributed computation at the pumping
stations without any knowledge of the costs incurred by the other pumping stations. Simulation
results on the water network show convergence to an approximate Minimax solution.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Stochastic Games, Stochastic differential equations, Dynamic programming,
Markov chain approximation, Water distribution networks.

1. INTRODUCTION

Efficient pressure management in a Water Distribution
Network (WDN) is a complex control problem since it
entails an inherently multi-input, multi-output system
with control objectives of ensuring supply with minimal
variance in pressure at demand side while ensuring en-
ergy efficiency of supply pumps. The WDN considered in
this work consists of suppliers and consumers which are
connected together by a piping network. Such a WDN
can be modeled using graph theory which represents the
topology of the network connecting individual components
as stated in Tahavori et al. (2012). The uncertainty in
consumption pattern is the reason for the stochastic nature
of a water distribution network and therefore, we have
used Stochastic Differential Equations (SDE) where the
diffusion matrix takes into account the uncertainty due to
demand side consumption.

For solving stochastic control problems, Dynamic Pro-
gramming (DP) is one of the fundamental mathematical
tools and forms basis of Reinforcement learning (RL)
algorithms (see Bertsekas (2018) for an introduction to
dynamic programming). A generalization of DP to in-
clude multiple controllers called Stochastic Games was
introduced in Shapley (1953). The survey paper Raghavan
and Filar (1991) and the book Filar and Vrieze (2012)
provide an overview of development in the field of Stochas-
tic Games. All the aforementioned settings have a finite
number of states which makes it possible to represent the
value of each state in a tabular representation. Bellman’s

* This work is supported by Poul Due Jensen Foundation (Grundfos
Foundation) under the project SWIfT (Smart water infrastructure).

optimality equation (or Shapley’s equation in the case of
Stochastic Games) can than be used to find the optimal
states and the corresponding sequence of control actions
which constitute the optimal control policy. However, in a
practical setting such as a robot, satellite, HVAC system
or a water distribution network, the dynamics are modeled
using differential equations derived from physical laws such
as mass or energy conservation. The state space of such
equations is infinite, thereby making the aforementioned
algorithms not applicable in such settings. To overcome
this limitation, function approximation based techniques
such as least squares or a neural networks are used for
approximating the value function or the control strategy
or both simultaneously. Function approximation based RL
algorithms come with some inherent challenges such as
non-convergence to the target (see chapters 9, 11 and
references therein from Sutton and Barto (2018)) and
non-convergence to the saddle point in the case of linear
quadratic zero sum dynamic games (see Mazumdar et al.
(2020)).

The method of Markov chain approximation (MCA) was
developed in Kushner and Dupuis (2001) as a numerical
method for solving stochastic control problems and can
be considered as an alternative to standard functional
approximation techniques. This method has been extended
to stochastic differential games and convergence of the
value to underlying stochastic process has been proved in
Kushner (2002) for zero sum games and in Kushner (2007)
for non-zero sum games. MCA has been applied for study
of cooperative Nash equilibria in fishery games in Haurie
et al. (1994). In this work, we have considered the model
based setting and define cost functions which result in a

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
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non-zero sum differential game. We approximate the solu-
tion of the aforementioned game using MCA and Minimax
strategies. The reason behind using Minimax strategies for
a non zero sum game is to ensure distributed computa-
tion of control strategies with private cost matrices, as
the pumping stations in fig. 1 are located geographically
far away. These methods can also be extended to the
model free RL setting as described in Munos and Bourgine
(1997). The key contributions of this work are summarized
as follows:

e MCA is applied on a SDE model of a WDN in the
setting of a non-zero sum differential game.

e A distributed control algorithm based on Shapley’s
algorithm and MCA is simulated on the WDN.

The rest of the paper is organized as follows. In the next
Section, we describe the WDN as an SDE. In Section 3, we
introduce MCA method for stochastic control. In Section
4, we introduce stochastic games and present an algorithm
combined with MCA introduced in Section 3. In Section
5 we present the simulation results. Lastly, we present our
conclusions and future work.

