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Abstract

Knowledge graph (KG) embedding methods are at the basis of many KG-based data mining tasks, such as link prediction
and node clustering. However, graphs may contain confidential information about people or organizations, which may
be leaked via embeddings. Research recently studied how to apply differential privacy to a number of graphs (and KG)
analyses, but embedding methods have not been considered so far. This study moves a step towards filling such a gap,
by proposing the Differential Private Knowledge Graph Embedding (DPKGE) framework.

DPKGE extends existing KG embedding methods (e.g., TransE, TransM, RESCAL, and DistMult) and processes
KGs containing both confidential and unrestricted statements. The resulting embeddings protect the presence of any
of the former statements in the embedding space using differential privacy. Our experiments identify the cases where
DPKGE produces useful embeddings, by analyzing the training process and tasks executed on top of the resulting
embeddings.

Keywords: Differential privacy, Knowledge graph embeddings

1. Introduction1

The open data movement contributed to the evolution2

of the web by making an unprecedented amount of free3

and accessible data available. Part of the success is due4

to the semantic web, which provided a set of solutions to5

publish data on the web. Central to the semantic web6

is the role of knowledge graphs (KGs), graph-based data7

structures with nodes representing entities and edges spec-8

ifying relations among such entities. Examples of popular9

open knowledge graphs are Wikdata [43] and DBPedia [3],10

which store general domain knowledge and make them ac-11

cessible on the web.12

Large amounts of data, however, are still stored by dif-13

ferent organizations [33]. Opening these datasets is chal-14

lenging for several reasons, including privacy, as they often15

contain confidential information about individuals (e.g.,16

gender) or companies (e.g., assets). For example, HIN-17

Care1 is a non-profit organization building a platform that18

integrates data from different NGOs about elderly care us-19

ing KGs. HINCare has no interest in keeping a monopoly20

on its data, but it is prevented from sharing their data21

because of privacy concerns. It follows that both compa-22

nies and Non-Governmental Organizations (NGOs) may23

Email addresses: xlhan@cs.hku.hk (Xiaolin Han),
dade@cs.aau.dk (Daniele Dell’Aglio), grubenmann@cs.uni-bonn.de
(Tobias Grubenmann), ckcheng@cs.hku.hk (Reynold Cheng),
bernstein@ifi.uzh.ch (Abraham Bernstein)

1https://www.hincare.hku.hk

shy away from sharing their data due to the lack of pri- 24

vacy guarantees, which might even legally prohibit them 25

from sharing their data, and the implied risk of incurring 26

significant fines (e.g., via the European GDPR2). As the 27

example of HINCare shows, there is, however, interest in 28

sharing such data due to their potential value in describ- 29

ing the characteristics and properties of communities and 30

populations. While KGs are an ideal solution to share 31

data following open web standards, we observe a need for 32

techniques to guarantee the privacy of individuals. 33

So far, various techniques to protect confidential infor- 34

mation have been proposed. Most of these techniques [24] 35

build on top of anonymity, hiding the identity of the indi- 36

viduals and their confidential information. For example, 37

k-anonymity [40] ensures that an individual may not be 38

distinguished from at least k − 1 other individuals. Data 39

swapping [11] switches attribute values between individu- 40

als to hide them, while preserving the overall character- 41

istics of the population. Whereas those techniques have 42

been used in the context of data publication, they have 43

been shown to be vulnerable to privacy attacks. Two well- 44

known privacy leakage examples are the Netflix challenge 45

[30] and the Massachusetts hospital dataset [39]. Differen- 46

tial Privacy (DP) [14] emerged as a solution to overcome 47

the limitations of anonymization techniques. The goal of 48

DP is to introduce plausible deniability by adding noise to 49

data to protect the presence (or absence) of any confiden- 50

tial statement in the dataset. 51

2https://eur-lex.europa.eu/eli/reg/2016/679/oj
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We believe that there is an opportunity to combine dif-52

ferential privacy with the recent trend of knowledge graph53

embeddings [44, 6]. KG embeddings introduce techniques54

to represent knowledge graphs in low-dimensional vector55

spaces and, hence, in a numeric space. Such representa-56

tions facilitate many important machine learning and data57

mining tasks [5, 19, 28, 31, 45], e.g., link prediction, entity58

classification, entity resolution, relation extraction, ques-59

tion answering, recommender systems, graph completion,60

and clustering. Sharing embeddings instead of the original61

knowledge graph, therefore, still enables a large number of62

applications.63

The goal of this research is to investigate the idea of64

privacy-preserving knowledge graph embeddings. Among65

the various privacy techniques, we believe differential pri-66

vacy is particularly suitable to obfuscate the KG embed-67

dings due to their numerical representation of the KG con-68

tent. Current studies on DP and knowledge graphs focused69

on the query answering process, where answers to analyti-70

cal queries were perturbed [12, 35, 38]. To the best of our71

knowledge, this is the first study about applying differ-72

ential privacy preserving techniques on knowledge graph73

embeddings.74

The main result of our study is the Differentially Pri-75

vate Knowledge Graph Embedding (DPKGE) framework.76

This framework extends existing embedding methods (e.g.,77

TransE and RESCAL) into differentially private embed-78

ding methods. It is worth noting that embedding tech-79

niques are not enough to overcome the privacy issue: the80

vectors may preserve confidential information. As recent81

research in deep learning has shown [16], it is possible to82

reconstruct images from a trained face recognition model.83

To overcome this problem, Abadi et al. [1] introduced dif-84

ferential privacy into the training phase of deep learning85

models by adding noise to the Stochastic Gradient Descent86

(SGD). This modification leads to the Differentially Pri-87

vate Stochastic Gradient Descent (DPSGD) [1]. The SGD88

is responsible for optimizing the model and as such, might89

encode sensitive information into the model that can be90

retrieved at a later stage by an attacker. By replacing91

the SGD by a DPSGD, sensitive information contained in92

the training set can be better protected against such at-93

tacks. Inspired by this, DPKGE introduces DP in the KG94

embeddings learning phase by exploiting DPSGD to pro-95

tect the learning of sensitive statements in the KG. The96

DPSGD introduces noise in the computation of the gradi-97

ent while minimizing the target loss function.98

Our experimental results show that it is feasible to in-99

troduce DP during the learning phase of knowledge graph100

embeddings. They also suggest that enforcing differen-101

tial privacy only on confidential statements results in a102

higher utility of the embeddings for tasks such as clustering103

and link prediction. To establish the performance of our104

framework on real datasets, we complement the datasets105

usually used in embedding experiments (FB15k3, FB15k-106

3https://everest.hds.utc.fr/lib/exe/fetch.php?media=en:

2374, and YAGO3-105) with two new ones (MIMIC-III [22] 107

and eICU [34]), which contain both confidential and un- 108

restricted information from the health sector. Since these 109

two datasets are not available in RDF, we provide appro- 110

priate mappings to create the corresponding knowledge 111

graphs for the evaluation of privacy-sensitive data. 112

The contributions of our paper can be summarized as 113

follows: 114

• We formalize the problem of differential private 115

knowledge graph embeddings. 116

• We introduce our DPKGE framework to transform 117

existing embedding methods into differential private 118

embedding methods and provide theoretical guaran- 119

tees on the differential privacy of the DPKGE meth- 120

ods. 121

• We provide mappings to create knowledge graphs 122

from the MIMIC-III and eICU datasets, which can 123

be used to test privacy algorithms for knowledge 124

graphs. Moreover, the DPKGE methods have been 125

extensively evaluated on five datasets regarding util- 126

ity, privacy, clustering, and link prediction. They 127

show that DPKGE can improve the utility of the 128

embeddings while preserving the differential privacy 129

of confidential information. 130

The remainer of this article is structured as follows. 131

Section 2 discusses background and related research. Sec- 132

tion 3 proposes our differential privacy framework for 133

knowledge graph embeddings. Section 4 presents the ex- 134

periments and their results. Section 5 discusses the limi- 135

tations of our framework. Section 6 concludes our paper 136

and discusses future research. 137

2. Background and Related Research 138

Knowledge Graphs (KGs) capture information in 139

graph-based data structures, where nodes denote entities 140

and directed labeled edges denote relationships among 141

them. Examples of KGs include DBpedia [3] and Wiki- 142

data [43]. Inspired by [5], we formally define a knowledge 143

graph as follows. 144

Definition 1 (Knowledge graph). Let E and L denote 145

the set of entities and relationships. A knowledge graph 146

K ⊂ E×L×E is a set of statements (h, l, t), where h, t ∈ E 147

and l ∈ L. 148

In the following, we introduce KG embeddings and differ- 149

ential privacy. 150

fb15k.tgz
4https://github.com/louisccc/KGppler/raw/master/

datasets/fb15k-237.tgz
5https://github.com/louisccc/KGppler/raw/master/

datasets/YAGO3-10.tar.gz
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2.1. KG Embedding Methods151

KG embeddings [6] recently emerged as a solution to152

represent the content of a KG in a dense vector space,153

which can be used in different tasks such as link pre-154

diction [5] or recommender systems [37]. Studies on KG155

embeddings can broadly be grouped into two categories:156

translational and bilinear models. Translational models157

project entity embeddings into a relation-specific space.158

Many variants of translation strategies have been devel-159

oped toward this research line. In contrast to translational160

models, bilinear models use bilinear functions to model the161

entities and relations embeddings.162

TransE [5] is one of the most popular translational163

models. The idea behind TransE is that, given a state-164

ment (h, l, t), the embedding of the tail entity t should165

be as close as possible to the sum of the embeddings of166

the head entity h and the relation l. Many variants of167

TransE were proposed to overcome the limitations of this168

method, such as coping with one-to-many, many-to-one,169

and many-to-many relations. TransH [46] models the re-170

lation of two entities as a translation operation on a hy-171

perplane. TransM [15] precalculates the weight for the172

scoring function of each statement in TransE, which is the173

distance between the head entity embedding plus relation174

embedding and the tail entity embedding. TransM multi-175

plies the precalculated weights with the scoring function176

to optimize the model. TransR [28] represents the embed-177

dings of entities and relations in separate spaces instead of178

one common space to capture the idea that there may ex-179

ist many different relations that focus on multiple aspects180

of entities. TransD [20] includes the diversity of entities in181

the model, and it is capable of handling large-scale graphs182

due to a limited number of parameters.183

Bilinear models describe relationships with special184

quadratic functions, which are bilinear. RESCAL [31] ap-185

plies tensor factorization on multi-relational data to learn186

the embeddings of entities and relations. DistMult [47]187

restricts matrix operators for relations to be a diagonal188

matrix in order to reduce the number of relation param-189

eters. ComplEx [42] further extends the scoring function190

into a complex-valued function to handle various binary191

relations, such as symmetric and antisymmetric relations.192

It is simpler and more efficient compared with the stan-193

dard model. TuckER [2] uses Tucker decomposition on194

the binary multi-relational data to learn the embeddings195

of entities and relations.196

2.2. Differential Privacy197

Differential Privacy (DP) is a framework proposed by198

Dwork et al. [14] to protect the presence of records in a199

dataset. DP introduces mechanisms M as processes that200

transform an input dataset D in a computational result201

M(D). The idea of DP [14] is that the result of executing202

M over a dataset D is similar to the result of executing203

M over a neighbor dataset D′ (i.e., D and D′ differ in204

one record, denoted as ||D − D′||1 = 1), protecting the205

presence (or absence) of any user in the dataset.206

Definition 2 ((ε, δ)-differential privacy [14]). An algo-
rithm M is (ε, δ)-differentially private if for every E ⊆
Range(M) and for all D, D′ such that ||D −D′||1 = 1:

P [M(D) ∈ E] ≤ eϵ · P [M(D′) ∈ E] + δ, (1)

where the probability space is over the coin flips of M . If 207

δ = 0, M is ε-differentially private. 208

The parameters ϵ and δ regulate differential privacy. ϵ 209

is the privacy budget, which controls the trade-off between 210

privacy and utility. The lower the ϵ values, the higher 211

amount of privacy is enforced in the mechanism M . The 212

value δ allows a mechanism M to violate the ϵ-differential 213

privacy definition, as M can output results E such that 214
P [M(D)∈E]
P [M(D′)∈E] ≥ eϵ. While it is ideal to have (ϵ, δ)-differential 215

privacy mechanisms, they often find application in sce- 216

narios where ϵ-differential privacy is considered too strict. 217

Dwork and Roth [14] suggests to use values of δ not bigger 218

than 1
|D| , where |D| is the size of the dataset. 219

DP has been largely studied in the database research 220

area. The initial focus has been on query answering, with 221

a set of solutions that has led to systems able to cope 222

with queries including a large set of operators [29, 26, 8]. 223

While those techniques may be viable to expose knowledge 224

graph information through query interfaces, they do not 225

suit our target scenario. Data mining and training ma- 226

chine learning models require a high number of queries, 227

which lead to a large amount of ε. We need solutions 228

that can perform such tasks with a limited consumption 229

of privacy budget. Another set of studies from database 230

research focus on data publication. Kotsogiannis et al. 231

[25] introduce one-sided differential privacy to share loca- 232

tion data. They distinguish between sensitive and non- 233

sensitive locations, ensuring that the former are protected 234

under DP. Cunningham et al. [10] propose a novel tech- 235

nique for publishing trajectory data under differential pri- 236

vacy. Their method exploits geographical information and 237

metadata about the trajectory points to guide the obfus- 238

cation process, increasing the overall utility of the result. 239

These studies are related to our as they aim at releas- 240

ing data sets that preserve the privacy of the individuals 241

described in the original data. In our study, specifically, 242

we study how to release a knowledge graph as KG em- 243

beddings, which can be used for data mining or machine 244

learning tasks. As in [25], we account for the fact that 245

only part of the data is sensitive and needs protection. 246

Differential privacy for graphs. While DP initially focused 247

on datasets defined as a set of records with the same struc- 248

ture, recent studies have focused on different data mod- 249

els. When moving to graphs, the main difference relies on 250

the notion of neighboring datasets. Hay et al. [17] pro- 251

pose two definitions for undirected unlabeled graphs. Two 252

graphs are edge-neighbor if they differ in one edge, and 253

node-neighbor if they differ in one node and the edges in- 254

volving such a node. The two neighbor definitions lead to 255

the edge- and node-differential privacy, respectively. 256
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Initial research in this area focused on edge-differential257

privacy, proposing mechanisms for typical graph opera-258

tions, such as node degree distribution [17], minimum259

spanning tree cost [32] and cuts [4]. Mechanisms for node-260

differential privacy were proposed in later years, such as261

[9, 23], considering particular classes of graphs and known262

constraints on their characteristics.263

Differently from the graph considered in the aforemen-264

tioned studies, knowledge graphs are multi-modal directed265

graphs. Silva et al. [38] propose a system to compute dif-266

ferentially private statistics over social relationship RDF267

graphs, which are defined as directed graphs with only268

one property. SihlQL [12] is a differentially-private query269

language for computing histograms from streams of knowl-270

edge graphs. Reuben [35] extended the definitions of Hay271

et al. for multi-modal directed graphs.272

Since knowledge graph embeddings represent every273

node in a graph as a vector, the presence or absence of a274

node can be immediately detected by the presence or ab-275

sence of the corresponding vector. Hence, node-differential276

privacy is not directly applicable to knowledge graph em-277

beddings. In this study, we build on the edge-differential278

privacy notion. We adapt the definition in [35] for edge-279

neighboring knowledge graphs as follows.280

Definition 3 (Edge-neighboring knowledge graphs). Let281

K1 and K2 be two knowledge graphs. K1 and K2 are edge-282

neighbor if they differ in one statement, that is, ∃(h, l, t) ∈283

K1 ∪ K2 s.t. (K1 \ K2) ∪ (K2 \ K1) = {(h, l, t)} .284

In this research, we focus on designing an edge-285

differential privacy mechanism to compute knowledge286

graph embeddings.287

Differential privacy for stochastic gradient descent.
Stochastic Gradient Descent (SGD) is a common state-
of-the-art solution to solve optimization problems typical
of machine learning scenarios, including knowledge graph
embeddings. Abadi et al. [1] propose the Differentially
Private SGD (DPSGD) algorithm. The idea of DPSGD is
to inject Gaussian noise to the gradients according to the
following formula:

g̃← 1

b
(
∑
i

ḡ(xi) +N (0, σ2C2I)), (2)

where b is the batch size, I the identity matrix, and σ2C2

the variance of the Gaussian noise mechanism. The pa-
rameter C is a threshold that controls the clipping of each
gradient. DPSGD has been proposed in the context of
deep learning. The gradient of a sample xi is defined as:

g(xi)← ∇θL(θ, xi), (3)

where L is the loss function, and θ are the parameters in
the deep learning model which needs to be optimized. The
clipped gradient of a sample xi is defined as:

ḡ(xi)← g(xi)/max

(
1,
∥g(xi)∥2

C

)
, (4)

where ∥g(xi)∥2 is the L2 norm of g(xi). 288

The algorithm for the differentially private stochastic 289

gradient descent, Algorithm 2, can be found in the Ap- 290

pendix Appendix A. The following Theorem by [1] states 291

an important relationship, which we will make use of in 292

this paper. 293

Theorem 1. [1] There exist constants c1 and c2 so that
given the sampling probability q = L/N and the number
of steps T , for any ϵ < c1q

2T , Algorithm 2 is (ε, δ)-
differentially private for any δ > 0 if we choose

σ ≥ c2
q
√

T log(1/δ)

ε
. (5)

The adoption of the Gaussian noise to achieve DP leads 294

to the problem of quantifying the effective privacy budget 295

ε. Abadi et al. [1] propose an accountant mechanism to es- 296

timate an upper bound for ϵ, which is specifically designed 297

for the DPSGD to provide a tighter bound than similar es- 298

timation methods. For the accountant to work, the stan- 299

dard deviation of the added Gaussian noise needs to be 300

proportional to the L2 norm of the gradient, or larger. 301

By clipping the gradients, the L2 norm of the gradients 302

is at most C. Consequently, adding random noise from a 303

Gaussian distribution N (0, σ2C2I) ensures that the noise 304

requirements above are met. 305

It is worth noting that the choice of the clipping pa- 306

rameter does not affect the estimated upper bound for ϵ, 307

because the accountant assumes that each gradient has an 308

L2 norm of C and a proportional amount of noise of added 309

to it. Nevertheless, the actual ϵ might change with varying 310

C. The following example illustrates this. 311

Example 1. Let σ1 = 1, σ2 = 10, and C = 1. It fol- 312

lows that the added noise is a sample from N (0, 1I) and 313

N (0, 100I) for σ1 and σ2, respectively. Let us assume that 314

every single gradient appearing in the mechanism M has 315

an L2 norm smaller than 0.1. This means that no gradient 316

is affected by the clipping. Now, let C ′ = 0.1. Again, no 317

gradient is affected by the clipping. With this new param- 318

eter C ′, the added noise is N (0, 0.01I) distributed for σ1 319

and N (0, 1I) for σ2. Since in both cases the gradients are 320

not clipped, the case (σ1, C) is equivalent to (σ2, C
′), as 321

the exact same amount of noise is added. Consequently, 322

they have the same expected value for ϵ. However, the 323

accountant estimates the ϵ value for (σ1, C) much higher 324

than for (σ2, C
′). This is because the accountant is not 325

aware that the gradients have not been clipped and only 326

knows that the added noise is at least proportional to the 327

gradients. 328

A key point in the above example is that the gradients 329

have not been clipped in both cases, meaning that the cho- 330

sen C values are inappropriately high. When the clipping 331

affects the gradient, the two settings (σ1, C) and (σ2, C
′) 332

are not equivalent anymore, and the above reasoning does 333

not apply. 334
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One might conclude that the best strategy to ensure335

an accurate estimation of ϵ with the accountant would be336

to choose a value for C that ensures that all gradients are337

affected by clipping. Unfortunately, it is not that simple,338

as a too strict clipping might negatively affect the util-339

ity of the outcome of the algorithm when some gradients340

are drastically shortened. Abadi et al. [1] recommend to341

choose a value for C that equals the median of the L2342

norms of all gradients. However, depending on the setting343

and the chosen mechanism M , different values for C might344

yield better results.345

3. Differential Privacy for KG Embeddings346

In this section, we discuss how to construct a differen-347

tially private knowledge graph embedding algorithm. To348

better understand how knowledge graph embeddings are349

affected by differential and non-differential private embed-350

dings, we begin with introducing the following example.351

Figure 1(a) shows a graph with four statements. One352

would obtain the embedding space in Figure 1(b) by a353

state-of-the-art embedding method, like TransE [5], with-354

out considering differential privacy (NDP). As the graph355

contains a statement about Rose having a hearing disease,356

the embedding space will preserve that information, and357

the sum of the vectors associated to Rose and the has358

disease property will be similar to the Hearing Disease359

vector.360

The idea of plausible deniability boils down to the fact361

that one may deny the presence of some personal informa-362

tion in the dataset. This leads to the knowledge graph in363

Figure 1(d), which is the same as the one in Figure 1(a),364

except for the missing statement (Rose, has disease, Hear-365

ing Disease). Figure 1(e) shows the embeddings generated366

in this case: as the statement about Rose is missing, the367

three vectors are not related anymore.368

Differential privacy introduces the idea that the graphs369

in Figure 1(a) and Figure 1(d) should lead to similar em-370

beddings, as the two graphs differ in only one statement,371

i.e., the two graphs are neighbors. This is depicted in the372

two embedding spaces in Figures 1(c) and 1(f).373

Without DPKGE, one would need to remove the two374

confidential statements from the knowledge graph before375

the embedding process. However, this might lower the376

quality of the embedding. Looking at the example in Fig-377

ure 1, by removing the red statements, Rose and Sue would378

be less similar, as they would share only the citizen of re-379

lation.380

To better control the privacy injection, we also distin-381

guish between unrestricted and confidential statements,382

e.g., the dark and red arrows in Figure 1(a) and Figure383

1(d). DPKGE focuses on protecting confidential state-384

ments, using differential privacy to hide their presence (or385

absence) from the KG. For example, by applying DPKGE386

on the knowledge graph in 1(a), the similarity between387

Rose and Sue in the embedding is based on both relations,388

citizen of and has disease, and thus, the embedding has a 389

higher quality. 390

The idea behind our solution to the problem illustrated 391

above is that we can extend existing KG embedding algo- 392

rithms by introducing the DPSGD method to inject noise 393

in the embedding learning phase, as verified in Section 4. 394

In Figure 2, DPKGE samples confidential statements and 395

unrestricted statements per batch without replacement in 396

a stochastic way by balancing the ratio of the number of 397

sampled unrestricted statements and the number of sam- 398

pled confidential statements. DPKGE ensures all unre- 399

stricted and confidential statements are covered. In the 400

batch of confidential statements, it adds Gaussian noises to 401

the gradients and updates entity embeddings and relation 402

embeddings by optimization. In the batch of unrestricted 403

statements, it follows standard optimization procedures to 404

update the entity embeddings and relation embeddings. 405

We first introduce assumptions on the data and the algo- 406

rithm. Then, we present DPKGE as a generic framework 407

to create differentially private KG embeddings. 408

3.1. C-edge-neighboring Knowledge Graphs 409

Given a KG, we distinguish its content between confi- 410

dential statements, i.e., statements which the data curator 411

wants to keep private, and unrestricted statements, i.e., 412

statements which are accessible to everyone. 413

Definition 4 (Unrestricted and confidential KGs). K = 414

⟨U , C⟩ is a knowledge graph composed by two disjoint sets 415

of statements U and C, i.e. U ∩ C = ∅, denoting the 416

unrestricted and confidential statements, respectively, i.e. 417

K = {(h, l, t)|(h, l, t) ∈ U ∨ (h, l, t) ∈ C}. 418

While annotating the statements as confidential or 419

unrestricted can be done manually in small knowledge 420

graphs, this may become an expensive operation when the 421

size increase. One possibility can be to annotate predi- 422

cates as confidential such that every statement containing 423

this predicate is considered confidential. This could be en- 424

abled by introducing privacy-related meta-level properties, 425

similarly to [49]. 426

Based on Definition 4, we focus the privacy-preserving 427

mechanism on the confidential statements. We capture 428

this idea by introducing the notion of C-edge-neighboring 429

knowledge graphs as follows. 430

Definition 5 (C-edge-neighboring knowledge graphs). 431

Two knowledge graphs K1 = ⟨U , C1⟩ and K2 = ⟨U , C2⟩ are 432

C-edge-neighbor if: 433

1. they differ in one confidential statement (h, l, t), i.e., 434

||C1| − |C2|| = 1 and C1 \ C2 ∪ C2 \ C1 = {(h, l, t)}, 435

2. they have the same labels, i.e., {l | ∃(h, l, t) ∈ K1} = 436

{l | ∃(h, l, t) ∈ K2}, and 437

3. they have the same entities, i.e., {e | ∃(e, l, t) ∈ K1 ∨ 438

∃(h, l, e) ∈ K1} = {e|∃(e, l, t) ∈ K2∨∃(h, l, e) ∈ K2}. 439
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C-edge-neighboring knowledge graphs can be used in440