2. WDN REPRESENTED AS AN SDE

A general model of the WDN with A/ controllers is defined
by state equations of the following type

N
de = <f(x) +)° gk(x)uk> dt + o(z)dw, (1)
k=1

where z € X C R" is a stochastic process which represents
the free flows in the WDN, u € U C RP represents the
pressure control action due to pumps, f : R™ — R" and
g : R" — R™ x RP represent the drift, o : R® — R" x R!
represents the diffusion with a(-) = o(-)o(:)7 being the
corresponding diffusion matrix, w represents the standard
Wiener process on R!. For simplicity, we shall consider
the WDN network shown in fig. 1 with 2 controllers (2
pumping stations) although, the methods developed in this
paper are extendable to complex controlled systems with
more control inputs. The aim of the pumping stations 1
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Fig. 1. Process and Instrumentation diagram

and 2 in fig. 1 is to minimize the pressure variation at
pressure zones 1 and 2. The WDN is modeled by a directed
graph I' = {N,E} in fig. 2 where N = {ny,--- ,ni1}
represents the nodes or vertices and E = {ey, -+ ,e11}
represents the edges where components of WDN such as
pipes, pumps and valves are connected. The pumps in fig.

1 are represented as edges ejp and ep; in fig. 2 and the
demands are represented by edges eg and eg. The model
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Fig. 2. Graph of the WDN in fig. 1 with pipe elevation Z.

is defined with following assumptions.
Assumption 2.1. The graph I is a connected graph.

Assumption 2.2. We require existence and uniqueness of
solutions of (1). Let Q represent the sample space, F
represent the event space and P represent the probability
function. Strong existence holds if for a given probability
space (2, F, P), a filtration F;, an JF;-Wiener process w
and an Fy- measurable initial condition x(0), there exists
an Fy-adapted process x(t) satisfying (1) for all ¢ > 0.
Furthermore, uniqueness holds if for any two sample paths
Il(t),l‘g(t), P{.’L‘l(O) = .’L‘Q(O)} =1 = P{.’El(t) =
ZZ?Q(t)Vt Z O} =1.

The model of WDN is derived in Misra et al. (2022) and
due to space constraints we refer the reader to the same.
The stochastic nature of water consumption at nodes ng
and ng in fig. 2 is captured as a Wiener process.

Assumption 2.8. The diagonal terms of diffusion matrix
are dominant over off-diagonal terms as follows

aii(z) = Y laij(x)] > 0. (2)

JijFi

This assumption is valid for WDN as in practice only
the free flows at end-user edges (es and eg in fig. 2) are
correlated with each other. The correlation between free-
flows in the other edges are accounted for in the drift
term (1). Therefore, the off-diagonal terms are negligible
relative to diagonal terms and can be ignored. Due to
uncertain water demands and correspondingly stochastic
nature of free flows in (1), the pressure measurement
is represented via an Ito integral (reviewed in Kushner
and Dupuis (2001)) with h representing the stochastic
integrand. We assume that h is a right-continuous, adapted
and a locally bounded process. We approximate the Ito
integral using a mesh m with grid size Y, — 0 as,
t

v= [ e = m 3
s [tic1,t]€Ym

We shall now define the control objectives of both the
players as the following stage cost functions for a player k,

Fy, z,u) =y Wiy + Wa |zu®] (4)

where || represents the standard 1-norm, W7 and Wy are
normalized weights. The first term in (4) represents the
pressure variance at consumer nodes and the second term
represents the energy consumption (kW) for a pumping
station k.

hti71(xti - xti—l)' (3)
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3. MARKOV CHAIN APPROXIMATION

In Kushner and Dupuis (2001), the authors have presented
a numerical method referred to as Markov chain approx-
imation (MCA) for solving stochastic control problems.
MCA finds the reachable states under a given control
policy and calculates transition probabilities via applica-
tion of finite differences method on the Hamilton-Jacobi
equation. At any time s, the number of reachable states de-
pends on the time step ahead (i.e. interpolation time) and
MCA method automatically calculates the interpolation
time (see fig. 3 for an illustration of MCA). If the dynamics

t  t+At time

Fig. 3. Here we illustrate MCA by a sample path of (1)
starting at x(0) and reaching z(¢) at time ¢, y1, yo
and ys represent the reachable states for x(¢) in time
interval At. Any realized state z(t+At) (shown by the
green arrow) can be found as a convex combination
of extremities of blue polygon. Once the next state
x(t + At) is reached the process repeats as shown by
orange polygon with reachable states z1, 2o and z3.

and/or diffusion are large in magnitude at a given time,
the interpolation time correspondingly becomes smaller.
The calculated probabilities are a function of the dynamics
alone and therefore this method can be used to represent
(1) as transition probabilities. We consider B C R"™ as a
compact state space with absorption on boundary. The
discounted stochastic control problem for a player k with
T = inf{t : 2(¢t) € B} is the minimum time taken to exit B
can now be defined as follows.

</T vt (@(t), ult) dt + 77k (cv(T))> (5a)

S

N
s.t.dr = <f(a:(t)) + Z g"(x(t))uf (t)> dt +odw, (5b)

k=1
uk(t) e U, z(t) € B, (5¢)

where z(s) is the state at some starting time s, u is a
vector with all A players control actions, ¢* is running
cost for player k, c¢¥ is the terminal cost for player k
and -~ is the discount factor. We have assumed that the
control space U is the same for all the players for simplicity
although the methods discussed in this work are easily
applicable to problems where control spaces are different.
Let the stochastic integral in the objective function of (5)
be denoted by

inf E

uk z(s),u(-)

Ql;(x7uk) = K

w(s),u(") </Tvtck (x(t),u(t)) dt+~7ck (2(7)) )

S
o (6)
where subscript s indicates dependence on s. The optimal
value can than be obtained by minimizing Q¥ with respect
to u” for each state as follows

Vi(z) = inf Q% (a(s), ub). (7)

Note that the above formulation gives rise to a non-zero
sum differential game. Since the value of a state for any
player (7) depends on the joint action u of the all the
players, we need to define the solution in the sense of
strategies 7 of all the players. In the sequel, the notation
—Fk shall denote all the players except player k and let
each player choose control action u* from probability
distribution 7*. The approximate Minimax solution for
(5) can be defined as the mixed strategy 7%* such that,
Q’;(x,wk*,w_k) —e< Qf(m,ﬂk*7ﬂ_k*)
< Qa7 e (8)
where € indicates the amount of tolerable sub-optimality to
the exact Minimax solution. For discretizing (5), we divide
the compact state space B into v number of discrete states.
Consequently, we can define the state space approximation
parameter h (which represents the coarseness of the state
space grid) as follows
1
h= o1 (9)
Let £(s) € RY denote the discrete state centered at z(s)
with a grid box of dimension h at some time s, than the
next reachable discrete state in the set B is denoted by
5&5 + 1) = z(s) + e;h, where e; € R™ is the basis vector in

it" direction of the state space (see fig. 4). Note that we are

X+€2h
x-elh X x+e1h
X-ezh

Fig. 4. Tllustration of state space as a grid. Any state whose
numerical value is within the boundary of a particular
grid box is considered as a part of the same.

considering only state transitions of the type x 4+ e;h and
not of the type x -e;h £ e;h since the interpolation time is
small (depending on the drift and diffusion as we shall see
later) and due to Assumption 2.3. These additional terms
can be considered at the cost of a greater computation
time. We shall now apply the well-known Ito’s lemma in
order to obtain evolution of VF(x) with time. In Kushner
(2007), convergence of Markov chain approximation for
non-zero sum differential games is proved based on certain
key assumptions.

Assumption 3.1. (Kushner (2007)). The drift of (1) is ad-
ditively separable into two components which represents
the contributions to the drift due to individual players.
Furthermore, the cost ¢* for each player is also additively
separable into two components which represents the con-
tributions to the cost due to the individual players.
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Assumption 3.1 is satisfied for both the considered system
(1) and the cost function (4) and can be verified by
dividing the drift in (1) as

bF(z,u) = fz) + g¥(z)u.

10
2 (10)
Similarly (4) can be split among the players. Let a;;(x),
i,7 =1,---,n be an element of the diffusion matrix a(z)

N
and let b;(, u) represent the drift term f;(x)+ > g¥(x)uk,
h=1

than we can define £ for (1) as follows.

L= 3 aal0) 05 + Y bal, () - (1)

ij=1

Applying Ito’s differential operator on (5) gives us the
stochastic analogue of the well-known Hamilton-Jacobi
equations (see Kushner and Dupuis (2001)) for a player
k as follows.

LVE(@(t) + 7' (2(t), u(t) = 0,

Vi(a(r) = F(a(r), VE(a(s)) = F(a(s)),
where the last two equations represents the boundary
conditions. Assume that each player acts simultaneously at

a given time instant to ensure well-posedness of solutions
of (12). Expanding the differential operator in (12) gives,

(12)

OV ()
835,-

1 & O?VE(x "
3 Z a;;(z) (2) +Zbi(1’7u)
i,j=1 i=

Ga:laxj
+ At (z,u) =0, (13)
where we have written x(t),u(t) as z,u for notational
convenience. We now apply finite-differences with space
approximation parameter h on (13) as follows.

h2

N |

= VE(x 4+ e;h) + VEFE(x —e;h) — 2VE(x
i,j=1

o Vi eih) — VE@)