hypothetical scenarios to study how a mechanism behaves441

if a statement is added or removed from a knowledge442

graph. In differential privacy, we are particularly inter-443

ested in how the privacy of the statements in the knowl-444

edge graph is affected when some statement is added or445

removed. In practice, such neighboring knowledge graphs446

occur when the graph evolves over time and statements447

are added, removed, or changed.448

The first condition of Definition 5 is a restriction of449

edge-neighboring knowledge graphs for confidential state-450

ments. When U = ∅, i.e., U is empty, this condition is the451

same as described in Definition 3. The second and third452

conditions ensure that the embeddings of neighboring KGs453

have the same entities and labels. This is necessary be-454

cause translational embedding methods like TransE and455

TransM produce embedding vectors for each entity and456

label in the knowledge graph. Therefore, if two neighbor- 457

ing KGs contain different entities (or labels), one could 458

immediately distinguish which entities (or labels) are in- 459

volved in the statement that is different between the two 460

neighbors. Fortunately, in large KGs, entities, and rela- 461

tions usually occur multiple times to describe the complex 462

relationships. Therefore, the situation that two neighbor- 463

ing graphs contain different entities (labels) is rare in such 464

KGs. 465

3.2. Gradient-separable Embedding Algorithm 466

This study focuses on KG embedding methods that use 467

a variant of the gradient descent method or a gradient- 468

based optimization method (e.g., SGD, Adam, Adagrad). 469

We assume that the gradient descent or gradient-based op- 470

timization is the only part of the algorithm which accesses 471

the data to update the embeddings. We call an algorithm 472

6



that adheres to the aforementioned conditions a gradient-473

separable embedding method because the algorithm can474

be separated into two parts: the gradient, which affects475

the embeddings based on the input, and the rest of the476

algorithm.477

Definition 6 (Gradient-separable embedding algorithm).478

An embedding algorithm A is gradient-separable if A con-479

tains a gradient descent or gradient-based optimization480

method ∇ and produces an output O such that:481

1. O is initialized randomly, and482

2. O is only updated through ∇.483

We illustrate how this definition applies to RESCAL,484

TransE, and TransM. RESCAL updates the embedding485

matrices of entities and relations with either the gradi-486

ent descent or the alternating least squares method. The487

version of RESCAL relying on the latter is not gradient-488

separable. Moreover, RESCAL initializes the matrices ei-489

ther randomly or through the eigen-decomposition of the490

KG tensor: the latter is not compatible with the gradient-491

separable definition. Therefore, RESCAL using random492

initialization and gradient descent is gradient-separable.493

TransE is gradient-separable because the embeddings494

are only updated through the gradient descent method,495

and the initialization of the embeddings is randomized.496

The same argument can be made for TransM: The differ-497

ence between TransE and TransM is that the latter assigns498

a weight to each statement before updating the embed-499

dings via SGD. Hence, TransM is also gradient-separable.500

3.3. The DPKGE Methods501

The idea behind the DPKGE methods is that a knowl-502

edge graph K may contain confidential statements, which503

should be embedded in a privacy-preserving way, and unre-504

stricted statements, which should be embedded by a stan-505

dard approach. Different KGs may contain different ratios506

of unrestricted statements U and confidential statements507

C. Since each batch can contain, either, only unrestricted508

statements from U , or, only confidential statements from509

C, we need a way to make sure that the number of sampled510

unrestricted statements mU and the number of sampled511

confidential statements mC is as close as possible to the512

actual ratio of U and C in each epoch. This leads to the513

question at each iteration whether we should sample from514

U or C. Therefore, we introduce an adaptive framework515

which is a stochastic optimization algorithm in which the516

batch is randomly chosen at each step, and at the same517

time, the iterated ratio of mU and mC is maintained to518

achieve the actual ratio of U and C as close as possible.519

The experimental results in Section 4 show that the treat-520

ment of confidential and unrestricted statements in DP-521

KGE can preserve privacy for the confidential statements522

while maintaining the utility in many data mining tasks,523

e.g., link prediction.524

Algorithm 1 shows the pseudo-code of how to turn525

a gradient-separable algorithm into a DPKGE method526

that is C-edge-differential-private.6 The two variables mU 527

and mC keep track of how many times the algorithm 528

already processed a batch of unrestricted and confiden- 529

tial statements, respectively. These two variables en- 530

sure that batches of unrestricted and confidential state- 531

ments are processed according to the ratio |U|/|C|. In 532

Lines 4–9, the algorithm checks if it should run a batch 533

of unrestricted or confidential statements, to ensure that 534

mU/mC is close to |U|/|C|. If neither the unrestricted 535

nor the confidential statements are favored, the algorithm 536

picks a batch at random (Line 9). In Lines 10–17, the 537

algorithm calculates the differential private gradient de- 538

scent. Otherwise, it calculates the ordinary gradient de- 539

scent without privacy guarantees (Lines 18–22). Note that 540

the getPositiveAndNegativeSamples function in lines 11 541

and 19 samples corrupted statements (h′, l, t′) for their cor- 542

responding positive statements (h, l, t). It means that ran- 543

domly sampling a head entity h′ or a tail entity t′ for each 544

relation l as the negative statement for each positive one 545

(h, l, t). The loss function L is used to optimize the em- 546

beddings of the entities and the relations, i.e., parameter 547

θ in Algorithm 1. The loss function differs from different 548

knowledge graph embedding algorithms. The core idea is 549

to use the embeddings of the entities and the relations to 550

model the statement (h, l, t). For example, the loss func- 551

tion of TransE is defined as the sum of the embeddings of 552

h and l minus t. 553

In this way, different knowledge graph embedding al- 554

gorithms can be easily plugged in the DPKGE methods. 555

At the same time, different knowledge graphs (KGs) with 556

different ratios of unrestricted statements U and confiden- 557

tial statements C can be iterated by a uniform framework 558

in a stochastic optimization way. This is in contrast to 559

[1], where all information is considered confidential, and 560

hence, there is no need to balance the number of sampled 561

unrestricted and confidential information. 562

3.4. The DPKGE Methods are C-edge-differentially Pri- 563

vate 564

Before discussing the differential privacy properties of 565

our approach, we discuss how applying DPSGD to knowl- 566

edge graph embeddings differs from the deep learning case 567

as presented in [1]. The main difference between the two 568

settings is that in deep learning, all the neurons in the neu- 569

ral network are updated in each iteration of the algorithm. 570

In contrast, knowledge graph embedding methods update 571

only a subset of all the embeddings which are involved in 572

each iteration. An iteration means a single gradient up- 573

date of the embeddings of the entities and the relations. 574

The number of iterations equals the number of batches re- 575

quired to pass through all the statements in one epoch. 576

Therefore, DPSGD in KG embeddings should only add 577

6To avoid divisions by zero, all boolean expressions must use
short-circuit evaluation.
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Algorithm 1: Differentially private knowledge
graph embedding

Input : Knowledge graph K = ⟨U , C⟩, loss
function L(θ), learning rate λ, noise
multiplier σ, batch size B, norm clipping
C

// Initialize embedding method

1 Initialize();
// Set counters

2 mU ,mC ← 0;
// Iterate until stopping conditions are

met

3 Loop
// Determine which batch to run

4 if |U| = 0 ∨ (mC = 0 ∧ mU > 0) ∨
mU/mC > |U|/|C| then

5 batch ← confidential;

6 else if |C| = 0 ∨ (mU = 0 ∧ mC > 0) ∨
mU/mC < |U|/|C| then

7 batch ← unrestricted;
8 else
9 batch ← Random({confidential,

unrestricted});
10 if batch = confidential then

// Optimize confidential statements

11 T ← getPositiveAndNegativeSamples(C,
B);

12 foreach i ∈ T do
13 gi ← ∇θtL(θt, i);

14 ḡi ← gi/max

(
1,
∥gi∥2
C

)
;

15 g̃T ← 1
b (
∑

i∈T ḡi +N (0, σ2C2I));
16 θt+1 ← θt – λ · g̃T ;
17 mC ← mC + 1;

18 else
// Optimize unrestricted statements

19 T ← getPositiveAndNegativeSamples(U ,
B);

20 gT ← ∇θtL(θt, T );
21 θt+1 ← θt – λ · gT ;
22 mU ← mU + 1;

// Update embeddings according to

gradient

23 updateEmbeddings(θt+1);
Output: Embeddings

noise to those embeddings which are affected in the cur-578

rent iteration. Another difference is that we distinguish be-579

tween unrestricted and confidential statements, and only580

add noise to the latter. This also affects the sampling581

ratio q in Algorithm 1, which differs from the sampling582

ratio for the Algorithm in [1]. The sampling ratio q in583

Algorithm 1, which we denote as qDPKGE to distinguish it584

from the sampling ratio in [1], is qDPKGE= B/|C|, where585

B is the batch size and |C| is the size of confidential state- 586

ments. In [1], the sampling ratio, which we denote as qDL, 587

is qDL = B/(|U| + |C|). Due to this difference, we need 588

to further analyze the differential privacy guarantee of the 589

DPSGD when replacing qDL with qDPKGE. 590

Theorem 2. DPSGD ∇ in Algorithm 1 is C-edge- 591

differentially private. 592

Proof. According to Theorem 1, there exist constants c1
and c2 such that given the sampling probability qDL of the
confidential statements and the number of steps T , for any

ϵ < c1q
2
DLT , (6)

the Algorithm is (ϵ, δ)-differentially private for any δ > 0
if we choose

σ ≥ c2
qDL

√
T log(1/δ)

ϵ
. (7)

The sampling probability qDPKGE of the confidential 593

statements in Algorithm 1 is qDPKGE=
B
|C| . By substitut- 594

ing qDL with qDPKGE we can immediately conclude that 595

Algorithm 1 is (ϵ, δ)-differentially private for any δ > 0 596

and any ϵ < c1T
B2

|C|2 if we choose 597

σ ≥ c2

B
|C|

√
T log(1/δ)

ϵ
.

598

Note that for |U| = 0, we have qDPKGE = qDL. In
this case, any constants c1 and c2 satisfying Equations 6
and 7 in the proof of Theorem 2 are also satisfied for the
Algorithm in [1] by substituting qDPKGE with qDL. Conse-
quently, they also share the same epsilon bounds which can
be obtained by combining Equations 6 and 7 and setting
qDPKGE = B

|C| :

c2

B
|C|

√
T log(1/δ)

σ
≤ ϵ < c1TB

2/|C|2 . (8)

Next, we prove our main theorem, that the DPKGE 599

methods are (ϵ, δ)-C-edge-differentially private. 600

Theorem 3. Let A be a gradient-separable embed- 601

ding algorithm with a DPSGD ∇ that is (ϵ, δ)-C-edge- 602

differentially private after n ∈ N iterations when initialized 603

randomly. Then, A is (ϵ, δ)-C-edge-differentially private 604

after n iterations. 605

Proof. Let f be the function which maps the outcome
from the DPSGD ∇ to the outcome Oi in each iteration
i ∈ {1, . . . , n} of A. Since A is gradient-separable and
hence, Oi is only updated through ∇, it follows that we
can write Oi = f(Oi−1,∇(K)), where K is a knowledge
graph. Fix an arbitrary Ei ⊆ Range(f(Oi−1, ·)) and let
Ti = {x ∈ Range(∇) : f(Oi−1, x) ∈ Ei}, then

P [f(Oi−1,∇(K)) ∈ Ei] = P [∇(K) ∈ Ti] . (9)

Since the initial O0 is initialized randomly, the question of 606

whether A is C-edge-differentially private can be reduced 607

to whether ∇ is C-edge-differentially private. 608
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Finally, we observe that the DPKGE methods are not609

node-differentially private. To see this, we observe that610

removing a node from the set of confidential statements611

affects the number of embedding vectors produced by the612

embedding method. Therefore, it is simple to distinguish613

between embeddings containing a specific node, and those614

not containing the node. Hence, the node-differential pri-615

vacy property is violated.616

4. Experiments617

This section evaluates the DPKGE methods through618

an extensive set of experiments.619

Interactions between differential privacy and learning.620

The first two experiments are designed to gain insights621

into how differential privacy and the learning process af-622

fect each other.623

The idea of DPKGE is to inject noise to achieve pri-624

vacy. Such noise affects the learning process, which, in625

the worst case, may not converge. In the first analysis,626

described in Section 4.2, we study the loss function for627

different embedding methods and datasets. We study how628

the function evolves over time and how it compares to629

non-differentially private methods.630

The second analysis, in Section 4.3, complements the631

first. In this experiment, we study the impact of the learn-632

ing process on privacy. In deep learning without differen-633

tial privacy, where no noise injection is involved, a longer634

learning process will improve the utility of the learned635

model. The reason is that model parameters will be ad-636

justed with more iterations to minimize the loss function.637

However, the introduction of a privacy dimension brings a638

new metric in addition to utility. Since DPKGE is a learn-639

ing algorithm that involves noise injection, a longer learn-640

ing process will yield more injected noise during the train-641

ing. Intuitively, the longer the learning process, the more642

information is revealed by the learned model, and conse-643

quently, the learned model is more vulnerable to privacy644

leaks. In this context, learned model refers to the learned645

embeddings of the entities and the relations as they are646

optimized in DPKGE. In this experiment, we study how647

the utility-privacy trade-off evolves over time.648

Using differentially private embeddings. The second set of649

experiments studies the behavior of the DPKGE methods650

in the context of four applications.651

The first application is clustering. Clustering is an un-652

supervised method to group similar items. As such, it653

is ideal for inspecting how differential privacy affects the654

embeddings in the vector space. Training multiple embed-655

ding spaces with the same method and parameters should656

ideally lead to the same clusters. Moreover, the clusters657

obtained by applying the methods with and without dif-658

ferential privacy on the same dataset should be the same.659

We describe this analysis in Section 4.4, where we exploit660

clustering to infer insights on the utility of the embeddings.661

In Section 4.5 we discuss the second application, link 662

prediction. The idea of link prediction is to discover new 663

links in a knowledge graph by studying how likely such a 664

link would fit into the embedding of the knowledge graph. 665

However, if the knowledge graph itself is hidden—because 666

of privacy concerns—link prediction can also be exploited 667

trying to reconstruct existing links in a knowledge graph. 668

Hence, if the embedding is DP, link prediction should not 669

perform significantly differently depending on whether a 670

certain link is present in the knowledge graph or not. 671

In Section 4.6, we introduce an attacker based evalua- 672

tion. We trace confidential statements by using DPKGE 673

and NDP methods. The evaluation result illustrates the 674

difference between DPKGE and NDP methods when trac- 675

ing confidential statements by an attacker. 676

The last analysis, presented in Section 4.7, showcases 677

DPKGE in the context of a case study. We build similar 678

knowledge graphs and study the result of link prediction 679

over them. This anecdotal experiment is useful to illus- 680

trate how the DPKGE methods work and how differential 681

privacy affects the resulting models. 682

In the next sub-section, we discuss the setup of our ex- 683

periments. This includes the data sets used, the baselines, 684

metrics, parameter settings, and implementation details 685

about our own methods. 686

4.1. Experimental Setup 687

In the following, we introduce the datasets, the evalu- 688

ation metrics, implementation details, the baselines, and 689

parameter settings. 690

Data sets. We consider five datasets, summarized in Ta- 691

ble 1. Three of them, FB15k, FB15k-237 and YAGO 3- 692

10 are de-facto standard datasets to test KG embeddings. 693

FB15k is based on Freebase and was initially proposed 694

in [5]. FB15k-237 is another subset of Freebase built to 695

overcome FB15k limitations. It was initially proposed in 696

[41]. YAGO3-10 is another KG used to benchmark em- 697

bedding methods. As the name suggests, YAGO3-10 is a 698

subset of YAGO. FB15k, FB15k-237, and YAGO3-10 do 699

not define confidential statements. To use the DPKGE 700

methods, we randomly set r percent of the statements 701

of the three datasets as confidential, where r ∈ {0, 25, 702

50, 75, 85, 95, 100}. We only set r for FB15k, FB15k-237, 703

and YAGO 3-10 in this way since they do not define any 704

confidential information. To overcome the limitations of 705

randomly defining certain statements as confidential, we 706

also included in our evaluation two real-life datasets in the 707

health domain, eICU and MIMIC-III, that let us define 708

confidential statements in a more natural way as opposed 709

to random selection. 710

The other two data sets, MIMIC-III and eICU, already 711

include confidential statements. The MIMIC-III dataset is 712

a database about patients admitted to critical care units at 713

a tertiary care hospital [22]. We use Ontop [7] to map the 714
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Table 1: Statistics of the data sets used in the experiments. “Ent.”
denotes the number of entities, and “Rel.” denotes the number of
relations.

Data Set Ent. Rel. #Train #Validate #Test
FB15k 14,951 1,345 483,142 50,000 59,071
FB15k-237 14,541 237 272,115 17,535 20,466
YAGO3-10 123,182 37 1,079,040 5,000 5,000
eICU 122,186 16 289,719 29,824 33,724
MIMIC-III 308,878 97 1,482,059 152,565 181,626

dataset to RDF.7 The resulting graph includes billion of715

triples, and current implementations of embedding tech-716

niques can hardly cope with such a scale - we estimate717

that TransE would require more than 290 days to learn718

a model. Therefore, we sample the graph as follows. We719

select all admissions from January 21508, which is around720

0.1% of the whole dataset. The resulting knowledge graph721

contains around 1.8 million statements, so it is in the same722

order of magnitude as YAGO3-10. Among the 1,482,059723

training statements, there are 652,605 confidential state-724

ments and 829,454 unrestricted statements.725

The eICU dataset is a de-identified database about pa-726

tients admitted to ICUs across the United States between727

2014 to 2015 [34]. As for the MIMIC-III dataset, we use728

Ontop to map the data into RDF.7 We randomly select729

0.6% of patients’ ICU data to obtain a dataset where the730

number of statements is in the same order of magnitude731

as FB15k and FB15k-237. The resulting knowledge graph732

contains around 350 thousand statements. Among the733

289,719 training statements, 165,917 are confidential and734

123,802 are unrestricted.735

Evaluation Metrics. For each test statement, we calculate736

two ranks with respect to corrupted statements where the737

head or the tail is replaced with another entity. The two738

ranks are with respect to the two cohorts of corrupted739

statements with replaced head and tail, respectively. Fi-740

nally, the ranks of the correct statements are counted. As741

in [5], we remove the statements generated in the corrup-742

tion process that appear in the training, validation, or test,743

as they are actually correct statements. By keeping them,744

it is possible they get ranked above the test statements,745

introducing an error in the evaluation procedure. The av-746

erage rank of the test statements within its cohort gives747

the filtered mean rank MR. The probability that a test748

statement is ranked among the ten highest within its co-749

hort gives as the Hits@10 metric (shortly Hits). For MR750

and Hits, we report averages and standard deviations over751

five runs.752

7 See https://github.com/xiaolinhan/DPKGE_public.git for
the mapping files.

8For privacy protection, all dates are randomly shifted into a date
between the year 2100 and 2200

Implementation Details. We consider DPKGE applied to 753

TransE, TransM, RESCAL, and DistMult, which we de- 754

note as TransEDPKGE, TransMDPKGE, RESCALDPKGE, 755

and DistMultDPKGE. We built them using the 756

Pykg2vec [48] and the TensorFlow Privacy9 libraries. As 757

explained in Sections 3.3 and 3.4, our methods add noises 758

to the entity and relation embeddings of confidential state- 759

ments contained in each batch. 760

We ran the link prediction experiments five times and 761

report the average and standard deviation ofMR and Hits. 762

Baselines. We use three groups of baselines. The first 763

group, referred as the NDP methods, includes the state- 764

of-the-art versions of four embedding methods: TransE, 765

TransM, RESCAL, and DistMult. 766

The second group runs the NDP methods on the 767

datasets without confidential statements. We denote 768

such baselines with TransEU , TransMU , RESCALU and 769

DistMultU . In the case of FB15k, FB15k237, and YAGO3- 770

10 we set r to 50%, as it is comparable to the ratio of 771

confidential statements in MIMIC-III and eICU – 44.03% 772

and 57.27%, respectively. 773

The third group, FullDP methods, considers näıve dif- 774

ferentially private versions of Algorithm 1, which do not 775

distinguish between confidential and unrestricted state- 776

ments and add noise to everything. We denote the 777

methods in this group as TransEFullDP, TransMFullDP, 778

RESCALFullDP, and DistMultFullDP. 779

Parameter Settings. For FB15k, we set the embedding size 780

k = 50 for entities and relations representations, the learn- 781

ing rate λ = 0.01, and margin γ = 1.0 by following the 782

optimal configurations suggested in [5] for TransE. Fol- 783

lowing the recommendations in [1], we set the batch size 784

b as
√
N , where N is the number of training statements. 785

We set the number of epochs l = 100. The noise multi- 786

plier σ can assume values in {0.7, 1.0, 1.3, 10.0}. In this 787

way, we can observe the effect of different noise degrees on 788

effectiveness, differential privacy, and convergence. We set 789

the σ values as in [1] and include additionally a value of 790

10.0 to illustrate the impact on extreme choices for σ. The 791

value δ is set as the inverse of the training data size, as 792

suggested in [1, 14]. We conduct hyper-parameter tuning 793

by using a bayesian optimizer for all the methods on all 794

the datasets. The only exception is the hyper-parameter 795

tuning for TransE on FB15k: in this case, we use the 796

hyper-parameters proposed by [5]. The search spaces of 797

the learning rate, hidden size, margin, optimizer and L1 798

flag are [0.001, 0.1], [50, 512], [0.0, 10.0], {”adam”, ”ada- 799

grad”} and {True, False}, respectively. In the following, 800

we discuss how we set the clipping parameter C. 801

Setting C. As discussed in Section 2, the parameter C 802

is introduced as part of the differential privacy algorithm, 803

9https://github.com/tensorflow/privacy
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and it is not present in standard embedding methods. Dif-804