=1

2 k(z) = VE(x — e

Y + P (z,u) =0,

(14)

where |b;(z,u)|t = max(bi(x,u),0) and |b;(z,u)|” =
max(—b;(z,u),0). This is the standard “upwind” scheme
in numerical analysis of hyperbolic partial differential
equations (see LeVeque (2007)). The intuition behind this
scheme is that the approximation of V¥ should be in
the same direction as the drift of (1). It can also be
verified that |b;(z,u)|" + |bs(x,u)|” = |bs(x,u)|. In order
to make the probability transitions independent of joint
control action wu, we calculate the joint control action
Umae Which gives maximal drift and replace |b;(z, u)| with
|b; (2, Umaz)|- We can rearrange the terms in (14) so as to
obtain elements of probability transition matrix p(z,z +
e;h | u) and interpolation time At as follows.

aii(x)/2 + h|bi(z,u)| "
Z(aii(m) +h |bi($»umaa’)|)

=1

Vi(a) = V(2 + eih)

p(z,z+eih|u)

aii(z)/2+ h|bi(x,u)|

2 (aii(2) + 1 [bi(z, Umaz )|)

i=1

VI(z —eih)

p(z,x—e;h|u)
h2
> (aii(z) + 1 [bi (2, tmaz)])

i=1

+ vk (z,u).  (15)

At

The probability of state remaining unchanged is given by
plz,z |u) =1—(p(x,x+e;h | u)+plx,x—e;h |u)). (16)
It should be noted that we only get the transition probabil-
ities required for the next state transition and therefore,
the probability transition matrix constructed using this
method will be sub-stochastic (i.e. sum of probabilities
will be less than 1). Thus, the differential game (5) can
be approximated by a Stochastic Game in the sense of
Shapley (1953).

4. SOLVING STOCHASTIC GAMES

We are proposing a distributed Stochastic Game solver
based on Shapley’s algorithm which can be solved by each
of the players without any knowledge of the cost incurred
by other player. Stochastic games are a generalization
of static games where the decisions taken by a player
influences both the immediate costs and also the states
reached in the future. Formally a stochastic game G can
be defined as a tuple G = {N, X, U, P, (C*,--- ,CN),~},
where A is the no. of players, X is the finite state space of
the game, U is the finite control space of all the players,
P is the probability transition matrix, C1,--- ,CV are the
cost matrices for each player corresponding to U and 7 is
the discount factor. We begin by discretizing the control
space U into finite control actions w. For the considered
WDN, these represent the operating power of pumping
stations (for ex. u! = 1 implies that the pumping station
1 is operating at 10% of its maximum capacity).

Assumption 4.1. A player only knows the possible finite
control actions that can be taken by the other players.

Let CF € RY x R* x --- x R*" denote the linear
operator representing cost for a player k£ at a discrete
state £(s). For the considered 2-player game, C* has the

dimensions Rvxu' xu’, Every non-zero sum game G =
{N,X,UP,(C,---,CN), v} can be solved using Mini-
max strategies if each player k solves the corresponding
zero-sum game G’ = {N, X U, P,(C*,—C*), v} to obtain
their worst-case costs. Such solutions are referred to as
mixed security strategies in Alpcan and Basar (2010). In
the sequel & = £(s) € X shall denote a finite state of
the game G at time s and the operator val[-] denotes the
value V' of a matrix game as per Von Neumann’s Minimax
theorem which states that for any real n; x no matrix A
with elements a;;, there exists a pair of probability vectors

* = (mg*, - 77T’}LT) and 72* = (72*,. .. ,WZ’;) such that
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Zaijﬂil* < \%4 < Zaijﬂ?* V’L,] (17)
( J

Let u = (u', -+ ,u) be the joint control actions and v be

the number of discrete states. A Stochastic game encodes

the transition probabilities in the cost matrix by defining

Shapley game matrix as follows.

v
ME(&,u) = P& u) +7 ) p(xlE w)VE (),
x=1

where c(&,u) € CF is the cost at state &, v is the discount
factor, x represents the reachable states from &, p(x|&,u)
is the transition probability of reaching x given £ and
VE(x) is the value of state x. The mixed security strategy
W%(f) for the game G can be computed efficiently using the
following linear program.