ferent choices of C provide different trade-offs between the805

utility of the embedding algorithm and the surplus of noise806

added in each iteration. When C is set too small, it lim-807

its the utility of the embedding; when it is set too big, it808

limits the privacy of the embedding.809

To find the value of C to be used in the experiment,810

we study it experimentally. For this, we run different com-811

binations of C and σ to see which C value performs the812

best. The results of our analysis for different C values with813

the FB15k-237 dataset are shown in Tables 2 and 3. The814

best average values are bolded when varying the value of815

C. We do not report the data about other datasets, as816

they follow a similar trend for varying C from 20 to 100817

percentiles.818

We observe that a value of C at the lower end of819

the distribution of the norms yields the best performance.820

This indicates that the embedding methods suffer less from821

gradient clipping than, for example, deep learning in [1].822

Therefore, we set the clipping value C at the 20 percentile823

of the normal distribution of the observed gradients during824

training as the default setting for C.825

4.2. Utility of the DPKGE methods826

To study the utility and the convergence of the learning827

process, we trained embedding models using the DPKGE828

methods for different parameters on the datasets we intro-829

duced in the previous section. We train embedding models830

with NDP and FullDP methods as two terms of compar-831

ison. Fig. 3 shows the trend of the loss functions over832

time, i.e., epochs. In the case of YAGO3-10 and MIMIC-833

III, we only show results for σ = 1.0 because these two834

large datasets require long training time, e.g., Fig. 3(m)835

required more than 100 hours of computation.836

First, we note that the DPKGE methods (dotted lines837

in the figure) converge, even if the loss is higher than the838

NDP baselines (dashed lines). Such a difference can be ex-839

plained by the fact that the confidential statements intro-840

duce noise that disturbs the optimization process. While841

in this section we consider the utility of the embeddings842

overall, in Sections 4.5 and 4.7 we break down the analysis843

to get additional insights on how the methods affect the844

different statements.845

The learning process for FB15k, Fb15k-237, and846

YAGO3-10 quickly converges for the NDP and DPKGE847

methods. In the case of MIMIC-III and eICU, the de-848

crease of the loss function is slighter.849

When comparing it with FullDP methods (solid lines),850

we observe that the loss functions of TransEFullDP ,851

TransMFullDP , RESCALFullDP , and DistMultFullDP de-852

crease slower than the other methods. It is worth noting853

that in most of the cases, the loss values of the DPKGE854

methods are closer to the one of the NDP methods than855

the FullDP ones. This suggests that it is beneficial to focus856

the injection of noise on those embedding vectors related857

to the confidential statements.858

Table 2: Analysis of C over FB15k-237 on DistMult and TransE.
MR and Hits are shown by averages and standard deviation over five
runs.

Method C σ MR Hits

DistMult

20
0.7 465.81±34.56 32.60±0.55
1.0 507.36±32.08 31.98±0.85
1.3 529.74±26.99 32.49±0.45
10.0 715.41±25.57 30.97±0.65

50
0.7 551.06±25.17 32.91±0.68
1.0 537.43±17.78 32.39±1.05
1.3 562.81±31.42 31.90±0.54
10.0 721.71±45.21 31.02±0.72

80
0.7 568.86±44.38 32.95±0.60
1.0 596.53±26.95 32.11±0.55
1.3 600.98±24.32 31.28±0.76
10.0 713.97±23.50 30.54±0.46

100
0.7 674.90±29.98 31.43±0.65
1.0 700.29±30.03 31.19±0.72
1.3 723.76±39.92 30.75±0.69
10.0 749.89±38.48 30.82±0.80

TransE

20
0.7 250.45±6.82 40.28±0.50
1.0 259.23±8.80 39.87±0.79
1.3 263.46±9.33 39.47±0.51
10.0 287.03±4.69 39.47±0.32

50
0.7 262.85±6.61 39.77±0.30
1.0 261.32±6.43 40.03±0.40
1.3 269.26±9.22 39.83±0.96
10.0 280.44±16.80 38.98±0.25

80
0.7 273.11±12.73 39.47±0.99
1.0 271.29±6.60 39.21±0.39
1.3 268.90±4.79 39.34±0.64
10.0 290.32±8.88 38.86±0.47

100
0.7 293.15±5.99 38.75±0.84
1.0 278.00±13.02 39.00±0.41
1.3 295.95±3.91 38.66±0.35
10.0 290.55±12.21 38.65±0.53

The DPKGE methods are less affected by σ than 859

FullDP ones. This can be explained by the fact that the 860

unrestricted statements help stabilize the convergence of 861

the embedding – an effect we hoped to achieve by distin- 862

guishing between confidential and unrestricted statements. 863

The FullDP methods also offer interesting insights on 864

the learning process when all the statements in the knowl- 865

edge graph are confidential. In general, we observe that 866

the learning process converges for values σ lower than 10. 867

The only exception is DistMultFullDP in Figure 3(l), where 868

the loss value does not visibly decrease. When σ is 10, the 869

loss function generally decreases very slowly or is almost 870

constant. In the case of Figure 3(d), however, the loss 871

increases over time. These results suggest that high val- 872

ues of σ are not useful when there the number of sensitive 873

statements is very high. 874

4.3. Privacy of the DPKGE methods 875

In the previous experiment, we studied how differen- 876

tial privacy affects the learning process. We now analyze 877

11



Figure 3: Loss plots for TransE, TransM, RESCAL and DistMult using the five datasets. For the DPKGE methods, in FB15k, FB15k237, and
YAGO3-10, 50% of the statements are set as confidential; MIMIC-III and eICU already include 44.03% and 57.27% confidential statements,
respectively.
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Table 3: Analysis of C over FB15k-237 on TransM and RESCAL.
MR and Hits are shown by averages and standard deviation over five
runs.

Method C σ MR Hits

TransM

20
0.7 238.18±6.05 41.47±0.46
1.0 249.01±4.29 40.88±0.69
1.3 254.98±6.13 41.30±0.31
10.0 260.65±9.04 40.66±0.15

50
0.7 245.33±9.02 41.13±0.51
1.0 257.76±5.42 40.71±1.12
1.3 258.78±3.28 40.72±0.94
10.0 261.72±12.78 40.26±0.39

80
0.7 255.50±5.38 40.77±0.49
1.0 262.92±8.76 40.65±0.71
1.3 268.96±4.60 40.48±0.50
10.0 260.67±8.22 41.00±0.53

100
0.7 271.05±8.63 40.28±0.61
1.0 269.53±6.14 40.35±0.51
1.3 276.16±11.45 40.25±0.35
10.0 268.63±3.97 40.25±0.37

RESCAL

20
0.7 389.18±37.30 35.87±0.46
1.0 421.87±20.58 35.41±0.57
1.3 426.68±16.43 34.75±0.66
10.0 547.41±31.44 33.61±0.60

50
0.7 415.09±13.12 35.44±0.23
1.0 467.01±10.64 34.20±0.48
1.3 470.47±24.42 34.65±0.37
10.0 557.22±40.19 33.41±0.38

80
0.7 436.41±54.19 34.60±0.47
1.0 478.58±18.05 34.39±0.53
1.3 479.17±27.56 34.06±0.36
10.0 576.07±32.24 32.66±0.77

100
0.7 541.70±33.69 33.37±0.56
1.0 556.85±34.71 33.24±0.50
1.3 602.73±29.88 33.44±0.21
10.0 569.41± 14.26 32.92±0.39

the vice versa: how the learning process affects differential878

privacy. The privacy budget ε is a useful value to quantify879

the risk of privacy leaks: the lower its value, the less prob-880

able a privacy leak may happen. As explained in Section881

3.3, in the context of DPKGE, the differentially private882

SGD is controlled through a parameter σ, whereas, ε is883

estimated through the accountant. It follows that it is884

not straightforward to determine how the learning process885

affects ε.886

We tracked the value of ε for the DPKGE and FullDP887

methods on the five datasets. The results are reported in888

Figure 4: as the trends are similar for the different combi-889

nations of methods and datasets, the figure shows the be-890

haviour of TransEDPKGE and TransEFullDP on FB15k and891

YAGO3-10. The plots show that ε increases during the892

training. This is because each epoch in the training phase893

potentially leaks additional information into the embed-894

dings, which can be exploited to reconstruct the original895

dataset.896

Figure 4(a) reports the performance of DPKGE and897

Figure 4: ϵ over epochs of TransE on FB15k and YAGO3-10

FullDP TransE for different values of σ. We observe that in 898

all the methods, after a ca. 10 epochs, ϵ grows linearly. As 899

σ decreases, the growth of ε becomes steeper. Moreover, 900

the difference between DPKGE and FullDP increases as 901

well. 902

When σ is 10, ε has an almost constant value close 903

to 0 for both DPKGE and FullDP. This suggests that the 904

learning process has strong privacy protection. Even if the 905

two values are similar, we observe two different behavior of 906

the loss function in Figure 3(a). In the case of DPKGE, the 907

loss decreases similarly to the ones associated with other 908

values of σ. In the case of FullDP, the loss decreases very 909

slowly, suggesting that the resulting model has very low 910

utility. This confirms that unrestricted statements play a 911

key role in the overall quality of the learned embedding 912

model. 913

Comparing the plots in Figures 4(a) and 4(b), we ob- 914

serve that the behaviour of DPKGE and FullDP for σ set 915

to 1 is almost identical. It means that ε is not affected by 916

the size of the dataset. 917

Finally, we note that whereas more epochs can yield 918

a lower value for the loss function (c.f. Figures 3(a) and 919

3(i)), each epoch increases the ε value for the differential 920

privacy (c.f. Figure 4). It is worth noting that while ε 921

increases linearly, the loss decreases exponentially. This 922

suggests that the length of the training can be tuned to 923

maximize the privacy-utility trade-off. 924

4.4. Clustering 925

We conduct a clustering task to show that DPKGE 926

can preserve the similarity among embeddings of entities 927

such as the ones illustrated in Figure 1. We use 762 pa- 928

tients in the testing data of eICU, and follow the clustering 929

method in [31], i.e., k-means, to evaluate the similarity 930

among embeddings of patients. We compute five differ- 931

ent embedding models by applying TransENDP on the KG 932

KeICU with both unrestricted and confidential statements. 933

We also compute five models by applying TransEDPKGE 934

with σ = 0.7 on the same KG KeICU. Finally, we compute 935

five different embedding models by applying TransENDP 936

on the KG UeICU with only the unrestricted statements. 937

Next, we apply the k-means algorithm with k ∈ [2, 4] 938

to each embedding model. We clustered when k equals 2, 939
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Table 4: NMI among (CNDPi
, CDPKGEi

) pairs when k=2,3,4

k ave stddev
CNDP CDPKGE 2 0.96 0.02
CNDP CU-NDP 2 0.02 0.01
CNDP CDPKGE 3 0.34 0.02
CNDP CU-NDP 3 0.04 0.03
CNDP CDPKGE 4 0.28 0.02
CNDP CU-NDP 4 0.05 0.02

3, and 4 in Table 4. As the largest average Normalised940

Mutual Information (NMI) score when k equals 4 is al-941

ready low, i.e., 0.28, we stopped searching for k > 4. We942

obtain 45 clustering results of the patients. The first 15943

clustering results are from TransENDP on KeICU and de-944

noted as the set CNDP = {Ck,i
NDP|k ∈ [2, 4] ∧ i ∈ [1, 5]},945

where Ck,i
NDP is the i-th clustering of TransENDP on KeICU946

with k clusters. Similar, the next 15 results are from947

TransEDPKGE on KeICU and are denoted as CDPKGE =948

{Ck,i
DPKGE|k ∈ [2, 4] ∧ i ∈ [1, 5]}. Finally, the last 15 re-949

sults are from TransENDP on UeICU and are denoted as950

CU-NDP = {Ck,i
U-NDP|k ∈ [2, 4] ∧ i ∈ [1, 5]}, i.e., they only951

consider the unrestricted statements.952

The clustering results CNDP are used as the gold stan-953

dard for the similarity among patients. If a clustering is954

similar to the gold standard, we conclude that the clus-955

tering also preserves a good similarity among patients.956

To calculate the similarity between clustering results from957

CNDP and CDPKGE, and from CNDP and CU-NDP, we use958

the NMI score.959

Table 4 reports the average (ave) and standard devi-960

ation (stddev) of the NMI values between the clustering961

results over five runs. The best average values are bolded962

in Table 4. The NMI scores for each pair of clustering re-963

sults are available in Appendix Appendix B. We observe964

that the clustering results from CNDP are more similar to965

the ones from CDPKGE than the ones from CU-NDP. The966

NMI between clustering results from CNDP and CDPKGE is967

0.96 when k = 2, and around 0.3 when k is 3 and 4. The968

NMI between clustering results from CNDP and CU-NDP, in969

comparison, are 0.02, 0.04 and 0.05 for k equals 2, 3 and970

4. Hence, TransEDPKGE can preserve higher similarity to971

the gold-standard than standard TransE when removing972

restricted statements.973

Moreover, the low standard deviation we observe sug-974

gests that the stochastic elements involved in the process,975

e.g., the computation of the embedding models or the clus-976

ter initialization for k-means, have a limited impact on the977

results.978

4.5. Effectiveness of Link Prediction979

In this experiment, we investigate if focusing the DP980

computation only on confidential statements yields em-981

beddings with higher utility. We report on our results in982

Tables 5, 6, 7, 8, 9, and Figure 5. Similarly to the experi-983

ment in Section 4.2, σ is set to {0.7, 1.0, 1.3, 10.0} for the984

methods on FB15k, FB15k-237, eICU), and σ is set to 1.0 985

in the case of YAGO3-10 and MIMIC-III due to the com- 986

putational time to train the models on these two datasets. 987

988

As the YAGO3-10 and MIMIC-III datasets are ex- 989

tremely large, we only consider the case where σ is 1.0. 990

Tables 5, 6, 7, 8 and 9 show the average and standard 991

deviation of MR and Hits for five runs on the different 992

methods when C equals 20 percentile of the gradient nor- 993

mal distribution. For FB15k, FB15k-237, and YAGO3-10, 994

we set r = 50%, while for eICU and MIMIC-III, we use 995

the actual confidential statements in the datasets as re- 996

stricted statements. Note that, however, the NDP and 997

FullDP methods do not distinguish between confidential 998

and unrestricted statements and, hence, the effectiveness 999

of these methods applies to any setting with arbitrary r 1000

value. This is denoted in the table with the “any” value 1001

in the r column. 1002

Compared with NDP methods applied on KGs re- 1003

moving confidential statements, denoted as TransEU , 1004

TransMU , RESCALU and DistMultU , the DPKGE meth- 1005

ods outperform in most of settings on five datasets. It con- 1006

firms the hypothesis that removing confidential statements 1007

would degrade the performance in the view of utility. 1008

The tables also show the ϵ values at the 100th epoch es- 1009

timated through the accountant [1]. The DPKGEmethods 1010

have a slightly higher ϵ compared to the FullDP methods 1011

on the same knowledge graph embedding algorithms and 1012

the same datasets. This does not necessarily mean that 1013

FullDP methods are more private, however, as the accoun- 1014

tant, which estimates ϵ, only provides an upper bound for 1015

ϵ. This means that the real value for ϵ could be lower than 1016

estimated by the method and, consequently, the real ϵ for 1017

the FullDP methods is not necessarily lower than for the 1018

DPKGE methods. 1019

We believe that this estimation is less tight for the 1020

DPKGE methods because the accountant considers only 1021

the confidential statements. This means that from the 1022

accountant’s point of view, the whole KG is smaller than 1023

it actually is, i.e., when r = 50%, the accountant believes 1024

that the KG size is 50% smaller. Smaller KGs are more 1025

difficult to keep private than larger ones, as each statement 1026

has a larger impact on the embedding result. This can also 1027

be observed when comparing the ϵ values of the smaller 1028

FB15k dataset with the larger YAGO3-10 dataset. 1029

As for the loss functions in Section 4.2, the DPKGE 1030

methods have MR and Hits values which are much closer 1031

to the NDP methods than the FullDP ones in most cases. 1032

Most notably, the MR and Hits values of RESCAL do not 1033

differ much between the DPKGE and NDP versions. Also, 1034

whereas the Hits values are in the same order of magnitude 1035

for the DPKGE and NDP methods, the Hits of FullDP 1036

significantly drop one to several orders of magnitude. For 1037

RESCAL and DistMult, the Hits even drop to zero or close 1038

to zero for the FullDP methods. 1039

In Table 8 and 9, the DPKGEmethods show better MR 1040

and Hits values than the FullDP ones, in general. Specifi- 1041
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Table 5: Performance of link prediction over FB15k. MR and Hits are shown by averages and standard deviation over five runs. Since the
NDP methods do not guarantee any differential privacy, ϵ and σ are set as “–”. The best average values are bolded in each cell.

Method σ r MR Hits ϵ

TransE
– –

88.15±4.07 51.47±1.05
–TransEU 245.37±7.44 35.55±0.88

TransEDPKGE

0.7
50% 267.48±15.23 35.35±1.11 8.79

TransEFullDP any 1307.26±35.97 10.01±0.69 6.02

TransEDPKGE

1.0
50% 286.21±17.99 34.28±1.06 3.92

TransEFullDP any 1978.67±21.82 7.29±0.62 2.7

TransEDPKGE

1.3
50% 293.14±20.59 34.68±1.32 2.60

TransEFullDP any 2510.84±94.11 5.82±0.26 1.81

TransEDPKGE

10.0
50% 300.57±20.62 34.17±1.77 0.30

TransEFullDP any 6390.88±52.02 0.82±0.16 0.25

TransM
– –

84.29±4.31 52.69±1.21
–TransMU 236.68±15.02 36.01±0.65

TransMDPKGE

0.7
50% 216.41±13.73 39.78±0.76 8.79

TransMFullDP any 1207.41±68.77 10.81±0.39 6.02

TransMDPKGE

1.0
50% 223.53±17.29 38.49±0.51 3.92

TransMFullDP any 1705.77±40.86 7.99±0.41 2.7

TransMDPKGE

1.3
50% 234.90±8.71 38.62±1.04 2.60

TransMFullDP any 2244.03±99.44 6.54±0.49 1.81

TransMDPKGE

10.0
50% 250.71±13.00 38.01±1.01 0.30

TransMFullDP any 6303.84±196.43 0.94±0.20 0.25

RESCAL
– –

116.24±5.71 46.37±0.35
–RESCALU 349.28±33.94 33.70±0.53

RESCALDPKGE

0.7
50% 265.60±11.78 34.97±1.09 8.79

RESCALFullDP any 617.71±26.98 27.71±0.49 6.02

RESCALDPKGE

1.0
50% 290.77±8.14 34.83±0.65 3.92

RESCALFullDP any 1544.82±109.59 22.41±0.77 2.7

RESCALDPKGE

1.3
50% 310.49±14.12 34.84±0.64 2.60

RESCALFullDP any 3735.61±216.61 12.55±1.33 1.81

RESCALDPKGE

10.0
50% 376.20±22.79 33.99±0.49 0.30

RESCALFullDP any 7296.84±41.68 0.09±0.09 0.25

DistMult
– –

147.93±11.09 48.34±0.89
–DistMultU 515.61±17.22 31.85±0.82

DistMultDPKGE

0.7
50% 393.51±36.80 28.75±1.59 8.79

DistMultFullDP any 1080.28±34.87 7.19±0.72 6.02

DistMultDPKGE

1.0
50% 443.72±40.37 29.12±0.81 3.92

DistMultFullDP any 1459.05±27.37 6.41±0.40 2.7

DistMultDPKGE

1.3
50% 464.93±18.07 28.42±1.28 2.60

DistMultFullDP any 1897.72±66.78 4.51±0.65 1.81

DistMultDPKGE

10.0
50% 584.29±32.05 27.40±0.75 0.30

DistMultFullDP any 7378.43±139.39 0.23±0.04 0.25

cally, the MR and Hits values remain stable with σ equals1042

1.3 for DPKGE, but drop significantly for FullDP in Table1043

8.1044

Impact of σ on Effectiveness. The effectiveness of the DP-1045

KGE methods for r = 50% is not much affected for values1046

σ ∈ {0.7, 1.0, 1.3}, which are the values used in [1]. How-1047

ever, when σ = 10, there is a noticeable drop in MR and1048

Hits. To explain the good effect of the DPKGE methods1049

for r = 50% (even for large σ), we note that only half of1050

the statements in the KG are affected by σ. Hence, to a1051

certain degree, even a large amount of noise can be com-1052

pensated by unrestricted statements. At the same time, 1053

higher σ values have a positive effect on ϵ. For the FullDP 1054

methods, the impact of σ is more pronounced. Even for 1055

low values, we can already observe a significant drop in 1056

effectiveness. Hence, this experiment suggests that the 1057

number of confidential statements in the KG should be 1058

taken into account while setting σ. 1059

Effectiveness when Varying r. Figure 5 shows ϵ, MR, Hits, 1060

and for different percentages of r. The ϵ value decreases 1061

when r increases. The plot is the same for each DPKGE 1062

method because the accountant is affected by σ and by 1063
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Table 6: Performance of link prediction over YAGO3-10. MR and Hits are shown by averages and standard deviation over five runs. Since
the NDP methods do not guarantee any differential privacy, ϵ and σ are set as “–”. The best average values are bolded in each cell.

Method σ r MR Hits ϵ

TransE
– –

991.84±69.20 22.29±0.35
–TransEU 3531.16±242.55 17.79±0.54

TransEDPKGE

1.0
50% 2034.91±102.30 18.76±0.59 3.25

TransEFullDP any 10300.87±295.83 8.06±0.37 2.27

TransM
– –

1061.27±34.28 18.16±0.51
–TransMU 2877.73±109.58 15.39±0.69

TransMDPKGE

1.0
50% 1803.95±133.14 15.95±0.46 3.25

TransMFullDP any 8396.76±205.86 10.34±0.61 2.27

RESCAL
– –

4255.91±521.06 10.74±1.15
–RESCALU 7812.01±314.68 8.35±0.39

RESCALDPKGE

1.0
50% 5382.13±539.47 8.73±0.63 3.25

RESCALFullDP any 17849.35±1006.09 4.70±0.16 2.27

DistMult
– –

2622.48±186.67 10.54±1.15
–DistMultU 5285.32±249.43 8.02±0.55

DistMultDPKGE

1.0
50% 3212.65±254.10 11.18±0.55 3.25

DistMultFullDP any 58610.68±1619.00 0.29±0.19 2.27

Figure 5: Privacy budget ϵ and performance in the link prediction task on FB15k when r varies. In (a), the plot is the same for each DPKGE
method. In (b) and (c), σ is set to 0.7.

the number of confidential batches, but not by the embed-1064

ding methods themselves. It is worth stressing that, as1065

discussed before, the plot does not imply that with higher1066

r, the methods have stronger privacy guarantees, as the1067

epsilon estimation is only an upper bound which does not1068

take into account the unrestricted statements.1069

When r increases, MR values increase as well, while1070

Hits values decrease. It follows that the utility of the1071

embeddings in the link prediction task decreases overall.1072

Figure 5(b) and (c) show that the biggest drop in utility1073

occurs when r is above about 80%, suggesting that it is1074

important to have unrestricted statements in the dataset1075

to build the embedding space. Moreover, the performance1076

of TransE and TranM drop heavier than RESCAL and1077

DistMult when r increases from 80% to 100%.1078

4.6. Attacker based Evaluation 1079

The goal of the following attacker-based evaluation is 1080

to study how the DPKGE methods hinder an attacker in 1081

judging whether specific statements are part of the knowl- 1082

edge graph or not. If an attacker is tasked in revealing 1083

confidential statements, one common approach would be 1084

to calculate the rank of different tail entities with the help 1085

of a link prediction method. Given a head entity h and a 1086

relation l, tail entities t with a lower (better) rank are con- 1087

sidered more likely to form a statement (h, l, t) that is part 1088

10/people/person/profession
11/award/award nominee/award nominations./award/award

nomination/award nominee
12/award/award nominated work/award nominations./award/

award nomination/award
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Table 7: Performance of link prediction over FB15k-237. MR and Hits are shown by averages and standard deviation over five runs. Since
the NDP methods do not guarantee any differential privacy, ϵ and σ are set as “–”. The best average values are bolded in each cell.