(18)

min V(€) (19a)
st Y MFEurt <VE©),vuF e, (19D)
ukelU
LR
=1, (19¢)
* >0, Yuk e U, (194d)

where constraint (19b) ensures that player k chooses mixed
strategy 7% such that for every joint pure strategy profile
u™" € U of other players, player k’s expected value
for state & is at most V(¢) (which is being minimized
in (19a)) and remaining constraints ensure that mixed
strategy 7% obeys axioms of probability. We now state
the MCA based algorithm for solving stochastic games
in Algorithm 1. The value of the game G is the unique
solution ¢ of the system ¢* = val[M*(¢)] for all k =
1,--- , N as proved in Shapley (1953).

Algorithm 1 MCA Stochastic differential game solver

1: Input: Initial state x(s), State space Grid A"z, drift
b, diffusion matrix a, control space U, terminal time
T.

2: Initialize V¥ = 0 for all states in the grid

3: while s < T do

4: &<+ x(s)
5. Find grid square A"z(s) correspondirﬁ to &
6: Construct cost matrix C*, Vul,-- -, u
7 Let x denote possible reachable states from &
8: Obtain transition probabilities using (15) and (16)
9: for All possible control actions of players —k do
10:

VHO < val |0 Y pde Vi) | (20

x=1
Mk

11: end for
12:  Solve the Shapley game (20) using (19) for 7% (¢)
13: Sample u* from 7% (¢) and apply on (1) at time s

14: s+ s+ At
15: end while

5. SIMULATION RESULTS AND DISCUSSIONS

We ran a variety of simulations with different initial
conditions on (1). The simulation results presented in this

section are with initial conditions x = [-50 60 50 0]7 and
with v = 20 discrete states. In fig. 5, we can observe that

State trajectories
50 T T

0 5 10 15 20 25
Time (sec) [0,7]

Fig. 5. State trajectory for initial z = [-50 60 50 0]

the states representing the free flows in the network reach
a steady state and the system dynamics are stable. In fig.

V! and V? approximated via MCA

—Player 1
—Player 2|4

0 5 10 15 20 25
Time (sec) [0,7] for a single sample path
Fig. 6. The values obtained for both the players converge to

the Minimax solution. The state space discretization
was v = 20.

6, we can observe that the optimal values for both the
players reach a fixed point of the Shapley equation (20).
The value functions of both the players decrease to their
minimum as both the players apply control actions. Player
1 applies higher control input relative to Player 2 and
consequently Player 1’s value is higher than Player 2. This
situation can be changed by modifying the weights Wy
and Wy in (4). The accuracy of Algorithm 1 is dependent
on the coarseness of state grid which is determined by
the considered number of discrete states v. In table 1, we
show how the numerical accuracy improves with higher
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No. of discrete | V1 obtained | V2 obtained
states from MCA from MCA
v=>5 13.2525 1.7103

v =10 7.8972 0.9951

v=15 1.5339 0.1712

v =20 0.6549 0.0732

Table 1. Value function approximations ob-
tained at terminal time T for different v.

that the Minimax solution of original continuous time
problem (5) can be approximated upto an arbitrary € > 0
by making the grid parameter h small (which increases
simulation time in practice) and this is shown in the table
1. In fig. 7, we can observe that the output y successfully
tracks the reference pressure. The spikes in fig. 7 are

Output at demand 1

60 T
— Output
- ——reference
=S40 1
&
=
QC20¢t
0 1 1 1 1
0 5 10 15 20 25
time
Output at demand 2
10+
= I
=
£s
=}
— Output
0F —reference |4
0 5 10 15 20 25
time

Fig. 7. Output pressure is tracked successfully to the

reference.

due to the controllers periodically switching off as there
is a cost associated with operation in (4). A Minimax
solution may or may not always converge to an Nash
equilibrium solution unless the non-zero sum differential
game is strategically equivalent to a zero-sum differential
game (see Bagar and Olsder (1998)). However, in this case,
simulation studies show that the Minimax solution does
correspond to the Nash equilibrium solution.

6. CONCLUSION

We have designed a control strategy for (5) using MCA and
Stochastic games. We have obtained approximate Mini-
max strategies and simulation results show that steady
state is reached. However, better solutions can be obtained
if the players have access to the cost matrices or control ac-
tions of players at previous iteration. Given the challenging
nature of non zero sum differential games and stochastic
games in general (see Bressan (2011) and Filar and Vrieze
(2012)), we do obtain a reasonable solution by using Min-
imax strategies and MCA. The Minimax solution can also
be extended to A/ > 2 players in a straight forward as each
player only needs to know their own cost matrix. However,

the algorithm scales exponentially as the number of players
is increased. Besides scalability in future, we would also
like to consider model-free learning of Nash equilibrium in
this setting.
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