Method σ r MR Hits ϵ
TransE

– –
179.01±7.30 44.79±0.89

–TransEU 346.85±9.75 31.03±0.65
TransEDPKGE

0.7
50% 250.45±6.82 40.28±0.49 10.08

TransEFullDP any 639.19±33.80 32.19±0.42 6.86
TransEDPKGE

1.0
50% 259.23±8.79 39.86±0.78 4.49

TransEFullDP any 1045.20±18.84 29.92±0.61 3.08
TransEDPKGE

1.3
50% 263.45±9.33 39.46±0.51 2.96

TransEFullDP any 1705.34±59.04 28.81±0.40 2.05
TransEDPKGE

10.0
50% 287.03±4.69 39.46±0.31 0.32

TransEFullDP any 5311.87±98.10 8.30±0.20 0.26

TransM
– –

176.23±7.82 45.34±0.25
–TransMU 316.83±7.54 32.41±0.31

TransMDPKGE

0.7
50% 238.17±6.04 41.47±0.45 10.08

TransMFullDP any 781.76±19.57 32.97±0.54 6.86
TransMDPKGE

1.0
50% 249.01±4.29 40.87±0.69 4.49

TransMFullDP any 1420.87±80.00 30.85±0.71 3.08
TransMDPKGE

1.3
50% 254.98±6.12 41.30±0.30 2.96

TransMFullDP any 2279.18±70.83 28.79±0.49 2.05
TransMDPKGE

10.0
50% 260.64±9.04 40.65±0.14 0.32

TransMFullDP any 5330.69±144.14 8.58±0.23 0.26

RESCAL
– –

328.73±29.59 39.88±0.27
–RESCALU 626.00±60.85 29.06±0.71

RESCALDPKGE

0.7
50% 389.18±37.30 35.86±0.45 10.08

RESCALFullDP any 691.48±25.19 30.63±0.42 6.86
RESCALDPKGE

1.0
50% 421.86±20.58 35.41±0.56 4.49

RESCALFullDP any 1613.17±108.78 24.08±0.67 3.08
RESCALDPKGE

1.3
50% 426.68±16.43 34.74±0.66 2.96

RESCALFullDP any 3474.53±243.40 13.04±0.90 2.05
RESCALDPKGE

10.0
50% 547.41±31.44 33.60±0.60 0.32

RESCALFullDP any 7165.76±91.82 0.03±0.02 0.26

DistMult
– –

422.37±16.74 34.40±0.24
–DistMultU 752.85±60.14 22.35±0.83

DistMultDPKGE

0.7
50% 465.80±34.56 32.60±0.54 10.08

DistMultFullDP any 1544.88±81.16 10.37±0.55 6.86
DistMultDPKGE

1.0
50% 507.36±32.07 31.97±0.84 4.49

DistMultFullDP any 3611.03±531.27 9.43±0.59 3.08
DistMultDPKGE

1.3
50% 529.74±26.99 32.48±0.44 2.96

DistMultFullDP any 6245.80±297.08 4.28±1.83 2.05
DistMultDPKGE

10.0
50% 715.40±25.56 30.96±0.64 0.32

DistMultFullDP any 7066.83±100.42 0.45±0.08 0.26

of the original KG than tail entities with a higher (worse)1089

rank. Thus, in order to understand how the DPKGEmeth-1090

ods affect the success of such an attack, we study how the1091

ranks of tail entities of confidential statements are affected1092

by the DPKGE methods.1093

To conduct this study, we first need to change our view-1094

point to the one of the attacker. We assume that the at-1095

tacker has access to the embeddings of the KG but not1096

the knowledge graph itself. This means that the attacker 1097

knows the entities and relations that are part of the KG, 1098

but not which statements (i.e., combinations of entities 1099

and relations) are part of it. In our attacker scenario, the 1100

attacker chooses a head h ∈ E and a relation l ∈ L and tries 1101

to deduce whether for a specific tail entity t the statement 1102

(h, l, t) is part of the knowledge graph or not. We will call 1103

candidate statement the statement (h, l, t) for which an at- 1104
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Table 8: Performance of link prediction over eICU. MR and Hits are shown by averages and standard deviation over five runs. Since the
NDP methods do not guarantee any differential privacy, ϵ and σ are set as “–”. The best average values are bolded in each cell.

Method σ r MR Hits ϵ
TransE

– –
14662.63±149.68 14.30±0.59

–TransEU 31012.00±730.35 15.88±0.43
TransEDPKGE

0.7
57.27% 19251.74±209.56 33.78±0.75 9.21

TransEFullDP any 19917.49±208.57 25.40±0.54 6.77
TransEDPKGE

1.0
57.27% 19366.46±271.27 34.10±0.38 4.11

TransEFullDP any 21393.56±646.72 25.48±0.91 3.04
TransEDPKGE

1.3
57.27% 20069.86±365.55 33.62±1.23 2.72

TransEFullDP any 22298.05±476.42 25.54±0.59 2.03
TransEDPKGE

10.0
57.27% 28902.93±2364.13 11.98±2.08 0.30

TransEFullDP any 26707.12±334.47 23.48±0.19 0.26

TransM
– –

21540.11±635.02 9.83±0.69
–TransMU 30209.67±291.58 9.61±0.63

TransMDPKGE

0.7
57.27% 23926.09±574.16 9.54±0.47 9.21

TransMFullDP any 25960.80±740.67 12.19±0.99 6.77
TransMDPKGE

1.0
57.27% 24169.05±469.47 10.39±1.20 4.11

TransMFullDP any 26876.66±645.67 10.54±1.36 3.04
TransMDPKGE

1.3
57.27% 25517.92±964.13 9.43±1.63 2.72

TransMFullDP any 27781.02±466.43 8.65±0.61 2.03
TransMDPKGE

10.0
57.27% 33833.45±2360.65 3.59±0.33 0.30

TransMFullDP any 42986.19±2238.23 0.09±0.07 0.26

RESCAL
– –

18211.51±97.83 28.11±1.76
–RESCALU 42585.14±1182.17 19.52±0.96

RESCALDPKGE

0.7
57.27% 23818.40±328.32 30.63±1.35 9.21

RESCALFullDP any 32489.87±510.57 27.01±1.27 6.77
RESCALDPKGE

1.0
57.27% 24423.61±356.99 31.14±0.35 4.11

RESCALFullDP any 36043.25±610.17 18.75±1.67 3.04
RESCALDPKGE

1.3
57.27% 24608.88±434.08 30.47±0.35 2.72

RESCALFullDP any 36974.35±490.41 12.39±1.10 2.03
RESCALDPKGE

10.0
57.27% 40062.61±842.14 12.01±3.67 0.30

RESCALFullDP any 55549.63±931.95 0.03±0.05 0.26

DistMult
– –

24259.69±951.66 5.88±.14
–DistMultU 37233.58±2669.08 12.98±1.37

DistMultDPKGE

0.7
57.27% 25565.57±3268.94 16.30±6.52 9.21

DistMultFullDP any 43564.15±1749.16 8.63±1.42 6.77
DistMultDPKGE

1.0
57.27% 26375.88±4039.03 13.83±4.03 4.11

DistMultFullDP any 50747.99±1697.34 4.32±1.73 3.04
DistMultDPKGE

1.3
57.27% 27811.36±5600.49 11.41±3.44 2.72

DistMultFullDP any 52250.45±784.97 2.72±1.05 2.03
DistMultDPKGE

10.0
57.27% 35824.17±3782.50 6.05±0.73 0.30

DistMultFullDP any 53660.22±1542.87 0.02±0.05 0.26

tacker needs to decide whether it is part of the knowledge1105

graph. To decide which candidate statements might be1106

part of the knowledge graph, the attacker has to observe1107

the rank of the candidate statements. Those candidate1108

statements with very low (good) rank have the highest1109

likelihood of being part of the knowledge graph. We de-1110

note the process of choosing an h and an l and compare1111

the rank for different candidate statement (h, l, t) as a sin-1112

gle attack. To see how good the DPKGE methods protect 1113

the confidential statements, we are particularly interested 1114

in attacks with candidate statements that are actually (i) 1115

part of the knowledge graph, and (ii) are considered confi- 1116

dential. We will call attacks that meet those requirements 1117

critical attacks. Hence, we ask ourselves: for critical at- 1118

tacks, how high is the rank of those tail entities t for which 1119

(h, l, t) is a confidential statement in the KG? 1120
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Table 9: Performance of link prediction over MIMIC-III. MR and Hits are shown by averages and standard deviation over five runs. Since
the NDP methods do not guarantee any differential privacy, ϵ and σ are set as “–”. The best average values are bolded in each cell.

Method σ r MR Hits ϵ

TransE
– –

23647.72±560.54 30.91±0.51
–TransEU 75037.60±2330.78 16.79±0.16

TransEDPKGE

1.0
44.03% 36832.10±999.14 23.42±0.42 3.23

TransEFullDP any 31767.64±1307.00 34.32±0.65 2.12

TransM
– –

15675.34±448.28 34.25±1.23
–TransMU 67626.25±3973.61 17.18±0.47

TransMDPKGE

1.0
44.03% 24891.37±1803.36 24.55±0.38 3.23

TransMFullDP any 37891.27±943.44 33.05±0.55 2.12

RESCAL
– –

45388.82±803.32 30.83±3.59
–RESCALU 83410.55±4031.40 18.89±1.28

RESCALDPKGE

1.0
44.03% 61338.77±1786.17 23.51±2.97 3.23

RESCALFullDP any 41433.16±3750.48 31.43±1.53 2.12

DistMult
– –

22932.37±2357.55 7.97±4.18
–DistMultU 75115.09±6539.61 10.61±2.37

DistMultDPKGE

1.0
44.03% 27643.34±7003.10 17.22±2.96 3.23

DistMultFullDP any 70114.11±9291.34 14.77±3.14 2.12

Table 10: Example of three sampled confidential statements on the
FB15k.

i head relation tail
1 Ingmar Bergman profession10 Actor
2 J. T. Walsh award nominee11 Paul Sorvino

3
Brideshead
Revisited

award12
Primetime Emmy
Award

Figure 6: Histogram of the ranks in TransE and TransEDPKGE. The
count value of the bars of both TransE and TransEDPKGE start at
0 (i.e., the bars partially overlap).

To study this question, we use FB15k and TransE. We1121

generate 1000 critical attacks with randomly chosen head1122

h and relation l. Then, we calculate the rank of a randomly1123

chosen tail t such that (h, l, t) is a confidential statement1124

in the KG. We do this for both the DPKGE and NDP1125

versions of TransE. Figure 6 shows the distribution of tail1126

ranks for both methods. We observe that the ranks for the1127

DPKGE method are higher than for the NDP method,1128

suggesting that a critical attack is more often successful1129

(i.e., the attacker deduces that the confidential statement1130

is part of the knowledge graph) when the NDP method is1131

used rather than the DPKGE method. We run a Mann-1132

Whitney U test on the two rank distributions to validate 1133

our observation. The p value for the test is 8.28e-44, i.e., it 1134

is very unlikely that the difference in the distributions can 1135

be explained by randomness. Consequently, the DPKGE 1136

method protects the confidential statements better than 1137

the NDP method. 1138

4.7. Use Case: Differential Privacy of Link Prediction 1139

The goal of the use case is to show whether we can 1140

determine the existence of one statement by running one 1141

algorithm on two neighboring datasets. For the FullDP 1142

method, its MR and Hits values are worse as shown in 1143

Tables 5, 6, 7, 8, 9, which is too large to conclude the 1144

existence of the statement on two neighboring datasets. 1145

Therefore, FullDP is not used in Section 4.7. To con- 1146

clude, we present three examples to illustrate the bene- 1147

fits of DPKGE. Starting from FB15k, we built a knowl- 1148

edge graph K with r=0.5, i.e., 50% of the statements are 1149

confidential. Moreover, K contains the three confidential 1150

statements in Table 10, denoted with i ∈ {1, 2, 3}. We 1151

build the three neighbor knowledge graphs K1, K2 and 1152

K3, each of them without one of the statements in the 1153

table, e.g., K \ K1 = {1}. We train TransENDP and 1154

TransEDPKGE on the four knowledge graphs. For each 1155

statement i, we predict its rank using the embeddings 1156

learned with TransENDP and TransEDPKGE over K and 1157

Ki. 1158

Table 11 shows the link prediction results. For the 1159

statement 1, the tail ranks for TransENDP trained on K 1160

and K1 in the link prediction task are 2 and 9, respectively. 1161

When using TransEDPKGE on the two graphs, the ranks 1162

are both 2. When using NDP embeddings, the tail ranks 1163

differ more than in the case of DP embeddings. We can 1164

observe a similar trend also for the statements 2 and 3. As 1165
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expected, the embedding spaces of neighbor KGs are more1166

similar when using DPKGE. Hence, DPKGE embeddings1167

are better at hiding the fact whether one of the selected1168

statements is indeed part of the KG.1169

5. Limitations and Threats to Validity1170

Whilst DPKGE shows that many of today’s methods1171

can be adopted with differentially private versions thereof,1172

our approach and evaluation also face a number of limita-1173

tions.1174

First, the current version of our framework assumes1175

that two neighboring graphs only differ in one edge. Some-1176

times, however, a better definition would be to consider a1177

set of edges to be grouped in making one joint statement.1178

For example, the address of a person consists of multi-1179

ple statements like street name, street number, and ZIP1180

code. If the address of a person is changed or removed,1181

this usually involves changing or removing all address-1182

related statements together. Another example relates to1183

joint statements, such as reified statements. Hence, further1184

research is needed to extend the neighborhood definition1185

to edge groups.1186

Second, choosing which statements are confidential can1187

be a complex task, as oftentimes, statements correlate with1188

other ones. Differential privacy protects the statements in1189

C against privacy leaks caused by comparing the embed-1190

dings of C-edge-neighboring knowledge graphs. However,1191

differential privacy does not protect from privacy leaks1192

from statements in U . This is particularly important in1193

graph settings, where a large degree of auto-correlation1194

has been found [13, 21, 50]. Such correlations can be ex-1195

ploited to reason on the unrestricted information to infer1196

confidential statements. Hence, data curators will have1197

to choose the confidential statements wisely. Finding good1198

methods to support ontology engineers in analysing KGs1199

and studying such correlation between unrestricted and1200

confidential statements is out of the scope of this article,1201

but it is a natural direction where to expand this research.1202

Third, a huge challenge in DP is choosing your privacy1203

budget well. When epsilon is too big, then privacy leaks1204

are too likely. When epsilon is too small, the amount of1205

noise is too high. Indeed, choosing a good epsilon is the1206

topic of ongoing research [27, 18]. In our method, epsilon1207

cannot be set directly. Hence finding a good parameter1208

setting that takes into account somewhat intuitive mea-1209

sures for the chance of a privacy leak still needs to be1210

investigated.1211

Finally, to address any threats to external validity,1212

more experiments with datasets containing well-defined1213

restricted statements and possible privacy threats are1214

needed. Whilst our choice of MIMIC-III and eICU is a1215

good start, we need to better understand the relationship1216

between the parameter choices, the choice of restricted1217

edges, and the chance of a privacy leak.1218

Table 11: Example link prediction rank of neighboring datasets on
FB15k using TransE.

Rank

i
TransENDP

@K
TransENDP

@Ki

TransEDPKGE

@K
TransEDPKGE

@Ki

1 2 9 2 2
2 1 7 7 6
3 2 16 11 10

6. Conclusions and Future Research 1219

In this paper, we studied differentially private knowl- 1220

edge graph embedding. We propose a new general frame- 1221

work (DPKGE) to adapt knowledge graph embedding al- 1222

gorithms to differentially private ones. Moreover, we sug- 1223

gest that it is possible to apply differential privacy for the 1224

confidential statements in the knowledge graph only whilst 1225

keeping the utility of non-sensitive statements to improve 1226

overall performance. In addition, we propose an adaptive 1227

sampling algorithm to retain the same ratio of confidential 1228

and unrestricted statements in each epoch in a stochas- 1229

tic optimized way. We evaluate four DPKGE methods 1230

on five datasets, two of them containing real confidential 1231

statements from the health sector. Extensive experiments 1232

regarding utility, privacy, clustering, and link prediction 1233

have been conducted to evaluate the quality of the DP- 1234

KGE methods. The results show that DPKGE gives a 1235

high utility while applying differential privacy to the confi- 1236

dential statements. Thus, DPKGE is a feasible framework 1237

for differential private knowledge graph embedding. 1238

In future research, we plan to adapt more knowledge 1239

graph embedding algorithms (e.g., RDF2vec [36]) with 1240

DPKGE, and evaluate DPKGE on more datasets. We 1241

also plan to explore limitations discussed in Section 5. We 1242

aim to investigate suitable methods to let ontology engi- 1243

neers and data curators define confidential edges. We en- 1244

vision methods that support human activity, which for ex- 1245

ample, automatically identify correlations between groups 1246

of statements and suggest confidential statements. Such 1247

methods may also be extended to support the tuning of 1248

the privacy parameters. 1249

Whatever the results of future explorations, this pa- 1250

per introduces a central building block to share knowl- 1251

edge graphs containing sensitive information via privacy- 1252

preserving embeddings—a task of central importance to 1253

process KGs whilst adhering to privacy considerations. 1254
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Appendix A. Differentially private SGD Algo-1435

rithm1436

Algorithm 2: Differentially private SGD [1]

Input : Examples {x1, . . . , xN}, loss function
L(θ) = 1

N

∑
i L(θ, xi). Parameters:

learning rate λt, noise scale σ, group
size L, gradient norm bound C.

Initialize: θ0 randomly
1 for t ∈ [T ] do
2 Take a random sample Lt with sampling

probability L/N ;
// Compute gradient

3 For each i ∈ Lt compute gt(xi)← ∇θtL(θt, xi);
// Clip gradient

4 ḡt(xi)← gt(xi)/max
(
1, ||gt(xi)||2

C

)
;

// Add noise

5 g̃t ← 1
L

∑
i

(
ḡt(xi) +N (0, σ2C2I)

)
;

// Descent

6 θt+1 ← θt − λtg̃t;
Output : θT and compute the overall privacy

cost (ε, δ) using a privacy accounting
method.

Appendix B. NMI values for the clustering re-1437

sults1438

Tables B.12, B.13, B.14, B.15, B.16, B.17 show the1439

NMI scores for k ∈ {2, 3, 4}.1440

Table B.12: NMI values for the pairs in {(Ck,i
NDP, C

k,i
DPKGE) ∈ CNDP×

CDPKGE}) when k=2. The average value is 0.96 and the standard
deviation is 0.02.
NMI C2,1

DPKGE C2,2
DPKGE C2,3

DPKGE C2,4
DPKGE C2,5

DPKGE

C2,1
NDP 0.94 0.92 0.94 0.97 0.97

C2,2
NDP 0.97 0.94 0.97 0.95 0.95

C2,3
NDP 1.0 0.97 1.0 0.97 0.97

C2,4
NDP 0.95 0.97 0.95 0.93 0.93

C2,5
NDP 0.97 0.95 0.97 1.0 1.0

Table B.13: NMI values for the pairs in {(Ck,i
NDP, C

k,i
U-NDP) ∈ CNDP×

CU-NDP}) when k=2. The average value is 0.02 and the standard
deviation is 0.01.

NMI C2,1
U-NDP C2,2

U-NDP C2,3
U-NDP C2,4

U-NDP C2,5
U-NDP

C2,1
NDP 0.02 0.04 0.03 0.01 0.02

C2,2
NDP 0.02 0.03 0.03 0.01 0.02

C2,3
NDP 0.02 0.04 0.03 0.01 0.02

C2,4
NDP 0.02 0.04 0.03 0.01 0.02

C2,5
NDP 0.02 0.04 0.03 0.01 0.02

Table B.14: NMI values for the pairs in {(Ck,i
NDP, C

k,i
DPKGE) ∈ CNDP×

CDPKGE}) when k = 3. The average value is 0.34 and the standard
deviation is 0.02.
NMI C3,1

DPKGE C3,2
DPKGE C3,3

DPKGE C3,4
DPKGE C3,5

DPKGE

C3,1
NDP 0.33 0.36 0.34 0.35 0.36

C3,2
NDP 0.32 0.3 0.31 0.31 0.3

C3,3
NDP 0.35 0.33 0.34 0.35 0.34

C3,4
NDP 0.37 0.37 0.35 0.37 0.35

C3,5
NDP 0.32 0.35 0.34 0.35 0.33

Table B.15: NMI values for the pairs in {(Ck,i
NDP, C

k,i
U-NDP) ∈ CNDP×

CU-NDP}) when k = 3. The average value is 0.04 and the standard
deviation is 0.03.

NMI C3,1
U-NDP C3,2

U-NDP C3,3
U-NDP C3,4

U-NDP C3,5
U-NDP

C3,1
NDP 0.06 0.1 0.01 0.06 0.03

C3,2
NDP 0.01 0.02 0.01 0.02 0.01

C3,3
NDP 0.04 0.04 0.04 0.05 0.02

C3,4
NDP 0.06 0.08 0.06 0.08 0.06

C3,5
NDP 0.04 0.08 0.01 0.06 0.02

Table B.16: NMI values for the pairs in {(Ck,i
NDP, C

k,i
DPKGE) ∈ CNDP×

CDPKGE}) when k = 4. The average value is 0.28 and the standard
deviation is 0.02.
NMI C4,1

DPKGE C4,2
DPKGE C4,3

DPKGE C4,4
DPKGE C4,5

DPKGE

C4,1
NDP 0.26 0.27 0.24 0.25 0.28

C4,2
NDP 0.28 0.31 0.29 0.29 0.32

C4,3
NDP 0.27 0.26 0.25 0.29 0.27

C4,4
NDP 0.3 0.3 0.26 0.32 0.29

C4,5
NDP 0.28 0.3 0.25 0.27 0.31

Table B.17: NMI values for the pairs in {(Ck,i
NDP, C

k,i
U-NDP) ∈ CNDP×

CU-NDP}) when k = 4. The average value is 0.05 and the standard
deviation is 0.02.

NMI C4,1
U-NDP C4,2

U-NDP C4,3
U-NDP C4,4

U-NDP C4,5
U-NDP

C4,1
NDP 0.02 0.07 0.03 0.03 0.05

C4,2
NDP 0.01 0.08 0.03 0.06 0.04

C4,3
NDP 0.04 0.08 0.05 0.05 0.05

C4,4
NDP 0.05 0.09 0.07 0.05 0.05

C4,5
NDP 0.03 0.1 0.05 0.09 0.07
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